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Penalized likelihood methods for black boxes

Sensitivity Analysis

Consider a model (computer code or black box function) written as a function f defined on a

domain of Rp with values in Rm :

Y = Y(X) = f(X),

with X ∈ Rp the “inputs” and Y ∈ Rm the outputs.

GSA tries to find the importance and the weight of uncertainties of the components of X on

the variability of the response Y(X).

As dimension increases many numerical problems become more statistical, because the

sample is inevitable sparse and error depends on un-sampled parts of the domain.
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Meta-model (approximation)

Let

f(x) '
∑
r∈R

βrψr(x) + η(x).

The functions ψr(x) are basis functions of L2([0, 1]p) such that:

• ψ0(x) = 1, ∀x ∈ [0, 1]p

•
∫
ψ2

j (x)dx = 1, ∀j ∈ R

•
∫
ψj(x)ψk(x)dx = 0, j 6= k

η(x) is a deterministic truncation error.

Usually, {ψj}r∈Np is a tensor product basis made from univariate basis functions

(sinusoids, orthogonal B-splines, orthogonal polynomials, wavelets).
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Interpretation in GSA

• Variance of f is

σ2(f) =
∑

r∈R,r 6=0

β2
r +

∫
η(x)2dx

• Importance of a subset S of coefficients is

σ2
S =

∑
r∈S

β2
r

• Normalized version is

σ2
S/σ

2(f)
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Estimation (d = card(R))

Let : Z(x) = (ψ0(x), . . . , ψd−1(x))T

The optimal β is

β∗ = argminβ

∫
(f(x)− Z(x)T β)2dx

=
(∫

Z(x)Z(x)T dx
)−1 ∫

Z(x)f(x)dx

and the ISE is

ISE =
∫

(f(x)− Z(x)T β)2dx.
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Orthogonality implies

β∗ =
(∫

Z(x)Z(x)T dx
)−1 ∫

Z(x)f(x)dx

=
∫
Z(x)f(x)dx.

Observations

xi ∼ U([0, 1]p), 1 ≤ i ≤ n, i.i.d.

Regression

β̂ = (ZTZ)−1ZTY, Zn×d, Yn×1 and f̂(x) = Z(x)T β̂.
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Quasi-regression

For an orthonormal basis of L2([0, 1]p) the matrix
(∫
Z(x)Z(x)T dx

)
= I .

For a design derived from a uniform distribution in [0, 1]p, the LLN allows to approximate

ZTZ by the identity. Therefore

β̃ =
1
n
ZTY.

The quality of approximation depends on d and the norm of β.

Important to penalize β for reducing the variability in estimating the sensitivity indices and

also to obtain a parcimonious metamodel !

See Efromovich (1992), Owen (1992, 1998), Antoniadis (2005).
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Regularization

A popular method for fitting a regression function from data measurements is regularization:

minimize an objective function which enforces a roughness penalty in addition to coherence

with the data.

Penalizing the squared norm of β in the Gaussian logl-ikelihood leads to ridge

quasi-regression

β̃ = argminβ‖Y − Zβ‖2 + λ‖β‖2.

However, when the dimension d is large, it is better to look for sparse models (as in wavelets)

by using a “Lasso”-type penalty:

β̃ = argminβ‖Y − Zβ‖2 + λ‖β‖1

which leads to soft-thresholded estimators.
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General penalties

Several penalty functions have been used in the literature.

• The L2 penalty ψ(β) = |β|2 yields a ridge type regression

• The L1 penalty ψ(β) = |β| results in LASSO (first proposed by Donoho and Johnstone

(1994) in the wavelet setting and extended by Tibshirani (1996) for general least squares

settings).

• More generally, the Lq (0 ≤ q ≤ 1) leads to bridge regression (see Frank and

Friedman (1993), Ruppert and Carroll (1997), Fu (1998), Knight and Fu (2000), Yu and

Ruppert (2001)).
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Conditions on ψ

Usually, the penalty function ψ is chosen to be symmetric and increasing on [0,+∞).

Furthermore, ψ can be convex or non-convex, smooth or non-smooth.

In the wavelet setting, Antoniadis and Fan (2001) provide some insights into how to choose a

penalty function. A good penalty function should result in

• unbiasedness,

• sparsity,

• stability.
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Examples

Penalty function Convexity Smoothness at 0 Authors

ψ(β) = |β| yes ψ′(0+) = 1 (Rudin 1992)

ψ(β) = |β|α, α ∈ (0, 1) no ψ′(0+) = ∞ (Saquib 1998)

ψ(β) = α|β|/(1 + α|β|) no ψ′(0+) = α (Geman 92, 95)

ψ(0) = 0, ψ(β) = 1,∀β 6= 0 no discontinuous Leclerc 1989

ψ(β) = |β|α, α > 1 yes yes Bouman 1993

ψ(β) = αβ2/(1 + αβ2) no yes McClure 1987

ψ(β) = min{αβ2, 1} no yes Geman 1984

ψ(β) =
p
α+ β2 yes yes Vogel 1987

ψ(β) = log(cosh(αβ)) yes yes Green 1990

ψ(β) =

8<: β2/2 if |β| ≤ α,

α|β| − α2/2 if |β| > α.
yes yes Huber 1990

Examples of penalty functions
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Discussion

• unbiasedness ↔ ψ̇(|β|) = 0

• sparsity ↔ |β|+ λψ̇(|β|) ≥ 0

• stability ↔ argmin{|β|+ λψ̇(|β|)} = 0

From the above, a penalty satisfying the conditions on sparsity and stability must be

non-smooth at 0. !
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SCAD

A penalty satisfying all the above is the one associated to the SCAD thresholding rule

(Antoniadis & Fan (2001))

δSCAD
λ (β̂) =


sign(β̂)max (0, |β̂| − λ) if |β̂| ≤ 2λ
(a−1)β̂−aλsign(β̂)

a−2 if 2λ < |β̂| ≤ aλ

β̂ if |β̂| > aλ

(1)

which is a “shrink” or “kill” rule (a piecewise linear function). It does not over penalize large

values of β̂ and hence does not create excessive bias when the coefficients are large.

Antoniadis & Fan (2001), based on a Bayesian argument, have recommended to use the

value of α = 3.7.
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Penalizing Gaussian Kriging models

Kriging is popular analysis approach for computer experiments when one wants to create a

cheap-to-compute meta-model.

The maximum likelihood approach is used to estimate the parameters in the kriging model.

If the likelihood function around the optimum is flat, then the resulting mle estimates of the

parameters of the covariance matrix have large variances.

We will use also here a penalization approach to overcome this problem.
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Gaussian Kriging

xi, i = 1, . . . , N design points over a p-dimensional experimental domain D, yi = y(xi)
sampled from

y(xi) = µ+ z(xi),

where z(x) is a Gaussian process with mean 0 and covariance between xi and xj ,

r(xi,xj) = σ2 exp

{
−

p∑
k=1

θk|xik − xjk|2
}
,

where θk ≥ 0.

Let γ = (θ1, . . . , θp, σ
2)T and define R(γ) to be the N ×N matrix with the (ij, )th

element r(xi,xj).



Penalized likelihood methods for black boxes

Gaussian Kriging (bis)

The density of y = (y1, . . . , yN )T is

f(y) = (2π)−N/2|R(γ)|−1/2 exp
{
−1

2
(y − 1Nµ)TR(γ)−1(y − 1Nµ)

}
and the log-likelihood is proportional to

`(µ,γ) = −1
2

logR(γ)| − 1
2
(y − 1Nµ)TR(γ)−1(y − 1Nµ).

Once µ, σ2 and γ are estimated, the BLUE can be calculated by

ŷ(x) = µ̂+ b(x)R(γ̂)−1(y − 1N µ̂),

with variance

v̂ar[ŷ(x)] = σ̂2 − b(x)R(γ̂)−1b(x),

where b(x) = (r̂(x,x1), . . . , r̂(x,xN )).
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Why using regularization?

Focus on estimation of θ (fixing µ and σ2). We have

`(θ) = `(θ0) + `′(θ0)(θ − θ0) +
1
2
(θ − θ0)T `′′(θ0)(θ − θ0) +OP (‖θ − θ0‖2).

When `(θ) is flat around θ0 then `′′(θ0) is nearly singular and the covariance of θ̂ will be

very large. In such situations, a penalized likelihood estimator may be shown to perform

better than the MLE. We will therefore use instead of ` the following criterion

Q(µ,γ) = −1
2

logR(γ)| − 1
2
(y − 1Nµ)TR(γ)−1(y − 1Nµ)−N

p∑
k=1

ψλ(γk),

where ψλ(·) is any penalty (in particular the SCAD penalty). To compute the solution we use

Fisher’s scoring algorithm. The regularization parameter λ is chosen by K-fold

cross-validation ( note that GCV cannot be used since Gaussian kriging gives an exact fit at

the design points).
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Actual problems

• Better algorithms

• Asymptotic properties

• Selection methods for penalty parameters

• Adequate penalties


