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Conformal Problem formulation

prediction for
surrogate

modelling in
the UQ

framework

. ® For a computer code g : X — ) used in industrial

formultion applications, the Uncertainty Quantification (UQ)
methodology aims at evaluating how uncertainty on the
inputs X € X affects our knowledge of the output
g(X) € Y [De Rocquigny et al., 2008].

Step C Uncertainty propagation
Y =9(X)

Step B
Uncertainty modelling

X = (X1, Xa) ~ fx|

Step A Model specification
_ Step B’ Input parameters calibration I
y = g(x)

'
Model and inputs E [Y] ,Var [Y] ,]P’(lYl > Zhh)y .
Quantity of interest
J

Step C’ Sensitivity analysis

Figure — General UQ methodology.
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Problem formulation

Since these codes are time-costly, surrogates g are
constructed for performing heavy simulations like
Monte-Carlo batch runs for Step C, C'.

For objective reasons, one needs to assess the quality of
these surrogates.

We propose to use the Conformal prediction paradigm
[Vovk et al., 2005] which is a generic, model-agnostic
theory allowing to build prediction sets to these surrogates
with frequentist coverage guarantees.
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CP in regression setting

[Vovk et al., 2005]. We fix a probability space (Q, F,P).

Definition
Let X, ) be metric spaces and Z = X x ). Let n € N and

D ={Z,...,Z,} € 2% a training sample. For a € (0, 1) a conformal
predictor of coverage « is any measurable function of the form :

C,: 22 x X —2Y

(1)
(D, X) — Cpa(X),
such that for a new point Z,. 1 = (X411, Yot1) € 2 :
P(Yot1 € Gro(Xnt1)) > 1 —a. (2)

Three main methods exist to estimate these set-functions :
full-conformal, split-conformal and cross-conformal estimators.
We focus on the latter.
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Full-Conformalized Ridge Regression (CRR)

[Vovk et al., 2005] A non-conformity score is any measurable function
of the form : o
A: 2% x Z >R

(D, Z) — A(D, ). 3

Assume X' =) = R and Rp a regression rule learned on
D=A{Z,....Z,} ={(X1, Y1), ..., (Xn, Yu.)}. A straightforward
non-conformity score is given by the difference between prediction
and actual value, forall i=1,...,n:

A(D,Z) = Y;— Rp(X;)) = Yi - Y, (4)



S Full-Conformalized Ridge Regression (CRR)

surrogate
modelling in

fra‘:jexo‘fk For a new input X, ;1 € A and output Y € )/, we denote by
D := DU (Xpt1, Y). The full conformal predictor is given for all
confidence level 0 < o < 1 by :

ERR (11 = {Y cy. #HiAD.Z) > AD, (Xos1, YD} a} |

General CP in
regression

The Jackk-

nife4/minmax

® This estimator is based on the "dissimilarity" of the new pair
inside the updated dataset. It achieves the required coverage

property.

® |t is computationally intractable due to the full grid search on
the label space ).

® To tackle this, more advanced estimators are proposed in the
following.

® |n the rest of this talk we suppose that Y = g(X) where g is
some deterministic function (e.g a numerical simulation code).
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[Barber et al., 2021]. We train a metamodel g on D and n
leave-one-out metamodels g_; on D\(X;, g(X;)). The
Jackknife+ estimator is given by :

Gt (Xns1) = [dpa {8-1(Xns1) — RFOY g {82 1(Xas1) + RFOC}]
(5)

Where the leave-one-out error defined by :

RFOC = |g(Xi) — g-i(X) (6)
e \With this estimator we have a coverage guarantee of
1—-2a.

e However, these intervals have almost constant width for
any new point.



B CV+ estimator
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® Let K € {1,...,n}. We divide D" in K-disjoint subsets
S51U...USk.
® We fit K metamodels with the k-th fold removed : g_g, .
Genera | CP in
S ® We compute the conformity scores :
mfe_+/ mmmmmm
CV-+/minmax CV . > [
S R = |g(Xi) — g_sk(l.)(X,-)\, vie{l,...,n}, (7)

where Sy ;) is the fold containing X;.

e \We estimate our prediction intervals :

Cot (Xo1) = [Gra {&-500 Xes) £ RV (®)
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J+/minmax

with R = |Y; = §_i(X))|

Jacknife + Jacknife-minmax
i 9-i(Xns1) + REOO:
§-1(Knsa) 2 RE min -(Xnss) ~ R max §-i(Xn1) + Ri
G-2(Xn41) £ RE?® min_ G (Xnsa) = REC mazx i) + RE%
. > " . >
§-i(Xns1) £ REC min §-i(knsr) — RO e i) + RE
o !
G-n(Xnsr) £ REO min G- (Xns) = RE max §-((Knea) + R
° !
v . >
o
*
Y AJ-minmax-GP
CLe Kna) Cid (s
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estimator
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estimator

Jacknife/CV minmax

Additionally, we can add minmax on both the J+ and the CV+
methods by replacing the metamodel prediction with :

g-i(Xnt1) «— ml_in g-i(Xny1), max g-i(Xny1)- (9)

8-5:()(Xns1) ¢ ming_s, (j(Xn+1), maxg_s, (i) (Xns1)- (10

The intervals will not be centered anymore and we have the coverage
guarantee [Barber et al., 2021] :

P (g(Xn11) € Cob ™ (Xai1)) 21— a (1)

Moreover, the resulting intervals will be more conservative.
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D G ~GP(m,K) G =G|D~GP(®F,9)

Gaussian
Process

Regression .
(GPR) .

surrogates N
Credibility sets .

Data Prior Posterior
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Bayesian credibility intervals

Since we are in a Gaussian setting, we can have access to the
confidence intervals for any new point X, ;1 € X\ X :

CRa(Xni1) = [E(Xna) £ FH (1= 5)3000)|  (12)

which in our case are credibility intervals. Here F is the CDF of the
standard normal distribution.

If g was truly drawn from our posterior G|(X, g(X)), then we would
have the exact coverage :

P(g(Xnt1) € CRa(Xn11)) =1 - a, (13)

and CR,(X,+1) would be the true prediction interval for the true g.
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Frequentist prediction intervals

In practice we don't have access to the true distribution
P(x g(x))- If we dispose of a test dataset :

ptest {(leg(Xl)%...,(Xmag(Xm))}v (14)

different from D, then in all generality we cannot expect to
have :

% zm: 1{g(X}) € CRa(X)} >1—a, as.  (15)
i=1
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The Burnaev-Wasserman program

[Burnaev and Vovk, 2014] Assume that X C RY, for all /,
X; € L%(Q) and the model g is truly gaussian. The credibility
sets have exact coverage and output an interval of the form :

CR&(Xn+1) = [B*’ B*] (16)

The CRR method with the GPR rule outputs a prediction
interval of the form :

CERR (Xnia) =[G, €71, (17)

A natural question is to compare the differences of the bounds
of these two intervals and their asymptotic behaviour
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An asymptotic result

See [Burnaev and Vovk, 2014] for a proof of the following.

Theorem

Under the above assumptions we get

Vn(B* — C*) 225 N (0, h(c)) (18)

n—oo

and similarly for the lower-bound.

Here h is a function of the 1 — a//2-quantile of the standard
normal distribution and of the mean and variance of the input
distribution.



Conformal .
prediction for Problem fOfmUlatlon
surrogate
modelling in
the UQ
framework

Conformal Prediction Gaussian Processes

Q)
Q)

The Burnaev-
Wasserman
Program

Adaptive Conformal Prediction for better

J+GP . = .
Uncertainty Quantification

P(g(X) € Gu(X)) >1—a. (19)
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The idea is to adapt the Jackknife+ method presented earlier to GPR
metamodels to have adaptive prediction intervals. We denote these
predictors as C,fleP and can prove the following theorem :
Theorem

Assume D = (X, g(X)) is exchangeable. For a new point
X1 € X\X and a coverage level o € (0,1) :

P (g(X,,+1) € qgc”(xnﬂ)) >1- 2a. (20)
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3

1
gva(x) = 3xsin(x) — 2x cos(x) + ;LO — 5 —10x, (21)

which we sample at ease.

« Training Points
a000] — True function

Mean of posterior GP

Posterior GP Credibility Interval
Prediction Interval J+GP

10 Prediction Interval J+
2000

The Burnaev- ee—e—

Wasserman 2000
Program S
> ; oo 0"

J+GP

1000

2000
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Conclusion

Conformal prediction is a method for performing
distribution-free uncertainty quantification of machine
learning algorithms.

It can be used in a Bayesian regression setting for testing
the soft-assumption on the original model.

Prediction intervals for Gaussian Processes using an
adaptation of the CP algorithms can be built (upcoming
paper [Jaber and Blot, 2023] - in progress).

A more robust uncertainty quantification of this type of
surrogates can be achieved and can thus serve in assessing
their quality for the purpose of performing industrial UQ.



Conformal
prediction for
surrogate
modelling in
the UQ
framework

Références

References |

Barber, R. F., Candés, E. J., Ramdas, A., and Tibshirani., R. J.
(2021). Predictive inference with the jackknife4-. Annals of
Statistics, 486-507, 49.

Burnaev, E. and Vovk, V. (2014). Efficiency of conformalized
ridge regression. In Proceedings of The 27th Conference on
Learning Theory, volume 35 of Proceedings of Machine
Learning Research, pages 605—622.

De Rocquigny, E., Devictor, N., and Tarantola, S. (2008).
Uncertainty in industrial practice - A guide to quantitative
uncertainty managment. Wiley and Sons.

Jaber, E. and Blot, V. (2023). Conformalizing Gaussian
Processes For More Robust Uncertainty Quantification. /n
progress.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic
Learning in a Random World. Springer, springer edition.



	Problem formulation
	Conformal prediction (CP) paradigm
	General CP in regression
	The Jackknife+/minmax estimator
	CV+/minmax estimator

	Gaussian Process Regression (GPR) surrogates
	Credibility sets

	Adapting CP to GPR
	The Burnaev-Wasserman Program
	J+GP

	Conclusion
	Références

