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Optimal Uncertainty Quantification (OUQ) : [Owhadi et al., 2013]

Principle
Find optimal bounds for a quantity of interest Q(u'), functional of an uncertain
probability measure uf, known only to lie in some subset A of M;(X) :

Q(A) < Q1) < Q(A),

with :

o Q(A) =infuea Qu)

e Q(A) = sup,ca Q(x)

o A={pe Mi(X)]| ®(p) <c¢j,j=1,...,N} the admissible subset,
Distributionally Robust : Useful in risk-adverse situations when parametric

assumptions are hard to justify
< Many applications in Industrial Risk Management (find two : exercise #1)
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assumptions are hard to justify
< Many applications in Industrial Risk Management (find two : exercise #1)
@ Dyke Conception / Reliability Assessment : Q(u) :=P,[Z — h > 0],
> Z ~ u water level, h dyke height, Z — h overflow
@ Nuclear Accident Risk Assessment : Q(u) := sup{t > 0|P,[T < t] < p},
> T ~ p maximal temperature inside nuclear reactor, p safety requirement
@ and also : Probabilistic Seismic Hazard Assessment (PSHA), Extreme
weather forecasting, Environmental risk assessment, Ecotoxicology, . ..
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Robust Bayesian Inference (RBI) : [Rios Insua and Ruggeri, 2000]

RBI as a special case of OUQ

@ 1 prior distribution on parameter 6 in statistical model Y ~ fpdA,
belonging to a class A of admissible priors

@ Py(u) posterior distribution of 8 given Y, according to Bayes' theorem :
fo(Y)dp(0)
T, (V) du(v)

@ Derive optimal bounds on interest quantity of posterior distribution
> replace Q() by Q(Py(u)) (or Q by Qo Py)

dPy (1)(0) (1)
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belonging to a class A of admissible priors

@ Py(u) posterior distribution of 8 given Y, according to Bayes' theorem :
fo(Y)dp(0)
T, (V) du(v)

@ Derive optimal bounds on interest quantity of posterior distribution
> replace Q() by Q(Py(u)) (or Q by Qo Py)

dPy (1)(0) (1)

0UQ as a special case of RBI

@ OUQ corresponds to the no-data case (fy := f does not depend on 6)
> Proof : (1) reduces to Py (u), whence Q(Py(u)) reduces to Q(n) O

< both formulations are equivalent, and special cases of the Dempster
Schaeffer Theory (DST) (M. Couplet, private conversation)
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Main result

Theorem (Measure affine functionals over generalized moment classes)

If :
@ Q(u) is measure affine (e.g. Q() := Eu[q], g bounded above or below)
e A={pe Mi(X)|E.lp;] < ¢,j=1,...,N} for measurable functions o,
o Ay ={peAp= Z(’)V:l w;dy, } extremal admissible probability measures
Then :
° Q(A) =Q(Aa);: Q(A) = Q(Aa)
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e A={pe Mi(X)|E.lp;] < ¢,j=1,...,N} for measurable functions o,
o Ay ={peAp= Z(’)V:l w;dy, } extremal admissible probability measures
Then :
° Q(A) =Q(Aa);: Q(A) = Q(Aa)

Implementation

To find Q(A) (resp.Q(A)) :
@ Minimize (resp. Maximize) Q(u) = ZIN:O wiq(x;) wrt : (Wi, Xj)o<i<n
o subject to : SN wipi(x) < g, forj=1,...,N

— Constrained optimization problem, solvabe by (almost) off-the shelf

methods if g, ; analytical functions : Mystic framework
[McKerns et al., 2012]
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© Robust Bounds on Quantiles
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A Simple Result

Theorem (Quantile-CDF duality)
Assume X = R*
Let :
e Fu(x) =P.[X < x] pointwise cdf evaluation functional
o Qu(p) = inf{x > 0|F.(x) > p} order-p quantile
Then :
Qua(p) = inf{x > 0|Fa(x) > p}
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Let :

Assume X = R"
e Fu(x) =P.[X < x] pointwise cdf evaluation functional
o Qu(p) = inf{x > 0|F.(x) > p} order-p quantile

Qa(p) = inf{x > 0|Fa(x) = p}

Then :
Proof.
o VueA:
{x > 0[Fa(x) > p} C{x>0|Fu(x) > p} T
= inf{x > 0[Fa(x) > p} > Qu.(p)
p

= inf{x > 0|Fa(x) > p} > Qa(p).

@ Assuming a strict inequality, dxop, s.t. :

> xo < inf{x > 0|Fa(x) > p}
= Fa(x) < p= 3, Fu(x) <p

> Qa(p) < x0
= Qu(p) < x0 = Fu(x0) > p,

leading to a contradiction [J
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Application : Inversion of CDF Bounds

Sequential construction of Quantile Upper Bound
@ Initialization (t = 0) :
(at7 bt) = (0, +OO) 1 /’,, -----------

,/

/

/

/

{
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Sequential construction of Quantile Upper Bound

o Initialization (t = 0) :

(at, be) = (0, +0o0) 1 s
e Fort=12...: /’/ /
> Choose x¢ € (ar—1, bt—1) ! &

> Calculate F4(xt)
> If Fa(xe) < p, set ar = x;
>

If Fa(xt) > p, set by := x; 7 /
e /

@ Stop when by —a; < ¢ ,

@ b is then an e-approximation of Q4(p) "o FIEEIE

Challenges
@ How to ‘choose’ x; € (at—1, bi—1)?
@ Can we guarantee Q4 (p) is nontrivial (< o) ?

o What if Q(u) is an extreme quantile on Y = G(X), with X ~ p and G a
costly computer model ? Can we develop an ‘EGO-like’ approach ?
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Alternative : Direct quantile optimization

Q..(p) not a measure affine functional
However, quantile-CDF duality ensures that main result still applies :

0ouQ for quantiles

To find Qa(p) (resp.Qa(p)) :
@ Minimize (resp. Maximize) Q.(p) = x(i=) wrt : (w;, xi)o<i<n
where :

> % = ming<i<p | Z;Z:O Wiy 2 P
> Xo) < - S X

> w;>0and 2N wi=1
@ subject to : Z,{V:o wipj(xi) < ¢, forj=1,...,N
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@ Minimize (resp. Maximize) Q.(p) = x(i=) wrt : (w;, xi)o<i<n
where :

> % = ming<i<p | Z;Z:O Wiy 2 P
> Xo) < - S X

> w;>0and 2N wi=1
@ subject to : Z,{V:o wipj(xi) < ¢, forj=1,...,N

Main difficulty

@ Objective function Qp(r) = Qp((wi, Xi)o<i<n) irregular and non convex
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Case study : Quantile of nonlinear transform under product measure

Problem specification (simplified version)

Qu(p) = sup{y > 0,P,[G(X) <y] < p},
where :
o X =(Xui,...,Xyq) ~ uover [0,1]?
e G:[0,1] — R" potentially costly
0 A= {n= 1k | By [Xe] = mi, 1 < k < d}

Extreme set of product measures

[Owhadi et al., 2013] show that Q(A) = Q(Aa) where :
@ Q(u) measure affine (extendable to quantiles by duality with CDF)
o Ay ={pn= ®¢_, (Wkéxho +(1- Wk)(sxk,l) | Wiexieo + (1 — wi)xk,1 = mi}

10/12



To be continued. ..

THANKS FOR YOUR ATTENTION !'!
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