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Optimal Uncertainty Quantification (OUQ) : [Owhadi et al., 2013]

Principle

Find optimal bounds for a quantity of interest Q(µ†), functional of an uncertain
probability measure µ†, known only to lie in some subset A of M1(X ) :

Q(A) ≤ Q(µ†) ≤ Q(A),

with :

Q(A) = infµ∈A Q(µ)

Q(A) = supµ∈A Q(µ)

A = {µ ∈ M1(X ) | Φj(µ) ≤ cj , j = 1, . . . ,N} the admissible subset,

Distributionally Robust : Useful in risk-adverse situations when parametric
assumptions are hard to justify
→֒ Many applications in Industrial Risk Management (find two : exercise ♯1)
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◮ Z ∼ µ water level, h dyke height, Z − h overflow

Nuclear Accident Risk Assessment : Q(µ) := sup{t > 0|Pµ[T ≤ t] ≤ p},
◮ T ∼ µ maximal temperature inside nuclear reactor, p safety requirement

and also : Probabilistic Seismic Hazard Assessment (PSHA), Extreme
weather forecasting, Environmental risk assessment, Ecotoxicology, . . .
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Robust Bayesian Inference (RBI) : [Rios Insua and Ruggeri, 2000]

RBI as a special case of OUQ

µ prior distribution on parameter θ in statistical model Y ∼ fθdλ,
belonging to a class A of admissible priors

PY (µ) posterior distribution of θ given Y , according to Bayes’ theorem :

dPY (µ)(θ) =
fθ(Y )dµ(θ)

∫

ν
fν(Y )dµ(ν)

(1)

Derive optimal bounds on interest quantity of posterior distribution
◮ replace Q(µ) by Q(PY (µ)) (or Q by Q ◦ PY )
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fθ(Y )dµ(θ)

∫

ν
fν(Y )dµ(ν)

(1)

Derive optimal bounds on interest quantity of posterior distribution
◮ replace Q(µ) by Q(PY (µ)) (or Q by Q ◦ PY )

OUQ as a special case of RBI

OUQ corresponds to the no-data case (fθ := f does not depend on θ)
◮ Proof : (1) reduces to PY (µ), whence Q(PY (µ)) reduces to Q(µ) �

→֒ both formulations are equivalent, and special cases of the Dempster
Schaeffer Theory (DST) (M. Couplet, private conversation)
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Main result

Theorem (Measure affine functionals over generalized moment classes)

If :

Q(µ) is measure affine (e.g. Q(µ) := Eµ[q], q bounded above or below)

A = {µ ∈ M1(X )|Eµ[ϕj ] ≤ cj , j = 1, . . . ,N} for measurable functions ϕj

A∆ = {µ ∈ A|µ =
∑N

0=1 wiδxi } extremal admissible probability measures

Then :

Q(A) = Q(A∆) ; Q(A) = Q(A∆)
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A∆ = {µ ∈ A|µ =
∑N

0=1 wiδxi } extremal admissible probability measures

Then :

Q(A) = Q(A∆) ; Q(A) = Q(A∆)

Implementation

To find Q(A) (resp.Q(A)) :

Minimize (resp. Maximize) Q(µ) =
∑N

i=0 wiq(xi ) wrt : (wi , xi )0≤i≤N

subject to :
∑N

i=0 wiϕj(xi ) ≤ cj , for j = 1, . . . ,N

→֒ Constrained optimization problem, solvabe by (almost) off-the shelf
methods if q, ϕj analytical functions : Mystic framework
[McKerns et al., 2012]
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A Simple Result

Theorem (Quantile-CDF duality)

Assume X = R
+

Let :

Fµ(x) = Pµ[X ≤ x ] pointwise cdf evaluation functional

Qµ(p) = inf{x > 0|Fµ(x) ≥ p} order-p quantile

Then :
QA(p) = inf{x > 0|FA(x) ≥ p}
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Let :

Fµ(x) = Pµ[X ≤ x ] pointwise cdf evaluation functional

Qµ(p) = inf{x > 0|Fµ(x) ≥ p} order-p quantile

Then :
QA(p) = inf{x > 0|FA(x) ≥ p}

Proof.

∀µ ∈ A :
{x > 0|FA(x) ≥ p} ⊆ {x > 0|Fµ(x) ≥ p}
⇒ inf{x > 0|FA(x) ≥ p} ≥ Qµ(p)

⇒ inf{x > 0|FA(x) ≥ p} ≥ QA(p).

Assuming a strict inequality, ∃x0, s.t. :

◮ x0 < inf{x > 0|FA(x) ≥ p}

⇒ FA(x0) < p ⇒ ∃µ,Fµ(x0) < p

◮ QA(p) < x0
⇒ Qµ(p) < x0 ⇒ Fµ(x0) ≥ p,

leading to a contradiction �
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Application : Inversion of CDF Bounds

Sequential construction of Quantile Upper Bound

Initialization (t = 0) :
(at , bt) = (0,+∞)
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◮ If FA(xt) ≤ p, set at := xt
◮ If FA(xt) > p, set bt := xt

Stop when bt − at < ε

bt is then an ε-approximation of QA(p)

Challenges

How to ‘choose’ xt ∈ (at−1, bt−1) ?

Can we guarantee QA(p) is nontrivial (< ∞) ?

What if Q(µ) is an extreme quantile on Y = G(X ), with X ∼ µ and G a
costly computer model ? Can we develop an ‘EGO-like’ approach ?
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Alternative : Direct quantile optimization

Qµ(p) not a measure affine functional
However, quantile-CDF duality ensures that main result still applies :

OUQ for quantiles

To find QA(p) (resp.QA(p)) :

Minimize (resp. Maximize) Qµ(p) = x(i∗) wrt : (wi , xi )0≤i≤N

where :
◮ i∗ = min0≤i≤N |

∑i
ℓ=0 w(i) ≥ p

◮ x(0) ≤ . . . ≤ x(N)

◮ wi > 0 and
∑N

i=1 wi = 1

subject to :
∑N

i=0 wiϕj(xi ) ≤ cj , for j = 1, . . . ,N
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However, quantile-CDF duality ensures that main result still applies :

OUQ for quantiles

To find QA(p) (resp.QA(p)) :

Minimize (resp. Maximize) Qµ(p) = x(i∗) wrt : (wi , xi )0≤i≤N

where :
◮ i∗ = min0≤i≤N |

∑i
ℓ=0 w(i) ≥ p

◮ x(0) ≤ . . . ≤ x(N)

◮ wi > 0 and
∑N

i=1 wi = 1

subject to :
∑N

i=0 wiϕj(xi ) ≤ cj , for j = 1, . . . ,N

Main difficulty

Objective function Qp(µ) = Qp((wi , xi )0≤i≤N) irregular and non convex
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Case study : Quantile of nonlinear transform under product measure

Problem specification (simplified version)

Qµ(p) = sup{y > 0,Pµ[G(X ) ≤ y ] ≤ p},

where :

X = (X1, . . . ,Xd) ∼ µ over [0, 1]d

G : [0, 1]d → R
+ potentially costly

A = {µ = ⊗d
k=1µk | Eµk

[Xk ] = mk , 1 ≤ k ≤ d}

Extreme set of product measures

[Owhadi et al., 2013] show that Q(A) = Q(A∆) where :

Q(µ) measure affine (extendable to quantiles by duality with CDF)

A∆ = {µ = ⊗d
k=1

(

wkδxk,0 + (1− wk)δxk,1
)

| wkxk,0 + (1− wk)xk,1 = mk}
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To be continued. . .

THANKS FOR YOUR ATTENTION ! !
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