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Blackbox / Derivative-Free Optimization
We consider

min
x∈Ω

f(x)

where the evaluations of f and the functions defining Ω are the result of a computer
simulation (a blackbox)

- -
x ∈ Rn f(x)

x ∈ Ω ?

▶ Each call to the simulation may be expensive

▶ The simulation can fail

▶ Sometimes f(x) ̸= f(x)

▶ Derivatives are not available and cannot be approximated

BBO: Algorithms 5/46
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Blackboxes as illustrated by a Boeing engineer
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Terms

▶ “Derivative-Free Optimization (DFO) is the mathematical study of
optimization algorithms that do not use
derivatives” [Audet and Hare, 2017]

▶ Optimization without using derivatives
▶ Derivatives may exist but are not available

▶ Obj./constraints may be analytical or given by a blackbox

▶ “Blackbox Optimization (BBO) is the study of design and analysis of algorithms
that assume the objective and/or constraints functions are given by
blackboxes” [Audet and Hare, 2017]

▶ A simulation, or a blackbox, is involved
▶ Obj./constraints may be analytical functions of the outputs
▶ Derivatives may be available (ex.: PDEs)

▶ Sometimes referred as Simulation-Based Optimization (SBO)
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Optimization: Global view
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Typical setting

Algorithm

f
(blackbox)

x1,x2,...
f(x1),f(x2),...

x0 x*

Unconstrained case, with one initial starting solution
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Algorithms for blackbox optimization
A method for blackbox optimization should ideally:

▶ Be efficient given a limited budget of evaluations

▶ Be robust to noise and blackbox failures

▶ Natively handle general constraints

▶ Deal with multiobjective optimization

▶ Deal with integer and categorical variables

▶ Easily exploit parallelism

▶ Have a publicly available implementation

▶ Have convergence properties ensuring first-order local optimality in the smooth
case – otherwise why using it on more complicated problems?
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Families of methods

▶ “Computer science” methods:
▶ Heuristics such as genetic algorithms
▶ No convergence properties
▶ Cost a lot of evaluations
▶ Should be used only in last resort for desperate cases

▶ Statistical methods:
▶ Design of experiments
▶ Bayesian optimization: EGO algorithm based on surrogates and expected

improvement
▶ Still limited in terms of dimension
▶ Does not natively handle constraints
▶ Good to use these tools in conjonction with DFO methods

▶ Derivative-Free Optimization methods (DFO)
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DFO methods

▶ Model-based methods:
▶ Derivative-Free Trust-Region methods
▶ Based on quadratic models or radial-basis functions
▶ Use of a trust-region
▶ Better for { DFO \ BBO }
▶ Not resilient to noise and hidden constraints
▶ Not easy to parallelize

▶ Direct-search methods:
▶ Classical methods: Coordinate search, Nelder-Mead – the other simplex method
▶ Modern methods: Generalized Pattern Search, Generating Set Search, Mesh

Adaptive Direct Search (MADS)

So far, the size of the instances (variables and constraints) is typically limited to ≃ 50,
and we target local optimization
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MADS illustration with n = 2: Poll step
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[0] Initializations (x0, δ
0 )

[1] Iteration k
[1.1] Search (flexible part)

select a finite number of mesh points
evaluate candidates opportunistically

[1.2] Poll (if Search failed) (“rigid” part)
construct poll set Pk = {xk + δkd : d ∈ Dk}
sort(Pk)
evaluate candidates opportunistically

[2] Updates
if success

xk+1 ← success point
increase δk

else
xk+1 ← xk

decrease δk

k ← k + 1, stop or go to [1]

The MADS algorithm [Audet and Dennis, Jr., 2006]
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Hierarchical convergence'
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Special features of MADS
▶ Constraints handling with the Progressive Barrier

technique [Audet and Dennis, Jr., 2009]

▶ Surrogates [Talgorn et al., 2015]

▶ Categorical/Meta variables [Audet et al., 2023]

▶ Granular and discrete variables [Audet et al., 2019]

▶ Global optimization [Audet et al., 2008a]

▶ Parallelism [Le Digabel et al., 2010, Audet et al., 2008b]

▶ Multiobjective optimization [Audet et al., 2008c, Bigeon et al., 2021]

▶ Sensitivity analysis [Audet et al., 2012]

▶ Handling of stochastic blackboxes [Alarie et al., 2021, Audet et al., 2021]
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MADS features

In the following slides, we focus on these MADS features:

▶ Constraints handling

▶ Granular variables

▶ Surrogates

▶ Multiobjective optimization

▶ Parallelism

BBO: Algorithms 19/46



Introduction MADS MADS features NOMAD Conclusion

Constraints – with taxonomy of [Le Digabel and Wild, 2023]

Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

Cannot be violated;

Example: x > 0 when log x is used inside the simulation

BBO: Algorithms 20/46
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Constraints – with taxonomy of [Le Digabel and Wild, 2023]

Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

▶ cj(x) ≤ 0: Relaxable and quantifiable constraints

May be violated at intermediate designs

cj(x) measures the violation

Example: cost ≤ budget
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Constraints – with taxonomy of [Le Digabel and Wild, 2023]

Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

▶ cj(x) ≤ 0: Relaxable and quantifiable constraints

▶ Hidden constraints

when the simulation fails, even for points in Ω

Example:
Segmentation fault

Bus error

ERROR 42

DIVISION BY ZERO

BBO: Algorithms 20/46
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Constraints – with taxonomy of [Le Digabel and Wild, 2023]
Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

▶ cj(x) ≤ 0: Relaxable and quantifiable constraints

▶ Hidden constraints

Example: Chemical process:

 

7 variables, 4 constraints. The ASPEN software fails on 43% of the calls
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Three strategies to deal with constraints

▶ Extreme barrier (EB)

Treats the problem as being unconstrained,
by replacing the objective function f(x) by

fΩ(x) :=

{
f(x) if x ∈ Ω
∞ otherwise

The problem
min
x∈Rn

fΩ(x)

is then solved.
Remark: this strategy can also be applied to a priori constraints in order to avoid the
costly evaluation of f(x)

BBO: Algorithms 21/46
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Three strategies to deal with constraints

▶ Extreme barrier (EB)

▶ Progressive barrier (PB)

Defined for relaxable and quantifiable constraints.
As in the filter methods of Fletcher and Leyffer, it uses the non-negative constraint
violation function h : Rn → R ∪ {∞}

h(x) :=


∑
j∈J

(max(cj(x), 0))
2 if x ∈ X

∞ otherwise

At iteration k, points with h(x) > hmax
k are rejected by the algorithm, and hmax

k

decreases toward 0 as k →∞

BBO: Algorithms 21/46
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points

ss
s

This trial point is dominated by the incumbent
↘
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points

ss
s

This trial point improves h but worsens f
↘
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points

ss
sNew incumbent solution

↘

hmax
1
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Three strategies to deal with constraints

▶ Extreme barrier (EB)

▶ Progressive barrier (PB)

▶ Progressive-to-Extreme Barrier (PEB)

Initially treats a relaxable+quantifiable constraint by the progressive barrier.
Then, if polling around the infeasible poll center generates a new infeasible
incumbent that satisfies a constraint violated by the poll center, then that constraint
moves from being treated by the progressive barrier to the extreme barrier
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Discrete variables in MADS

▶ MADS has been designed for continuous variables

▶ Some theory exists for categorical variables [Abramson, 2004]

▶ So far: Only a patch allows to handle integer variables: Rounding + minimal
mesh size of one

▶ In [Audet et al., 2019], we present direct search methods with a natural way of
handling discrete variables

▶ This lead to a new way of handling the mesh for a controlled number of decimals
→ granular variables
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Mesh refinement on min(x− 1/3)2

∆k xk

1 0
0.5 0.5
0.25 0.25
0.125 0.375
0.0625 0.3125
0.03125 0.34375
0.015625 0.328125
0.0078125 0.3359375
0.00390625 0.33203125
0.001953125 0.333984375

alternately

∆k xk

1 0
0.5 0.5
0.2 0.4
0.1 0.3
0.05 0.35
0.02 0.34
0.01 0.33
0.005 0.335
0.002 0.332
0.001 0.333

Idea:
Instead of dividing ∆k by 2, change it so that

10× 10b refines to 5× 10b

5× 10b refines to 2× 10b

2× 10b refines to 1× 10b

To get three decimals, one simply sets the granularity to 0.001. Integer variables are
treated by setting the granularity to G = 1

BBO: Algorithms 23/46
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Poll and mesh size parameter update

▶ The poll size parameter ∆k is updated as
10× 10b ←→ 5× 10b ←→ 2× 10b ←→ 1× 10b

▶ The fine underlying mesh is defined with the mesh size parameter

δk =

{
1 if ∆k ≥ 1
max{102b,G} otherwise, i.e. ∆k ∈ {1, 2, 5} × 10b

▶ Example: Granularity of G = 0.005 : δk ∆k

1 5
1 2
1 1
0.01 0.5
0.01 0.2
0.01 0.1
0.005 0.05
0.005 0.02
0.005 0.01
0.005 0.005← stop
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Static versus dynamic surrogates

▶ Static surrogate: A cheaper model defined a priori by the user. It is used as a
blackbox. Typically a simplified physics model. Variable fidelity may be
considered.

▶ Dynamic surrogate: Model managed by the algorithm, based on past evaluations.
It can be periodically updated.

In the remaining, we focus on dynamic surrogates
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Surrogate-assisted optimization

1. Use [X, f(X)] to build a surrogate f̂ of the function f

2. Find xS ∈ argmin
x

f̂(x) (or minimize another criteria such as the EI)

3. Evaluate f(xS)

4. X← X ∪ {xS}

5. Go back to Step 1.

For constrained problems the same method can be used for constrained problems:

▶ Build the models of the constraints

▶ xS ← minimizer of f̂ subject to the constraints ĉj ≤ 0, j = 1, 2, . . . ,m

BBO: Algorithms 26/46
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Surrogate-assisted optimization in MADS

1. Initialization:
▶ Initial design (x0)
▶ Initial mesh and poll sizes (δ0, ∆0)

2. Search
▶ Build the surrogates f̂ and {ĉj}j=1,2,...,m

▶ xS ← solution of the surrogate problem, projected on the current mesh

▶ If xS is a success, repeat the search

3. Poll
▶ Construct the poll candidates

▶ Use the surrogates to order the poll candidates

▶ Evaluate the poll candidates opportunistically

4. If no stopping criteria is met, go back to Step 2.
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What is a good model for surrogate-assisted optimization

▶ Good model of the objective f : respects the order between two candidates:

f(x) ≤ f(x′)⇔ f̂(x) ≤ f̂(x′) for all x,x′ ∈ X

▶ Good model of a constraint cj : respects the sign of the function:

cj(x) ≤ 0⇔ ĉj(x) ≤ 0 for all x ∈ X
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Multiobjective optimization

The problem:

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))

The DMulti-MADS algorithm [Bigeon et al., 2021]:

▶ Strongly inspired by DMS [Custódio et al., 2011] and
BiMADS [Audet et al., 2008c]

▶ Handles more than 2 objectives

▶ Convergence to a set of locally Pareto optimal points

▶ Implemented in NOMAD v4 [Audet et al., 2022]
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DMulti-MADS: an iteration

Ω
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First parallel method: pMADS

▶ Idea: simply evaluate the trial points in parallel

▶ Synchronous version:
▶ The iteration is ended only when all the evaluations in progress are terminated
▶ Processes can be idle between two evaluations
▶ The algorithm is identical to the scalar version

▶ Asynchronous version:
▶ If a new best point is found, the iteration is terminated even if there are evaluations

in progress. New trial points are then generated
▶ Processes never wait between two evaluations
▶ ’Old’ evaluations are considered when they are finished.
▶ The algorithm is slightly reorganized
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PSD-MADS

▶ PSD: Parallel Space Decomposition [Audet et al., 2008b]

▶ Idea: each process executes a MADS algorithm on a subproblem and has
responsibility of small groups of variables

▶ Based on the block-Jacobi method [Bertsekas and Tsitsiklis, 1989] and on the
Parallel Variable Distribution [Ferris and Mangasarian, 1994]

▶ Objective: solve larger problems (≃ 50− 500 instead of ≃ 10− 20)

▶ Asynchronous method

▶ Convergence analysis
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PSD-MADS: processes
▶ Master

▶ receives all slave’s signals
▶ updates current solution and mesh
▶ decides subproblem variables
▶ sends subproblem data

▶ Slaves
▶ receive subproblem data
▶ optimize subproblem
▶ send optimization data

▶ Cache server
▶ memorizes all blackbox evaluations
▶ allows the “cache search” in slave processes

Master
+ Cache Server

pollster
n variables
1 direction

subproblem data

optim
iza

tion re
sult

slave 1
ns variables

2ns directions

slave 2
ns variables

2ns directions

slave 3
ns variables

2ns directions

slave 4
ns variables

2ns directions

slave 5
ns variables

2ns directions
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NOMAD (Nonlinear Optimization with MADS)
▶ C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]

▶ Standard C++. Runs on Linux, Mac OS X and Windows

▶ Parallel versions

▶ MATLAB versions; Multiple interfaces (Python, Julia, etc.)

▶ Open and free – LGPL license

▶ Download at https://www.gerad.ca/nomad

▶ Support at nomad@gerad.ca

▶ Related articles in TOMS [Le Digabel, 2011]
and [Audet et al., 2022]
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Main functionalities (1/2)

▶ Single or biobjective optimization

▶ Variables:
▶ Continuous, integer, binary, categorical, granular
▶ Periodic
▶ Fixed
▶ Groups of variables

▶ Searches:
▶ Latin-Hypercube
▶ Variable Neighborhood Search
▶ Nelder-Mead Search
▶ Quadratic models
▶ Statistical surrogates
▶ User search
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Main functionalities (2/2)

▶ Constraints treated with 4 different methods:
▶ Progressive Barrier (default)
▶ Extreme Barrier
▶ Progressive-to-Extreme Barrier
▶ Filter method

▶ Several direction types:
▶ Coordinate directions
▶ LT-MADS
▶ OrthoMADS
▶ Hybrid combinations

▶ Sensitivity analysis

→ default values for all parameters

→ all items correspond to published or submitted papers
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Blackbox conception (batch mode)

▶ Command-line program that takes in argument a file containing x, and displays
the values of f(x) and the cj(x)’s

▶ Can be coded in any language

▶ Typically: > bb.exe x.txt displays f c1 c2 (objective and two constraints)
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Run NOMAD
> nomad parameters.txt
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Summary

▶ Blackbox optimization motivated by industrial applications

▶ Algorithmic features backed by mathematical convergence analyses and published
in optimization journals

▶ NOMAD: Software package implementing MADS

▶ Open source; LGPL license

▶ Features: Constraints, biobjective, global optimization, surrogates, several types
of variables, parallelism

▶ Fast support at nomad@gerad.ca

▶ NOMAD has become a baseline for benchmarking DFO algorithms
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Custódio, A., Madeira, J., Vaz, A., and Vicente, L. (2011).

Direct multisearch for multiobjective optimization.
SIAM Journal on Optimization, 21(3):1109–1140.

Ferris, M. and Mangasarian, O. (1994).

Parallel variable distribution.
SIAM Journal on Optimization, 4(4):815–832.

Le Digabel, S. (2011).

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm.
ACM Transactions on Mathematical Software, 37(4):44:1–44:15.

Le Digabel, S., Abramson, M., Audet, C., and Dennis, Jr., J. (2010).

Parallel Versions of the MADS Algorithm for Black-Box Optimization.
In Optimization days, Montréal.
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