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Plan

▶ A first basic optimization with NOMAD

▶ The SOLAR simulator

▶ Benchmarking: From convergence plots to performance and data profiles
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Blackbox conception (batch mode)

▶ Command-line program that takes in argument a file containing x, and displays
the values of f(x) and the cj(x)’s

▶ Can be coded in any language

▶ Typically: > bb.exe x.txt displays f c1 c2 (objective and two constraints)

▶ Example with f(x) = (1− x1)
2 + 100(x2 − x21)

2 (Rosenbrock function)
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Run with NOMAD

▶ Installation of NOMAD: Download at www.gerad.ca/nomad or from GitHub

▶ NOMAD3 [Le Digabel, 2011] vs NOMAD4 [Audet et al., 2022]

▶ Edit a NOMAD parameter file

▶ All algorithmic parameters have default values

BBO: Practical 5/13

https://www.gerad.ca/nomad
https://github.com/bbopt/nomad/releases/tag/v.4.3.1


Plan First tests Performance and data profiles

The SOLAR simulator

▶ Download at www.github.com/bbopt/solar

▶ Compilation

▶ Demo of the different options

▶ Optimization of SOLAR6 with NOMAD and CMA-ES [Hansen, 2006]
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Benchmarking

▶ Latin Hypercube Sampling for getting 30 starting points that define 30 instances

▶ Convergence plots

▶ Performance and data profiles from [Moré and Wild, 2009]
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Profiles: Original version from the M&W paper

▶ P: set of problems or instances

▶ S: set of solvers, or algorithms, or methods

▶ Performance measure tp,s > 0 available for each p ∈ P and s ∈ S. Typically the
number of evaluations required to satisfy a convergence test

▶ Small values of the performance measure are preferable

▶ Performance ratio for problem p ∈ P and solver s ∈ S:

rp,s =
tp,s

min{tp,a : a ∈ S}
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Convergence test

▶ One possible convergence test is, for the candidate solution x:

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL)

▶ Where:
▶ τ > 0: tolerance
▶ x0: unique and feasible starting point
▶ fL: smallest value of f obtained by any solver within a given budget of evaluations,

for each p ∈ P
▶ It requires that the reduction f(x0)− f(x) achieved by x be at least 1− τ times

the best possible reduction f(x0)− fL
▶ τ represents the percentage decrease from f(x0). As it decreases, the accuracy of

f(x) as an approximation to fL increases
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Performance profiles

▶ The best solver s∗ ∈ S for a particular problem p ∈ P attains the lower bound
rp,s∗ = 1

▶ tp,s = rp,s = ∞ when s fails to satisfy the convergence test on p

▶ The performance profile of s is the fraction of problems where the performance
ratio is at most α:

ρs(α) =
1

|P|
size{p ∈ P : rp,s ≤ α}

▶ It is the probability distribution for the ratio rp,s

▶ ρs(1) is the fraction of problems for which s performs the best

▶ For α sufficiently large, ρs(α) is the fraction of problems solved by s

▶ Solvers with high values for ρs are preferable
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Data profiles

▶ We are interested in the percentage of problems that can be solved, for a given
tolerance τ with a variable budget of evaluations

▶ The data profile of Solver s is

ds(κ) =
1

|P|
size

{
p ∈ P :

tp,s
np + 1

≤ κ

}
,

where np is the number of variables in Problem p

▶ It represents the percentage of problems that can be solved with κ groups of
np + 1 function evaluations, or simplex gradient estimates

▶ np + 1 is the number of evaluations needed to compute a one-sided
finite-difference estimate of the gradient
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