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Does Hoeffding’s functional decomposition hold when the inputs are not
mutually independent?
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Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud
2018). But either under heavy assumptions on the distribution of the inputs or through
“arbitrary” methods.

—> No definitive answer to the problem.
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Does Hoeffding’s functional decomposition hold when the inputs are not
mutually independent?

Hoeffding’s decomposition:

G(X)= D Ga(Xa).

AePp

Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud
2018). But either under heavy assumptions on the distribution of the inputs or through
“arbitrary” methods.

—> No definitive answer to the problem.

However, a generalization holds under two reasonable assumptions, which leads to intuitive
importance measures.
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Framework and notations

Let (Q, F,P) be a probability space and let X = (Xi, ..., Xy) be random inputs, i.e.,
X:Q—E,

where E = XL , Ei is a cartesian product of d Polish spaces.
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Framework and notations

Let (Q, F,P) be a probability space and let X = (Xi, ..., Xy) be random inputs, i.e.,
X:Q—E,

where E = XL Ei is a cartesian product of d Polish spaces.

| Remark . Thisis just a fancy way to say that the inputs are not necessarily real-valued.

Let D ={1,...,d}, and denote Pp the power-set of D.
Forevery A C D, denote Xa = (Xi)ica O the subset of inputs in A.
Denote by oy C F the P-trivial o-algebra (smallest o-algebra containing the elements of Q

of probability 0).

‘ Proposition (Resnick 2014). If an R-valued random variable is oy-measurable, it is constant
ae.

VA C D, denotfe by o4 C F the o-algebra generated by X,, and ox the one generated by X. 5,2,



Some probability theory

Lemma (Doob-Dynkin Lemma). If an R-valued random variable Y is ox-measurable, then
there exists some function f : E — R such that Y = G(X) a.s.
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Some probability theory

Lemma (Doob-Dynkin Lemma). If an R-valued random variable Y is ox-measurable, then
there exists some function f : E — R such that Y = G(X) a.s.

Definition (Lebesgue space). Let G C F be a sub-c-algebra. Denote by 1.2 (G) the Lebesgue
space confaining every real-valued random variables, which are G-measurable, and, if Y €

L?(og)
E [YZ] :/QY(w)ZdIP(w) < co.

Remark . L2 (ox) is the space of random outputs of the form G(X).
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Some probability theory

Lemma (Doob-Dynkin Lemma). If an R-valued random variable Y is ox-measurable, then
there exists some function f : E — R such that Y = G(X) a.s.

Definition (Lebesgue space). Let G C F be a sub-c-algebra. Denote by 1.2 (G) the Lebesgue

space confaining every real-valued random variables, which are G-measurable, and, if Y €
L?(og)

E [YZ] - / Y (w)?dP (w) < oo.
Q
Remark . L2 (ox) is the space of random outputs of the form G(X).

Proposition . 1.2 (ox) is an (infinite-dimensional) Hilbert space, with inner product

(f(X),g(X)>=E[f(X)g(X)]=/Ef(X)g(X)dPx(X)=/Qf(X(W))g(X(W))dP’(w)~
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Angles between subspaces of Hilbert spaces

Definition (Dixmier’s angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space
H. The cosine of Dixmier’s angle between M and N is defined as

o (M, N) :=sup{[(x,y)| : x € M, [Ix| <1, yeN,|yll <1}.

Dixmier’s angle is closely related to the notion of maximal correlation in probability theory
(Gebelein 1941; Koyak 1987), as a dependence measure between random vectors.
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Angles between subspaces of Hilbert spaces

Definition (Dixmier’s angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space
H. The cosine of Dixmier’s angle between M and N is defined as

o (M, N) :=sup{[(x,y)| : x € M, [Ix| <1, yeN,|yll <1}.

Dixmier’s angle is closely related to the notion of maximal correlation in probability theory
(Gebelein 1941; Koyak 1987), as a dependence measure between random vectors.

Definition (Friedrich's angle (Friedrichs 1937)). The cosine of Friedrichs” angle is defined as

c(M,N) :=sup{<x,y>|:{xe"/’” X[l < 1 }

yeNn iyl <1

where the orthogonal complement is faken w.r.t. to H.

Friedrich’s angle is used in probability theory as a measure of partial dependence (Bryc
1984, 1996). 4/22



Direct-sum decompositions

Definition (Direct-sum decomposition). Let W, ..., Wy be vector subspaces of a vector space
W. W is said fo admit a direct-sum decomposition, denoted:

if any element w € W can be written uniquely as a sum of elements of the W;.

Remark . Hilbert spaces are vector spaces.
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Direct-sum decompositions

Definition (Direct-sum decomposition). Let W, ..., Wy be vector subspaces of a vector space
W. W is said fo admit a direct-sum decomposition, denoted:

if any element w € W can be written uniquely as a sum of elements of the W;.

Remark . Hilbert spaces are vector spaces.

Hence, a Hoeffding-like (coalitional) decomposition of a black-box model entails finding a
direct-sum decomposition for I.? (ox), i.e., writting
L? (0x) = €D Va,
AePp
where the V), needs o be defined.
5/22



Assumption 1 (Non-perfect functional dependence). Suppose that:

e oy Coj,i=1,...,d (inputs are not constant).
e for B C A, og C oa (inputs add information).

e Forevery A,B e Pp, A# B,
oaMNoB = 0anB.

Remark . This assumption has nothing to do with the law of X. It is purely functional.

Lemma . Suppose that Assumption 1 hold.

Then, for any A,B € Pp such that An B ¢ {A, B} (i.e., the sets cannot be subsets of each
other), there is no mapping T such that Xg = T(X\) a.e.

Remark . In other words, under Assumption 1, the inputs cannot be functions of each other.
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Definition (Maximal coalitional precision matrix). Let A be the (2¢ x 2¢), symmetric set-indexed
maitrix, defined element-wise, VA, B € Pp as

1 if A= B;

Ans = 2 2 ;
—c (L?(0a),L? (08)) otherwise.

A can be seen as a generalization of precision matrices.

Why is this matrix interesting ?
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Definition (Maximal coalitional precision matrix). Let A be the (2¢ x 2¢), symmetric set-indexed
maitrix, defined element-wise, VA, B € Pp as

1 if A= B;
Apg = ) ) )
—c (L?(0a),L? (08)) otherwise.

A can be seen as a generalization of precision matrices.

Why is this matrix interesting ?

Proposition .
A=lLs <= Xismutually independent.

We are now ready to state the second assumption.

Assumption 2 (Non-degenerate stochastic dependence). A is definite-positive.
7/22



Theorem . Under Assumptions 1 and 2, for every A € Pp, one has that

]L2 (O'A) = @ VB.

BeEPA
where V = 1.2 (0y), and
1s
Ve=| —+ V|
CePg,C#£B

where 1 g denotes the orthogonal complement in 1.? (o).

Corollary (Canonical decomposition). Under Assumptions 1 and 2, any G(X) € L? (ox) can be
uniquely decomposed as
G(X)= Y Ga(Xa),
AEPp

where each Ga(Xa) € Va.
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Intuition behind the result

One input:
Let i € D. Then, any f(X;) € L (¢;) can be written as
f(Xi) = E[f(X)] + E[f(X;) — E[f(X)]],
N—_——
€Vy €L(o;)

but Lg (0‘/) = [V@]L" =: V4, and thus L2 (0’,‘) = V(,) ® V;
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Two inputs:
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Intuition behind the result

One input:
Let i € D. Then, any f(X;) € L (¢;) can be written as
f(Xi) = E[f(X)] + E[f(X;) — E[f(X)]],
N—_——
€Vy €L(o;)

but Lg (0‘/) = [V@]L" =: V4, and thus L2 (0’,‘) = VQ) ® V;

Two inputs:
Let i,j € D. We have that L2 (¢;) and LL? (¢;) are closed subspaces of L. (¢;).
Assumptions 1 and 2 implies that I.? (o;) + 1. (0;) is closed, and thus is complemented in
L? (o) by
2 2 Li 1.
Vi = [L2 (o) + L2 ()] 7 = Vo + Vit V]
And then,
L?(05) = Vo + Vi+ V] @ Vj.
And we can continue up to d inputs by induction. 9/22



Oblique projections

Denote the operator
Qa: L% (0x) = L? (0x), suchthat  Qa(G(X)) = Ga(Xa).

Qa4 is the oblique projection onto V,, parallel o GBBE%:B# Va.
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Oblique projections

Denote the operator
Qa: L% (0x) = L? (0x), suchthat  Qa(G(X)) = Ga(Xa).

Qa is the oblique projection onfo Va, parallel o Py p, . 544 Va-

Orthogonal projections

Denote the projector
Pa: 1% (0x) — L*(0x), such that  Ran (Pa) = Va, Ker (Pa) = [Va]" .

the orthogonal projection onfo V.
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lllustration : 1.2 (012)

Hence, for any G(X) € L?(ox). one has that, VA € Pp
Ga(Xa) = Qa(G(X)),
which usually differ from the orthogonal projection Pa(G(X)).

Via
G 1oV,
-8
Vi
e ; VieoW
Gi2 @ ;
i 9 G1 + G2
1 ]
o i
G1 + G2 i
1
|
* i
@ Va
Va

B
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Ga(Xa) = Qa(G(X)),
which usually differ from the orthogonal projection Pa(G(X)).

Via
G 1oV,
-8
Vi
e ; VieoW
Gi2 @ ;
i 9 G1 + G2
1 ]
o i
G1 + G2 i
1
|
* i
@ Va
Va

8

Assumptions 1 + 2 — V; and V; are distinct. 11/22



Variance decomposition

We propose two complementary approaches for decomposing V (G(X)).
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Variance decomposition

We propose two complementary approaches for decomposing V (G(X)).

Organic variance decomposition: separate pure interaction effects to dependence effects.
The dependence structure of X is unwanted, and one wishes to study its effects.

Canonical variance decomposition: the dependence structure of X is inherent in the
uncertainty modeling of the stfudied phenomenon. It amounts to quantify structural and
correlative effects.

12/22



Organic variance decomposition: pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.

Let X = (X1,...,Xs)" be the random vector such that

Xi = X; a.s., and X is mutually independent.
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Organic variance decomposition: pure interaction

The notion of pure interaction is infrinsically linked with the notfion of mutual independence.

Let X = (X1,...,Xs)" be the random vector such that

Xi=Xi a.s., and X is mutually independent.

Definition (Pure interaction). For every A € Pp, define the pure interaction of X, on G(X) as

Sa = M X V(G(X)).

\% (G()?))

These indices are the Sobol’ indices computed on the mutually independent version of X.
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Organic variance decomposition: Dependence effects

Recall that usually, P4(G(X)) and Qa(G(X)) differ. In fact,

Proposition . Under Assumptions 1 and 2,

PAa(G(X)) = Qa(G(X)) as. ,VAe Pp <= X is mutually independent.

Which motivates the definition of dependence effects.
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Organic variance decomposition: Dependence effects

Recall that usually, P4(G(X)) and Qa(G(X)) differ. In fact,
Proposition . Under Assumptions 1 and 2,
Pa(G(X)) = Qa(G(X)) as. VA€ Pp <= X is mutually independent.
Which motivates the definition of dependence effects.
Definition (Dependence effects). For every A € Pp, define the dependence effects of X, on

G(X) as
S8 =E[(Qa(6(x)) — PAG(X)))] -

Proposition . Under Assumptions 1 and 2,

Sy =0,YAePp, <+ Xis murtually independent.

What do they sum up to ?...

Probably some inferesting multivariate dependence measure! 14/22



Canonical variance decomposition

The structural effects represent the variance of each of the Ga(Xa). It amounts to perform a
covariance decomposition (Hart and Gremaud 2018; Da Veiga et al. 2021).

Definition (Structural effects). For every A € Pp, define the structural effects of X, on G(X) as

SA =V (Ga(Xa))-

The correlative effects represent the part of variance that is due to the correlation between
the GA(XA).

Definition (Correlative effects). For every A € Pp, define the correlative effects of X4 on G(X)
as

S5 = Cov (GA(XA), > GB(XB)) :

BEPp:B#A

15/22



Variance decomposition: Intuition

Pure interaction effects Structural and dependence effects

1%
VieV, Vie Vs
N G1+Gs T
G1 O EL LR LI € G @ P G+ G2
1 a
| s
: Ao
| co
1 /I !
] /' oD 1
S. 1
a o W e o Va
Go G:  Pa(G)
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Conclusion

Main take-aways:

e Hoeffding-like decomposition of function with dependent inputs is achievable under
reasonable assumptions.

e Mixing probability, functional analysis (and combinatorics) lead to an interesting
framework for studying multivariate stochastic problems.

e We can define meaningful (i.e., intuitive) decompositions of quantities of interest,
which intrinsically encompasses the dependence between the inputs.

e We proposed candidates to separate and quantify pure interaction from dependence
effects.
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Main challenge: Estimation.

e We haven’t found an off-the-shelf method to estimate the oblique projections...

18/22



Main challenge: Estimation.

e We haven’t found an off-the-shelf method to estimate the oblique projections...

e But we have a lot of ideas on how to start :)

18/22



Main challenge: Estimation.

e We haven’t found an off-the-shelf method to estimate the oblique projections...

e But we have a lot of ideas on how to start :)
A few perspectives:

e Links with already-established results (e.g., on copulas).
e Non R-valued output.

¢ Many methodological questions that seemed unreachable so far, but appear
approachable using this framework.
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Checkout our pre-print!

To go further + illustrations (HAL/ResearchGate)

Understanding black-box models with dependent inputs through a
generalization of Hoeflding’s decomposition
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