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Context

Does Hoeffding’s functional decomposition hold when the inputs are not
mutually independent?

Hoeffding’s decomposition:
G(X ) =

∑
A∈PD

GA(XA).

Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud

2018). But either under heavy assumptions on the distribution of the inputs or through
“arbitrary” methods.

=⇒ No definitive answer to the problem.

However, a generalization holds under two reasonable assumptions, which leads to intuitive
importance measures.

1/22



Context

Does Hoeffding’s functional decomposition hold when the inputs are not
mutually independent?

Hoeffding’s decomposition:
G(X ) =

∑
A∈PD

GA(XA).

Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud

2018). But either under heavy assumptions on the distribution of the inputs or through
“arbitrary” methods.

=⇒ No definitive answer to the problem.

However, a generalization holds under two reasonable assumptions, which leads to intuitive
importance measures.

1/22



Context

Does Hoeffding’s functional decomposition hold when the inputs are not
mutually independent?

Hoeffding’s decomposition:
G(X ) =

∑
A∈PD

GA(XA).

Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud

2018). But either under heavy assumptions on the distribution of the inputs or through
“arbitrary” methods.

=⇒ No definitive answer to the problem.

However, a generalization holds under two reasonable assumptions, which leads to intuitive
importance measures.

1/22



Framework and notations

Let (Ω,F ,P) be a probability space and let X = (X1, . . . ,Xd) be random inputs, i.e.,

X : Ω → E ,

where E =×d

i=1
Ei is a cartesian product of d Polish spaces.

Remark . This is just a fancy way to say that the inputs are not necessarily real-valued.

Let D = {1, . . . , d}, and denote PD the power-set of D.

For every A ⊂ D, denote XA = (Xi )i∈A a the subset of inputs in A.

Denote by σ∅ ⊂ F the P-trivial σ-algebra (smallest σ-algebra containing the elements of Ω

of probability 0).

Proposition (Resnick 2014). If an R-valued random variable is σ∅-measurable, it is constant
a.e.

∀A ⊂ D, denote by σA ⊂ F the σ-algebra generated by XA, and σX the one generated by X .
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Some probability theory

Lemma (Doob-Dynkin Lemma). If an R-valued random variable Y is σX -measurable, then
there exists some function f : E → R such that Y = G(X ) a.s.

Definition (Lebesgue space). Let G ⊂ F be a sub-σ-algebra. Denote by L2 (G) the Lebesgue
space containing every real-valued random variables, which are G-measurable, and, if Y ∈
L2 (σG)

E
[
Y 2

]
=

∫
Ω

Y (ω)2dP (ω) < ∞.

Remark . L2 (σX ) is the space of random outputs of the form G(X ).

Proposition . L2 (σX ) is an (infinite-dimensional) Hilbert space, with inner product

⟨f (X ), g(X )⟩ = E [f (X )g(X )] =

∫
E

f (x)g(x)dPX (x) =

∫
Ω

f (X (ω))g(X (ω))dP(ω).
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Angles between subspaces of Hilbert spaces

Definition (Dixmier’s angle (Dixmier 1949)). Let M,N be closed subspaces of a Hilbert space
H. The cosine of Dixmier’s angle between M and N is defined as

c0 (M,N) := sup {|⟨x , y⟩| : x ∈ M, ∥x∥ ≤ 1, y ∈ N, ∥y∥ ≤ 1} .

Dixmier’s angle is closely related to the notion of maximal correlation in probability theory

(Gebelein 1941; Koyak 1987), as a dependence measure between random vectors.

Definition (Friedrich’s angle (Friedrichs 1937)). The cosine of Friedrichs’ angle is defined as

c (M,N) := sup

|⟨x , y⟩| :

x ∈ M ∩ (M ∩ N)⊥, ∥x∥ ≤ 1

y ∈ N ∩ (M ∩ N)⊥, ∥y∥ ≤ 1

 ,

where the orthogonal complement is taken w.r.t. to H.

Friedrich’s angle is used in probability theory as a measure of partial dependence (Bryc

1984, 1996).
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Direct-sum decompositions

Definition (Direct-sum decomposition). Let W1, . . . ,Wd be vector subspaces of a vector space
W . W is said to admit a direct-sum decomposition, denoted:

W =
d⊕

i=1

Wi ,

if any element w ∈ W can be written uniquely as a sum of elements of the Wi .

Remark . Hilbert spaces are vector spaces.

Hence, a Hoeffding-like (coalitional) decomposition of a black-box model entails finding a
direct-sum decomposition for L2 (σX ), i.e., writting

L2 (σX ) =
⊕
A∈PD

VA,

where the VA needs to be defined.
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Assumptions

Assumption 1 (Non-perfect functional dependence). Suppose that:

• σ∅ ⊂ σi , i = 1, . . . , d (inputs are not constant).
• For B ⊂ A, σB ⊂ σA (inputs add information).
• For every A,B ∈ PD , A ̸= B,

σA ∩ σB = σA∩B .

Remark . This assumption has nothing to do with the law of X . It is purely functional.

Lemma . Suppose that Assumption 1 hold.

Then, for any A,B ∈ PD such that A ∩ B ̸∈ {A,B} (i.e., the sets cannot be subsets of each
other), there is no mapping T such that XB = T (XA) a.e.

Remark . In other words, under Assumption 1, the inputs cannot be functions of each other.
6/22



Assumptions

Definition (Maximal coalitional precision matrix). Let ∆ be the (2d × 2d), symmetric set-indexed
matrix, defined element-wise, ∀A,B ∈ PD as

∆AB =

1 if A = B;

−c
(
L2 (σA) ,L2 (σB)

)
otherwise.

∆ can be seen as a generalization of precision matrices.

Why is this matrix interesting ?

Proposition .
∆ = I2d ⇐⇒ X is mutually independent.

We are now ready to state the second assumption.

Assumption 2 (Non-degenerate stochastic dependence). ∆ is definite-positive.
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Main result

Theorem . Under Assumptions 1 and 2, for every A ∈ PD , one has that

L2 (σA) =
⊕
B∈PA

VB .

where V∅ = L2 (σ∅), and

VB =

 +
C∈PB ,C ̸=B

VC

⊥B

,

where ⊥B denotes the orthogonal complement in L2 (σB).

Corollary (Canonical decomposition). Under Assumptions 1 and 2, any G(X ) ∈ L2 (σX ) can be
uniquely decomposed as

G(X ) =
∑
A∈PD

GA(XA),

where each GA(XA) ∈ VA.
8/22



Intuition behind the result

One input:

Let i ∈ D. Then, any f (Xi ) ∈ L2 (σi ) can be written as

f (Xi ) = E [f (Xi )]︸ ︷︷ ︸
∈V∅

+E [f (Xi )− E [f (Xi )]]︸ ︷︷ ︸
∈L2

0(σi )

,

but L2
0 (σi ) = [V∅]

⊥i =: V1, and thus L2 (σi ) = V∅ ⊕ Vi

Two inputs:

Let i , j ∈ D. We have that L2 (σi ) and L2 (σj) are closed subspaces of L2 (σij).

Assumptions 1 and 2 implies that L2 (σi ) + L2 (σj) is closed, and thus is complemented in
L2 (σij) by

Vij :=
[
L2 (σi ) + L2 (σj)

]⊥ij

= [V∅ + Vi + Vj ]
⊥ij .

And then,

L2 (σij) = [V∅ + Vi + Vj ]⊕ Vij .

And we can continue up to d inputs by induction.
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Projectors

Oblique projections

Denote the operator

QA : L2 (σX ) → L2 (σX ) , such that QA (G(X )) = GA(XA).

QA is the oblique projection onto VA, parallel to
⊕

B∈PD :B ̸=A VA.

Orthogonal projections

Denote the projector

PA : L2 (σX ) → L2 (σX ) , such that Ran (PA) = VA,Ker (PA) = [VA]
⊥ .

the orthogonal projection onto VA.
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Illustration : L2
0 (σ12)

Hence, for any G(X ) ∈ L2 (σX ), one has that, ∀A ∈ PD

GA(XA) = QA(G(X )),

which usually differ from the orthogonal projection PA(G(X )).

V2

V12

G

V1 ⊕ V2

G1 + G2

G12

α

V1

V1 ⊕ V2

V1

V2

G1 + G2

α α

α
G1

G2 P2(G)

P1(G)

Assumptions 1 + 2 =⇒ V1 and V2 are distinct.
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Variance decomposition

We propose two complementary approaches for decomposing V (G(X )).

Organic variance decomposition: separate pure interaction effects to dependence effects.
The dependence structure of X is unwanted, and one wishes to study its effects.

Canonical variance decomposition: the dependence structure of X is inherent in the
uncertainty modeling of the studied phenomenon. It amounts to quantify structural and
correlative effects.
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Organic variance decomposition: pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.

Let X̃ = (X̃1, . . . , X̃d)
⊤
be the random vector such that

X̃i = Xi a.s., and X̃ is mutually independent.

Definition (Pure interaction). For every A ∈ PD , define the pure interaction of XA on G(X ) as

SA =
V
(
PA(G(X̃ ))

)
V
(
G(X̃ )

) × V (G(X )) .

These indices are the Sobol’ indices computed on the mutually independent version of X .
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Organic variance decomposition: Dependence effects

Recall that usually, PA(G(X )) and QA(G(X )) differ. In fact,

Proposition . Under Assumptions 1 and 2,

PA(G(X )) = QA(G(X )) a.s. , ∀A ∈ PD ⇐⇒ X is mutually independent.

Which motivates the definition of dependence effects.

Definition (Dependence effects). For every A ∈ PD , define the dependence effects of XA on
G(X ) as

SD
A = E

[
(QA(G(X ))− PA(G(X )))2

]
.

Proposition . Under Assumptions 1 and 2,

SD
A = 0,∀A ∈ PD , ⇐⇒ X is mutually independent.

What do they sum up to ?...
Probably some interesting multivariate dependence measure!

14/22



Organic variance decomposition: Dependence effects

Recall that usually, PA(G(X )) and QA(G(X )) differ. In fact,

Proposition . Under Assumptions 1 and 2,

PA(G(X )) = QA(G(X )) a.s. , ∀A ∈ PD ⇐⇒ X is mutually independent.

Which motivates the definition of dependence effects.

Definition (Dependence effects). For every A ∈ PD , define the dependence effects of XA on
G(X ) as

SD
A = E

[
(QA(G(X ))− PA(G(X )))2

]
.

Proposition . Under Assumptions 1 and 2,

SD
A = 0,∀A ∈ PD , ⇐⇒ X is mutually independent.

What do they sum up to ?...
Probably some interesting multivariate dependence measure!

14/22



Organic variance decomposition: Dependence effects

Recall that usually, PA(G(X )) and QA(G(X )) differ. In fact,

Proposition . Under Assumptions 1 and 2,

PA(G(X )) = QA(G(X )) a.s. , ∀A ∈ PD ⇐⇒ X is mutually independent.

Which motivates the definition of dependence effects.

Definition (Dependence effects). For every A ∈ PD , define the dependence effects of XA on
G(X ) as

SD
A = E

[
(QA(G(X ))− PA(G(X )))2

]
.

Proposition . Under Assumptions 1 and 2,

SD
A = 0,∀A ∈ PD , ⇐⇒ X is mutually independent.

What do they sum up to ?...

Probably some interesting multivariate dependence measure!

14/22



Organic variance decomposition: Dependence effects

Recall that usually, PA(G(X )) and QA(G(X )) differ. In fact,

Proposition . Under Assumptions 1 and 2,

PA(G(X )) = QA(G(X )) a.s. , ∀A ∈ PD ⇐⇒ X is mutually independent.

Which motivates the definition of dependence effects.

Definition (Dependence effects). For every A ∈ PD , define the dependence effects of XA on
G(X ) as

SD
A = E

[
(QA(G(X ))− PA(G(X )))2

]
.

Proposition . Under Assumptions 1 and 2,

SD
A = 0,∀A ∈ PD , ⇐⇒ X is mutually independent.

What do they sum up to ?...
Probably some interesting multivariate dependence measure! 14/22



Canonical variance decomposition

The structural effects represent the variance of each of the GA(XA). It amounts to perform a

covariance decomposition (Hart and Gremaud 2018; Da Veiga et al. 2021).

Definition (Structural effects). For every A ∈ PD , define the structural effects of XA on G(X ) as

SU
A = V (GA(XA)) .

The correlative effects represent the part of variance that is due to the correlation between

the GA(XA).

Definition (Correlative effects). For every A ∈ PD , define the correlative effects of XA on G(X )

as

SC
A = Cov

GA(XA),
∑

B∈PD :B ̸=A

GB(XB)

 .
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Variance decomposition: Intuition

V1 ⊕ V2

V1

V2

G1 + G2

α

G1

G2 P2(G)

P1(G)

SD
1

SU
1

SD
2SU

2

V1 ⊕ V2

V1

V2

G̃1 + G̃2

G̃1

G̃2

S1

S2

Pure interaction effects Structural and dependence effects
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Conclusion

Main take-aways:

• Hoeffding-like decomposition of function with dependent inputs is achievable under
reasonable assumptions.

• Mixing probability, functional analysis (and combinatorics) lead to an interesting
framework for studying multivariate stochastic problems.

• We can define meaningful (i.e., intuitive) decompositions of quantities of interest,
which intrinsically encompasses the dependence between the inputs.

• We proposed candidates to separate and quantify pure interaction from dependence
effects.
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Perspective

Main challenge: Estimation.

• We haven’t found an off-the-shelf method to estimate the oblique projections...

• But we have a lot of ideas on how to start :)

A few perspectives:

• Links with already-established results (e.g., on copulas).

• Non R-valued output.

• Many methodological questions that seemed unreachable so far, but appear

approachable using this framework.

18/22



Perspective

Main challenge: Estimation.

• We haven’t found an off-the-shelf method to estimate the oblique projections...
• But we have a lot of ideas on how to start :)

A few perspectives:

• Links with already-established results (e.g., on copulas).

• Non R-valued output.

• Many methodological questions that seemed unreachable so far, but appear

approachable using this framework.

18/22



Perspective

Main challenge: Estimation.

• We haven’t found an off-the-shelf method to estimate the oblique projections...
• But we have a lot of ideas on how to start :)

A few perspectives:

• Links with already-established results (e.g., on copulas).

• Non R-valued output.

• Many methodological questions that seemed unreachable so far, but appear

approachable using this framework.

18/22



Checkout our pre-print!

To go further + illustrations (HAL/ResearchGate)
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Thank you for your attention!

Any questions?
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