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Figure: Initializing the DE population.
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Figure: Generating the perturbation: @ — 2.



THE DIFFERENTIAL EVOLUTION ALGORITHM

- weighted difference
& vector £(X,-X,;)

X, 18 another randomly
selected vector which,
together with the weighted
difference vector, yields
the trial vector ny,

Ll o}

Figure: Mulalion,

1



THE DIFFERENTIAL EVOLUTION ALGORITHM

& W, competes agamnst
the vector no. 0 of the

I

The vector with the
lower objective function
vahe pets marked as
vector no. (0 of the next
population.

> x

Figure: Selection. Because it has a lower function value, uy replaces the
vector with index O in the next generation.
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Figure: A ncw population vecotr is mutated with a randomly generated
perturbation.
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Figure: Selection. This time, the trial vector loses.



PSEUDO CODE

1: while (convergence criterion not yet met) do

2 % xi defines a wector of the current population

3 % yi defines a vector of the new population

4: for (i =0;i <Np,i++) do

5: r1=rand(Np); % select a random index from 1,...,Np
6 r2=rand(Np); % select a random index from 1,2,...,Np
7 r3=rand(Np); % select a random indez from 1,2,...,Np
8 W = Xe3 + F # (Xp1 — Xp2) 3

9: if (f(u;) < f(x3)) then

10: Yi = 1ui;

11: else

12: Yi = Xi;

13: end if

14: end for

15: end while



EFFECT OF SCALING FACTOR
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a) Vector differences b) Difference vector distribution

Figure: Ninc vectors a, and their corresponding difference distribution b,
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Figure: The effects of scaling a, and large vector differences b. Scaling

factor of F=0.9 is usually used.



EFFECT OF CROSSOVER
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Figure: Differential mutation: the weighted differential, # - (1 g—%2 4 )
is added to the base vector, @ 4 . to produce a mutant, v 4.



EFFECT OF CROSSOVER
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Figure: The passible additional trial vectors u} when aq and ay
are uniformly crossed. Usually crossover coefﬂment is setto 0.9.



STEP BY STEP EVOLUTION
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Figure: Generation 1. DE's population and difference vector distributions.
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Peaks function Difference vector distribution
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Figure: Generation B: The population coalesces around the twa main
minirna.
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Figure: Generation 12; The difference vector distribution contains three
main clouds - one for Local scarches and two for moving between the

Two main minima.
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Figure: Generation 16: The population is concentrated on the main

minimum.
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Paaks function Difference wector distribution
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Figure: Generation 20: Convergence is imminent. The difference vectars
auto- matically sharten for a fine-grained, local search.



Paaks funclion

STEP BY STEP EVOLUTION

Difference vector distribution

Figure: Generation 26; The population has almaost converged.
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Peaks function Difference vector distribution
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Figure: Generation 34: DE finds the glabal minimum.
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