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Objectives
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Objectives

Gaussian

Process

regression

Inputs

Prediction

Uncertainty

quantification
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 Graph inputs

 Mesh → Graph structure

 3D coordinates for all nodes

Inputs and outputs

 Scalar inputs

 Pressure

 Speed of rotation

 Scalar outputs

 Physical quantities
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Gaussian process regression

𝒢𝒢

ℝ ℝ
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Gaussian process regression

 𝑋 = 𝐺1, ⋯ , 𝐺𝑁
𝑇 with 𝐺𝑖 ∈ Γ (train input graphs)

 𝑌 = 𝑦1, ⋯ , 𝑦𝑁
𝑇 , 𝑦𝑖 ∈ ℝ (scalar outputs)

 Observations: 𝑦𝑖 = 𝑓 𝐺𝑖 + 𝜖𝑖 where 𝜖𝑖~𝒩 0, 𝜎2

𝑓: Γ → ℝ

 ҧ𝑓 = 𝑓 𝐺1 , ⋯ , 𝑓 𝐺𝑁
𝑇

 Gaussian prior over functions: ҧ𝑓 |𝐺1, ⋯ , 𝐺𝑁 ~𝒩 0,𝐾𝑓𝑓

 𝐾𝑓𝑓: 𝑁 × 𝑁 covariance matrix where 𝐾𝑖𝑗
𝑓𝑓

= 𝑘 𝐺𝑖 , 𝐺𝑗

 and 𝑘: 𝛤 × 𝛤 → ℝ is a positive definite kernel

 Question: how to choose 𝑘 ?    

𝑋 = { }

1 0.8 0.5

0.8 1 0.2

0.5 0.2 1

𝑘
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What is a graph ?
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

∈ ℝ𝑠
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of 

nodes + structure + attributes

∈ ℝ𝑠
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of 

nodes + structure + attributes

Case 3C+: Varying number of 

nodes + structure + attributes

+ large-scale + sparse

∈ ℝ𝑠



Graph kernels
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Invariants / Topological descriptors

 Map the graph to a vectorial representation

 Invariants: do not change under graph isomorphism (diameter, average clustering coefficient, …)

 Complete invariants require exponential time

𝑉 = 6

𝐸 = 7
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Graph edit distance

+1 +2 +2

 𝑑 𝐺1, 𝐺2 = minimal number of operations to  transfrom 𝐺1 in 𝐺2
(adding/removing an edge/vertex, node relabeling)

 NP-complete

 Not suited for node-attributed graphs…
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Taxonomy of graph kernels

Taxonomy of graph kerneks.

Figure from [Nikolentzos et al., 2021]
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ℛ-convolution kernels

 ℛ 𝑔1, ⋯ , 𝑔𝑑 , 𝐺 : ℛ-decomposition where 𝑔𝑖 is a ‘part’ of 𝐺 (relationship)

 ℛ−1 𝐺 = 𝑔 ≔ 𝑔1, ⋯ , 𝑔𝑑 ℛ(𝑔1, ⋯ , 𝑔𝑑 , 𝐺)}: pre-image of the relation

 Let 𝑘𝑖 a base kernel based on a subset of the parts denoted 𝐺𝑖 .

 The ℛ-convolution kernel between 𝐺 and 𝐺′ is defined as

𝑘ℛ 𝐺, 𝐺′ ≔ ෍

𝑔∈ℛ−1 𝐺

෍

𝑔′∈ℛ−1 𝐺

ෑ

𝑖=1

𝑑

𝑘𝑖(𝑔𝑖 , 𝑔𝑖
′)
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All node-pairs kernel / node histogram kernel

𝑘N 𝐺, 𝐺′ ≔෍

v∈𝑉

෍

v′∈𝑉′

knode(v, v
′)

 𝑘𝑁 𝐺, 𝐺′ = 𝜙𝑁 𝐺 , 𝜙𝑁 𝐺′ ℋ where 𝜙𝑁 𝐺 ≔ σ𝑣∈𝑉𝜙𝑛𝑜𝑑𝑒(𝑣)

 When 𝜙𝑛𝑜𝑑𝑒 𝑣 = 𝑒𝑙(𝑣) (𝑘𝑛𝑜𝑑𝑒 is a Dirac kernel on node labels),

𝜙𝑁 is an unnormalized histogram that counts occurences of node labels 

where 𝑘𝑛𝑜𝑑𝑒 is a positive definite kernel between

node attributes/labels  -> feature map 𝜙𝑛𝑜𝑑𝑒

A C

B
B

B

BA C

2

A

3 1

0.5

1.2

1.7

0.3

3.5

0.1 0.0

3

2

1

4.0
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Graphlet kernel

2 21= 0 0 0 0 0 0 0 0

 Set of 𝑘-graphlets of size 𝑁𝑘 , 𝑘 ≥ 3

 𝑘-spectrum of 𝐺: vector 𝜙𝐺𝐿(𝐺) of the frequencies of all graphlets in 𝐺

 𝑘𝐺𝐿 𝐺, 𝐺′ ≔ 𝜙𝐺𝐿 𝐺 𝜙𝐺𝐿 𝐺′ 𝑇

 Issue: does not take into account labels or attributes
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Graph Hopper

[Feragen et al., 2013]

𝜋
𝜋′

 𝒫: set of all shortest paths in G,         |𝜋|: discrete length of the path 𝜋 = (𝜋1, ⋯ , 𝜋 𝜋 )

 Complexity: 𝑂(𝑛2(|𝐸| + log𝑛))

𝑘 𝐺, 𝐺′ ≔ ෍

𝜋∈𝒫,𝜋′∈𝒫′

𝑘𝑝(𝜋, 𝜋
′) 𝑤𝑖𝑡ℎ 𝑘𝑝 𝜋, 𝜋′ ≔

෍

𝑗=1

|𝜋|

𝑅𝐵𝐹(𝜋𝑗 , 𝜋𝑗
′) 𝑖𝑓 𝜋 = |𝜋′|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Graph Hopper

[Feragen et al., 2013]

𝜋
𝜋′

 𝒫: set of all shortest paths in G,         |𝜋|: discrete length of the path 𝜋 = (𝜋1, ⋯ , 𝜋 𝜋 )

 Complexity: 𝑂(𝑛2(|𝐸| + log𝑛))

𝑘 𝐺, 𝐺′ ≔ ෍

𝜋∈𝒫,𝜋′∈𝒫′

𝑘𝑝(𝜋, 𝜋
′) 𝑤𝑖𝑡ℎ 𝑘𝑝 𝜋, 𝜋′ ≔

෍

𝑗=1

|𝜋|

𝑅𝐵𝐹(𝜋𝑗 , 𝜋𝑗
′) 𝑖𝑓 𝜋 = |𝜋′|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Graph Hopper

[Feragen et al., 2013]

𝜋

𝜋′

 𝒫: set of all shortest paths in G,         |𝜋|: discrete length of the path 𝜋 = (𝜋1, ⋯ , 𝜋 𝜋 )

 Complexity: 𝑂(𝑛2(|𝐸| + log𝑛))

𝑘 𝐺, 𝐺′ ≔ ෍

𝜋∈𝒫,𝜋′∈𝒫′

𝑘𝑝(𝜋, 𝜋
′) 𝑤𝑖𝑡ℎ 𝑘𝑝 𝜋, 𝜋′ ≔

෍

𝑗=1

|𝜋|

𝑅𝐵𝐹(𝜋𝑗 , 𝜋𝑗
′) 𝑖𝑓 𝜋 = |𝜋′|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Sliced Wasserstein
Weisfeiler Lehman

(SWWL)



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

24

Node embeddings + Optimal transport approaches

𝐺

𝐺′

𝐸𝐺

𝐸𝐺′

1 2
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Wasserstein Weisfeiler-Lehman Graph kernel (step 1)

𝐺

𝐸𝐺

1

[Togninalli et al., 2019]

𝜙

Node embedding
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Weisfeiler-Lehman embeddings

Figure From [Kriege et al., 2020]

𝐵

𝐴

𝐵

𝐴
𝐴

Σ = {𝐴, 𝐵}

𝐷

𝐶

𝐸

𝐶
𝐶

Σ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

𝐵, 𝐴𝐵
↦ 𝐷

𝐵, 𝐴𝐴𝐵
↦ 𝐸

𝐴, 𝐵
↦ 𝐶

𝐴, 𝐵
↦ 𝐶

𝐴, 𝐵
↦ 𝐶

𝐻

𝐹

𝐼

𝐺
𝐺

𝐷, 𝐶𝐸
↦ 𝐻

𝐸, 𝐶𝐶𝐷
↦ 𝐼

𝐶, 𝐸
↦ 𝐺

𝐶, 𝐸
↦ 𝐺

𝐶,𝐷
↦ 𝐹

Σ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼}

𝑖 = 1 𝑖 = 2𝑖 = 0

𝑙 𝑖+1 𝑣 = 𝐻𝑎𝑠ℎ 𝑙𝑖 𝑣 , 𝑙𝑖 𝑢 , 𝑢 ∈ 𝒩 𝑣

𝑋𝐺
(𝑖)

= 𝑙 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺 𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
(0)
, ⋯ , 𝑋𝐺

(𝐻)
)

 WL relabeling (discrete case)
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Continuous Weisfeiler-Lehman embeddings

.1, {.1, . 3}
↦ .15

𝑖 = 1 𝑖 = 2𝑖 = 0

𝑎 𝑖+1 𝑣 =
1

2
(𝑎 𝑖 𝑣 +

1

deg 𝑣
෍

𝑢∈𝒩 𝑣

𝑤 𝑣, 𝑢 𝑎 𝑖 𝑢 )

𝑋𝐺
(𝑖)

= 𝑎 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺 𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
0
, ⋯ , 𝑋𝐺

𝐻
)

[Togninalli et al., 2019]

 WL relabeling (continuous case)

0.30.1

0.1 0.4

0.2

0.15

.3, {.1, . 2, . 4}
↦ .27

0.27

.1, {.1}
↦ .1

.4, {.3}
↦ .35

.2, {.3}
↦ .25

0.25

0.350.1

.15, {.1, . 27}
↦ .17

.27, {.15, . 25, . 35}
↦ .26

.25, {.27}
↦ .26

.35, {.27}
↦ .31

.1 {.15}
↦ .13

0.17

0.13

0.26

0.31

0.26
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Wasserstein Weisfeiler-Lehman graph kernel (step 2)

𝐸𝐺

𝐸𝐺′

2



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

29

Wasserstein Weisfeiler-Lehman graph kernel (step 2)

𝐸𝐺

𝐸𝐺′

2

Wasserstein distance
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Wasserstein distance

 ∀𝑟 ∈ 1,+∞ , 𝒫𝑟 ℝ
𝑠 : probability measures on ℝ𝑠 with finite moments of order 𝑟.

where:  

- . denotes the Euclidean norm,

- Π(𝜇, 𝜈) the set of probability measures on ℝ𝑠 ×ℝ𝑠 whose marginals w.r.t. 

the 1st/2nd variable are resp. 𝜇 and 𝜈

 Discrete case:

∀𝜇, 𝜈 ∈ 𝒫𝑟 ℝ
𝑠 ,𝒲𝑟

𝑟 𝜇, 𝜈 = inf
𝜋∈Π 𝜇,𝜈

න

ℝ𝑠×ℝ𝑠

𝑥 − 𝑦 𝑟𝑑𝜋(𝑥, 𝑦)

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛′
෍

𝑖=1

𝑛′

𝛿𝑦𝑖

𝜇
𝜈
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Wasserstein distance: issues

 Impossible to build a positive definite kernel (*in dimension ≥ 2 *)

 Computationally expensive :   O 𝑛3 log 𝑛

 Use case:  1000 graphs with 30 000 vertices

→ 400 days to build the Gram matrix…

[Peyré, Cuturi, 2019]
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Sliced Wasserstein Weisfeiler Lehman graph kernel

[Us]

𝐺

𝐺′

𝐸𝐺

𝐸𝐺′

1 2

Wasserstein distance

Sliced Wasserstein

Idea: replace Wasserstein by sliced Wasserstein !

→  𝐎 𝒏 𝒍𝒐𝒈 𝒏 and  positive definite substitution kernels [Meunier et al., 2022]
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Sliced Wasserstein distance

 The sliced Wasserstein distance is defined as:

where

- 𝕊𝑑 :  𝑑-dimensional unit sphere,  𝜎 : uniform distribution on 𝕊𝑑

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫𝑟(ℝ

𝑠) by 𝜃∗
ℝ𝑠 → ℝ
𝑥 ↦ 𝜃, 𝑥

𝒮𝒲𝑟
𝑟 𝜇, 𝜈 = න

𝕊s−1

𝒲𝑟
𝑟 𝜃#

∗𝜇, 𝜃𝜈
∗ d𝜎(𝜃)

𝒲𝑟
𝑟 𝜇, 𝜈 = න

0

1

F−1 𝜇 − 𝐹−1 𝜈 r d𝑡 1-d Wasserstein distances between

and𝜇 𝜈
Quantile 
function



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

34

Sliced Wasserstein distance

 The sliced Wasserstein distance is defined as:

where 

- 𝕊𝑑 :  𝑑-dimensional unit sphere,  𝜎 : uniform distribution on 𝕊𝑑

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫𝑟(ℝ

𝑠) by 𝜃∗
ℝ𝑠 → ℝ
𝑥 ↦ 𝜃, 𝑥

𝒮𝒲𝑟
𝑟 𝜇, 𝜈 = න

𝕊s−1

𝒲𝑟
𝑟 𝜃#

∗𝜇, 𝜃𝜈
∗ d𝜎(𝜃)

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑦𝑖

1-d Wasserstein distances between

and

𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑛
෍

𝑖=1

𝑛

|𝑥 𝑖 − 𝑦 𝑖 ቚ
𝑟
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Sliced Wasserstein distance

 The sliced Wasserstein distance is defined as:

where 

- 𝕊𝑑 :  𝑑-dimensional unit sphere,  𝜎 : uniform distribution on 𝕊𝑑

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫𝑟(ℝ

𝑠) by 𝜃∗
ℝ𝑠 → ℝ
𝑥 ↦ 𝜃, 𝑥

𝒮𝒲𝑟
𝑟 𝜇, 𝜈 = න

𝕊s−1

𝒲𝑟
𝑟 𝜃#

∗𝜇, 𝜃𝜈
∗ d𝜎(𝜃)

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑦𝑖

1-d Wasserstein distances between

and

𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑛
෍

𝑖=1

𝑛

|𝑥 𝑖 − 𝑦 𝑖 ቚ
𝑟
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Sliced Wasserstein distance

 The sliced Wasserstein distance is defined as:

where 

- 𝕊𝑑 :  𝑑-dimensional unit sphere,  𝜎 : uniform distribution on 𝕊𝑑

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫𝑟(ℝ

𝑠) by 𝜃∗
ℝ𝑠 → ℝ
𝑥 ↦ 𝜃, 𝑥

𝒮𝒲𝑟
𝑟 𝜇, 𝜈 = න

𝕊s−1

𝒲𝑟
𝑟 𝜃#

∗𝜇, 𝜃𝜈
∗ d𝜎(𝜃)

(Approximation with 𝑄 ≪ max( 𝑛, 𝑛′)

quantiles)

1-d Wasserstein distances between

and𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖
𝜈 =

1

𝑛′
෍

𝑖=1

𝑛′

𝛿𝑦𝑖

෢𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑄
෍

𝑞=1

𝑄

|𝑥 𝑞 − 𝑦 𝑞 ቚ
𝑟
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Sliced Wasserstein distance

 The (estimated) sliced Wasserstein distance is defined as:

where 

- 𝕊𝑑 :  𝑑-dimensional unit sphere,  𝜎 : uniform distribution on 𝕊𝑑

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫𝑟(ℝ

𝑠) by 𝜃∗
ℝ𝑠 → ℝ
𝑥 ↦ 𝜃, 𝑥

෣𝒮𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑃
෍

𝑝=1

𝑃

෢𝒲𝑟
𝑟( 𝜃𝑝

∗
#
𝜇, 𝜃𝑝

∗
#
𝜈)

෢𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑄
෍

𝑞=1

𝑄

|𝑥 𝑞 − 𝑦 𝑞 ቚ
𝑟

(Approximation with 𝑄 ≪ max( 𝑛, 𝑛′)

quantiles)

1-d Wasserstein distances between

and𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖
𝜈 =

1

𝑛′
෍

𝑖=1

𝑛′

𝛿𝑦𝑖
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

[Us]

𝐺

𝐺′

𝐸𝐺

𝐸𝐺′

2 31
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

[Us]

 𝜙:𝐺 ↦ 𝑋𝐺 ∈ ℝ 𝑉𝐺 ×d(𝐻+1) : WL embeddings after H iterations

 𝑘𝑆𝑊𝑊𝐿 𝐺, 𝐺′ = 𝑒−𝜆
෣𝒮𝒲2

2 𝜙 𝐺 , 𝜙(𝐺′)
(* considering by abuse 𝜙 𝐺 ,𝜙 𝐺′ as empirical measures *)

with

 Complexity for the Gram matrix (sparse graphs): 

𝑂 𝑁𝐻𝑛 + 𝑁𝑃 𝑛 log 𝑛 + 𝑁2𝑃𝑄

෣𝒮𝒲2
2 𝜇, 𝜈 =

1

PQ
෍

p=1

P

෍

𝑞=1

𝑄

𝑢𝑞
𝜃𝑝 − 𝑢′𝑞

𝜃
2

= 𝐸𝜙 𝐺 − 𝐸𝜙 𝐺′
2

2

QuantilesWL iterations Usual RBF kernel

→ Precomputed embeddings 𝐸𝜙 𝐺 , 𝐸𝜙(𝐺′) ∈ ℝ𝑃𝑄 where 𝑢𝑞
𝜃𝑝 = 𝜃𝑝, 𝜙 𝐺

𝑞

𝐸𝜙 𝐺 = [𝑢1
𝜃1 , ⋯ , 𝑢𝑄

𝜃1 , ⋯ , 𝑢1
𝜃𝑃 , ⋯ , 𝑢𝑄

𝜃𝑃]
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SWWL: experiments on meshes

Time to build the 
Gram matrix

(*) in parallel, using 100 jobs

RMSE (5 exp)

[Us]



Conclusion and 
future work
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Conclusion

 Limits of existing graph kernels

 Many do not handle continuous attributes

 Many do not scale well to large graphs

 Many do not guarantee positive definiteness

 Many are too dependent on the graph structure

 We propose the Sliced Wasserstein Weisfeiler Lehman (SWWL) kernel

 Positive definite

 Tractable for large graphs

 Competitive results for mesh-based Gaussian process regression

 Future work

 Extension to multiple outputs (e.g. vector fields)
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Other approaches

 Many approaches with GCNNs and message passing layers

→ Continuous WL of torch_geometric

 Other node embedding: 𝑎 𝑖+1 𝑣 = σ𝑢∈𝒩(𝑣) ڂ 𝑣
𝑤(𝑣,𝑢)

deg 𝑢 deg(𝑣)
𝑎 𝑖 (𝑢)

 Wasserstein embeddings with Linear Optimal transport

 Pooling by Sliced-Wasserstein (PSWE)

 Template-based GNN with OT 

[Naderializadeh., 2021]

[Kolouri et al., 2020]

[Vincent-Cuaz et al., 2022] 
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Wasserstein embeddings

 Linear Wasserstein embedding (Linear Optimal transport LOT Framework)

 Transport displacements from a reference distribution to node embeddings

[Kolouri et al., 2020]

𝑥𝑣′ ∈ ℝ3

𝜙

Transport 

displacements

𝐺

𝐺′

𝑋𝐺

𝑋𝐺′

𝑋𝐺0

𝜓(𝐺)

𝜓(𝐺′)

𝜓0

Node embedding
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Wasserstein embeddings

 Given a first node embedding 𝜙: 𝐺 ↦ 𝑋𝐺 ∈ ℝ
𝑉𝐺 ×𝑠

 𝑋0 ∈ ℝ
𝑛0×𝑠 reference node embedding

 Linear Wasserstein embedding: 

 𝜓0 𝑋𝐺 ≔ 𝑢𝐺,0 − 𝐼𝑑 𝑛0
 where 𝑢𝐺,0 is the Monge map that pushes 𝑋0 to 𝑋𝐺

 New graph embedding: 𝜓 𝐺 ≔ 𝜓0 𝜙 𝐺 ∈ ℝ𝑛0×𝑠 of fixed size

 Only 𝐍 Monge map calculations needed

 Choice of the reference embedding? (Not clear)

[Kolouri et al., 2020]
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Fused Gromov-Wasserstein distance

 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝑙𝑎 , 𝑙𝑠) with la: 𝑉𝐺 → ℝ3 the coordinate function

 𝑙𝑠: 𝑉𝐺 → Ω𝐺 with (Ω𝐺 , 𝑐𝐺) a metric space dependant of G

 𝑐𝐺 : Ω𝐺 × Ω𝐺 → ℝ+ ‘similarity’ of points in G 

(structure-dependent)

e.g. : 𝑐𝐺 𝑙𝑠(𝑣1), 𝑙𝑠(𝑣2) = 𝑑𝑃𝐶𝐶 𝑣1, 𝑣2 𝐺)

 𝑎𝑖 = 𝑙𝑎 𝑣𝑖 , 𝑠𝑖 = 𝑙𝑠 𝑣𝑖 : attributes/structure of point 𝑖

 𝜇𝐺 = σ𝑖=1
𝑛𝐺 1

𝑛𝐺
𝛿(𝑎𝑖,𝑠𝑖) : measure of 𝐺

 𝐶𝐺 = 𝑐𝐺 𝑠𝑖 , 𝑠𝑗 1≤𝑖,𝑗≤𝑛𝐺
, 𝐶𝐺′ = 𝐶𝐺′ 𝑠′𝑖 , 𝑠′𝑗 1≤𝑖,𝑗≤𝑛

𝐺′

[Vayer et al., 2019] 𝐺

𝑙𝑎 𝑙𝑠

𝑐𝐺
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Fused Gromov-Wasserstein distance

 𝐿𝐺,𝐺′ = 𝐶𝐺 𝑖, 𝑘 − 𝐶𝐺′ 𝑗, 𝑙 𝑖,𝑗,𝑘,𝑙 ∈ ℝ
𝑛𝐺×𝑛𝐺′×𝑛𝐺×𝑛𝐺′

 𝑀𝐺,𝐺′ = ||𝑎𝑖 − 𝑎𝑗
′||2 1≤𝑖≤𝑛𝐺 ; 1≤𝑗≤𝑛𝐺′

∈ ℝ𝑛𝐺×𝑛𝐺′

 𝐹𝐺𝑊𝑞,𝛼 𝜇𝐺 , 𝜇𝐺′ = min
𝜋∈Π

𝛼𝑀
𝐺,𝐺′
𝑞

+ 1 − 𝛼 𝐿
𝐺,𝐺′
𝑞

⨂𝜋, 𝜋

 Issue:  k G, G′ = 𝑒−𝛾 𝐹𝐺𝑊𝑞,𝛼(𝜇𝐺,𝜇𝐺′) is not positive definite

[Vayer et al., 2019] 

Wasserstein Gromov-Wasserstein

𝐺

𝐺′

𝑣1

𝑣1
′

||𝑎1 − 𝑎′1||2

𝑣2

𝑣2
′

𝑐𝐺(𝑣1, 𝑣2)

𝑐𝐺′(𝑣1
′ , 𝑣2

′ )

𝑣1 𝑣2

𝑣1
′ 𝑣2

′

𝐿𝐺,𝐺′(1,1,2,2)
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[Vincent-Cuaz et al., 2022] 

Template based GNN with OT
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Graph Convolutional Gaussian Processes

 Graph Convolutional Gaussian Processes

 Local patches around vertices are defined using
Spatial-domain charting

 J: number of bins

 Convolution operator on the graph signal

𝜓: 𝑉 → ℝ3 : 

 𝐷𝑗 𝑣 𝜓 = σ𝑢∈𝑉𝜓(𝑢) 𝑢𝑗 𝑢, 𝑣 ∀𝑗 ∈ {1,⋯ , 𝐽}

 𝑢𝑗 : geodesic polar weighting function e.g. 

[Walker et al., 2019]
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Future work : Anisotropic SWWL?

𝜙

WL



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

54

Future work : Anisotropic SWWL?

𝜙

WL
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Future work : Anisotropic SWWL?

𝜙

WL

OT

Anisotropic SWWL:

𝜙 𝑖 ∶ 𝐺 ↦ X𝐺
(𝑖)

∈ ℝ 𝑉𝐺 ×d (𝑖-th iteration of WL)

𝑘𝐴𝑆𝑊𝑊𝐿 𝐺, 𝐺′ = 𝑒− σ𝑖=0
𝐻 𝜆𝑖

෣𝒮𝒲2
2 𝜙(𝑖) 𝐺 , 𝜙(𝑖)(𝐺′)
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