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Regularization by the L1-norm has attracted a lot of interest in 

recent years in statistics, machine learning and signal processing. In 

the context of least-square linear regression, the problem is usually 

referred to as the Lasso [1] or basis pursuit [2]. Much of the early 

effort has been dedicated to algorithms to solve the optimization 

problem efficiently, either through first-order methods [3, 4], or 

through homotopy methods that lead to the entire regularization path 

(i.e., the set of solutions for all values of the regularization 

parameters) at the cost of a single matrix inversion [5, 6]. A 

well-known property of the regularization by the L1-norm is the 

sparsity of the solutions, i.e., it leads to loading vectors with many 

zeros, and thus performs model selection on top of regularization. 

Recent work (e.g., [7, 8]) has looked precisely at the model 

consistency of the Lasso, i.e., if we know that the data were 

generated from a sparse loading vector, does the Lasso actually 

recover the sparsity pattern when the number of observations grows? 

Moreover, how many irrelevant variables could we consider while still 

being able to infer correctly the relevant ones? 

 

The objective of the tutorial is to give a unified overview of the 

recent contributions of sparse convex methods to machine learning, 

both in terms of theory and algorithms. The course will be divided in 

three parts: in the first part, the focus will be on the regular 

L1-norm and variable selection, introducing key algorithms [3, 4, 5, 

6] and key theoretical results [7, 8, 9]. Then, several more 

structured machine learning problems will be discussed, on vectors 

(second part) and matrices (third part), such as multi-task learning 

[10, 11], sparse principal component analysis [12], multiple 

kernel learning [13, 14], structured sparsity [15, 16] and sparse 

coding [17]. Throughout the tutorial, applications to data from 

various domains (computer vision, image processing, bioinformatics, 

speech processing, recommender systems) will be considered. 
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