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-I- INTRODUCTION

Shape optimization : minimize an objective function over a set of

admissibles shapes Ω (including possible constraints)

inf
Ω∈Uad

J(Ω)

The objective function is evaluated through a partial differential equation

(state equation)

J(Ω) =

∫

Ω

j(uΩ) dx

where uΩ is the solution of

PDE(uΩ) = 0 in Ω

Thickness optimization : the shape is parametrized by its thickness h (a

coefficient in the p.d.e.).

Geometric optimization : the boundary of Ω is varying.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Thickness optimization (a brief review)

Mid-plane Ω ⊂ R
d with boundary ∂Ω = ΓN ∪ ΓD.

Thickness of the plate h(x) : Ω → [hmin, hmax] with hmax > hmin > 0.
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✞

✝

☎

✆
Thickness optimization (Ctd.)

For given applied loads g : ΓN → R
d, f : Ω → R

d, the displacement

u : Ω → R
d is the solution of





− div (hAe(u)) = f in Ω

u = 0 on ΓD
(
hAe(u)

)
n = g on ΓN

with the strain tensor e(u) = 1
2 (∇u+∇tu), the stress tensor σ = hAe(u), and

A an homogeneous isotropic elasticity tensor.

Typical objective function: the compliance

J(h) =

∫

Ω

f · u dx+

∫

ΓN

g · u dx,

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Adjoint approach to compute a gradient

Theorem. The derivative of the cost function J(h) =

∫

Ω

j
(
u(h)

)
dx is

J ′(h) = ∇u · ∇p ,

where p is the adjoint state defined as the unique solution of





− div (h∇p) = −j′(u) in Ω

p = 0 on ΓD
(
hAe(p)

)
n = g on ΓN .

Remark: for the compliance p = −u.
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✞

✝

☎

✆
Numerical algorithm: projected gradient

1. Initialization of the thickness h0 ∈ Uad.

2. Iterations until convergence, for n ≥ 0: compute the state un and the

adjoint pn (associated to the thickness hn) and update

hn+1 = PUad

(
hn − µJ ′(hn)

)
with J ′(hn) = ∇un · ∇pn ,

where µ > 0 is a descent step.

The admissible set of thicknesses is:

Uad =

{
h ∈ L∞(Ω) , hmax ≥ h(x) ≥ hmin > 0 in Ω,

∫

Ω

h(x) dx = h0|Ω|

}
.

PUad
is the projection operator defined by:

(
PUad

(h)
)
(x) = max (hmin,min (hmax, h(x) + ℓ))

where ℓ is the unique Lagrange multiplier such that
∫
Ω
PUad

(h) dx = h0|Ω|.
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✞

✝

☎

✆
Geometric optimization (a brief review)

Shape Ω ⊂ R
d with boundary ∂Ω = Γ ∪ ΓN ∪ ΓD, where ΓD and ΓN are fixed.

Only Γ is optimized (free boundary).
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✞

✝

☎

✆
Geometric optimization (Ctd.)

For given applied loads g : ΓN → R
d, f : Ω → R

d, the displacement

u : Ω → R
d is the solution of





− div (Ae(u)) = f in Ω

u = 0 on ΓD
(
Ae(u)

)
n = g on ΓN

(
Ae(u)

)
n = 0 on Γ

Typical objective function: the compliance

J(Ω) =

∫

Ω

f · u dx+

∫

ΓN

g · u dx,
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✞

✝

☎

✆
Shape derivative: Hadamard’s method

Let Ω0 be a reference domain. Shapes are parametrized by a vector field θ

Ω = ( Id + θ)Ω0 with θ ∈ C1(Rd;Rd).

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet differential of

θ → J
(
( Id + θ)Ω0

)
at 0.
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✞

✝

☎

✆
Shape derivative

Hadamard structure theorem: the shape derivative of J(Ω) can always be

written (in a distributional sense)

J ′(Ω0)(θ) =

∫

∂Ω0

θ(x) · n(x) j(x) ds

where j(x) is an integrand depending on the state u and an adjoint p.

Gradient algorithm: a descent direction is θ(x) = −j(x)n(x).

Shape derivative of the compliance: j(x) = ℓ−Ae(u) · e(u) where ℓ is a

Lagrange multiplier for the volume constraint.
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✞

✝

☎

✆
Additional ingredient: the level set method

Due to Osher and Sethian, it allows topology changes.

Shape capturing method on a fixed mesh of the “working domain” D.

A shape Ω is parametrized by a level set function




ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D

ψ(x) < 0 ⇔ x ∈ Ω

ψ(x) > 0 ⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal velocity V (t, x).

Then its motion is governed by the following Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.

To minimize the objective function J(Ω), the velocity V is minus the shape

gradient j.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Example of a level set function

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆NUMERICAL ALGORITHM

1. Initialization of the level set function ψ0 (including holes).

2. Iteration until convergence for k ≥ 1:

(a) Compute the elastic displacement uk for the shape ψk.

Deduce the shape gradient = normal velocity = Vk

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation) to

obtain a new shape ψk+1.

For numerical examples, see the web page:

http://www.cmap.polytechnique.fr/˜optopo/level en.html

Worst-case design in shape optimization G. Allaire
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-II- ABOUT UNCERTAINTIES

☞ location, magnitude and orientation of the body forces or surface loads

☞ elastic material’s properties

☞ geometry of the shape (thickness or boundary)

Crucial issue: optimal structures are so optimal for a given set of loads that

they cannot sustain a different load !

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Example: minimal weight and minimal compliance
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✞

✝

☎

✆
Optimal design with load uncertainties
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✞

✝

☎

✆
State of the art: many works !

☞ Probabilistic approach (Ben-Tal et al. 97, Choi et al. 2007,

Frangopol-Maute 2003, Kalsi et al. 2001...)

• Monte-Carlo methods

• Polynomial chaos, Karhunen-Loève expansions...

• First-Order Reliability-based Methods (FORM)

☞ Various objectives or goals:

• Minimization of expected value or mean

• Worst case desing

• Minimal failure probability

☞ Special cases with simplifications:

• Robust compliance: Cherkaev-Cherkaeva (1999, 2003), de

Gournay-Allaire-Jouve (2008).

• Mean expectation of compliance: Alvarez-Carrasco 2005,

Dunning-Kim 2013...

Worst-case design in shape optimization G. Allaire
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☞ Present work: two main ideas

• worst case optimization (min-max problem),

• linearization for small uncertainties (similar idea in

Babuska-Nobile-Tempone 2005).
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✞

✝

☎

✆
Worst case design

Example in the case of force uncertainties.

The force is the sum f + ξ where f is known and ξ is unknown.

The only information is the location of ξ and its maximal magnitude m > 0

such that ‖ξ‖ ≤ m.

We replace the standard objective function J(Ω, f + ξ) by its worst case

version J (Ω, f).

Worst case design optimization problem:

min
Ω

J (Ω, f) = min
Ω

max
‖ξ‖≤m

J(Ω, f + ξ)

Worst-case design in shape optimization G. Allaire
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-III- ABSTRACT (AND FORMAL) SETTING

☞ Designs h ∈ H

☞ State equation A(h)u(h) = b with a linear operator A(h)

☞ Perturbations δ ∈ P in a Banach space P

☞ Assume for simplicity that only b (not A) depends on δ

☞ Perturbed state equation A(h)u(h, δ) = b(δ)

☞ Worst case objective function

J (h) = sup
δ∈P

||δ||P≤m

J(u(h, δ))

☞ Goal

inf
h∈H

J (h)

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆Linearization

Assume that the perturbations are small, i.e., m << 1.

☞ Unperturbed case δ = 0, u(h) = u(h, 0)

☞ Derivative of the state equation

A(h)
∂u

∂δ
(h, 0) =

db

dδ
(0)

☞ Linearization of the worst-case objective function

J (h) ≈ J̃ (h) = sup
δ∈P

||δ||P≤m

(
J(u(h)) +

dJ

du
(u(h))

∂u

∂δ
(h, 0)(δ)

)

Since the right hand side is linear in δ we deduce

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
dJ

du
(u(h))

∂u

∂δ
(h, 0)

∣∣∣∣
∣∣∣∣
P∗

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Adjoint approach

The previous formula for J̃ (h) is not fully explicit:

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
dJ

du
(u(h))

∂u

∂δ
(h, 0)

∣∣∣∣
∣∣∣∣
P∗

Introduce an adjoint state

A(h)T p(h) =
dJ

du
(u(h)),

from which we deduce

A(h)T p(h)·
∂u

∂δ
(h, 0) = A(h)

∂u

∂δ
(h, 0) · p(h) =

dJ

du
(u(h))·

∂u

∂δ
(h, 0) =

db

dδ
(0) · p(h)

Conclusion:

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Linearized worst-case design

We add to the usual objective function a perturbation term which is

proportional to m and to the standard adjoint p:

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗

☞ Classical sensitivity approach can be applied to J̃ (h)

☞ The appearance of the adjoint is not a surprise: it is known to measure

the sensitivity of the optimal value with respect to the constraint level (or

right hand side in the state equation).

☞ The entire argument needs to be made rigorous in each specific case.

☞ We don’t say anything about the existence of optimal designs.

☞ We don’t prove that optimal designs for J̃ (h) are close to those of J (h).

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
What remains to be done (in this talk)

Linearized worst-case design optimization:

inf
h∈H

{
J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗

}

where

A(h)u(h) = b(0) and A(h)T p(h) =
dJ

du
(u(h)),

☞ We compute a derivative of J̃ (h): it requires two additional adjoints !

☞ We build a gradient-based algorithm.

☞ We test it on various objective functions.

Worst-case design in shape optimization G. Allaire
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-IV- THICKNESS OPTIMIZATION

First case: loading uncertainties.

Given load f ∈ L2(Ω)d. Unknown load ξ ∈ L2(Ω)d with small norm

‖ξ‖L2(Ω)d ≤ m. Solution uh,ξ of





− div (hAe(uh,ξ)) = f + ξ in Ω

uh,ξ = 0 on ΓD
(
hAe(uh,ξ)

)
n = g on ΓN

Many variants are possible (ξ may be localized, or parallel to a fixed vector, or

on ΓN , etc.)

Worst-case design in shape optimization G. Allaire
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Given a smooth (+ growth conditions) integrand j, consider

J(h, ξ) =

∫

Ω

j(ξ, uh,ξ) dx

Worst case design objective function:

J (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d

≤m

J(h, ξ)

Linearized worst case design objective function:

J̃ (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d

≤m

(
J(h, 0) +

∂J

∂f
(h, 0)(ξ)

)

Worst-case design in shape optimization G. Allaire
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Theorem.

J̃ (h) =

∫

Ω

j(0, uh) dx+m ||∇f j(0, uh)− ph||L2(Ω)d ,

where ph is the first adjoint state, defined by





−div(hAe(ph)) = −∇uj(0, uh) in Ω,

ph = 0 on ΓD,

hAe(ph)n = 0 on ΓN .

If ∇f j(0, uh)− ph 6= 0 in L2(Ω)d, then J̃ is Fréchet differentiable

J̃ ′(h)(s) =

∫

Ω

D(uh, ph, qh, zh) s dx,

with two additional adjoints qh, zh and

D(uh, ph, qh, zh) := Ae(uh) : e(ph) +m
Ae(uh) : e(zh) + Ae(ph) : e(qh)

2 ||∇f j(0, uh)− ph||L2(Ω)d

Worst-case design in shape optimization G. Allaire
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The second and third adjoint states qh, zh are defined by





−div(hAe(qh)) = −2 (ph −∇f j(0, uh)) in Ω,

qh = 0 on ΓD,

hAe(qh)n = 0 on ΓN ,





−div(hAe(zh)) = −2∇f∇uj(uh)
T (∇f j(uh)− ph)−∇2

uj(uh)qh in Ω,

zh = 0 on ΓD,

hAe(zh)n = 0 on ΓN .

Worst-case design in shape optimization G. Allaire
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Second case: thickness uncertainties.

Given thickness h ∈ L∞(Ω). Uncertainty s ∈ L∞(Ω) with ‖s‖L∞(Ω) ≤ m.





− div ((h+ s)Ae(uh+s)) = f in Ω

uh+s = 0 on ΓD
(
(h+ s)Ae(uh+s)

)
n = g on ΓN

Worst case design objective function:

J (h) = sup
s∈L∞(Ω)

‖s‖L∞(Ω)≤m

{
J(h+ s) =

∫

Ω

j(uh+s) dx

}

Linearized worst case design objective function:

J̃ (h) = sup
s∈L∞(Ω)

‖s‖L∞(Ω)≤m

(
J(h) +

∂J

∂h
(h)(s)

)

Worst-case design in shape optimization G. Allaire
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Theorem.

J̃ (h) =

∫

Ω

j(uh) dx+m ||Ae(uh) : e(ph)||L1(Ω) ,

where ph is the first adjoint state, defined by





−div(hAe(ph)) = −∇uj(uh) in Ω

ph = 0 on ΓD

hAe(ph)n = 0 on ΓN

.

If Eh := {x ∈ Ω, Ae(uh) : e(ph) = 0} has zero Lebesgue measure, then J̃ is

differentiable

J̃ ′(h)(s) =

∫

Ω

s
(
Ae(uh) : e(ph) +m

(
Ae(ph) : e(qh) + Ae(uh) : e(zh)

))
dx,

with two additional adjoint states qh, zh.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆NUMERICAL ALGORITHM

1. Initialization of the thickness h0.

2. Iteration until convergence for k ≥ 1:

(a) Computation of uk and the 3 adjoints pk, qk, zk by solving linearized

elasticity problem with the thickness hk. Evaluation of the gradient

J̃ ′(hk)

(b) Update of the thickness hk+1 by a projected gradient step (to satisfy

bounds and volume constraint).

All computations are made with FreeFem++.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Load uncertainties in thickness optimization

Compliance minimization

J(h, ξ) =

∫

Ω

(f + ξ) · uh,ξ dx

with a fixed volume constraint

Vol(h) :=

∫

Ω

h dx = 0.7

Rectangular 2× 1 domain. Bounds hmin = 0.1 and hmax = 1.

Material properties E = 1, ν = 0.3.

We compute optimal designs for increasing values of m.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Load uncertainties in thickness optimization

Worst-case design in shape optimization G. Allaire
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-V- GEOMETRIC OPTIMIZATION

First case: loading uncertainties.

Given load f ∈ L2(Rd)d. Unknown load ξ ∈ L2(Rd)d with small norm

‖ξ‖L2(Rd)d ≤ m. Solution uΩ,ξ of





− div (Ae(uΩ,ξ)) = f + ξ in Ω

uΩ,ξ = 0 on ΓD
(
Ae(uΩ,ξ)

)
n = g on ΓN

(
Ae(uΩ,ξ)

)
n = 0 on Γ

Many variants are possible (ξ may be localized, or parallel to a fixed vector, or

on ΓN , etc.)

Worst-case design in shape optimization G. Allaire
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Theorem.

J̃ (Ω) =

∫

Ω

j(0, uΩ) dx+m||∇f j(0, uΩ)− pΩ||L2(Ω)d ,

where pΩ is the first adjoint state, defined by





−div(Ae(pΩ)) = −∇uj(0, uΩ) in Ω,

pΩ = 0 on ΓD,

Ae(pΩ)n = 0 on Γ ∪ ΓN .

If ∇f j(0, uΩ)− pΩ 6= 0 in L2(Ω)d, then J̃ is shape differentiable (with two

additional adjoint states).

Worst-case design in shape optimization G. Allaire
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Second case: geometric uncertainties.

Perturbed shapes (I + χV )(Ω), V ∈W 1,∞(Rd,Rd), ||V ||L∞(Rd)d≤ m.

χ is a smooth localizing function such that χ ≡ 0 on ΓD ∪ ΓN .

Worst-case design in shape optimization G. Allaire
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Theorem.

The linearized worst-case design objective function is

J̃ (Ω) =

∫

Ω

j(uΩ) dx+m

∫

Γ

χ
∣∣∣j(uΩ) + Ae(uΩ) : e(pΩ)− f · pΩ

∣∣∣ ds,

where pΩ is the (previous) adjoint state.

If EΓ := {x ∈ Γ, (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (x) = 0} has zero Lebesgue

measure, then it admits a (hugly) shape derivative J̃ ′(Ω)(θ) involving two

(new) additional adjoints qΩ, zΩ.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Load uncertainties in geometric optimization (compliance)

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Load uncertainties in geometric optimization (compliance)
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✞

✝

☎

✆
Geometric uncertainties in geometric optimization
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✞

✝

☎

✆
Geometric uncertainties (stress minimization)

Worst-case design in shape optimization G. Allaire
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-VI- REVIEW OF THE ROBUST COMPLIANCE

Based on the works of Cherkaev-Cherkaeva (1999, 2003), and de

Gournay-Allaire-Jouve (2008).

No linearization in this case !

Restricted to the compliance because

J(Ω) =

∫

ΓN

g · u ds = − min
v=0 on ΓD

(∫

Ω

Ae(v) · e(v) dx− 2

∫

ΓN

g · v ds

)

with 



− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(
Ae(u)

)
n = g on ΓN

(
Ae(u)

)
n = 0 on Γ

Worst-case design in shape optimization G. Allaire
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✄

✂

�

✁ROBUST COMPLIANCE

Known forces: g. Uncertainties: δg.

Classical min-max approach :

We minimize the worst case

J(Ω) = max
δg

{
c(g + δg) =

∫

ΓN

(g + δg) · u ds

}

under the constraint ‖δg‖ ≤ m and possibly some restriction on its support.

Evaluating J(Ω) is a ”trust region” problem.

In the sequel we choose ‖δg‖2 =

∫

ΓN

|δg|2ds.

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Rewriting the robust compliance

c(g + δg) =

∫

ΓN

(g + δg) · u ds

= − min
v=0 on ΓD

(∫

Ω

Ae(v) · e(v) dx− 2

∫

ΓN

(g + δg) · v ds

)

Since (−min) = (max−), the two maximizations can be exchanged

max
‖δg‖≤m

c(g+δg) = max
v=0 on ΓD

(
−

∫

Ω

Ae(v) · e(v) dx+ 2 max
‖δg‖≤m

∫

ΓN

(g + δg) · v ds

)

The robust compliance is thus obtained by maximizing a non-quadratic and

non-concave energy

max
‖δg‖≤m

c(g + δg) = max
v=0 on ΓD

(
−

∫

Ω

Ae(v) · e(v) dx+ 2

∫

ΓN

g · v ds+ 2m‖v‖

)

Worst-case design in shape optimization G. Allaire
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✞

✝

☎

✆
Special case

If g = 0, then it is an eigenvalue problem. Indeed,

max
‖δg‖≤m

c(0 + δg) = max
v=0 on ΓD

(
−

∫

Ω

Ae(v) · e(v) dx+ 2m‖v‖

)

This is the Auchmuty variational principle for




− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(
Ae(u)

)
n = λu on ΓN

(
Ae(u)

)
n = 0 on Γ
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✄

✂

�

✁DERIVATIVE OF THE ROBUST COMPLIANCE

J(Ω) = max
v=0 on ΓD

E(v) =

(
−

∫

Ω

Ae(v) · e(v) dx+ 2

∫

ΓN

g · v ds+ 2m‖v‖

)

If the maximizer of E(v) is unique, then proceeds as usual to differentiate.

If the maximizer of E(v) is not unique, then one can merely deduce a

directional derivative (one for each eigenfunction).

In this latter case, the ”best” descent direction is chosen by a SDP algorithm.
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✄

✂

�

✁NUMERICAL RESULTS

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Allowed 

Source term f

perturbations

Results obtained with F. de Gournay and F. Jouve.
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✞

✝

☎

✆
Vertical perturbations only
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✞

✝

☎

✆
Horizontal and vertical perturbations
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