A LINEARIZED APPROACH TO WORST-CASE DESIGN IN SHAPE OPTIMIZATION

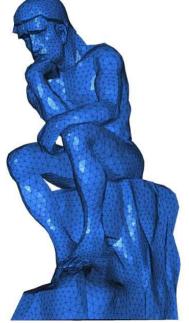
1

Grégoire ALLAIRE CMAP, Ecole Polytechnique

Joint work with Ch. Dapogny (LJK, Grenoble).

GDR MASCOT-NUM, Saint-Etienne, April 9th, 2015.

RODIN project



Ecole Polytechnique, UPMC, INRIA, Renault, EADS, ESI group, etc.

- 1. Introduction and a briel review of optimal design.
- 2. About uncertainties in optimal design.
- 3. Abstract setting for linearized worst-case design.
- 4. Applications in thickness optimization.
- 5. Applications in geometric optimization.
- 6. A short review of the robust compliance case.

-I- INTRODUCTION

Shape optimization : minimize an objective function over a set of admissibles shapes Ω (including possible constraints)

 $\inf_{\Omega \in \mathcal{U}_{ad}} J(\Omega)$

The objective function is evaluated through a partial differential equation (state equation)

$$J(\Omega) = \int_{\Omega} j(u_{\Omega}) \, dx$$

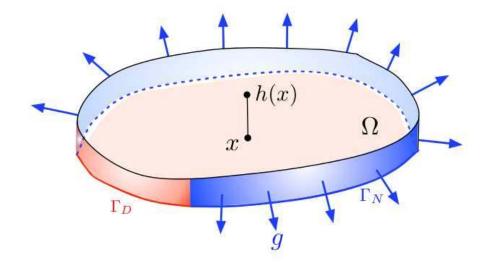
where u_{Ω} is the solution of

$$PDE(u_{\Omega}) = 0$$
 in Ω

Thickness optimization : the shape is parametrized by its thickness h (a coefficient in the p.d.e.).

Geometric optimization : the boundary of Ω is varying.

Thickness optimization (a brief review)



Mid-plane $\Omega \subset \mathbb{R}^d$ with boundary $\partial \Omega = \Gamma_N \cup \Gamma_D$. Thickness of the plate $h(x) : \Omega \to [h_{\min}, h_{\max}]$ with $h_{\max} > h_{\min} > 0$.

Thickness optimization (Ctd.)

For given applied loads $g: \Gamma_N \to \mathbb{R}^d$, $f: \Omega \to \mathbb{R}^d$, the displacement $u: \Omega \to \mathbb{R}^d$ is the solution of

$$\begin{cases} -\operatorname{div} \left(hA \, e(u)\right) = f & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ \left(hA \, e(u)\right)n = g & \text{on } \Gamma_N \end{cases}$$

with the strain tensor $e(u) = \frac{1}{2} (\nabla u + \nabla^t u)$, the stress tensor $\sigma = hAe(u)$, and A an homogeneous isotropic elasticity tensor.

Typical objective function: the compliance

$$J(h) = \int_{\Omega} f \cdot u \, dx + \int_{\Gamma_N} g \cdot u \, dx,$$

Adjoint approach to compute a gradient

Theorem. The derivative of the cost function $J(h) = \int_{\Omega} j(u(h)) dx$ is

$$J'(h) = \nabla u \cdot \nabla p \,,$$

where p is the adjoint state defined as the unique solution of

$$\begin{cases} -\operatorname{div} (h\nabla p) = -j'(u) & \text{in } \Omega \\ p = 0 & \text{on } \Gamma_D \\ (hA e(p))n = g & \text{on } \Gamma_N \end{cases}$$

Remark: for the compliance p = -u.

Numerical algorithm: projected gradient

- 1. Initialization of the thickness $h_0 \in \mathcal{U}_{ad}$.
- 2. Iterations until convergence, for $n \ge 0$: compute the state u_n and the adjoint p_n (associated to the thickness h_n) and update

$$h_{n+1} = P_{\mathcal{U}_{ad}} \Big(h_n - \mu J'(h_n) \Big) \quad \text{with} \quad J'(h_n) = \nabla u_n \cdot \nabla p_n \,,$$

where $\mu > 0$ is a descent step.

The admissible set of thicknesses is:

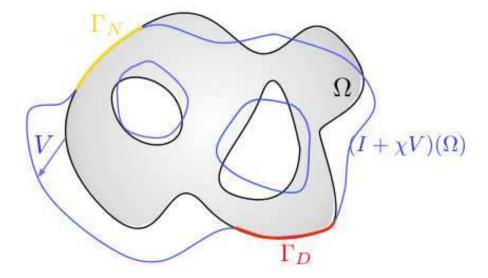
$$\mathcal{U}_{ad} = \left\{ h \in L^{\infty}(\Omega) , \quad h_{max} \ge h(x) \ge h_{min} > 0 \text{ in } \Omega, \int_{\Omega} h(x) \, dx = h_0 |\Omega| \right\}.$$

 $P_{\mathcal{U}_{ad}}$ is the projection operator defined by:

$$(P_{\mathcal{U}_{ad}}(h))(x) = \max(h_{min}, \min(h_{max}, h(x) + \ell))$$

where ℓ is the unique Lagrange multiplier such that $\int_{\Omega} P_{\mathcal{U}_{ad}}(h) dx = h_0 |\Omega|$.

Geometric optimization (a brief review)



Shape $\Omega \subset \mathbb{R}^d$ with boundary $\partial \Omega = \Gamma \cup \Gamma_N \cup \Gamma_D$, where Γ_D and Γ_N are fixed. Only Γ is optimized (free boundary).

Geometric optimization (Ctd.)

For given applied loads $g: \Gamma_N \to \mathbb{R}^d$, $f: \Omega \to \mathbb{R}^d$, the displacement $u: \Omega \to \mathbb{R}^d$ is the solution of

$$\begin{aligned} -\operatorname{div} \left(A \, e(u) \right) &= f & \text{ in } \Omega \\ u &= 0 & \text{ on } \Gamma_D \\ \left(A \, e(u) \right) n &= g & \text{ on } \Gamma_N \\ \left(A \, e(u) \right) n &= 0 & \text{ on } \Gamma \end{aligned}$$

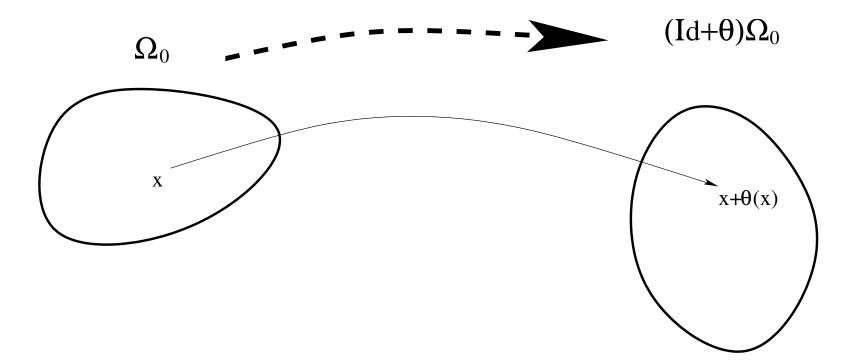
Typical objective function: the compliance

$$J(\Omega) = \int_{\Omega} f \cdot u \, dx + \int_{\Gamma_N} g \cdot u \, dx,$$

Shape derivative: Hadamard's method

Let Ω_0 be a reference domain. Shapes are parametrized by a vector field θ

 $\Omega = (\mathrm{Id} + \theta)\Omega_0 \quad \text{with} \quad \theta \in C^1(\mathbb{R}^d; \mathbb{R}^d).$



Definition: the shape derivative of $J(\Omega)$ at Ω_0 is the Fréchet differential of $\theta \to J((\mathrm{Id} + \theta)\Omega_0)$ at 0.

Shape derivative

Hadamard structure theorem: the shape derivative of $J(\Omega)$ can always be written (in a distributional sense)

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \theta(x) \cdot n(x) j(x) \, ds$$

where j(x) is an integrand depending on the state u and an adjoint p.

Gradient algorithm: a descent direction is $\theta(x) = -j(x) n(x)$.

Shape derivative of the compliance: $j(x) = \ell - Ae(u) \cdot e(u)$ where ℓ is a Lagrange multiplier for the volume constraint.

Additional ingredient: the level set method

Due to Osher and Sethian, it allows topology changes.

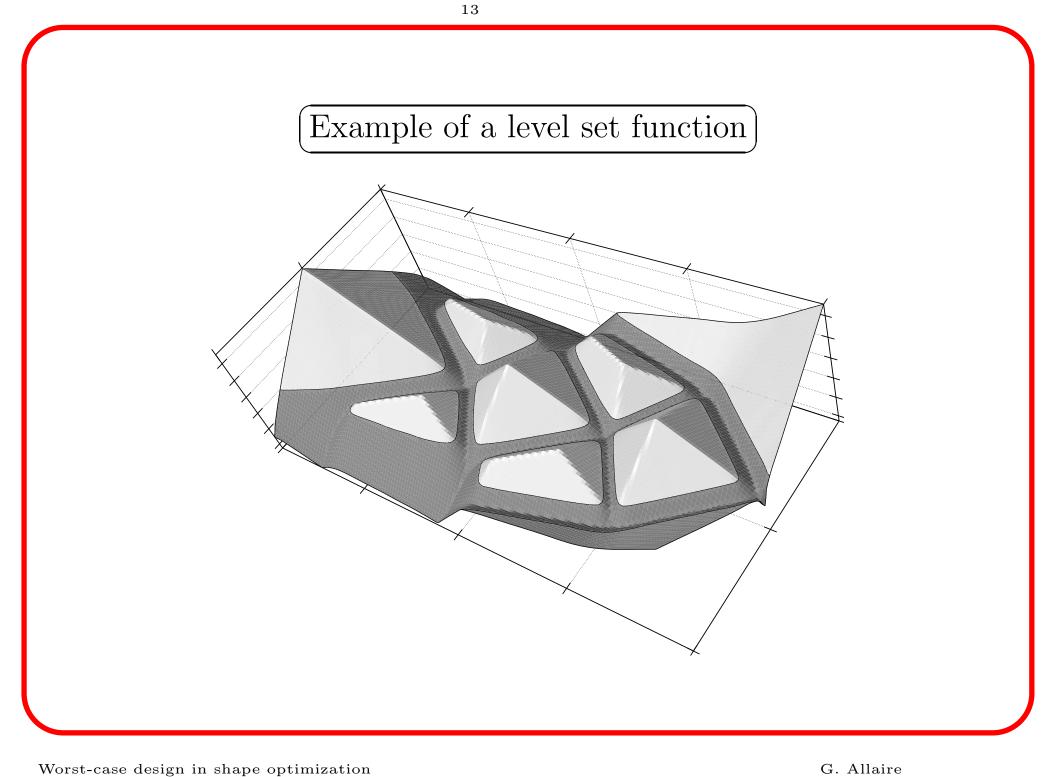
Shape capturing method on a fixed mesh of the "working domain" D. A shape Ω is parametrized by a **level set** function

$$\begin{cases} \psi(x) = 0 & \Leftrightarrow x \in \partial\Omega \cap D \\ \psi(x) < 0 & \Leftrightarrow x \in \Omega \\ \psi(x) > 0 & \Leftrightarrow x \in (D \setminus \Omega) \end{cases}$$

Assume that the shape $\Omega(t)$ evolves in time t with a normal velocity V(t, x). Then its motion is governed by the following Hamilton Jacobi equation

$$\frac{\partial \psi}{\partial t} + V |\nabla_x \psi| = 0$$
 in D .

To minimize the objective function $J(\Omega)$, the velocity V is minus the shape gradient j.



(NUMERICAL ALGORITHM)

- 1. Initialization of the level set function ψ_0 (including holes).
- 2. Iteration until convergence for $k \ge 1$:
 - (a) Compute the elastic displacement u_k for the shape ψ_k . Deduce the shape gradient = normal velocity = V_k
 - (b) Advect the shape with V_k (solving the Hamilton Jacobi equation) to obtain a new shape ψ_{k+1} .

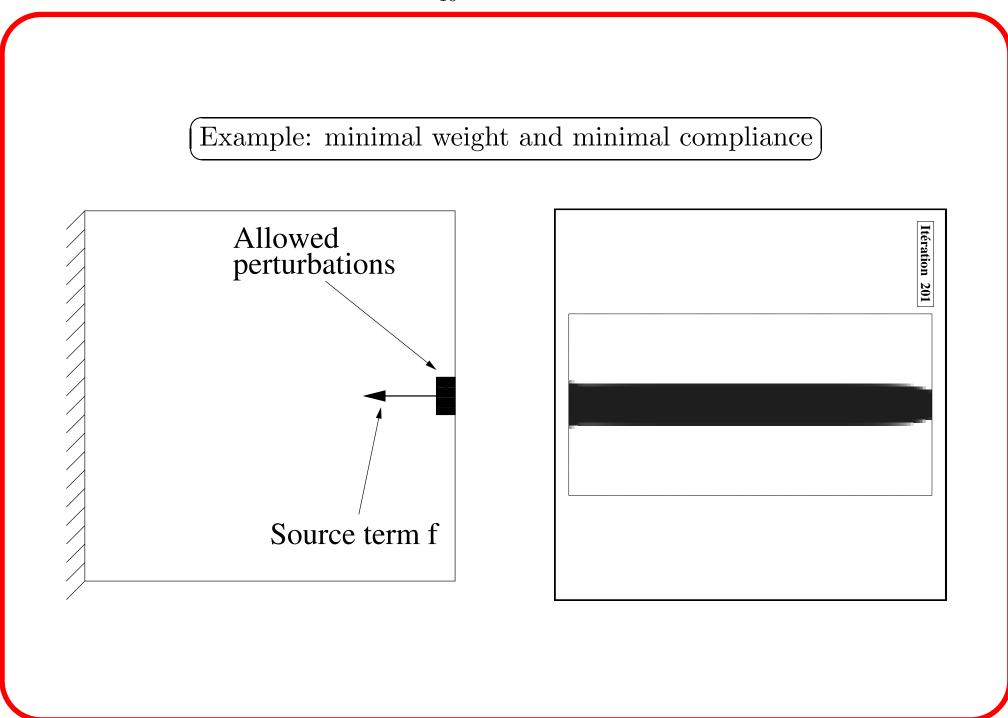
For numerical examples, see the web page:

 $http://www.cmap.polytechnique.fr/~optopo/level_en.html$

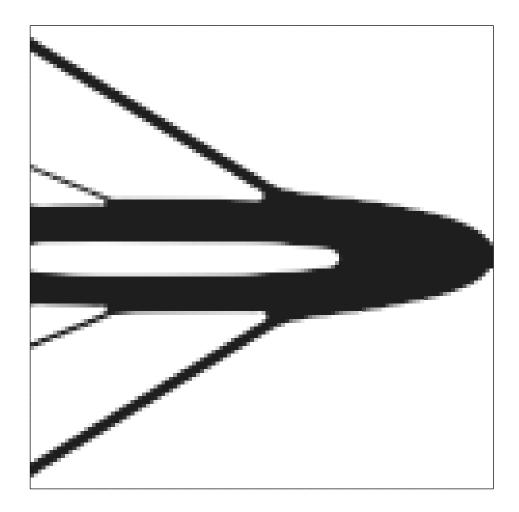
-II- ABOUT UNCERTAINTIES

- $\mathbbmss}$ location, magnitude and orientation of the body forces or surface loads
- Reference elastic material's properties
- \mathbb{R} geometry of the shape (thickness or boundary)

Crucial issue: optimal structures are so optimal for a given set of loads that they cannot sustain a different load !



Optimal design with load uncertainties



State of the art: many works !

- INST Probabilistic approach (Ben-Tal et al. 97, Choi et al. 2007, Frangopol-Maute 2003, Kalsi et al. 2001...)
 - Monte-Carlo methods
 - Polynomial chaos, Karhunen-Loève expansions...
 - First-Order Reliability-based Methods (FORM)
- Searious objectives or goals:
 - Minimization of expected value or mean
 - Worst case desing
 - Minimal failure probability
- \mathbbmsssss Special cases with simplifications:
 - Robust compliance: Cherkaev-Cherkaeva (1999, 2003), de Gournay-Allaire-Jouve (2008).
 - Mean expectation of compliance: Alvarez-Carrasco 2005, Dunning-Kim 2013...

- \mathbb{R} Present work: two main ideas
 - worst case optimization (min-max problem),
 - linearization for small uncertainties (similar idea in Babuska-Nobile-Tempone 2005).

Worst case design

Example in the case of force uncertainties.

The force is the sum $f + \xi$ where f is known and ξ is unknown.

The only information is the location of ξ and its maximal magnitude m > 0such that $\|\xi\| \leq m$.

We replace the standard objective function $J(\Omega, f + \xi)$ by its worst case version $\mathcal{J}(\Omega, f)$.

Worst case design optimization problem:

$$\min_{\Omega} \mathcal{J}(\Omega, f) = \min_{\Omega} \max_{\|\xi\| \le m} J(\Omega, f + \xi)$$

-III- ABSTRACT (AND FORMAL) SETTING

 $\square T$ Designs $h \in \mathcal{H}$

- State equation $\mathcal{A}(h)u(h) = b$ with a linear operator $\mathcal{A}(h)$
- ${}^{\tiny \mbox{\tiny \ensuremath{\mathbb{R}}}}$ Perturbations $\delta\in\mathcal{P}$ in a Banach space \mathcal{P}
- \blacksquare Assume for simplicity that only $b \pmod{\delta}$ depends on δ
- See Perturbed state equation $A(h)u(h, \delta) = b(\delta)$
- \square Worst case objective function

$$\mathcal{J}(h) = \sup_{\substack{\delta \in \mathcal{P} \\ ||\delta||_{\mathcal{P}} \le m}} J(u(h, \delta))$$

r Goal

$$\inf_{h\in\mathcal{H}}\mathcal{J}(h)$$

(Linearization)

Assume that the perturbations are small, i.e., $m \ll 1$.

- Unperturbed case $\delta = 0$, u(h) = u(h, 0)
- \mathbb{R} Derivative of the state equation

$$\mathcal{A}(h)\frac{\partial u}{\partial \delta}(h,0) = \frac{db}{d\delta}(0)$$

 $\mathbbmss}$ Linearization of the worst-case objective function

$$\mathcal{J}(h) \approx \widetilde{\mathcal{J}}(h) = \sup_{\substack{\delta \in \mathcal{P} \\ ||\delta||_{\mathcal{P}} \le m}} \left(J(u(h)) + \frac{dJ}{du}(u(h)) \frac{\partial u}{\partial \delta}(h,0)(\delta) \right)$$

Since the right hand side is linear in δ we deduce

$$\widetilde{\mathcal{J}}(h) = J(u(h)) + m \left\| \left| \frac{dJ}{du}(u(h)) \frac{\partial u}{\partial \delta}(h, 0) \right\|_{\mathcal{P}^*}$$

Adjoint approach

The previous formula for $\widetilde{\mathcal{J}}(h)$ is not fully explicit:

$$\widetilde{\mathcal{J}}(h) = J(u(h)) + m \left\| \frac{dJ}{du}(u(h)) \frac{\partial u}{\partial \delta}(h, 0) \right\|_{\mathcal{P}^*}$$

Introduce an adjoint state

$$\mathcal{A}(h)^T p(h) = \frac{dJ}{du}(u(h)),$$

from which we deduce

$$\mathcal{A}(h)^T p(h) \cdot \frac{\partial u}{\partial \delta}(h, 0) = \mathcal{A}(h) \frac{\partial u}{\partial \delta}(h, 0) \cdot p(h) = \frac{dJ}{du}(u(h)) \cdot \frac{\partial u}{\partial \delta}(h, 0) = \frac{db}{d\delta}(0) \cdot p(h)$$

Conclusion:

$$\widetilde{\mathcal{J}}(h) = J(u(h)) + m \left\| \left| \frac{db}{d\delta}(0) \cdot p(h) \right\|_{\mathcal{P}^*}$$

Linearized worst-case design

We add to the usual objective function a perturbation term which is proportional to m and to the standard adjoint p:

$$\widetilde{\mathcal{J}}(h) = J(u(h)) + m \left\| \left| \frac{db}{d\delta}(0) \cdot p(h) \right\|_{\mathcal{P}^*}$$

- \mathbb{R} Classical sensitivity approach can be applied to $\widetilde{\mathcal{J}}(h)$
- Image The appearance of the adjoint is not a surprise: it is known to measure the sensitivity of the optimal value with respect to the constraint level (or right hand side in the state equation).
- \mathbb{R} The entire argument needs to be made rigorous in each specific case.
- \mathbb{R} We don't say anything about the existence of optimal designs.
- We don't prove that optimal designs for $\widetilde{\mathcal{J}}(h)$ are close to those of $\mathcal{J}(h)$.

What remains to be done (in this talk)

Linearized worst-case design optimization:

$$\inf_{h \in \mathcal{H}} \left\{ \widetilde{\mathcal{J}}(h) = J(u(h)) + m \left\| \left\| \frac{db}{d\delta}(0) \cdot p(h) \right\|_{\mathcal{P}^*} \right\}$$

where

$$\mathcal{A}(h)u(h) = b(0)$$
 and $\mathcal{A}(h)^T p(h) = \frac{dJ}{du}(u(h)),$

- we compute a derivative of $\widetilde{\mathcal{J}}(h)$: it requires two additional adjoints !
- $\mathbbmss}$ We build a gradient-based algorithm.
- \mathbbms We test it on various objective functions.

-IV- THICKNESS OPTIMIZATION

First case: loading uncertainties.

Given load $f \in L^2(\Omega)^d$. Unknown load $\xi \in L^2(\Omega)^d$ with small norm $\|\xi\|_{L^2(\Omega)^d} \leq m$. Solution $u_{h,\xi}$ of

$$\begin{cases} -\operatorname{div} \left(hA \, e(u_{h,\xi})\right) = f + \xi & \text{in } \Omega \\ u_{h,\xi} = 0 & \text{on } \Gamma_D \\ \left(hA \, e(u_{h,\xi})\right)n = g & \text{on } \Gamma_N \end{cases}$$

Many variants are possible (ξ may be localized, or parallel to a fixed vector, or on Γ_N , etc.)

Given a smooth (+ growth conditions) integrand j, consider

$$J(h,\xi) = \int_{\Omega} j(\xi, u_{h,\xi}) \, dx$$

Worst case design objective function:

$$\mathcal{J}(h) = \sup_{\substack{\xi \in L^2(\Omega)^d \\ ||\xi||_{L^2(\Omega)^d} \le m}} J(h,\xi)$$

Linearized worst case design objective function:

$$\widetilde{\mathcal{J}}(h) = \sup_{\substack{\xi \in L^2(\Omega)^d \\ ||\xi||_{L^2(\Omega)^d} \le m}} \left(J(h,0) + \frac{\partial J}{\partial f}(h,0)(\xi) \right)$$

Theorem.

$$\widetilde{\mathcal{J}}(h) = \int_{\Omega} j(0, u_h) \, dx + m \left\| \left| \nabla_f j(0, u_h) - p_h \right| \right\|_{L^2(\Omega)^d},$$

where p_h is the first adjoint state, defined by

$$\begin{cases} -\operatorname{div}(hAe(p_h)) &= -\nabla_u j(0, u_h) & \text{in } \Omega, \\ p_h &= 0 & \text{on } \Gamma_D, \\ hAe(p_h)n &= 0 & \text{on } \Gamma_N. \end{cases}$$

If $\nabla_f j(0, u_h) - p_h \neq 0$ in $L^2(\Omega)^d$, then $\widetilde{\mathcal{J}}$ is Fréchet differentiable

$$\widetilde{\mathcal{J}}'(h)(s) = \int_{\Omega} \mathcal{D}(u_h, p_h, q_h, z_h) \, s \, dx,$$

with two additional adjoints q_h, z_h and

$$\mathcal{D}(u_h, p_h, q_h, z_h) := Ae(u_h) : e(p_h) + m \frac{Ae(u_h) : e(z_h) + Ae(p_h) : e(q_h)}{2 ||\nabla_f j(0, u_h) - p_h||_{L^2(\Omega)^d}}$$

The second and third adjoint states q_h, z_h are defined by

$$\begin{cases} -\operatorname{div}(hAe(q_h)) &= -2\left(p_h - \nabla_f j(0, u_h)\right) & \text{in } \Omega, \\ q_h &= 0 & \text{on } \Gamma_D, \\ hAe(q_h)n &= 0 & \text{on } \Gamma_N, \end{cases}$$

$$-\operatorname{div}(hAe(z_h)) = -2 \nabla_f \nabla_u j(u_h)^T (\nabla_f j(u_h) - p_h) - \nabla_u^2 j(u_h) q_h \quad \text{in } \Omega,$$

$$z_h = 0 \quad \text{on } \Gamma_D,$$

$$hAe(z_h)n = 0 \quad \text{on } \Gamma_N.$$

Second case: thickness uncertainties.

Given thickness $h \in L^{\infty}(\Omega)$. Uncertainty $s \in L^{\infty}(\Omega)$ with $||s||_{L^{\infty}(\Omega)} \leq m$.

$$\begin{cases} -\operatorname{div}\left((h+s)A\,e(u_{h+s})\right) = f & \text{in }\Omega\\ u_{h+s} = 0 & \text{on }\Gamma_D\\ \left((h+s)A\,e(u_{h+s})\right)n = g & \text{on }\Gamma_N \end{cases}$$

Worst case design objective function:

$$\mathcal{J}(h) = \sup_{\substack{s \in L^{\infty}(\Omega) \\ \|s\|_{L^{\infty}(\Omega)} \le m}} \left\{ J(h+s) = \int_{\Omega} j(u_{h+s}) \, dx \right\}$$

Linearized worst case design objective function:

$$\widetilde{\mathcal{J}}(h) = \sup_{\substack{s \in L^{\infty}(\Omega) \\ \|s\|_{L^{\infty}(\Omega)} \le m}} \left(J(h) + \frac{\partial J}{\partial h}(h)(s) \right)$$

Theorem.

$$\widetilde{\mathcal{J}}(h) = \int_{\Omega} j(u_h) \, dx + m \left| \left| Ae(u_h) : e(p_h) \right| \right|_{L^1(\Omega)},$$

where p_h is the first adjoint state, defined by

$$\begin{aligned} -\operatorname{div}(hAe(p_h)) &= -\nabla_u j(u_h) & \text{in } \Omega \\ p_h &= 0 & \text{on } \Gamma_D \\ hAe(p_h)n &= 0 & \text{on } \Gamma_N \end{aligned}$$

If $E_h := \{x \in \Omega, Ae(u_h) : e(p_h) = 0\}$ has zero Lebesgue measure, then $\widetilde{\mathcal{J}}$ is differentiable

$$\widetilde{\mathcal{J}}'(h)(s) = \int_{\Omega} s\Big(Ae(u_h) : e(p_h) + m\Big(Ae(p_h) : e(q_h) + Ae(u_h) : e(z_h)\Big)\Big) dx,$$

with two additional adjoint states q_h, z_h .

(NUMERICAL ALGORITHM)

- 1. Initialization of the thickness h_0 .
- 2. Iteration until convergence for $k \ge 1$:
 - (a) Computation of u_k and the 3 adjoints p_k, q_k, z_k by solving linearized elasticity problem with the thickness h_k . Evaluation of the gradient $\widetilde{\mathcal{J}}'(h_k)$
 - (b) Update of the thickness h_{k+1} by a projected gradient step (to satisfy bounds and volume constraint).

All computations are made with FreeFem++.

Load uncertainties in thickness optimization

Compliance minimization

$$J(h,\xi) = \int_{\Omega} (f+\xi) \cdot u_{h,\xi} \, dx$$

with a fixed volume constraint

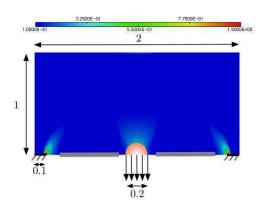
$$\operatorname{Vol}(h) := \int_{\Omega} h \, dx = 0.7$$

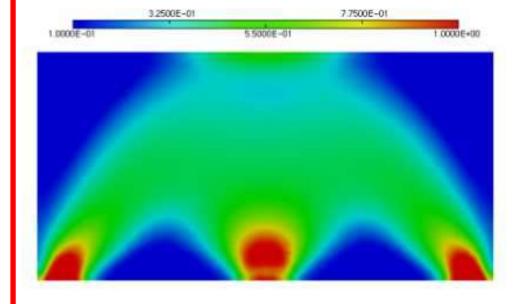
Rectangular 2×1 domain. Bounds $h_{min} = 0.1$ and $h_{max} = 1$.

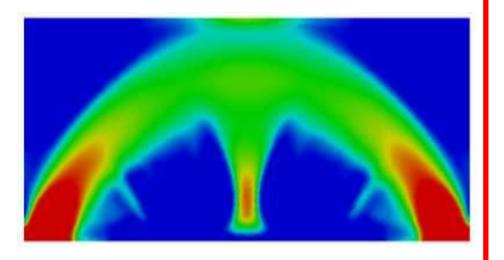
Material properties E = 1, $\nu = 0.3$.

We compute optimal designs for increasing values of m.

Load uncertainties in thickness optimization







-V- GEOMETRIC OPTIMIZATION

First case: loading uncertainties.

Given load $f \in L^2(\mathbb{R}^d)^d$. Unknown load $\xi \in L^2(\mathbb{R}^d)^d$ with small norm $\|\xi\|_{L^2(\mathbb{R}^d)^d} \leq m$. Solution $u_{\Omega,\xi}$ of

$$\begin{cases} -\operatorname{div} \left(A \, e(u_{\Omega,\xi}) \right) = f + \xi & \text{in } \Omega \\ u_{\Omega,\xi} = 0 & \text{on } \Gamma_D \\ \left(A \, e(u_{\Omega,\xi}) \right) n = g & \text{on } \Gamma_N \\ \left(A \, e(u_{\Omega,\xi}) \right) n = 0 & \text{on } \Gamma \end{cases}$$

Many variants are possible (ξ may be localized, or parallel to a fixed vector, or on Γ_N , etc.)

Theorem.

$$\widetilde{\mathcal{J}}(\Omega) = \int_{\Omega} j(0, u_{\Omega}) \, dx + m ||\nabla_f j(0, u_{\Omega}) - p_{\Omega}||_{L^2(\Omega)^d},$$

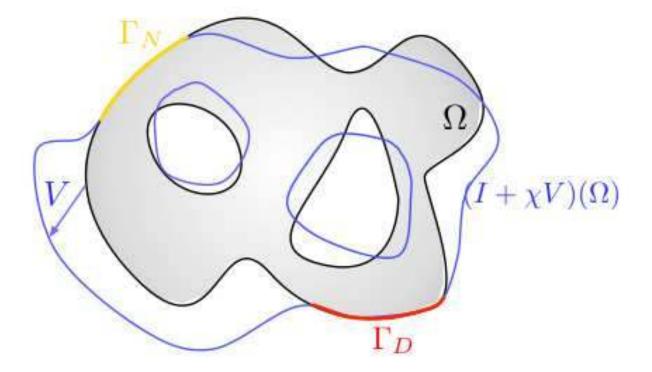
where p_{Ω} is the first adjoint state, defined by

$$\begin{cases} -\operatorname{div}(Ae(p_{\Omega})) &= -\nabla_{u}j(0, u_{\Omega}) & \operatorname{in} \Omega, \\ p_{\Omega} &= 0 & \operatorname{on} \Gamma_{D}, \\ Ae(p_{\Omega})n &= 0 & \operatorname{on} \Gamma \cup \Gamma_{N}. \end{cases}$$

If $\nabla_f j(0, u_\Omega) - p_\Omega \neq 0$ in $L^2(\Omega)^d$, then $\widetilde{\mathcal{J}}$ is shape differentiable (with two additional adjoint states).

Second case: geometric uncertainties.

Perturbed shapes $(I + \chi V)(\Omega)$, $V \in W^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d)$, $||V||_{L^{\infty}(\mathbb{R}^d)^d} \leq m$.



 χ is a smooth localizing function such that $\chi \equiv 0$ on $\Gamma_D \cup \Gamma_N$.

Worst-case design in shape optimization

G. Allaire

Theorem.

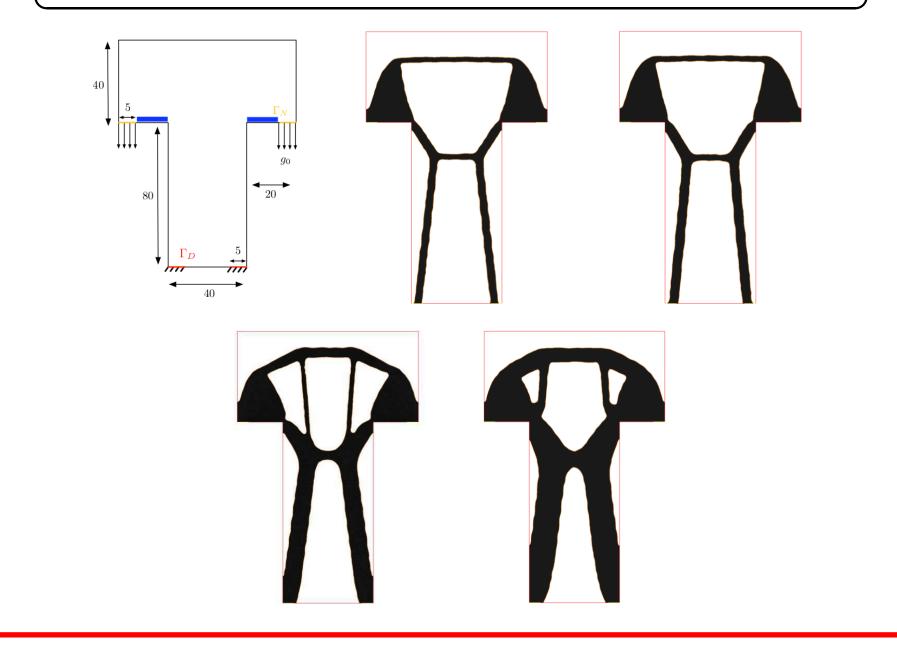
The linearized worst-case design objective function is

$$\widetilde{\mathcal{J}}(\Omega) = \int_{\Omega} j(u_{\Omega}) \, dx + m \int_{\Gamma} \chi \Big| j(u_{\Omega}) + Ae(u_{\Omega}) : e(p_{\Omega}) - f \cdot p_{\Omega} \Big| \, ds,$$

where p_{Ω} is the (previous) adjoint state.

If $E_{\Gamma} := \{x \in \Gamma, (j(u_{\Omega}) + Ae(u_{\Omega}) : e(p_{\Omega}) - f \cdot p_{\Omega}) (x) = 0\}$ has zero Lebesgue measure, then it admits a (hugly) shape derivative $\widetilde{\mathcal{J}}'(\Omega)(\theta)$ involving two (new) additional adjoints q_{Ω}, z_{Ω} .

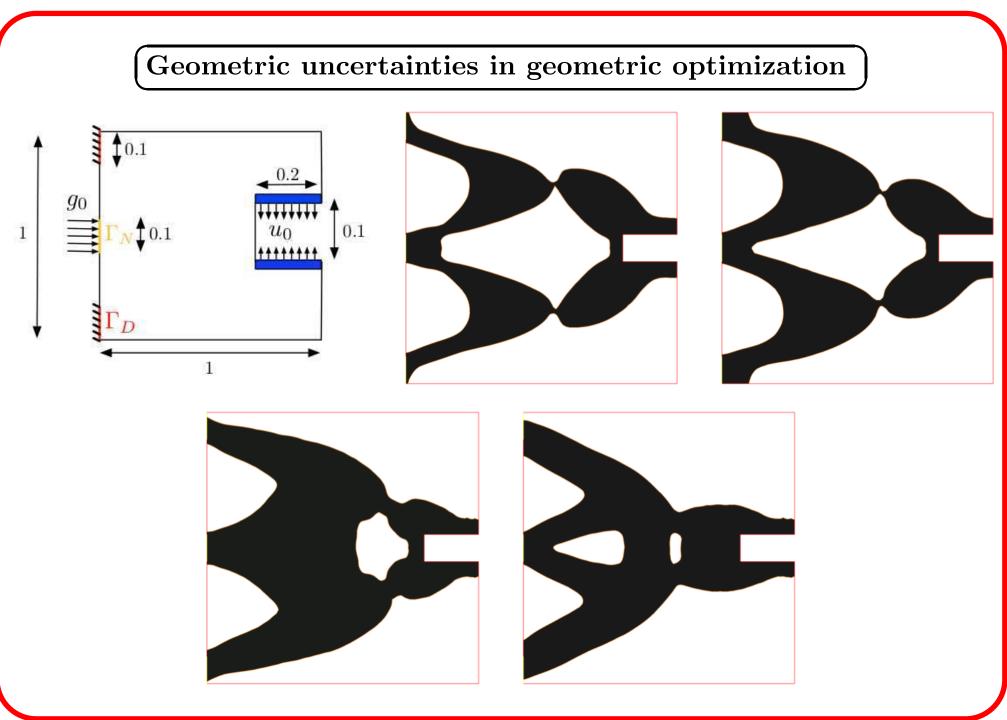
Load uncertainties in geometric optimization (compliance)



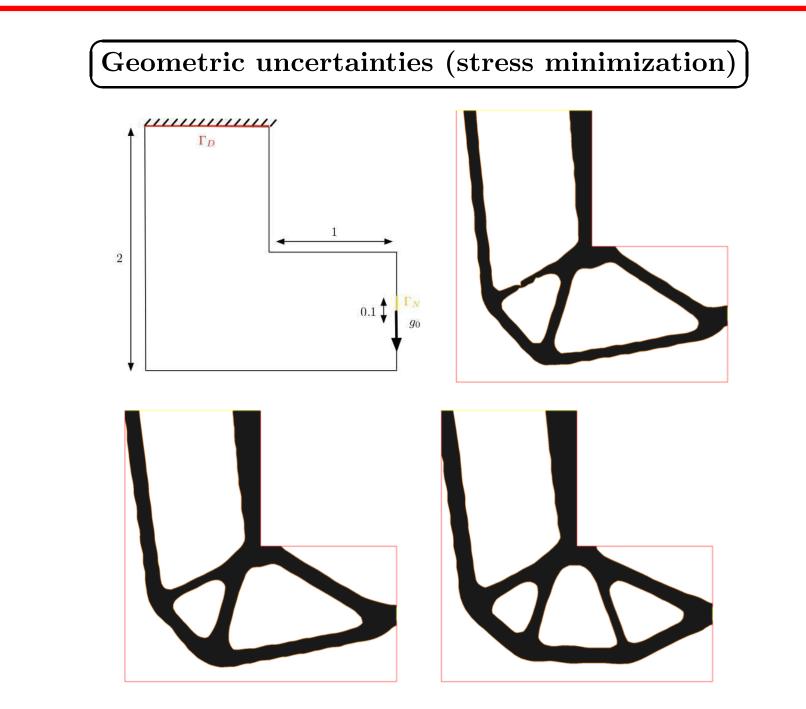
Worst-case design in shape optimization

Load uncertainties in geometric optimization (compliance)





Worst-case design in shape optimization



-VI- REVIEW OF THE ROBUST COMPLIANCE

Based on the works of Cherkaev-Cherkaeva (1999, 2003), and de Gournay-Allaire-Jouve (2008).

No linearization in this case !

Restricted to the compliance because

$$J(\Omega) = \int_{\Gamma_N} g \cdot u \, ds = -\min_{v=0 \text{ on } \Gamma_D} \left(\int_{\Omega} A \, e(v) \cdot e(v) \, dx - 2 \int_{\Gamma_N} g \cdot v \, ds \right)$$

with

$$\begin{cases} -\operatorname{div} (A e(u)) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ (A e(u))n = g & \text{on } \Gamma_N \\ (A e(u))n = 0 & \text{on } \Gamma \end{cases}$$

Worst-case design in shape optimization

ROBUST COMPLIANCE

Known forces: g. Uncertainties: δg .

Classical min-max approach :

We minimize the worst case

$$J(\Omega) = \max_{\delta g} \left\{ c(g + \delta g) = \int_{\Gamma_N} (g + \delta g) \cdot u \, ds \right\}$$

under the constraint $\|\delta g\| \leq m$ and possibly some restriction on its support. Evaluating $J(\Omega)$ is a "trust region" problem.

In the sequel we choose $\|\delta g\|^2 = \int_{\Gamma_N} |\delta g|^2 ds$.

Rewriting the robust compliance

$$c(g + \delta g) = \int_{\Gamma_N} (g + \delta g) \cdot u \, ds$$
$$= -\min_{v=0 \text{ on } \Gamma_D} \left(\int_{\Omega} A \, e(v) \cdot e(v) \, dx - 2 \int_{\Gamma_N} (g + \delta g) \cdot v \, ds \right)$$

Since $(-\min) = (\max -)$, the two maximizations can be exchanged

$$\max_{\|\delta g\| \le m} c(g + \delta g) = \max_{v=0 \text{ on } \Gamma_D} \left(-\int_{\Omega} A \, e(v) \cdot e(v) \, dx + 2 \max_{\|\delta g\| \le m} \int_{\Gamma_N} (g + \delta g) \cdot v \, ds \right)$$

The robust compliance is thus obtained by maximizing a non-quadratic and non-concave energy

$$\max_{\|\delta g\| \le m} c(g + \delta g) = \max_{v=0 \text{ on } \Gamma_D} \left(-\int_{\Omega} A \, e(v) \cdot e(v) \, dx + 2 \int_{\Gamma_N} g \cdot v \, ds + 2m \|v\| \right)$$

[Special case]

If g = 0, then it is an eigenvalue problem. Indeed,

$$\max_{\|\delta g\| \le m} c(0+\delta g) = \max_{v=0 \text{ on } \Gamma_D} \left(-\int_{\Omega} A e(v) \cdot e(v) \, dx + 2m \|v\| \right)$$

This is the Auchmuty variational principle for

$$\begin{cases} -\operatorname{div} (A e(u)) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ (A e(u))n = \lambda u & \text{on } \Gamma_N \\ (A e(u))n = 0 & \text{on } \Gamma \end{cases}$$

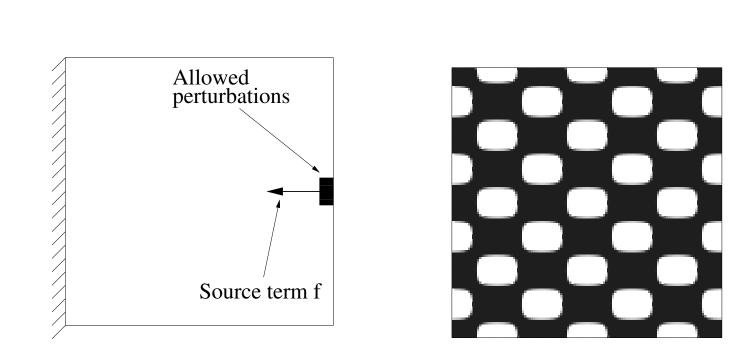
DERIVATIVE OF THE ROBUST COMPLIANCE

$$J(\Omega) = \max_{v=0 \text{ on } \Gamma_D} E(v) = \left(-\int_{\Omega} A e(v) \cdot e(v) \, dx + 2 \int_{\Gamma_N} g \cdot v \, ds + 2m \|v\|\right)$$

If the maximizer of E(v) is unique, then proceeds as usual to differentiate.

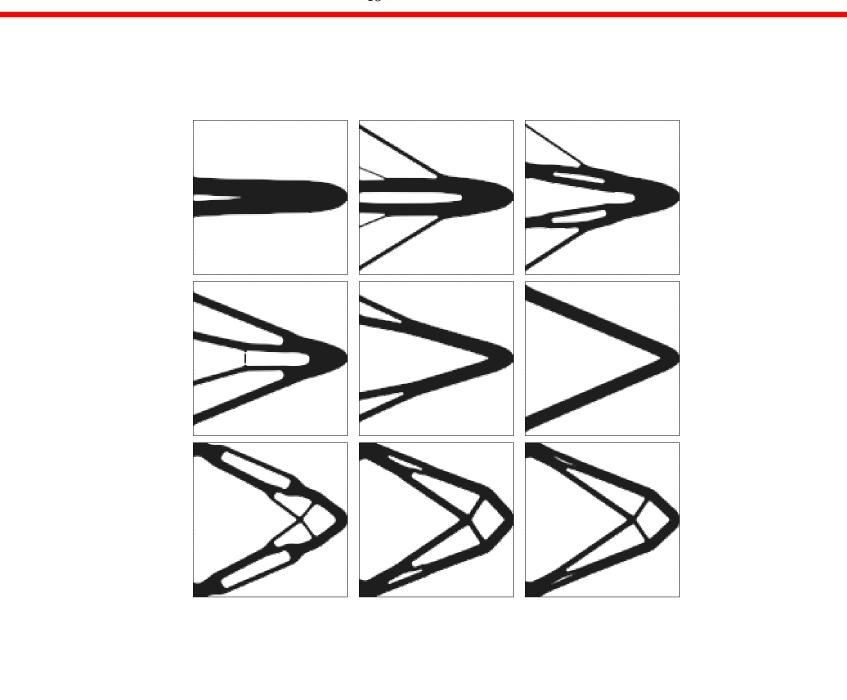
If the maximizer of E(v) is **not** unique, then one can merely deduce a directional derivative (one for each eigenfunction).

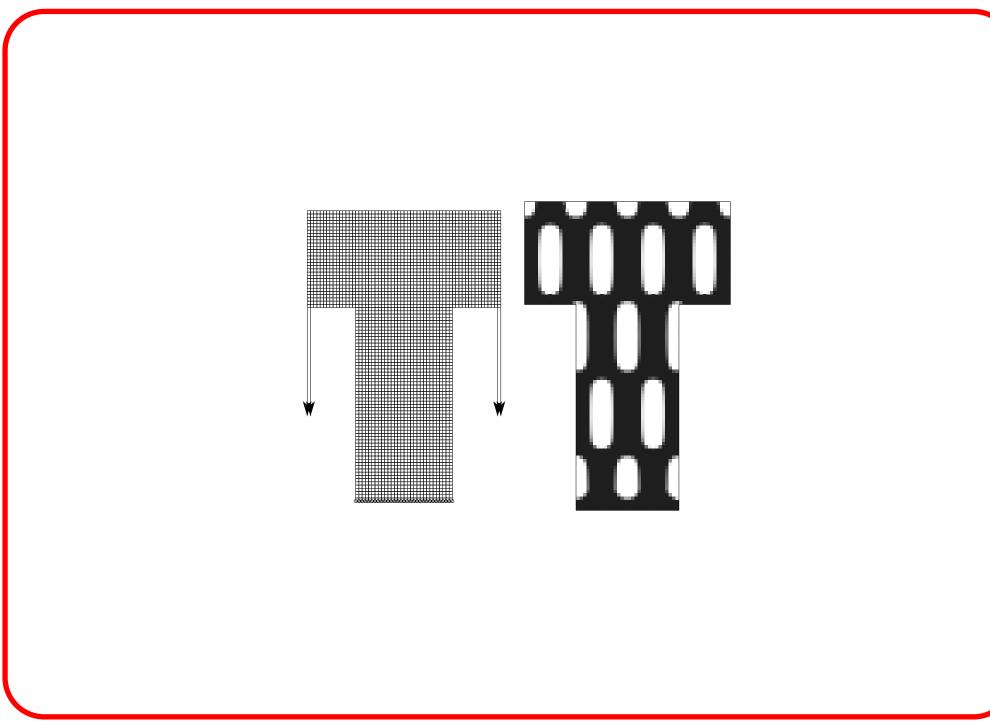
In this latter case, the "best" descent direction is chosen by a SDP algorithm.

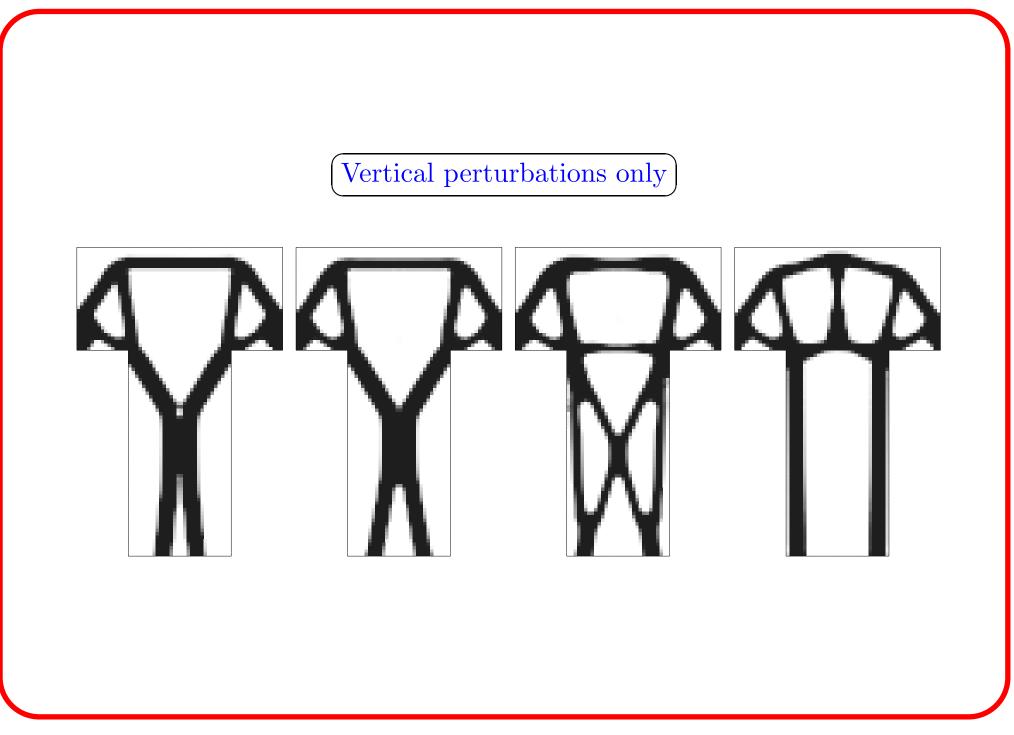


NUMERICAL RESULTS

Results obtained with F. de Gournay and F. Jouve.







Horizontal and vertical perturbations



