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Risk assessment in nuclear accident analysis

= Safety studies: compute a failure risk (margins, rare events) with validated computer/numerical models
= Numerical simulators: fundamental tools to understand, model & predict physical phenomena
= Large number of input parameters, related to physical and numerical modelling

= Uncertainty on some inputs = uncertainty on output & safety margins

= BEPU (Best-Estimate-Plus-Uncertainties): realistic models + uncertain inputs = Better assessment of

the real margins
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Risk assessment in nuclear accident analysis
= How to deal with uncertainties in numerical simulation?
— Probabilistic framework and Monte Carlo-based methods

— CPU-expensive simulator = Use of machine learning to mimic the simulator and
propagate input uncertainties

- Applicative constraints/framework:

v' Given data for training: a single inputs/output sample Dg = (x("),y("))1<j<n where y® = 2 (xW)
— random or quasi-random sample

v Small sample size: n =~ 100 to 1000 simulations
v Large number of uncertain inputs: d ~ 10 to 100 inputs

v" Required UQ associated to each prediction

o [ Gaussian Process Regression (GPR): particularly well-suited tool = Very popular ]




Crucial use of GPR metamodel
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v" Build from the dataset, GPR mimics the true model M, providing a
GP predictive distribution for each new evaluation point
=> Intrinsic quantification of prediction error!

@ = Very appealing, but in practice calls for a few good practices!



Building an efficient GPR in practice

1. Dealing with the large input dimension




Dealing with the large input dimension
—> How to train the GP in large dimension? (d~10 to 100, e.g.)

» Curse of dimensionality = too many GP hyperparameters have to be optimized!

—- Preliminary SCREENING for input selection (and thus dimension reduction)

v

HSIC-based sensitivity measure [GFT+07] — dependence measure comparing the RKHS
embeddings of joint distribution Py y and product of marginals Py Py

HSIC(X; Y) = MMD?*(Pyx, y, Px,®Py) = HMPX,.Y - P‘Px@ﬂ’)y” i

MT (X x Y)

v HSIC can capture a large spectrum of input-output
relationships (power of RKHS ©)

Dependence

O Px, @ Py

v' HSIC: Estimation from a unique random sample,
robust in practice from n~100 Lo
space of all probability distributions RKHS

Q for the input-output pair (X;, Y)
Extract from a presentation by G. Sarazin (CEA)




Dealing with the large input dimension

» Screening with HSIC-based independence tests [GFT+07]: HSIC(X;,Y) =0 <> X; L Y (with characteristic kernels!)

P-value of global-HSIC tests
i 0., ===y | Selection of significant inputs (usually <20)

Ozjl JTH‘AJFTHP;th‘rﬁthJ:ttuﬂ v' Explicative inputs of GPR

X36 Xd2 X50 X52 X5455 L ) o
v" Non-significant influential inputs captured by an

additional variance in GPR (nugget effect)

® Selected inputs

» HSIC-based ranking with R*HSIC [Dav15] : Inputs ordered by degree of influence

l

Can be used for more robust sequential GPR estimation

= “Forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs

See the “ICSCREAM” methodology [MIC22]




Building an efficient GPR in practice

1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation




Reminders on GPR

» Probabilistic surrogate model: response is considered as a realization of a random GP field [RW05,Gra21]
Y (x)~GP(u(x), k(x', x))

With u(x) the mean and k(x’, x) the covariance function.

kriging the sinus function

o —

— Kriging estimate
— — Realfunction

—Predictive GP is the GP conditioned by the observations (X, ,Ys): -1 |
Y(x*)ly(Xs):YS"’GP(ﬁ(x*), §(x,; x*))

sinx)
0
|

With analytical formulations for fi(x*) and $(x', x*)

= Conditional mean fi(x*) serves as the predictor at location x*

2 4 s g 10

= Prediction variance (i.e. mean squared error) is given by conditional covariance §(x*, x*)

= Prediction interval of any level o can be built at any location x*




Reminders on GPR

» In practice: parametric choices for trend function u and covariance function k
Y(x)~GP(u(x), k(x', x))

= For u: either constant or linear basis

= For k: stationary covariance built-upon tensorized 1-D covariance functions of v-Matérn

1-Dim — k{r,v,ﬁ'(m: i'} =0

221_], V2UhNY . /v 2vh 3/2 or 5/2 Matérn covariances
F(v}( 0 ) K”( 0 ) — offer good properties and

« intermediate » regularity
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Estimation of GPR hyperparameters

— How to robustly estimate the hyperparameters & € R*? from the learning sample?

How to to ensure that the estimated hyperparameters 0 yield good predicitivity but
= also reliable GP prediction intervals?

—> Crucial for safety applications

==P> | Especially in « medium » dimension (d € [10,20]) and small dataset (n € [100, 1000])




Estimation of GPR hyperparameters

» Usual estimation methods [K022,Mur21,Pet22,PBF+23]

—

— Maximum likelihood (MLE) <~ minimization of NLL
lll-posedness of MLE, problem of flatness

— Cross-validation and Mean Squared Error : of functions to be minimized

_ _ 0.5
minimization of RMSE= {% ?zl(y(‘) — y_i(x(‘)))z}

—

where $_;(x®) is the metamodel predictor in x®Wwhen (x, y) is removed from the learning sample.

— Bayesian approaches

Except RobustGAsp method of [GWB18]

} CPU ++, delicate choice of priors

— Could we do better?

— How to check that estimated hyperparameters lead to a “good” GPR metamodel?




Validation of GPR

» Validation criteria computed by cross-validation (LOO or K-fold CV) [DiG*21, ABG23, MI24a]

Predictivity
i RMSE? LT F e
— Accuracy of the GP predictor (only): Q* =1—-————— 4 02 ~0.90 +
;Zi:l(y(l)_z Zi:l y(l)) '_§ 3
s,
. .. . 1 (yD—p_;x®y) 3 |
— Accuracy of the predictive variance: PVA = [log=>™, — £ o
n 8% 5
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— Accuracy of the whole GP conditional distribution Observed values

n
. : —~ 1 . .
From empirical coverage function for a€[0,1]: A(a) = ﬁz 1{y® € PI, _;(x)}
i=1

with Pla‘_i(x(")) the a-level GP prediction interval for x® with (x®©, y®) removed from learning sample
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Building an efficient GPR in practice
1. Dealing with the large input dimension
2. Estimation of hyperparameters and validation

3. New hyperparameter estimation algorithm




From the analysis of estimation & validation criteria...

» Study of criteria NLL, Q2, PVA and IAE«a on a large benchmark of analytical tests

— Close behavior of NLL and Q% = keep NLL as the main estimation objective to ensure predictivity
— Consistent with [PBF23,Pet22]

— Similar behavior of PVA and IAEa but more irregular w.r.t. @
= Some local minima compatible with optimal values of the other criteria

n = 50 — Matérn 5/2 Covariance

— But No to be optimized independently of the others _— e

[llustration with a test
on a 2D G-Sobol function .

G-Sobol Function
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To a new estimation algorithm!

» Study of criteria NLL, Q2, PVA and IAE«a on a large benchmark of analytical tests

— Close behavior of NLL and Q% = keep NLL as the main estimation objective to ensure predictivity

— IAEa more directly related to reliable predictive intervals, than PVA

— In the neighborhood of the optimal NLL point, existence of better points 8 w.r.t IAEa, but need to
control the possible degradation of Q? value, which guarantees the predictivity

= Optimization based on NLL and IAEa + Control of Q>
— (IAEa and Q? estimated by cross validation + use of LOO Dubrule formulas)

= Proposition of a multi-objective NSGA-II algorithm with constraint on Q?




Algorithm
flowchart

All details in Marrel and B. looss, Probabilistic
surrogate modeling by Gaussian process: A
new estimation algorithm for more robust
prediction, Reliability Engineering and System
Safety, Volume 247, July 2024, 110120.

Step 1: Initial MLE-based estimation of 8 with
standard algorithm

Estimation of hyperparameters by minimizing
the NLL with a multistart BFGS algorithm
ll —)

finit
BMLE

Computation of LOO estimator of @2
of the GP built-upon 8L :

= éz,init
LOO

l

Step 2: Estimation of 8 with constrained
multi-objective algorithm

Computation of LOO estimator of Q2
for each candidate @5%%,:

=) A2new
LOO

> 2 objectives to be minimized: NLL and IAE« —
(IAEa computed by LOO)
> 1 constraint on LOO estimator of Q2:
Qrow™ = Qo — v with y = 0.05, e.g.
» Optimization performed by NSGA-II algorithm,
with initial population based on 8}
Pareto front of np,,..; NoNn-dominated solutions ——)

anew anew
NGSA 1 - » Y NGSANpareto

== Each Pareto solution verifies
Qe = Qfs' — v with Q% computed

nanew s
fOI' BNGSA,i 7 fOr L= 1, ...,npa-reta

l

Step 3: Selection of the “best” solution in Pareto front

3.1 Clustering of Pareto front set of solutions according
to the values of both objectives (NLL and IAEw)

— Number of clusters k optimized with Elbow method

3.2 Selection of the cluster C1 with optimal NLL (cluster
with lower values of NLL)

3.3 Selection of the “'best” solution in C1: solution of C1
with optimal (i.e. lowest) value of IAEa

l

"B’BestCI
NSGA




Intensive benchmark on analytical test functions

» Comparison with usual algorithms based on NLL optimization only (BFGS/multistart)
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= Predictivity with Constr-NSGA-II algorithm at least as
good as the simple NLL optimization

— Improvement of IAEa especially if :

=" The model is misspecified, i.e. if the covariance does not
match the regularity of the function

= When the number of hyperparameters is large (e.g. large
dimension d + tensorized anisotropic stationary covariance)



Building an efficient GPR in practice

1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation
3. New hyperparameter estimation algorithm

4.1llustration on aquatic prey-predator chain model




Application: aquatic prey-predator chain model

Studies of biological contamination of rivers




Application: aquatic prey-predator chain model

EDO-type equations describing the growth of microorganisms, grazing and prey-predator interactions




Application: aquatic prey-predator chain model

» Simulator: MELODY with d = 20 uncertain inputs:

» Periphyton: photosynthesis/mortality/excretion rates, survival temperature, saturation constants, ...

» Grazers: consumption/assimilation/ mortality/excretion rate, survival temperature, ...
= 2 outputs of interest: Periphyton (Y,) and Grazers (Y,) biomasses at day 60
= Sample of n = 100 simulations of the model MELODY (from space-filling design)

» Need of preliminar logarithmic transformation

Distribution of Z, = log(Y;) sample
60 - - - : ; ! |

— Lognormal-kriging modeling:

Kermel estimator

50 -

» Emulation of Z, = log(Y;) with GP regression

» Lognormal-kriging back-transformations to obtain metamodel for Y.
) | 9 (X) _ E(Ei{X)‘l‘O.Sf%(X))
10+ ] K =) . = a2

) M~ 2 (x) = (eszi (x) 1) o(26(®)+5 (x))

11 -10 9 -8 -7 -6 5
Y, values

Number of simulations

= Additional comparison with Bayesian RobustGaSP approach [GWB18]




Application: aquatic prey-predator chain model

= With nugget effect (included in the set of GP hyperparameters to be estimated)

Predictivity Coefficient Q? IAEa
Data | Covariance . .
Multi-BFGS | C-NSGA-II-BestC1 RobustGaSP Multi BFGS | C-NSGA-II-BestC1 RobustGaSP
Matern3/2 0,70 0,74 0,25 0,10 ||| 0,07 0,04
Y, |Matern5/2 0,77 0,82 0,66 00 ||| o,02 0,07
Gaussian 0,75 0,79 0,66 008 [ ] o02 0,06
— Best results with Constr-NSGA-II algorithm: better Q% and IAEaq,
= Without nugget effect
Predictivity Coefficient Q IAEa
Data | Covariance
Multi-BFGS | C-NSGA-II-BestC1 RobustGaSP Multi BFGS | C-NSGA-II-BestC1 RobustGaSP
Matern3/2 0,70 0,75 0,47 0,10 |||_ 0,06 0,03
Y, |Matern5/2 0,78 0,84 0,83 0,08 [ ] o02 | 0,07
Gaussian 0,70 0,72 0,89 | 0,06 | | 0,03 | 0,06 |

— Better behavior of RobustGasp without nugget : best Q2 but not IAEa.

—> Constr-NSGA-II algorithm is more robust to modeling choices (prior choice of GPR covariance)




Conclusions and remaining challenges

v GPR benefits greatly from preliminary HSIC-based screening

v' GPR calls for robust estimation of hyperparameters: considering validation criteria of the
whole GP distribution when estimating hyperparameters = enables more robust estimation |

v’ Particular attention must be paid to GP validation

—> Part of a more general effort to ensure confidence in machine learning for UQ

» Some interesting challenges for UQ applications
v" Use more powerful tests based on SupHSIC [EM24] and HSIC-ANOVA indices [SMD+23]
v’ Screening-free approaches for high dimensional problems (e.g. beyond 30 to 50 inputs)

v’ Learning outputs with highly irregular, or even chaotic behavior (due to physical threshold
phenomena and phenomenological bifurcations, for instance)
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Hlustration of criteria for GPR validation [vi243]

. Branin function (rescaled) [91! 62] = [112 08] [01' 02] = [078 052] MLE eStImateS [61, 62] = [088 037]
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Dealing with the large input dimension

» HSIC-based ranking [Dav15] :

B HSIC (X,Y)
SIC ™ [HSIC(X,X)HSIC (Y,Y)

RZH = Rfsc € [0,1] for easier interpretation

Influence(X[y;) > Influence(X[z;) > --- > Influence(Xq4;)

D2
>"'>RHX

Where order [-] is such that R% y > R% X

2]

— Use for ranking of inputs

Inputs ordered by degree of influence

|

Can be used for more robust sequential GPR estimation

= “forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs




HSIC review: a kernel-based GSA method

» MMD? applied between Py y and Py ® Py = HSIC(X, Y):H‘Xi,g.[y
Hy, and Hy RKHS associated to X; and Y, resp :
Kernel ky : X; X X; —» R with feature space Hy; and feature map ¢y,

Kernel ky: Y X Y - R with feature space Hy, and feature map ¢y

Kx,(x, x") = (gx, (%), ‘PXi(x’))}(X_and Ky, ") = oy (), 0v(Y D3y kemel defines the inner product in the RKHS

HSIC = distance in the RKHS between the images of the two distributions of interest Gretton et al. [2005]

2
= HSIC(X;, Y)3¢y 30, = MMD%[Xi,.‘H‘y(PXiY ,Px,®Py) = ”H]PXiy - HPXi®IP>y||

:]{Xir‘}ty

H.u’[PX.iY — HPx, ®@Py H’H

HPx, ®Py

H, @ Hy
Space of all probability distributions Tensorized RKHS
for the input-output pair

Extracted from G. Sarazin’s (CEA) slides



HSIC review: a kernel-based GSA method

HSIC-based independence tests for screening

How to have the distribution nHSIC(X;,Y) under H, to compute p-value?
» If n large: asymptotic test based on approximation with Gamma law (Gretton et al. (2008])

» If n small: Permutation-based approximation (De Lozzo & Marrel [2016a], Meynaoui [2019], El
Amri & Marrel [2021a])

Gamma distribution

_ |
hsic, . P-value = Pr [ HSIC(X;, ¥) > hsiC,;]

p’-V/aIJe

I I I T I
0.000 0.001 0.002 0.003 0.004

200 400 600 800 1000
|

0

Interpretation of p-value for a level a (o = 5% or 10%) for screening:
@ » pval < a = H, (Independence) rejected = X; is significantly influential




