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Risk assessment in nuclear accident analysis

 Safety studies: compute a failure risk (margins, rare events) with validated computer/numerical models

 Numerical simulators: fundamental tools to understand, model & predict physical phenomena

 Large number of input parameters, related to physical and numerical modelling

 Uncertainty on some inputs → uncertainty on output & safety margins

 BEPU (Best-Estimate-Plus-Uncertainties): realistic models + uncertain inputs → Better assessment of
the real margins
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Risk assessment in nuclear accident analysis

 How to deal with uncertainties in numerical simulation?

→ Probabilistic framework and Monte Carlo-based methods

→ CPU-expensive simulator  Use of machine learning to mimic the simulator and
propagate input uncertainties

→ Applicative constraints/framework:

 Given data for training: a single inputs/output sample 𝐷𝑆 = 𝒙 𝑖 , 𝑦 𝑖
1≤𝑗≤𝑛

where 𝑦 𝑖 = ℳ 𝒙 𝑖

 random or quasi-random sample

 Small sample size: n  100 to 1000 simulations

 Large number of uncertain inputs: d  10 to 100 inputs

 Required UQ associated to each prediction

Gaussian Process Regression (GPR): particularly well-suited tool  Very popular
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Crucial use of GPR metamodel

Design of numerical

experiments
Numerical

simulations

Simulator

Y = ℳ(X1, …, Xd)

In case of costly ℳ:

Approximation with GPR

Metamodel: Yapp = ෡ℳ (X) ≈ ℳ(X)

 Build from the dataset, GPR mimics the true model ℳ, providing a

GP predictive distribution for each new evaluation point

 Intrinsic quantification of prediction error!

Very appealing, but in practice calls for a few good practices!

Analysis of simulator outputs

Probabilistic

metamodel

Incertain inputs domain
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1. Dealing with the large input dimension

Building an efficient GPR in practice
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𝐇𝐒𝐈𝐂(𝐗𝐢, 𝐘)

Extract from a presentation by G. Sarazin (CEA)

► Curse of dimensionality  too many GP hyperparameters have to be optimized! 

Dealing with the large input dimension

How to train the GP in large dimension? (d~10 to 100, e.g.)

𝑯𝑺𝑰𝑪(𝑿𝒊, 𝒀) = 𝑴𝑴𝑫𝟐 𝑷𝑿𝒊 𝒀, 𝑷𝑿𝒊⨂𝑷𝒀 = 𝝁ℙ𝑿𝒊 𝒀
− 𝝁ℙ𝑿𝒊⨂ℙ 𝒀

²

 HSIC can capture a large spectrum of input-output 

relationships (power of RKHS )

 ෣𝑯𝑺𝑰𝑪: Estimation from a unique random sample, 

robust in practice from 𝒏~𝟏𝟎𝟎

Preliminary SCREENING for input selection (and thus dimension reduction)

HSIC-based sensitivity measure [GFT+07]  dependence measure comparing the RKHS 

embeddings of joint distribution ℙ𝑋𝑖𝑌 and product of marginals ℙ𝑋𝑖⨂ℙ𝑌
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Dealing with the large input dimension

► Screening with HSIC-based independence tests [GFT+07]: 𝐻𝑆𝐼𝐶 𝑋𝑖 , 𝑌 = 0  𝑋𝑖 ⊥ 𝑌 (with characteristic kernels!)

 Selected inputs

P-value of global-HSIC tests

Selection of significant inputs (usually <20)

 Explicative inputs of GPR

 Non-significant influential inputs captured by an 
additional variance in GPR (nugget effect)

► HSIC-based ranking with R²HSIC [Dav15] : Inputs ordered by degree of influence

Can be used for more robust sequential GPR estimation

 “Forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs

See the “ICSCREAM” methodology [MIC22]
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1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation 

Building an efficient GPR in practice
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Reminders on GPR

► Probabilistic surrogate model: response is considered as a realization of a random GP field [RW05,Gra21]

𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙′, 𝒙))

With 𝜇 𝒙 the mean and 𝑘(𝒙′, 𝒙) the covariance function.

Predictive GP is the GP conditioned by the observations 𝑋𝑠 , 𝑌𝑠 :

𝑌 𝒙∗ |𝑌 𝑋𝑠 =𝑌𝑠~𝐺𝑃 ො𝜇 𝒙∗ , Ƹ𝑠 𝒙′, 𝒙∗

With analytical formulations for  ො𝜇 𝒙∗ and  Ƹ𝑠 𝒙′, 𝒙∗

⇒ Conditional mean ො𝜇 𝒙∗ serves as the predictor at location 𝒙∗

⇒ Prediction variance (i.e. mean squared error) is given by conditional covariance Ƹ𝑠 𝒙∗, 𝒙∗

⇒ Prediction interval of any level  can be built at any location 𝒙∗
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Reminders on GPR

►In practice: parametric choices for trend function 𝜇 and covariance function 𝑘

𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙′, 𝒙))

 For 𝜇: either constant or linear basis 

 For 𝑘: stationary covariance built-upon tensorized 1-D covariance functions of  -Matérn

Additional variance (nugget effect  nugget hyperparameter 𝜆 ∈ ℝ+)

1-Dim 

d-Dim 

3/2 or 5/2 Matérn covariances 
offer good properties and 
« intermediate » regularity

with ℎ = |𝑥 − ෤𝑥 |
Hyperparameters

𝜽 ∈ ℝ+,𝑑
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Estimation of GPR hyperparameters

 How to robustly estimate the hyperparameters 𝜽 ∈ ℝ+,𝒅 from the learning sample? 

Especially in « medium » dimension (𝑑 ∈ [10, 20]) and small dataset (𝑛 ∈ [100, 1000])

How to to ensure that the estimated hyperparameters 𝜽 yield good predicitivity but 
also reliable GP prediction intervals? 

 Crucial for safety applications
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► Usual estimation methods [KO22,Mur21,Pet22,PBF+23]

 Maximum likelihood (MLE)minimization of NLL

 Cross-validation and Mean Squared Error :

minimization of RMSE=
1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖) − ො𝑦−𝑖(𝐱

(𝑖))
2 0.5

where ො𝑦−𝑖(𝐱
(𝑖)) is the metamodel predictor in 𝐱(𝑖)when (𝐱(𝑖), 𝑦(𝑖)) is removed from the learning sample.

 Bayesian approaches

Estimation of GPR hyperparameters

Ill-posedness of MLE, problem of flatness
of functions to be minimized

CPU ++, delicate choice of priors
Except RobustGAsp method of [GWB18]

 Could we do better?

 How to check that estimated hyperparameters lead to a “good” GPR metamodel?
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෡Δ(𝛼) =
1

𝑛
෍

𝑖=1

𝑛

𝟏{𝑦(𝑖) ∈ 𝑃𝐼𝛼,−𝑖(𝐱
(𝑖))}

►Validation criteria computed by cross-validation (LOO or K-fold CV) [DIG+21, ABG23, MI24a]

 Accuracy of the GP predictor (only): 𝑄2 = 1 −
𝑅𝑀𝑆𝐸²

1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖)−

1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖)

2

 Accuracy of the predictive variance: PVA = log
1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖)−ො𝑦−𝑖(𝐱

(𝑖))
2

Ƹ𝑠−𝑖
2

 Accuracy of the whole GP conditional distribution

From empirical coverage function for α∈[0,1]:

with 𝑃𝐼𝛼,−𝑖(𝐱
(𝑖)) the 𝛼-level GP prediction interval for 𝐱(𝑖) with (𝐱 𝑖 , 𝑦(𝑖)) removed from learning sample

𝑄2 ≈ 0.90

Validation of GPR

 Summarized by Integrated Absolute Error on ෡𝚫 𝜶

IAE𝛼 ≈ 0.2

IAE𝛼 ≈ 0.05

IAE𝛼 = 0׬
1 ෡Δ 𝛼 − 𝛼

 𝜶-PI Plot
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1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation 

3. New hyperparameter estimation algorithm

Building an efficient GPR in practice
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From the analysis of estimation & validation criteria…

► Study of criteria NLL, 𝑸𝟐, PVA and 𝑰𝑨𝑬𝜶 on a large benchmark of analytical tests

 Close behavior of NLL and 𝑸𝟐  keep NLL as the main estimation objective to ensure predictivity

 Consistent with [PBF+23,Pet22]

 Similar behavior of PVA and 𝐈𝐀𝐄𝜶 but more irregular w.r.t. 𝜽

 Some local minima compatible with optimal values of the other criteria

 But No to be optimized independently of the others

Illustration with a test 
on a 2D G-Sobol function
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To a new estimation algorithm!

► Study of criteria NLL, 𝑸𝟐, PVA and 𝑰𝑨𝑬𝜶 on a large benchmark of analytical tests

 Close behavior of NLL and 𝑸𝟐  keep NLL as the main estimation objective to ensure predictivity

 𝐈𝐀𝐄𝜶 more directly related to reliable predictive intervals, than PVA

 In the neighborhood of the optimal NLL point, existence of better points 𝜽 w.r.t 𝐈𝐀𝐄𝜶, but need to 

control the possible degradation of 𝑄2 value, which guarantees the predictivity

 Optimization based on NLL and 𝑰𝑨𝑬𝜶 + Control of 𝑸𝟐

(𝐼𝐴𝐸𝛼 and 𝑄2 estimated by cross validation + use of  LOO Dubrule formulas)

 Proposition of a multi-objective NSGA-II algorithm with constraint on 𝑸𝟐
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Algorithm

flowchart

All details in Marrel and B. Iooss, Probabilistic 
surrogate modeling by Gaussian process: A 
new estimation algorithm for more robust 
prediction, Reliability Engineering and System 
Safety, Volume 247, July 2024, 110120.
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Intensive benchmark on analytical test functions

► Comparison with usual algorithms based on NLL optimization only (BFGS/multistart)

d = 2 to 20, ≠ covariance, ≠  sample sizes, ≠  DoE,  with/without nugget effect

Example on Marrel-d20 function : 𝑌(𝑿) = 𝑎1sin[6𝜋𝑋1

5

2 𝑋2 −
1

2
+ 𝑎2 𝑋3 −

1

2

2
+ 𝑎3𝑋4 + 𝑎4𝑋5 + 𝑟𝑋6,…,𝑋15

 Predictivity with Constr-NSGA-II algorithm at least as 
good as the simple NLL optimization

 Improvement of 𝑰𝑨𝑬𝜶 especially if :

The model is misspecified, i.e. if the covariance does not 
match the regularity of the function

When the number of hyperparameters is large (e.g. large 
dimension d + tensorized anisotropic stationary covariance)

Results without nugget effect
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1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation 

3. New hyperparameter estimation algorithm 

4.Illustration on aquatic prey-predator chain model 

Building an efficient GPR in practice
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Application: aquatic prey-predator chain model

Studies of biological contamination of rivers
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Application: aquatic prey-predator chain model

EDO-type equations describing the growth of microorganisms, grazing and prey-predator interactions
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Application: aquatic prey-predator chain model

► Simulator: MELODY with d = 20 uncertain inputs:
 Periphyton: photosynthesis/mortality/excretion rates, survival temperature, saturation constants, …

 Grazers: consumption/assimilation/ mortality/excretion rate, survival temperature, …

 2 outputs of interest: Periphyton (Y1) and Grazers (Y2) biomasses at day 60

 Sample of n = 100 simulations of the model MELODY (from space-filling design)

 Need of preliminar logarithmic transformation 

Additional comparison with Bayesian RobustGaSP approach [GWB18]

 Lognormal-kriging modeling: 

Emulation of Zi = log(Yi) with GP regression

Lognormal-kriging back-transformations to obtain metamodel for Yi
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Application: aquatic prey-predator chain model

 With nugget effect (included in the set of GP hyperparameters to be estimated)

 Best results with Constr-NSGA-II algorithm: better 𝑄2 and IAE

 Without nugget effect

 Better behavior of RobustGasp without nugget : best 𝑄2 but not IAE

 Constr-NSGA-II algorithm is more robust to modeling choices (prior choice of GPR covariance)

Multi-BFGS C-NSGA-II-BestC1 RobustGaSP Multi BFGS C-NSGA-II-BestC1 RobustGaSP

Matern3/2 0,70 0,74 0,25 0,10 0,07 0,04

Matern5/2 0,77 0,82 0,66 0,09 0,02 0,07

Gaussian 0,75 0,79 0,66 0,08 0,02 0,06

IAEα

Y2

Data Covariance

Predictivity Coefficient Q2

Multi-BFGS C-NSGA-II-BestC1 RobustGaSP Multi BFGS C-NSGA-II-BestC1 RobustGaSP

Matern3/2 0,70 0,75 0,47 0,10 0,06 0,03

Matern5/2 0,78 0,84 0,83 0,08 0,02 0,07

Gaussian 0,70 0,72 0,89 0,06 0,03 0,06

Predictivity Coefficient Q2

Y2

Data Covariance

IAEα
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 GPR benefits greatly from preliminary HSIC-based screening

 GPR calls for robust estimation of hyperparameters: considering validation criteria of the

whole GP distribution when estimating hyperparameters  enables more robust estimation !

 Particular attention must be paid to GP validation

 Part of a more general effort to ensure confidence in machine learning for UQ

► Some interesting challenges for UQ applications

 Use more powerful tests based on SupHSIC [EM24] and HSIC-ANOVA indices [SMD+23]

 Screening-free approaches for high dimensional problems (e.g. beyond 30 to 50 inputs)

 Learning outputs with highly irregular, or even chaotic behavior (due to physical threshold
phenomena and phenomenological bifurcations, for instance)

Conclusions and remaining challenges
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Illustration of criteria for GPR validation [MI24a]

IAE𝛼 ≈ 0.2
IAE𝛼 ≈ 0.05

𝑄2 ≈ 0.90 𝑄2 ≈ 0.90

𝜃1, 𝜃2 = [1.12 0.8] 𝜃1, 𝜃2 = [0.78 0.52]

MLE estimates
Global optimum

MLE estimates: 𝜃1, 𝜃2 = [0.88 0.37]

𝑸𝟐 ≈ 𝟎. 𝟗𝟗

𝐈𝐀𝐄𝜶 ≈ 𝟎. 𝟎𝟐

n=30, GPR with  constant 
mean and Gaussian covariance
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Dealing with the large input dimension

► HSIC-based ranking [Dav15] : 

 Use for ranking of inputs

𝑹𝑯𝑺𝑰𝑪
𝟐 =

𝑯𝑺𝑰𝑪 (𝑿,𝒀)

𝑯𝑺𝑰𝑪 𝑿,𝑿 𝑯𝑺𝑰𝑪 (𝒀,𝒀)
⇨𝑅𝐻𝑆𝐼𝐶

2 ∈ [0,1] for easier interpretation

Influence(𝑿[𝟏]) > Influence(𝑿[𝟐]) > ⋯ > Influence(𝑿[𝒅])

Where order ∙ is such that  ෡𝑹𝑯,𝑿[𝟏]
𝟐 > ෡𝑹𝑯,𝑿[𝟐]

𝟐 > ⋯ > ෡𝑹𝑯,𝑿[𝒅]
𝟐

Inputs ordered by degree of influence

Can be used for more robust sequential GPR estimation

 “forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs
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MMD² applied between 𝑷𝑿𝒊 𝒀 and 𝑷𝑿𝒊⨂𝑷𝒀 𝑯𝑺𝑰𝑪 𝑿𝒊, 𝒀 𝓗𝑿𝒊
,𝓗𝒀

ℋ𝑋𝑖 andℋ𝑌 RKHS associated to 𝑋𝑖 and Y, resp :

Kernel 𝑘𝑋𝑖: 𝒳𝑖 ×𝒳𝑖 → ℝ with feature space ℋ𝑋𝑖 and feature map 𝜑𝑋𝑖

Kernel 𝑘𝑌: 𝒴 × 𝒴 → ℝ with feature space ℋ𝑌 and feature map 𝜑𝑌

𝐾𝑋𝑖 𝑥, 𝑥
′ = 𝜑𝑋𝑖 𝑥 , 𝜑𝑋𝑖 𝑥

′
ℋ𝑋𝑖

and 𝐾𝑌 𝑦, 𝑦′ = 𝜑𝑌 𝑦 , 𝜑𝑌 𝑦′ ℋ𝑌

Extracted from G. Sarazin’s (CEA) slides

HSIC = distance in the RKHS between the images of the two distributions of interest

⇒𝑯𝑺𝑰𝑪 𝑿𝒊, 𝒀 𝓗𝑿𝒊
,𝓗𝒀

= 𝑴𝑴𝑫𝓗𝑿𝒊
,𝓗𝒀

𝟐 𝑷𝑿𝒊 𝒀 , 𝑷𝑿𝒊⨂𝑷𝒀 = 𝝁ℙ𝑿𝒊 𝒀
− 𝝁ℙ𝑿𝒊⨂ℙ 𝒀 𝓗𝑿𝒊

,𝓗𝒀

𝟐

Gretton et al. [2005]

kernel defines the inner product in the RKHS
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HSIC-based independence tests for screening

How to have the distribution 𝒏෣HSIC 𝐗𝐢, 𝐘 under 𝓗𝟎 to compute p-value?

► If n large: asymptotic test based on approximation with Gamma law (Gretton et al. (2008])

► If n small: Permutation-based approximation (De Lozzo & Marrel [2016a], Meynaoui [2019], El 

Amri & Marrel [2021a])

Gamma distribution

p-value

P-value = Pr [ ෣HSIC 𝑿𝒊, 𝒀 > hsicobs ]

Interpretation of p-value for a level 𝛼 (𝛼 = 5% or 10%) for screening:

 pval < 𝛼 ⇒ H0 (Independence) rejected ⇒ 𝑿𝒊 is significantly influential

hsicobs


