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Risk assessment in nuclear accident analysis

 Safety studies: compute a failure risk (margins, rare events) with validated computer/numerical models

 Numerical simulators: fundamental tools to understand, model & predict physical phenomena

 Large number of input parameters, related to physical and numerical modelling

 Uncertainty on some inputs → uncertainty on output & safety margins

 BEPU (Best-Estimate-Plus-Uncertainties): realistic models + uncertain inputs → Better assessment of
the real margins
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Risk assessment in nuclear accident analysis

 How to deal with uncertainties in numerical simulation?

→ Probabilistic framework and Monte Carlo-based methods

→ CPU-expensive simulator  Use of machine learning to mimic the simulator and
propagate input uncertainties

→ Applicative constraints/framework:

 Given data for training: a single inputs/output sample 𝐷𝑆 = 𝒙 𝑖 , 𝑦 𝑖
1≤𝑗≤𝑛

where 𝑦 𝑖 = ℳ 𝒙 𝑖

 random or quasi-random sample

 Small sample size: n  100 to 1000 simulations

 Large number of uncertain inputs: d  10 to 100 inputs

 Required UQ associated to each prediction

Gaussian Process Regression (GPR): particularly well-suited tool  Very popular
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Crucial use of GPR metamodel

Design of numerical

experiments
Numerical

simulations

Simulator

Y = ℳ(X1, …, Xd)

In case of costly ℳ:

Approximation with GPR

Metamodel: Yapp = ℳ (X) ≈ ℳ(X)

 Build from the dataset, GPR mimics the true model ℳ, providing a

GP predictive distribution for each new evaluation point

 Intrinsic quantification of prediction error!

Very appealing, but in practice calls for a few good practices!

Analysis of simulator outputs

Probabilistic

metamodel

Incertain inputs domain
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1. Dealing with the large input dimension

Building an efficient GPR in practice
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𝐇𝐒𝐈𝐂(𝐗𝐢, 𝐘)

Extract from a presentation by G. Sarazin (CEA)

► Curse of dimensionality  too many GP hyperparameters have to be optimized! 

Dealing with the large input dimension

How to train the GP in large dimension? (d~10 to 100, e.g.)

𝑯𝑺𝑰𝑪(𝑿𝒊, 𝒀) = 𝑴𝑴𝑫𝟐 𝑷𝑿𝒊 𝒀, 𝑷𝑿𝒊⨂𝑷𝒀 = 𝝁ℙ𝑿𝒊 𝒀
− 𝝁ℙ𝑿𝒊⨂ℙ 𝒀

²

 HSIC can capture a large spectrum of input-output 

relationships (power of RKHS )

 𝑯𝑺𝑰𝑪: Estimation from a unique random sample, 

robust in practice from 𝒏~𝟏𝟎𝟎

Preliminary SCREENING for input selection (and thus dimension reduction)

HSIC-based sensitivity measure [GFT+07]  dependence measure comparing the RKHS 

embeddings of joint distribution ℙ𝑋𝑖𝑌 and product of marginals ℙ𝑋𝑖⨂ℙ𝑌
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Dealing with the large input dimension

► Screening with HSIC-based independence tests [GFT+07]: 𝐻𝑆𝐼𝐶 𝑋𝑖 , 𝑌 = 0  𝑋𝑖 ⊥ 𝑌 (with characteristic kernels!)

 Selected inputs

P-value of global-HSIC tests

Selection of significant inputs (usually <20)

 Explicative inputs of GPR

 Non-significant influential inputs captured by an 
additional variance in GPR (nugget effect)

► HSIC-based ranking with R²HSIC [Dav15] : Inputs ordered by degree of influence

Can be used for more robust sequential GPR estimation

 “Forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs

See the “ICSCREAM” methodology [MIC22]
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1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation 

Building an efficient GPR in practice
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Reminders on GPR

► Probabilistic surrogate model: response is considered as a realization of a random GP field [RW05,Gra21]

𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙′, 𝒙))

With 𝜇 𝒙 the mean and 𝑘(𝒙′, 𝒙) the covariance function.

Predictive GP is the GP conditioned by the observations 𝑋𝑠 , 𝑌𝑠 :

𝑌 𝒙∗ |𝑌 𝑋𝑠 =𝑌𝑠~𝐺𝑃 ො𝜇 𝒙∗ , Ƹ𝑠 𝒙′, 𝒙∗

With analytical formulations for  ො𝜇 𝒙∗ and  Ƹ𝑠 𝒙′, 𝒙∗

⇒ Conditional mean ො𝜇 𝒙∗ serves as the predictor at location 𝒙∗

⇒ Prediction variance (i.e. mean squared error) is given by conditional covariance Ƹ𝑠 𝒙∗, 𝒙∗

⇒ Prediction interval of any level  can be built at any location 𝒙∗
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Reminders on GPR

►In practice: parametric choices for trend function 𝜇 and covariance function 𝑘

𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙′, 𝒙))

 For 𝜇: either constant or linear basis 

 For 𝑘: stationary covariance built-upon tensorized 1-D covariance functions of  -Matérn

Additional variance (nugget effect  nugget hyperparameter 𝜆 ∈ ℝ+)

1-Dim 

d-Dim 

3/2 or 5/2 Matérn covariances 
offer good properties and 
« intermediate » regularity

with ℎ = |𝑥 − 𝑥 |
Hyperparameters

𝜽 ∈ ℝ+,𝑑
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Estimation of GPR hyperparameters

 How to robustly estimate the hyperparameters 𝜽 ∈ ℝ+,𝒅 from the learning sample? 

Especially in « medium » dimension (𝑑 ∈ [10, 20]) and small dataset (𝑛 ∈ [100, 1000])

How to to ensure that the estimated hyperparameters 𝜽 yield good predicitivity but 
also reliable GP prediction intervals? 

 Crucial for safety applications
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► Usual estimation methods [KO22,Mur21,Pet22,PBF+23]

 Maximum likelihood (MLE)minimization of NLL

 Cross-validation and Mean Squared Error :

minimization of RMSE=
1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖) − ො𝑦−𝑖(𝐱

(𝑖))
2 0.5

where ො𝑦−𝑖(𝐱
(𝑖)) is the metamodel predictor in 𝐱(𝑖)when (𝐱(𝑖), 𝑦(𝑖)) is removed from the learning sample.

 Bayesian approaches

Estimation of GPR hyperparameters

Ill-posedness of MLE, problem of flatness
of functions to be minimized

CPU ++, delicate choice of priors
Except RobustGAsp method of [GWB18]

 Could we do better?

 How to check that estimated hyperparameters lead to a “good” GPR metamodel?
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Δ(𝛼) =
1

𝑛


𝑖=1

𝑛

𝟏{𝑦(𝑖) ∈ 𝑃𝐼𝛼,−𝑖(𝐱
(𝑖))}

►Validation criteria computed by cross-validation (LOO or K-fold CV) [DIG+21, ABG23, MI24a]

 Accuracy of the GP predictor (only): 𝑄2 = 1 −
𝑅𝑀𝑆𝐸²

1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖)−

1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖)

2

 Accuracy of the predictive variance: PVA = log
1

𝑛
σ𝑖=1
𝑛 𝑦(𝑖)−ො𝑦−𝑖(𝐱

(𝑖))
2

Ƹ𝑠−𝑖
2

 Accuracy of the whole GP conditional distribution

From empirical coverage function for α∈[0,1]:

with 𝑃𝐼𝛼,−𝑖(𝐱
(𝑖)) the 𝛼-level GP prediction interval for 𝐱(𝑖) with (𝐱 𝑖 , 𝑦(𝑖)) removed from learning sample

𝑄2 ≈ 0.90

Validation of GPR

 Summarized by Integrated Absolute Error on 𝚫 𝜶

IAE𝛼 ≈ 0.2

IAE𝛼 ≈ 0.05

IAE𝛼 = 0
1 Δ 𝛼 − 𝛼

 𝜶-PI Plot
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1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation 

3. New hyperparameter estimation algorithm

Building an efficient GPR in practice
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From the analysis of estimation & validation criteria…

► Study of criteria NLL, 𝑸𝟐, PVA and 𝑰𝑨𝑬𝜶 on a large benchmark of analytical tests

 Close behavior of NLL and 𝑸𝟐  keep NLL as the main estimation objective to ensure predictivity

 Consistent with [PBF+23,Pet22]

 Similar behavior of PVA and 𝐈𝐀𝐄𝜶 but more irregular w.r.t. 𝜽

 Some local minima compatible with optimal values of the other criteria

 But No to be optimized independently of the others

Illustration with a test 
on a 2D G-Sobol function
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To a new estimation algorithm!

► Study of criteria NLL, 𝑸𝟐, PVA and 𝑰𝑨𝑬𝜶 on a large benchmark of analytical tests

 Close behavior of NLL and 𝑸𝟐  keep NLL as the main estimation objective to ensure predictivity

 𝐈𝐀𝐄𝜶 more directly related to reliable predictive intervals, than PVA

 In the neighborhood of the optimal NLL point, existence of better points 𝜽 w.r.t 𝐈𝐀𝐄𝜶, but need to 

control the possible degradation of 𝑄2 value, which guarantees the predictivity

 Optimization based on NLL and 𝑰𝑨𝑬𝜶 + Control of 𝑸𝟐

(𝐼𝐴𝐸𝛼 and 𝑄2 estimated by cross validation + use of  LOO Dubrule formulas)

 Proposition of a multi-objective NSGA-II algorithm with constraint on 𝑸𝟐
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Algorithm

flowchart

All details in Marrel and B. Iooss, Probabilistic 
surrogate modeling by Gaussian process: A 
new estimation algorithm for more robust 
prediction, Reliability Engineering and System 
Safety, Volume 247, July 2024, 110120.
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Intensive benchmark on analytical test functions

► Comparison with usual algorithms based on NLL optimization only (BFGS/multistart)

d = 2 to 20, ≠ covariance, ≠  sample sizes, ≠  DoE,  with/without nugget effect

Example on Marrel-d20 function : 𝑌(𝑿) = 𝑎1sin[6𝜋𝑋1

5

2 𝑋2 −
1

2
+ 𝑎2 𝑋3 −

1

2

2
+ 𝑎3𝑋4 + 𝑎4𝑋5 + 𝑟𝑋6,…,𝑋15

 Predictivity with Constr-NSGA-II algorithm at least as 
good as the simple NLL optimization

 Improvement of 𝑰𝑨𝑬𝜶 especially if :

The model is misspecified, i.e. if the covariance does not 
match the regularity of the function

When the number of hyperparameters is large (e.g. large 
dimension d + tensorized anisotropic stationary covariance)

Results without nugget effect
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1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation 

3. New hyperparameter estimation algorithm 

4.Illustration on aquatic prey-predator chain model 

Building an efficient GPR in practice
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Application: aquatic prey-predator chain model

Studies of biological contamination of rivers
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Application: aquatic prey-predator chain model

EDO-type equations describing the growth of microorganisms, grazing and prey-predator interactions
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Application: aquatic prey-predator chain model

► Simulator: MELODY with d = 20 uncertain inputs:
 Periphyton: photosynthesis/mortality/excretion rates, survival temperature, saturation constants, …

 Grazers: consumption/assimilation/ mortality/excretion rate, survival temperature, …

 2 outputs of interest: Periphyton (Y1) and Grazers (Y2) biomasses at day 60

 Sample of n = 100 simulations of the model MELODY (from space-filling design)

 Need of preliminar logarithmic transformation 

Additional comparison with Bayesian RobustGaSP approach [GWB18]

 Lognormal-kriging modeling: 

Emulation of Zi = log(Yi) with GP regression

Lognormal-kriging back-transformations to obtain metamodel for Yi
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Application: aquatic prey-predator chain model

 With nugget effect (included in the set of GP hyperparameters to be estimated)

 Best results with Constr-NSGA-II algorithm: better 𝑄2 and IAE

 Without nugget effect

 Better behavior of RobustGasp without nugget : best 𝑄2 but not IAE

 Constr-NSGA-II algorithm is more robust to modeling choices (prior choice of GPR covariance)

Multi-BFGS C-NSGA-II-BestC1 RobustGaSP Multi BFGS C-NSGA-II-BestC1 RobustGaSP

Matern3/2 0,70 0,74 0,25 0,10 0,07 0,04

Matern5/2 0,77 0,82 0,66 0,09 0,02 0,07

Gaussian 0,75 0,79 0,66 0,08 0,02 0,06

IAEα

Y2

Data Covariance

Predictivity Coefficient Q2

Multi-BFGS C-NSGA-II-BestC1 RobustGaSP Multi BFGS C-NSGA-II-BestC1 RobustGaSP

Matern3/2 0,70 0,75 0,47 0,10 0,06 0,03

Matern5/2 0,78 0,84 0,83 0,08 0,02 0,07

Gaussian 0,70 0,72 0,89 0,06 0,03 0,06

Predictivity Coefficient Q2

Y2

Data Covariance

IAEα
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 GPR benefits greatly from preliminary HSIC-based screening

 GPR calls for robust estimation of hyperparameters: considering validation criteria of the

whole GP distribution when estimating hyperparameters  enables more robust estimation !

 Particular attention must be paid to GP validation

 Part of a more general effort to ensure confidence in machine learning for UQ

► Some interesting challenges for UQ applications

 Use more powerful tests based on SupHSIC [EM24] and HSIC-ANOVA indices [SMD+23]

 Screening-free approaches for high dimensional problems (e.g. beyond 30 to 50 inputs)

 Learning outputs with highly irregular, or even chaotic behavior (due to physical threshold
phenomena and phenomenological bifurcations, for instance)

Conclusions and remaining challenges
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Illustration of criteria for GPR validation [MI24a]

IAE𝛼 ≈ 0.2
IAE𝛼 ≈ 0.05

𝑄2 ≈ 0.90 𝑄2 ≈ 0.90

𝜃1, 𝜃2 = [1.12 0.8] 𝜃1, 𝜃2 = [0.78 0.52]

MLE estimates
Global optimum

MLE estimates: 𝜃1, 𝜃2 = [0.88 0.37]

𝑸𝟐 ≈ 𝟎. 𝟗𝟗

𝐈𝐀𝐄𝜶 ≈ 𝟎. 𝟎𝟐

n=30, GPR with  constant 
mean and Gaussian covariance
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Dealing with the large input dimension

► HSIC-based ranking [Dav15] : 

 Use for ranking of inputs

𝑹𝑯𝑺𝑰𝑪
𝟐 =

𝑯𝑺𝑰𝑪 (𝑿,𝒀)

𝑯𝑺𝑰𝑪 𝑿,𝑿 𝑯𝑺𝑰𝑪 (𝒀,𝒀)
⇨𝑅𝐻𝑆𝐼𝐶

2 ∈ [0,1] for easier interpretation

Influence(𝑿[𝟏]) > Influence(𝑿[𝟐]) > ⋯ > Influence(𝑿[𝒅])

Where order ∙ is such that  𝑹𝑯,𝑿[𝟏]
𝟐 > 𝑹𝑯,𝑿[𝟐]

𝟐 > ⋯ > 𝑹𝑯,𝑿[𝒅]
𝟐

Inputs ordered by degree of influence

Can be used for more robust sequential GPR estimation

 “forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs
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MMD² applied between 𝑷𝑿𝒊 𝒀 and 𝑷𝑿𝒊⨂𝑷𝒀 𝑯𝑺𝑰𝑪 𝑿𝒊, 𝒀 𝓗𝑿𝒊
,𝓗𝒀

ℋ𝑋𝑖 andℋ𝑌 RKHS associated to 𝑋𝑖 and Y, resp :

Kernel 𝑘𝑋𝑖: 𝒳𝑖 ×𝒳𝑖 → ℝ with feature space ℋ𝑋𝑖 and feature map 𝜑𝑋𝑖

Kernel 𝑘𝑌: 𝒴 × 𝒴 → ℝ with feature space ℋ𝑌 and feature map 𝜑𝑌

𝐾𝑋𝑖 𝑥, 𝑥
′ = 𝜑𝑋𝑖 𝑥 , 𝜑𝑋𝑖 𝑥

′
ℋ𝑋𝑖

and 𝐾𝑌 𝑦, 𝑦′ = 𝜑𝑌 𝑦 , 𝜑𝑌 𝑦′ ℋ𝑌

Extracted from G. Sarazin’s (CEA) slides

HSIC = distance in the RKHS between the images of the two distributions of interest

⇒𝑯𝑺𝑰𝑪 𝑿𝒊, 𝒀 𝓗𝑿𝒊
,𝓗𝒀

= 𝑴𝑴𝑫𝓗𝑿𝒊
,𝓗𝒀

𝟐 𝑷𝑿𝒊 𝒀 , 𝑷𝑿𝒊⨂𝑷𝒀 = 𝝁ℙ𝑿𝒊 𝒀
− 𝝁ℙ𝑿𝒊⨂ℙ 𝒀 𝓗𝑿𝒊

,𝓗𝒀

𝟐

Gretton et al. [2005]

kernel defines the inner product in the RKHS
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HSIC-based independence tests for screening

How to have the distribution 𝒏HSIC 𝐗𝐢, 𝐘 under 𝓗𝟎 to compute p-value?

► If n large: asymptotic test based on approximation with Gamma law (Gretton et al. (2008])

► If n small: Permutation-based approximation (De Lozzo & Marrel [2016a], Meynaoui [2019], El 

Amri & Marrel [2021a])

Gamma distribution

p-value

P-value = Pr [ HSIC 𝑿𝒊, 𝒀 > hsicobs ]

Interpretation of p-value for a level 𝛼 (𝛼 = 5% or 10%) for screening:

 pval < 𝛼 ⇒ H0 (Independence) rejected ⇒ 𝑿𝒊 is significantly influential

hsicobs


