

A new estimation algorithm for more reliable prediction in Gaussian Process Regression

Amandine MARREL*, Bertrand IOOSS[‡]

*CEA Energy Division, IRESNE, DER, Cadarache, France *EDF R&D, Chatou, France

Workshop of the SAMOURAI ANR project - December 2024, Paris.

Risk assessment in nuclear accident analysis^{*}

- Safety studies: compute a failure risk (margins, rare events) with validated computer/numerical models
- Numerical simulators: fundamental tools to understand, model & predict physical phenomena
- Large number of input parameters, related to physical and numerical modelling
- Uncertainty on some inputs → uncertainty on output & safety margins
- BEPU (Best-Estimate-Plus-Uncertainties): realistic models + uncertain inputs → Better assessment of the real margins

Risk assessment in nuclear accident analysis

- How to deal with uncertainties in numerical simulation?
 - \rightarrow Probabilistic framework and Monte Carlo-based methods

 \rightarrow CPU-expensive simulator \Rightarrow Use of machine learning to mimic the simulator and propagate input uncertainties

→ <u>Applicative constraints/framework:</u>

✓ Given data for training: a single inputs/output sample $D_S = (x^{(i)}, y^{(i)})_{1 \le j \le n}$ where $y^{(i)} = \mathcal{M}(x^{(i)})$ → random or quasi-random sample

- ✓ **Small sample size**: $n \approx 100$ to 1000 simulations
- ✓ Large number of uncertain inputs: $d \approx 10$ to 100 inputs
- ✓ Required <u>UQ associated to each prediction</u>

Gaussian Process Regression (GPR): particularly well-suited tool \Rightarrow Very popular

Crucial use of GPR metamodel

X₂

X₁

Building an efficient GPR in practice

1. Dealing with the large input dimension

Dealing with the large input dimension

How to train the GP in large dimension? (d~10 to 100, e.g.)

► Curse of dimensionality ⇒ too many GP hyperparameters have to be optimized!

Preliminary SCREENING for input selection (and thus dimension reduction)

HSIC-based sensitivity measure [GFT+07] \rightarrow dependence measure comparing the RKHS embeddings of joint distribution \mathbb{P}_{X_iY} and product of marginals $\mathbb{P}_{X_i} \otimes \mathbb{P}_Y$

 $HSIC(X_i, Y) = MMD^2(P_{X_i Y}, P_{X_i} \otimes P_Y) = \left\| \mu_{\mathbb{P}_{X_i Y}} - \mu_{\mathbb{P}_{X_i} \otimes \mathbb{P}_Y} \right\|^2$

- ✓ HSIC can capture a large spectrum of input-output relationships (power of RKHS ☺)
- ✓ \widehat{HSIC} : Estimation from a unique random sample, robust in practice from $n \sim 100$

Dealing with the large input dimension

Screening with HSIC-based independence tests [GFT+07]: $HSIC(X_i, Y) = 0 \Leftrightarrow X_i \perp Y$ (with <u>characteristic</u> kernels!)

HSIC-based ranking with R²HSIC [Dav15]: Inputs ordered by degree of influence

Can be used for more robust sequential GPR estimation

⇒ "Forward" estimation of GPR hyperparameters: successive inclusion of ordered inputs

See the "ICSCREAM" methodology [MIC22]

Building an efficient GPR in practice

1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation

Reminders on GPR

Probabilistic surrogate model: response is considered as a realization of a random GP field [RW05,Gra21]

 $Y(\boldsymbol{x}) \sim GP(\mu(\boldsymbol{x}), k(\boldsymbol{x}', \boldsymbol{x}))$

With $\mu(x)$ the mean and k(x', x) the covariance function.

 $\Rightarrow \underline{\mathsf{Predictive}} \text{ GP is the GP conditioned by the observations } (X_s, Y_s): - Y(\mathbf{x}^*)_{|Y(X_s)=Y_s} \sim GP(\hat{\mu}(\mathbf{x}^*), \hat{s}(\mathbf{x}', \mathbf{x}^*))$

With analytical formulations for $\hat{\mu}(x^*)$ and $\hat{s}(x', x^*)$

 \Rightarrow Conditional mean $\hat{\mu}(\mathbf{x}^*)$ serves as the **predictor** at location \mathbf{x}^*

 \Rightarrow Prediction variance (*i.e.* mean squared error) is given by conditional covariance $\hat{s}(x^*, x^*)$

 \Rightarrow **Prediction interval** of any level α can be built at any location x^*

kriging the sinus function

 $\boldsymbol{\theta} \in \mathbb{R}^{+,d}$

Reminders on GPR

ln practice: parametric choices for trend function μ and covariance function k

 $Y(\boldsymbol{x}) \sim GP(\mu(\boldsymbol{x}), k(\boldsymbol{x}', \boldsymbol{x}))$

 \Rightarrow For μ : either **constant** or linear basis

 \Rightarrow For *k*: stationary covariance built-upon tensorized 1-D covariance functions of v-Matérn

1-Dim
$$\longrightarrow k_{\sigma,\nu,\theta}(x,\tilde{x}) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}h}{\theta}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}h}{\theta}\right) \longrightarrow$$

d-Dim $\longrightarrow k_{\sigma,\nu,\theta}(\mathbf{x},\tilde{\mathbf{x}}) = \sigma^2 \prod_{i=1}^d k_{1,\nu,\theta_i}(x_i - \tilde{x}_i) \text{ with } h = |x - \tilde{x}|$
Hyperparameters

 \Rightarrow Additional variance (nugget effect \rightarrow nugget hyperparameter $\lambda \in \mathbb{R}^+$)

	$v = \frac{1}{2}$	$v = \frac{3}{2}$	$v = \frac{5}{2}$	$v = +\infty$
Usual name	exponential	3/2-Matérn	5/2-Matérn	Gaussian
$k_{\sigma,\nu,\theta}(x,\tilde{x})$	$\sigma^2 e^{-\frac{h}{\theta}}$	$\sigma^2(1+\sqrt{3}\frac{h}{\theta})e^{-\sqrt{3}\frac{h}{\theta}}$	$\sigma^2 \left(1 + \sqrt{5} \frac{h}{\theta} + \frac{5}{3} \left(\frac{h}{\theta} \right)^2 \right) e^{-\sqrt{5} \frac{h}{\theta}}$	$\sigma^2 e^{-\frac{1}{2}\left(\frac{h}{\theta}\right)^2}$
Differentiability of GP trajectories	\mathcal{C}^{0}	\mathcal{C}^1	\mathcal{C}^2	\mathcal{C}^∞

Estimation of GPR hyperparameters

 \Rightarrow How to robustly estimate the hyperparameters $\theta \in \mathbb{R}^{+,d}$ from the learning sample?

Especially in **« medium » dimension** ($d \in [10, 20]$) and **small dataset** ($n \in [100, 1000]$)

Estimation of GPR hyperparameters

► Usual estimation methods [KO22,Mur21,Pet22,PBF+23] → Maximum likelihood (MLE) ⇔ minimization of NLL → Cross-validation and Mean Squared Error : minimization of RMSE= $\left\{\frac{1}{n}\sum_{i=1}^{n}(y^{(i)} - \hat{y}_{-i}(\mathbf{x}^{(i)}))^{2}\right\}^{0.5}$ where $\hat{y}_{-i}(\mathbf{x}^{(i)})$ is the metamodel predictor in $\mathbf{x}^{(i)}$ when $(\mathbf{x}^{(i)}, y^{(i)})$ is removed from the learning sample. → Bayesian approaches

- \Rightarrow Could we do better?
- \Rightarrow How to check that estimated hyperparameters lead to a "good" GPR metamodel?

cea

Validation of GPR

► Validation criteria computed by cross-validation (LOO or K-fold CV) [DIG⁺21, ABG23, MI24a]

- \rightarrow Accuracy of the GP <u>predictor</u> (only): $Q^2 = 1 \frac{RMSE^2}{\frac{1}{n}\sum_{i=1}^n (y^{(i)} \frac{1}{n}\sum_{i=1}^n y^{(i)})^2}$
- \rightarrow Accuracy of the predictive variance: PVA = $\left|\log \frac{1}{n} \sum_{i=1}^{n} \frac{(y^{(i)} \hat{y}_{-i}(\mathbf{x}^{(i)}))^2}{\hat{s}_{-i}^2}\right|$
- \rightarrow Accuracy of the <u>whole GP conditional distribution</u>

From empirical coverage function for $\alpha \in [0,1]$: $\widehat{\Delta}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{y^{(i)} \in PI_{\alpha,-i}(\mathbf{x}^{(i)})\}$

with $PI_{\alpha,-i}(\mathbf{x}^{(i)})$ the α -level GP prediction interval for $\mathbf{x}^{(i)}$ with $(\mathbf{x}^{(i)}, y^{(i)})$ removed from learning sample

- $\Rightarrow \alpha$ -PI Plot
- \Rightarrow Summarized by Integrated Absolute Error on $\widehat{\Delta}(\alpha)$

$$\mathsf{IAE}\alpha = \int_0^1 |\widehat{\Delta}(\alpha) - \alpha|$$

Building an efficient GPR in practice

1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation

3. New hyperparameter estimation algorithm

From the analysis of estimation & validation criteria...

- **Study of criteria NLL**, Q^2 , PVA and $IAE\alpha$ on a large benchmark of analytical tests
 - → Close behavior of NLL and $Q^2 \Rightarrow$ keep NLL as the main estimation objective to ensure predictivity → Consistent with [PBF+23,Pet22]
 - \rightarrow Similar behavior of PVA and IAE α but more irregular w.r.t. θ
 - \Rightarrow Some local minima compatible with optimal values of the other criteria
 - n = 50 Matérn 5/2 Covariance \Rightarrow But No to be optimized independently of the others LogNLL 1-Q² Illustration with a test on a 2D G-Sobol function $\tilde{\theta}_2$ $\tilde{\theta}_2$ 10^{-0.5} **G-Sobol Function** 0.9 1.8 0.8 $\tilde{\theta}_1$ $\tilde{\theta}_1$ 1.6 0.7 1.4 ΙΑΕα **PVA** 0.6 1.2 × 0.5 0.25 0.4 $\tilde{\theta}_2$ 0.3 $\tilde{\theta}_2$ 0.8 0.2 0.6 0.1 0 0.2 0.4 0.6 0.8 $\tilde{\theta}_1$ $\tilde{\theta}_1$ X1

To a new estimation algorithm!

Study of criteria NLL, Q^2 , PVA and $IAE\alpha$ on a large benchmark of analytical tests

- \rightarrow Close behavior of NLL and $Q^2 \Rightarrow$ keep NLL as the main estimation objective to ensure predictivity
- \rightarrow IAE α more directly related to reliable predictive intervals, than PVA
- → In the neighborhood of the optimal NLL point, existence of better points θ w.r.t IAE α , but need to control the possible degradation of Q^2 value, which guarantees the predictivity

 \rightarrow

⇒ Optimization based on NLL and *IAE* α + Control of Q^2 (*IAE* α and Q^2 estimated by cross validation + use of LOO Dubrule formulas) ⇒ Proposition of a multi-objective NSGA-II algorithm with constraint on Q^2

Algorithm flowchart

All details in Marrel and B. Iooss, Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction, Reliability Engineering and System Safety, Volume 247, July 2024, 110120.

Intensive benchmark on analytical test functions

Comparison with usual algorithms based on NLL optimization only (BFGS/multistart)

d = 2 to 20, \neq covariance, \neq sample sizes, \neq DoE, with/without nugget effect

Example on Marrel-d20 function : $Y(X) = a_1 \sin[6\pi X_1^{\frac{5}{2}} \left(X_2 - \frac{1}{2}\right) + a_2 \left(X_3 - \frac{1}{2}\right)^2 + a_3 X_4 + a_4 X_5 + r_{X_6, \dots, X_{15}}$

BFGS

IAEa

3/2-Matérn covariance

 Q^2

1

 \Rightarrow Predictivity with Constr-NSGA-II algorithm at least as good as the simple NLL optimization

- \Rightarrow Improvement of *IAE* α especially if :
 - The model is misspecified, i.e. if the covariance does not match the regularity of the function
 - When the number of hyperparameters is large (e.g. large dimension d + tensorized anisotropic stationary covariance)

Building an efficient GPR in practice

1. Dealing with the large input dimension

2. Estimation of hyperparameters and validation

3. New hyperparameter estimation algorithm

4. Illustration on aquatic prey-predator chain model

Studies of biological contamination of rivers

EDO-type equations describing the growth of microorganisms, grazing and prey-predator interactions

Simulator: MELODY with d = 20 uncertain inputs:

- Periphyton: photosynthesis/mortality/excretion rates, survival temperature, saturation constants, ...
- Grazers: consumption/assimilation/ mortality/excretion rate, survival temperature, ...
- 2 outputs of interest: Periphyton (Y_1) and Grazers (Y_2) biomasses at day 60
- Sample of n = 100 simulations of the model MELODY (from space-filling design)
- Need of preliminar logarithmic transformation

\Rightarrow Lognormal-kriging modeling:

 \succ Emulation of $Z_i = \log(Y_i)$ with GP regression

 \succ Lognormal-kriging back-transformations to obtain metamodel for Y_i

$$\hat{y}_i(\mathbf{x}) = e^{\left(\hat{z}_i(\mathbf{x}) + 0.5\hat{s}_{z_i}^2(\mathbf{x})\right)}$$
$$\hat{s}_Y^2(\mathbf{x}) = \left(e^{\hat{s}_{z_i}^2(\mathbf{x})} - 1\right)e^{\left(2\hat{z}_i(\mathbf{x}) + \hat{s}_{z_i}^2(\mathbf{x})\right)}$$

Additional comparison with Bayesian <u>RobustGaSP</u> approach [GWB18]

\Rightarrow <u>With</u> nugget effect (included in the set of GP hyperparameters to be estimated)

Data	Covariance	Predictivity Coefficient Q ²			ΙΑΕα		
		Multi-BFGS	C-NSGA-II-BestC1	RobustGaSP	Multi BFGS	C-NSGA-II-BestC1	RobustGaSP
Y ₂	Matern3/2	0,70	0,74	0,25	0,10	0,07	0,04
	Matern5/2	0,77	0,82	0,66	0,09	0,02	0,07
	Gaussian	0,75	0,79	0,66	0,08	0,02	0,06

 \Rightarrow Best results with Constr-NSGA-II algorithm: better Q^2 and IAE α

\Rightarrow Without nugget effect

Data	Covariance	Predictivity Coefficient Q ²			ΙΑΕα		
		Multi-BFGS	C-NSGA-II-BestC1	RobustGaSP	Multi BFGS	C-NSGA-II-BestC1	RobustGaSP
Y ₂	Matern3/2	0,70	0,75	0,47	0,10	0,06	0 ,03
	Matern5/2	0,78	0,84	0,83	0,08	0,02	0,07
	Gaussian	0,70	0,72	0,89	0,06	0,03	0,06

 \Rightarrow Better behavior of RobustGasp <u>without</u> nugget : best Q^2 but not IAE α

⇒ **Constr-NSGA-II algorithm is more robust to modeling choices** (prior choice of GPR covariance)

Conclusions and remaining challenges

- ✓ GPR benefits greatly from **preliminary HSIC-based screening**
- ✓ GPR calls for robust estimation of hyperparameters: considering validation criteria of the whole GP distribution when estimating hyperparameters ⇒ enables more robust estimation !
- ✓ Particular attention must be paid to GP validation

⇒ Part of a more general effort to ensure confidence in machine learning for UQ

Some interesting challenges for UQ applications

- ✓ Use more powerful tests based on SupHSIC [EM24] and HSIC-ANOVA indices [SMD+23]
- ✓ Screening-free approaches for high dimensional problems (e.g. beyond 30 to 50 inputs)
- Learning outputs with highly irregular, or even chaotic behavior (due to physical threshold phenomena and phenomenological bifurcations, for instance)

References 1/2

Reference of this work

[MI24a] A. Marrel and B. looss, Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation, Reliability Engineering and System Safety, Volume 247, July 2024, 110120.

[MI24b] A. Marrel and B. looss, Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction, - Reliability Engineering and System Safety, Volume 247, July 2024, 110094.

MINES Saint-Étienn

CentraleSupéleo

General references

[ABG23] Acharki, N., Bertoncello, A., and Garnier, J. (2023). Robust prediction interval estimation for GP by cross-validation method. Computational Statistics Data Analysis, 178:107597.

[Dav15] Da Veiga (2015). Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, 85:1283-1305, 2015.

[DIG+21] Demay, C., looss, B., Gratiet, L., and Marrel, A. (2022). Model selection for GP regression: an application with highlights on the model variance validation. QREI Journal, 38:1482-1500.

[EM24] EI Amri and. Marrel (2024). More powerful HSIC based independence tests, extension to space filling designs and functional data. International Journal for Uncertainty Quantification14(2): 69-98.

References 2/2

[Gra21] B. Gramacy (2021) Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. Chapman and Hall/CRC.

[GFT+07] Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B. & Smola, A. (2007). A kernel statistical test of independence. Advances in Neural Information Processing Systems, 2007.

[GWB18] Gu, M., Wang, X., and Berger, J. O. (2018). Robust gaussian stochastic process emulation. The Annals of Statistics, 46(6A):3038 – 3066.

[KO22] Karvonen & Oates (2022). Maximum Likelihood Estimation in GP is ill-posed. Preprint.

[MIC22] Marrel, looss and Chabridon, (2022). The ICSCREAM Methodology: Identification of Penalizing Configurations in Computer Experiments Using Screening and Metamodel – Applications in Thermal Hydraulics, Nuclear Science and Engineering, 196:3,301-321.

[Mur21] Muré (2021). Propriety of the reference posterior GP distribution. The Annals of Statistics. 49(4):2356-2377.

[Pet22] Petit S. (2022). Improved Gaussian process modeling. Application to Bayesian optimization. PhD University Paris-Saclay.

[PBF⁺23] Petit, S., Bect, J., Feliot, P., and Vazquez, E. (2023). Model parameters in GP interpolation: an empirical study of selection criteria. SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1308-1328.

[RW05] C.E. Rasmussen and C.K.I. Williams (2006). Gaussian processes for machine learning. MIT Press.

[SMD+23] Sarazin, G., Marrel, A., Da Veiga, S. & Chabridon (2023). New insights into the feature maps of Sobolev kernels: application in global sensitivity analysis. https://cea.hal.science/cea-04320711.

Appendix

Illustration of criteria for GPR validation [MI24a]

Dealing with the large input dimension

► HSIC-based ranking [Dav15] :

 $R_{HSIC}^{2} = \frac{HSIC(X,Y)}{\sqrt{HSIC(X,X)HSIC(Y,Y)}}$

 $\Rightarrow R_{HSIC}^2 \in [0,1]$ for easier interpretation

 $\begin{aligned} & \text{Influence}(X_{[1]}) > \text{Influence}(X_{[2]}) > \cdots > \text{Influence}(X_{[d]}) \\ & \text{Where order } [\cdot] \text{ is such that } \ \widehat{R}^2_{H,X_{[1]}} > \widehat{R}^2_{H,X_{[2]}} > \cdots > \widehat{R}^2_{H,X_{[d]}} \end{aligned}$

 \Rightarrow Use for ranking of inputs

Inputs ordered by degree of influence

Can be used for more robust sequential GPR estimation

 \Rightarrow "forward" estimation of GPR hyperparameters: successive inclusion of ordered inputs

HSIC review: a kernel-based GSA method

▶ MMD² applied between $P_{X_i Y}$ and $P_{X_i} \otimes P_Y \Rightarrow HSIC(X_i, Y)_{\mathcal{H}_{X_i}, \mathcal{H}_Y}$

 \mathcal{H}_{X_i} and \mathcal{H}_Y **RKHS** associated to X_i and Y_i , resp :

Kernel $k_{X_i}: \mathcal{X}_i \times \mathcal{X}_i \to \mathbb{R}$ with feature space \mathcal{H}_{X_i} and feature map φ_{X_i}

Kernel $k_Y: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ with feature space \mathcal{H}_Y and feature map φ_Y

 $K_{X_i}(x, x') = \left\langle \varphi_{X_i}(x), \varphi_{X_i}(x') \right\rangle_{\mathcal{H}_{X_i}} \text{ and } K_Y(y, y') = \left\langle \varphi_Y(y), \varphi_Y(y') \right\rangle_{\mathcal{H}_Y}$

kernel defines the inner product in the RKHS

HSIC review: a kernel-based GSA method

HSIC-based independence tests for screening

How to have the distribution $n\widehat{HSIC}(X_i, Y)$ under \mathcal{H}_0 to compute *p*-value?

- ▶ If *n* large: asymptotic test based on approximation with Gamma law (Gretton et al. (2008])
- If n small: Permutation-based approximation (De Lozzo & Marrel [2016a], Meynaoui [2019], El Amri & Marrel [2021a])

Interpretation of *p*-value for a level α ($\alpha = 5\%$ or 10%) for screening:

 \succ **pval** < $\alpha \Rightarrow$ H_0 (Independence) rejected \Rightarrow X_i is significantly influential