・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

A Nonparametric Analysis of ABC

Arnaud Guyader

Université Pierre et Marie Curie

Joint work with G. Biau (UPMC) and F. Cérou (INRIA Rennes)

MASCOT 2017 Meeting 24 mars 2017, Paris

Framework and Objective [Marin et al. (2012)]

- Parameter: $\theta \in \mathbb{R}^p$ generated from the prior $\pi(\theta)$.
- Observations: $y \in \mathbb{R}^m$ generated from the likelihood $f(y|\theta)$.
- Goal: given a fixed observation y_0 , estimate the posterior

$$\pi(heta|y_0) = rac{f(y_0| heta)\pi(heta)}{f(y_0)} \propto f(y_0| heta)\pi(heta).$$

• Classical Tool: MCMC methods (e.g. Metropolis algorithm), but sometimes computationally intractable...

 \Rightarrow Another Strategy: Approximate Bayesian Computation (ABC), a family of likelihood-free computational techniques.

The Original ABC Algorithm [Rubin (1984), Tavaré et al. (1997)]

```
Require: An integer N
for i = 1 to N do
Generate \theta_i from the prior \pi(\theta)
Generate y_i from the likelihood f(.|\theta_i)
end for
return The values \theta_j^* such that y_j^* = y_0.
```

- Conclusion: the θ_i^{\star} 's are i.i.d. with law $\pi(\theta|Y = y_0)$.
- Drawback: unrealistic unless the support of Y is countable.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

ション ふゆ アメリア メリア しょうくしゃ

Extension of ABC [Pritchard et al. (1999)]

Require: An integer *N*, a tolerance level ε , a distance *d* on \mathbb{R}^m for i = 1 to *N* do Generate θ_i from the prior $\pi(\theta)$ Generate y_i from the likelihood $f(.|\theta_i)$ end for return The couples (θ_j^*, y_j^*) such that $d(y_j^*, y_0) \le \varepsilon$.

- Practical (crucial) issue: use a low-dimensional summary statistic s(y) and a distance $\rho(s(y), s(y_0))$ instead of $d(y, y_0)$.
- Question: how to tune ε ?

Illustration

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

ABC in Practice

```
Require: Integers N and k, a distance d on \mathbb{R}^m
for i = 1 to N do
Generate \theta_i from the prior \pi(\theta)
Generate y_i from the likelihood f(.|\theta_i)
end for
return The k pairs (\theta_j^*, y_j^*) such that y_j^* belongs to the k
nearest neighbors of y_0, i.e. such that
```

$$d(y_j^{\star}, y_0) < d(y_{(k+1)}, y_0) =: d_{k+1}.$$

Remark: in practice, $k = k_N$ is most commonly expressed as a percentile of N, e.g. $N = 10^6$ and $k_N/N = 0.1\%$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Illustration

Rates of Convergence

Illustration

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Why Does It Work?

Proposition (Conditional Distribution) Given d_{k+1} , the $(\Theta_i^*, Y_i^*)_{1 \le j \le k}$ are *i.i.d.* according to

$$\frac{f(\theta, y)\mathbb{1}_{\mathcal{B}(y_0, d_{k+1})}(y)}{C_{k+1}} = \frac{f(\theta, y)\mathbb{1}_{\mathcal{B}(y_0, d_{k+1})}(y)}{\int_{\mathbb{R}^p} \int_{\mathcal{B}(y_0, d_{k+1})} f(\theta, y) d\theta dy}$$

that is, the law $\mathcal{L}((\Theta, Y)|d(Y, y_0) < d_{k+1})$.

Corollary (Strong Law of Large Numbers) Assume that $k_N/N \rightarrow 0$, and $k_N/\log \log N \rightarrow +\infty$. Then, for any bounded function φ , one has

$$\frac{1}{k_N}\sum_{j=1}^{k_N}\varphi(\Theta_j^{\star})\xrightarrow[N\to+\infty]{a.s.}\mathbb{E}[\varphi(\Theta)|Y=y_0].$$

(ロ) (型) (E) (E) (E) (O) (O)

Kernel Density Estimate

• Density Estimator:

$$\hat{\pi}_N(heta_0|y_0) = rac{1}{k_N h_N^p} \sum_{j=1}^{k_N} K\left(rac{\Theta_j^\star - heta_0}{h_N}
ight).$$

- This is a hybrid between a *k*-nearest neighbor and a kernel density estimation procedure.
- Remark: Rosenblatt's estimate takes the form [Blum (2010)]

$$\tilde{\pi}_{N}(\theta_{0}|y_{0}) = \frac{\sum_{i=1}^{N} L\left(\frac{Y_{i}-y_{0}}{\delta_{N}}\right) K\left(\frac{\Theta_{i}-\theta_{0}}{h_{N}}\right)}{h_{N}^{p} \sum_{i=1}^{N} L\left(\frac{Y_{i}-y_{0}}{\delta_{N}}\right)}.$$

 \Rightarrow Questions: Consistency? Rates of convergence?

Rates of Convergence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Illustration

Rates of Convergence

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Pointwise Mean Square Error Consistency

Theorem

Assume that the joint probability density f is such that

$$\begin{split} \int_{\mathbb{R}^p} \int_{\mathbb{R}^m} f(\theta, y) \log^+ f(\theta, y) d\theta dy &< \infty. \end{split}$$

If $k_N \to \infty$, $k_N/N \to 0$, $h_N \to 0$ and $k_N h_N^p \to \infty$, then
 $\mathbb{E} \left[(\hat{\pi}_N(\theta_0 | y_0) - \pi(\theta_0 | y_0))^2 \right] \xrightarrow[N \to \infty]{} \frac{\lambda_p \otimes \lambda_m \text{ a.e.}}{N \to \infty} 0. \end{split}$

Remark: the assumption on *f* is not very restrictive...

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Bias-Variance Decomposition

Conditioning on $d_{k+1} = d_{k_N+1}$ yields

$$\mathbb{E}\left[\left(\hat{\pi}_N(\theta_0|y_0) - \pi(\theta_0|y_0)\right)^2\right] = \mathbb{E}\left[B(d_{k+1})^2\right] + \mathbb{E}\left[V(d_{k+1})\right],$$

where

$$B(d_{k+1}) = \mathbb{E}[\hat{\pi}_N(\theta_0|y_0) | d_{k+1}] - \pi(\theta_0|y_0),$$

 ${\sf and}$

$$\mathcal{V}(d_{k+1}) = \mathbb{E}\left[\left(\hat{\pi}_{N}(heta_{0}|y_{0}) - \mathbb{E}[\hat{\pi}_{N}(heta_{0}|y_{0}) \mid d_{k+1}]
ight)^{2} \mid d_{k+1}
ight].$$

The Bias Term

Recall: We have to prove that $\mathbb{E}[B(d_{k+1})^2] \to 0$, with

$$B(d_{k+1}) = \mathbb{E}[\hat{\pi}_N(\theta_0|y_0)|d_{k+1}] - \pi(\theta_0|y_0),$$

where $\pi(\theta_0|y_0) = f(\theta_0, y_0)/f(y_0)$, and

$$\mathbb{E}[\hat{\pi}_{N}(\theta_{0}|y_{0}) \mid d_{k+1}] = \left(\frac{1}{V_{m} d_{k+1}^{m}} \int_{\mathcal{B}(y_{0}, d_{k+1})} f(y) dy\right)^{-1} \\ \times \left(\frac{1}{V_{m} d_{k+1}^{m}} \int_{\mathbb{R}^{p}} \int_{\mathcal{B}(y_{0}, d_{k+1})} K_{h}(\theta - \theta_{0}) f(\theta, y) d\theta dy\right)$$

 \Rightarrow Tools: Extensions of Lebesgue's differentiation theorem, and of Jessen-Marcinkiewicz-Zygmund theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Variance Term

Recall that

$$\mathbb{E}\left[V(d_{k+1})\right] = \mathbb{E}\left[\mathbb{E}\left[\left(\hat{\pi}_N(\theta_0|y_0) - \mathbb{E}[\hat{\pi}_N(\theta_0|y_0) \mid d_{k+1}]\right)^2 \mid d_{k+1}\right]\right].$$

Thus, assuming that $\|K\|_{\infty} = \sup K(\theta) < \infty$, we are led to

$$\mathbb{E}\left[V(d_{k+1})
ight] \leq rac{C(heta_0,y_0)\|K\|_\infty}{k_N h_N^{
ho}},$$

and everything is OK, provided that

$$k_N h_N^p \xrightarrow[N \to \infty]{} \infty.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Rates of Convergence

Theorem (MISE in the case m > 4)

Assume that Y has a bounded support. Then, under some regularity assumptions on $f(\theta, y)$ and f(y), we have

$$\mathbb{E}\left[\int_{\mathbb{R}^{p}}\left[\hat{\pi}_{N}(\theta_{0}|y_{0})-\pi(\theta_{0}|y_{0})\right]^{2}d\theta_{0}\right] \leq \frac{\int_{\mathbb{R}^{p}}K^{2}(\theta)d\theta}{k_{N}h_{N}^{p}}$$
$$+A(y_{0})\left(\frac{k_{N}}{N}\right)^{\frac{4}{m}}+B(y_{0})\left(\frac{k_{N}}{N}\right)^{\frac{2}{m}}h_{N}^{2}+C(y_{0})h_{N}^{4}+o\left(\left(\frac{k_{N}}{N}\right)^{\frac{4}{m}}+h_{N}^{4}\right)$$

 \Rightarrow For $k_N \propto N^{\frac{p+4}{m+p+4}}$ and $h_N \propto N^{\frac{-1}{m+p+4}}$, this leads to

$$\mathbb{E}\left[\int_{\mathbb{R}^p} \left[\hat{\pi}_N(\theta_0|y_0) - \pi(\theta_0|y_0)\right]^2 \mathrm{d}\theta_0\right] \le D(y_0) \, N^{\frac{-4}{m+p+4}}$$