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Introduction
o

Context

@ Accidents leading to unplanned exposure of humans to ionizing radiation
(IR) have occurred many times
e overexposure in radiotherapy services or occupational settings
o large-scale nuclear accidents

@ Unclear radiation exposure scenarios and/or inconsistent findings

o workers at risk of exposure may not wear their obligatory personal dosimeter
o workers at risk of exposure may not store it correctly after use.

@ Estimation of the absorbed radiation dose received by an exposed or
suspected exposed individual may be crucial to:

Optimize patient-centered care

Predict the derived health consequences for both early and late effects

Perform rapid triage of exposed versus non-exposed persons

Clarify unclear radiation exposure scenarios

Appease the "worried well” persons

Dose assessment =- Proof of exposure by court and professional associations
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Introduction
(]

Biological retrospective dosimetry

@ |t offers the only possibility to estimate the individual absorbed dose

o even weeks or months after a potential exposure (Kulka et al. (2018)).
e when a direct measurement of IR exposure is not or no longer possible

Main goal

Estimation of the individual absorbed radiation dose from microscope counting
of radiation-related chromosomal anomalies

@ Radiation exposure causes chromosomal DeoxyriboNucleic Acid (DNA)
lesions like double-stand breaks

@ The broken fragments may repair incorrectly = Chromosome aberrations
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The dicentric chromosome assay (DCA)

@ Dicentrics have a low naturally occurring background frequency

@ Frequencies of dicentrics increase with the absorbed dose
= Well-established and highly specific biological marker of radiation
exposure

@ Scoring dicentrics in peripheral human blood lymphocytes : "gold
standard”™ biological method for retrospective dose estimation (IAEAb

(2011)).
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Introduction
o

Main questions

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

Q all of the analyzed cells (whole-body irradiation)?
@ only a fraction of the analyzed cells (partial irradiation)?

© none of the analyzed cells ? (Relevant for unclear exposure scenarios)
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Given the number of dicentrics per cell observed in blood lymphocytes:
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Can it be stated that a strictly positive radiation dose has been received by :

Q all of the analyzed cells (whole-body irradiation)?
@ only a fraction of the analyzed cells (partial irradiation)?

© none of the analyzed cells ? (Relevant for unclear exposure scenarios)

| \

Question Q2

What is the estimated absorbed dose and the uncertainty associated to this
estimation?

A
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4 real radiation accident victims (2006-2013)

In-vivo data provided by IRSN/LRAcc

Physical

Id Circumstances of accident Clinical signs dusimatiy

Yamiting (4h3l), nausea,
ng: Humber of

06-11 Exposure to y-rays hair loss, Ho riripheraT o
Lymphocytes: 0.8% 10 i;ﬁp‘mnmytesm

14.pg Medical context; 10 minutes located next Hematopeetic syndrom 7 No anslyzed,

to a y-source {Co 60) days after expasure

Put the y-source (Ir) in his hand then in
08-03  his pocket (10 minutes to 1 hour) lymphocytes: 1.05x 104 0.25 Sv

== Hand burn

Exposure head and chest ; 15-30 seconds Fruthea teala Eans
03-03 Shaulders S5ems away from the X source Lw h e .3 393('1}0_‘ 0.045 5 observed in

Neck 20cms away fram the X source U A each cell
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Data

é suspected- éxposed individuals (2006—.2.013]

In-vivo data provided by IRSN/LRAcc

Justifier |e texte

4 real suspected individuals (2006-2013)

From IRSN/LRAcc
Conventional
d Circumstances of  Clinical  Physical SxtoRenstics.
accident signs  dosimetry no: Number of
peripheral bload
0663 Exposure to y-rays No o ‘ Iymphecytes
{10:15 minutes) analysed.
Spent the night 25
06-70  centimeters away Mo Mo

from a y-source .
0613 Colleague of 06-11  No Mo P
- 3 obsarved in
0645 Colleasueafe11 No - each ceil

]
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Data i
- s

Calibration data (Cobalt 60) - In-vitro data provided by IRSN/LRAcc

In-vitro irradiation of blood samples - various healthy donors - different doses

Humber Diose Mumber
of analyzed Gray) of
cells dicentrice
19194 0 21 Cad .
1676 0.05 3 :
1562 0.10 [ £ a
481 0.15 3 I
S N
1057 0.24 11 2
§
1768 0.30 EL] 3
k=] 1 - iy
1187 0.33 18 l } ' [
2919 0.50 83 2 ek 2l s L
1538 0.80 100
869 1 90 Dicse (in Graw)
1525 1.6 269
Dase = 0@y Duse =058y
1844 2 545 i iz
% I
- an ©F 04 45 08 10 - an 06 10 456 20
362 2.31 122 )
784 3 482
Dosec = Z Gy Dose =877 Gy
E N i F IRSN
[ . nn
341 470 381 : Poa e s1zrane :
o4 577 143
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e Standard approaches
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Standard approaches
o

Dose-response model M 4 for in-vivo data

Exposed and suspected exposed individuals

Let's consider a given individual with ng analyzed cells:
@ Dy : Unknown absorbed dose (in Gray) received by each cell

@ Ry: Number of dicentrics observed in each cell k (k=1,..., ng)

In case of LOW-LET radiation and homogeneous irradiation

(Ma) Ry ~"? Poisson(Xo)
Xo=A+aDo+ 8D;

e 0 = (A, a,B): unknown parameters with A >0, 8 >0, a > —2/AB
@ A: background expected number of dicentrics per cell at dose Dy = 0
® Yo =2, Rc ~ Poisson(noo)

Non-identifiable model = External data required to estimate 6 = (A, «, 3) IRS“
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Standard approaches
(]

Dose-response model M for calibration data

Let's consider a given experimental (in-vitro) irradiation i € {1,...,/}
o D;: Fixed absorbed dose (in Gray) received by each cell
@ Z;;: Number of dicentrics observed in each cell | € {1,...,n;} at dose D;

In case of LOW-LET radiation and homogeneous irradiation

At a given dose D;:
(Mc) Zi ~"" Poisson(\;)
)\i:A-FOéD,'—FBDI?

=Y = 27':1 Z,',/ ~ Poisson(n,-)\,-)

where Y; is the total number of dicentrics observed at dose D; and n; the total
number of analyzed cells
IRSN
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Standard approaches
o

Answering @, - Estimation of the dose

@ Fit M to calibration data using maximum likelihood estimation
o Plug 6 = (A, &, B) into M

o Derive point estimate Dy of the absorbed dose Dy (inverse regression)

. N —G+4/82+4B(XN — A)
DO :g(Aydaﬁ) =

2B

Yo

no

where Xo =
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MLE for the Circumstances MLE for the

Id Circumstances of accident dose Dy Id oFaccident dose By
4.40 0.02
De-11 Exposure to y-rays 06-13 Colleague of 06-11
- Medical context; 10 minutes located 1.88 0.02
17-08 Ak ina \r,-snurce{t_u 60) 06-14 Colleague of 06-11
Put the y-source {lr) in his hand then 0.23 -0,03
0803 in his pocket (10 minutes to 1 hour) 0615 Colleague of 0611
== Hand burn
Exposure head and chest : 15-30 0.11 0.02
.y 5econds Shaulders Scms away from the
O e Mokt away from the X do:l Sl
source
6-63  Exposurs toy-rays {10-15 minukes) @.15 04-14 Positive dosimeter -0.03
i i 2 245 i -0.03
0670 Spent the night 25 centimeters away 0.25 109 Bostare/osinetior

from a y-source

Potential drawbacks:
o If Xo = :—U“ =0 then Dy < 0 (Context: Small signal in the data)

@ Prior information on the dose not accounted for

@ Modular approach : Disjoint estimation of & and Dy



Standard approaches
L]

Answering @, - Derive a 95% confidence interval on Do

o Approach 1: Multivariate delta-method

2 2
0'2D0—0'A (g—i) +(ra (g—i) J—!—o

( ) ( ): cov(A, a)+2<§—g) ( ) ﬂcov(o?(jﬁ)

4F 2 (g—i) (gi) cov(A B)

= Asymptotical 95% confidence interval on dose estimate: Do + 1.966p,

o N
N
Q:‘Qa
|0
N—
Q N
H
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Q
>N
o
N
Q|
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@ Approach 2: Bootstrap

Potential drawbacks:
@ |s the asymptotic assumption correct?
@ Bootstrap = Strong data redundancy if small signal in data
@ Uncertainty on the dose estimation may depend on the statistical methodI RSN
used to compute the confidence interval
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Standard approaches
®

Answering Q1 - Strictly positive absorbed dose received?

Hypothesis testing: Hy : Dy = 0 vs Hy : Do = di (with di > 0)
o Test statistic: Yo = >/, R«
@ Under Hy, Yo ~ Poisson(ngA)
o Critical region: [yg,+oo] with yg = 0.95 quantile of Poisson(ngA)

e yg is called " Decision threshold”

obs

o If y§”° > yg, Ho is rejected with error (of the first kind) = 0.05
o Statistical power: 1 — Frdy, (y5) where Frdy, cumulative distribution
function of a Poisson distribution with intensity = no(A 4 &dy + 3d?)

o Detection Limit: The smallest value of dose d; from which the statistical
power of the test is greater or equal to 0.95

IRSN
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1198

2803

0591

6T

DL = Detection Limit

Potential drawbacks:

@ Binary answer to @Q1: Rejection of Hp or not

@ [ is unknown !

@ The statistical power may be very small for small doses ...

@ Uncertainty on the estimation of the background expected number of
dicentrics per cell A not accounted for

@ Does not allow to test if only a fraction of the analyzed cells have
received a strictly positive radiation dose

13%

451

102+

188

112

: Statistical power?

positive absorbed dose received?

2 0.23

2 0,30

503
507
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Standard approaches
L]

Aim of the work

o Can Bayesian statistical methods offer relevant alternative answers to
questions @1 and @ in biological retrospective dosimetry ? J

@ To account for expert knowledge when assigning a prior distribution on
the unknown absorbed dose Dy

@ To propose a unique, flexible and coherent framework allowing to
simultaneously answer to questions @1 and Q>

IRSN
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Bayesian contributions

@ Bayesian contributions
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ion contributions

Which model?

Approach 1: the one previously described....
Directed Acyclic Graph of the full model (M4 + M)

In-vivo data Calibration data
1 individual

o # = (A o, 3) shared parameters
o Possibility for the in-vivo data to be accounted for when fitting 4, o, 3 |RSHN
@ The Bayesian framework allows fitting this model in one step
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Bayesian contributions
o

The prior distributions

o A~ Unif|0, 4o0[

® a~ Unif[-2/AB, +o0|

@ (3 ~ Unif[0,+o0]

@ Prior probability distribution on Do

e Dy ~ Unif(0,10) = Vague prior
e Dy ~ Gamma(a, b) = Informative prior

IRSN
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Using expert knowledge to define an informative Gamma prior Oy

@ Hyperparameters a and b of the Gamma prior may be fixed by expert
knowledge given the accident scenario

; . . Physical Prior distribution on Oy
id Circumstances of accident Clinical signs dostmetry

Vomiting (4h30), nausea,
OR-T1  Exposurea fo y-rays hair loss, Ha
Lymphocytas: 0.8x 107"

Dy.median=2.5  Dymax = 10 (q99-10}
Dy-Gammaia=1.98 |, b=0.66)

Medical context:
108 10 minuies located next toa y-
source (Co &0}

Hematopoetic syndrom 7 Dy.median=2.5  Dymax = 10 {g92-10}
days after exposure Dy-Gammala=1.98 | b=0 48}

Put the y-source (i) in his hand
O08-03 then i his pocket (10 minutes  lymphocytes: 1.052 107 0.25 Sv
to 1 hour) -= Hand burn

Dp-mediar-0.25 Dymax - 5 {g99-5)
Dy~Gammata=0.4, b=(.4&)

Exposure head and chest : 15

30 seconds Shouldars Scms Erythema (collarhons]
away from the X source Meck  Lymphocytes: 2.39% 1004
20ems aveay from the X source

Dy median=0.045 Dgmax = 5 (q99-5]

05-03 0.0455¢  Dg-Gammaia=0.2, b=0.44)

For individuals for which no clinical sign was observed: Dy ~ Unif (0, 2)
— Not enough informative ! To improve!

IRSN
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ontributions
L] 0

Answering @, - Bayesian estimation of the dose

MCMC algorithm - Package R "rjags”
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contribution:

Answering (), - Bayesian estimation of the dose
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Bayesian contributions
o

Given the prior distribution assigned to Dy, we are assuming that Dy > 0

= Is this assumption relevant for all the considered individuals?

IRSN
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Bayesian contributions
L]

Answering Q; and Q> under the Bayesian framework

Question Q:

Can it be stated that a strictly positive radiation dose has been received by :
Q all of the analyzed cells (whole-body irradiation)?
@ only a fraction of the analyzed cells (partial irradiation)?

@ none of the analyzed cells ? (Relevant for unclear exposure scenarios)

The above sub-questions 1 and 3 can be formalized as :

A Bayesian model selection problem

Mo : Ry ~4 Poisson(A) Vs Ma : Ry ~4 Poisson(A+ aDo + $D3)

given in-vivo data and calibration data following model M¢ (Do > 0)

IRSN
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Answering )y and @ under the Bayesian framework
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Answering Q; and Q> under the Bayesian framework

= A Bayes factor (Jeffreys, 1939) can be efficiently approximated (e.g.,
Monte-Carlo estimate) J

But what about sub-question 2 about partial irradiation?

IRSN

31/47



Bayesian contri

Idea: using a mixture model (Kamary et al. (2014) - arXiv)

Let's consider a given individual - potentially exposed - with ny analyzed cells:
@ po: unknown probability for each cell to have received a dose > 0
@ Dy : unknown absorbed dose (in Gray) received by each irradiated cell

A mixture model for in-vivo data

(LOW LET + homogeneous irradiation)

Mpix Ry ~"¢ (1 — po) Poisson(A) + poPoisson(A + aDo + BDZ)

Do > 0 and po € [0,1]

0 = (A, a, B): unknown parameters with A >0, 3> 0, a > —2/AB
A: common parameter shared by both mixture components

po can also be interpreted as the proportion of irradiated cells

Do and pp assumed to be identical for each irradiated cell

Mo and M, are very special cases of the mixture model
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Baycsiun contributions
OO0

Directed Acyclic Graph of the full model {M,;, + M)

In-vivo data Calibration data
1 individual

o # = (A r,3) shared parameters

@ The Bayesian framework allows fitting this model in one step




Bayesian contributions
o

Answering to Q; and @, with M,; (1/2)

o If pp =0, model M, is selected given the available count data

o = Response to Q; is NO= "There is no evidence that a strictly positive
radiation dose has been received”.

o If pp =1, model M, is selected given the available count data

e = Response to Qq is YES= "A strictly positive radiation dose has been
received by all the analyzed cells”.

e If po €]0, 1], neither model Mg nor model Mg is selected given the
available count data

o = Response to Q; is YES= " A strictly positive radiation dose has been
received BUT only by a fraction of the analyzed cells” (partial body
exposure).

e The fraction of the body irradiated is defined as (IAEA report 2001):

_ po X exp(Do/D)
(1= po) + po x exp(Do/D)

Fo D ~ Unif(2.7,3.5)

IRSN
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Bayesian contributions
(]

Answering to Q; and @, with M, (2/2)

@ Posterior distribution on py = Probabilistic answer to Q1

@ = Decision criterion to define the range of acceptance, rejection and
indecision conclusions

o Let's c1, o, U be fixed decision thresholds (to calibrate by simulation)
@ Compute m1 = P(po > c1|Yi, R) and m2 = P(po < | Yi, Rk)
e If 11 > U = YES= "There is strong evidence that a strictly positive
radiation dose has been received by all of the analyzed cells”.
o If 13 > U = NO= "There is no evidence that a strictly positive radiation
dose has been received”.
o Else YES= "A strictly positive radiation dose has been received BUT only
by a fraction of the analyzed cells” (partial body exposure). IRSHN
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Bayesian contributions
o

The prior distributions

A ~ Unif[0, +o0[

a ~ Unif[—2y/AB, +0o0]

B ~ Unif[0, +o0[

Dy ~ Gamma(a, b) or Dy ~ Unif(0,10)
po ~ Beta(c, d)

Hyperparameters a,b,c,d may be fixed by expert knowledge given the
accident scenario

Default choice (Rousseau and Mengersen (2011)): ¢=0.5,d=0.5

IRSN

36/47



Bayesian contributions

Bayesian inference

Adaptive Metropolis-Hastings algorithm

@ Block updating for (A, a, 8) using a Gaussian random walk (20%
acceptation rate)

o Gaussian random walk for Dy (40% acceptation rate)

@ For the mixture weight po:
o lteration t: Independent proposal = p§?"? ~ Beta(0.5,0.5)
o lteration t+1: Random walk = p§?"¢ ~ Beta(1 + p§,2 — pf)
e 40% acceptation rate

@ Implemented in Python (2.7.10) (100000 iterations = 30 seconds)

4

Asymptotic consistency of the proposed mixture testing procedure

@ Proved by Kamary et al. (2014) in the specific case of embedded mixture
components

o "If one model is indeed correct, the posterior medians of the corresponding

weight in the mixture settles very quickly near the boundary values of 1 as

the sample size increases” SN
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Bayesian contributions

@ Equivalent formulation of M pointing out the latent allocation variables

Mumix © Re ~' Poisson(\)  with A\ = A+ aDox + D3
Dok = vk x Do with ~k ~ Bern(po)

@ Easy implementation in WinBUGS or JAGS but inefficient Gibbs sampler!!!

IRSN
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Bayesian contributions

Convergence diagnostics on the weight pg

Gibbs sampler (Left) vs Adaptive Metropolis-Hastings (Right)

n T
2 v oB0] chans 12
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A b
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3
BUGS = o - =
iteration
EEOETTRES
. ]
o7
o 10 0
02 i
o
17000 18000 15000 26000 [
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pO[3] chains 1:2
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oc (NIRRT A ENARTRRANY
0.0

1.0

00
0 500 10001500 2000 25003000 B
o
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Bayesian contributions

Posterior statistics, Bayes factor and posterior probability of M

Bayesian Mixture approach P(M;]y)

Informative prior on D,
Non-informative prior on p;

D, posterior Py posterior Fy posterior P(pp=0.8) P(py<0.2)
median median median
95%CI 95%CI 95%CI
i 4.61 0.91 0.97 0.93 0.0 e 1
[4.14; 5.19] [0.76,1.00] [0.90; 1.00] orystrong | TR0
o 209 0.84 0.90 0.60 0.0 1.75°+185 L
[1.76; 2.69] [0.56; 1.00] [0.69; 1.00] (very strong)  [1.0; 1.0]
oR0 0.32 0.67 0.69 0.39 0.11 *10°7 a
[0.15; 1.25] [0.10; 1.00] [0.11; 1.00] (very strong)  [1.0; 1.0]
0 0.13 0.54 0;55 0.31 0.25 4 0.67
[0.0002; 1.29]  [0.011; 1.0] [0.01; 1.0] (Positive) 10.63; 0.70]
oo 047 0.23 ~0.28 0.16 0.46 8.3 0.86
[0.08; 1.84] [0.02; 0.99] [0.0Z; 0.99] (Positive) [0.83;0.88]
oe0 055 0.36 0.40 0.21 0.33 303.03 1.00
[0.16; 1.84] [0.04; 1.00] [0.06; 1.00] (VeryStrong)  [1.0; 1.0]

' ASN
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Bayesian contributions

Comparison of dose estimations
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Bayesian contributions
L]

Comparing prior and posterior probability distributions on py

Prior probability distribution on po : Beta(0.5,0.5)

03 o8 o
w o w

From left to right : Victims 06-11 (Estimated dose: 4.61 Gy), 08-03
(Estimated dose: 0.32Gy), 05-03 (Estimated dose: 0.13Gy)

@ Weak influence of the prior choice on Dy (results not shown)

@ Lack of information in the data to infer py especially when dose is small
= More data needed to infer py (and then answer Q;)?

IRSN
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Bayesian contributions

Sensitivity to the prior choice on py

Informative Beta priors defined from expert knowledge
o Jeffrey's prior Beta(0.5,0.5)

16 25 i 5 ; g ;z
14 5
12 24 “' 4 5 e i s !
10 L5 3| at / To
08 3l g s
0B o 2 2 2 ho
0.4 05 1 1
02 '1\ é g
o

" 123145 %0D510151.025303.5%CDECISZ.CESCB_&O 3500 02040608 lﬂjcﬂﬂ 0204 D6 08 1?600 0204 06 08 10
35 16 4
30 2 10 18{ Laf

25 - 251 }2 T2

20 20 12 hoyl
1% 15 / 10 5,‘
10 10 “-g Josf
5 8 A “5 4 :

o2 2
0 B3a5G3EaaS b0 05 10 15 2000 55 10 15 20 *5 0202 osos:o 000204 06 081000020406 0810
0503 0663 0570 0503 0663
Posterior distribution on the dose Dy Posterior distribution on the weight po

= Sensitivity is clearly present but should naturally vanish as the numberl RS“
of analyzed blood lymphocytes increases




Conclusion & Perspectives

© Conclusion & Perspectives
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Conclusion & Pe
[ Je]

Conclusions

o First fully Bayesian approach proposed to simultaneously answer to two
main questions of interest in biological retrospective dosimetry
e = New insights to the European Radiation Dosimetry (EURADOS)
Working Group 10, task 10.6
@ Using the proposed mixture model M i allows to get rich probabilistic
answers to questions @ and @,
e = Relevant input data for decision-making in the contexts of clinical
management of patients, rapid triage after large-scale radiation incident,
reassuring the 'worried-well'...

@ In case of low suspected dose, the number of analyzed blood lymphocytes
should be higher to obtain more precise answers to question Q1

rspectives

IRSN
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Conclusion & Perspectives
oe

Perspectives

o Simulation studies to validate the whole methodology and calibrate the
decision thresholds (c1,c2,U)

@ Validate the whole methodology from new experimental data for which Dy
and po are known

@ Bayesian optimal design to define the number of analyzed cells no required
to optimally answer to question @; and @, under budget constraint

@ Extend the proposed approach to other chromosome aberrations

@ Provide operational tools to dosimetrists

IRSN
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Conclusion & Perspectives
L]
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