Reduced Basis Approach for PDEs with Stochastic Parameters: Heat Conduction with Variable Robin Coefficient

Sébastien Boyaval^{1,2}, Claude Le Bris^{1,2}, Yvon Maday^{3,4}, Ngoc Cuong Nguyen⁵ and Anthony T. Patera⁵

¹CERMICS, Ecole des Ponts Paristech (Univ. Paris-Est), Marne–la–Vallée ²MICMAC team–project, INRIA, Rocquencourt, France

³UPMC Univ Paris 06, Laboratoire J.-L. Lions, Paris, France ⁴Div. of Applied Mathematics, Brown University, Providence, USA

⁵MIT, Dept. of Mechanical Engineering, Cambridge, USA

Groupe de recherche MASCOT – IHP, Paris, 2009

• • = • • = •

Motivation – Model Problem Computation Strategy

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters : Overview Motivation – Model Problem

Computation Strategy

Technical Details

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Numerical results

э

Reduced-Basis (RB) [1] (= output-oriented model reduction) for Boundary Value Problems (BVP) with stochastic parameters $\mu(\omega)$:

▶ Partial Differential Equation (PDE: operator A, functions U, f)

 $A(\mu(\omega)) U(\mu(\omega)) = f(\mu(\omega))$ in \mathcal{D} ,

▶ Boudary Condition (BC: operator *B*, trace of *U*, function *g*)

$$B(\mu(\omega)) \ U(\mu(\omega)) = g(\mu(\omega))$$
 in $\partial \mathcal{D}$.

► Multiscale model [2]: macro U influenced by micro μ(ω).
[1] C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera, and G. Turinici. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. JFE, 124(1):7–80, 2002.
[2] S. Boyaval. Reduced-basis approach for homogenization beyond the periodic setting. SIAM MMS, 7(1):466–494, 2008.

Motivation – Model Problem Computation Strategy

Model Problem with Stochastic Parameters

Laplace equation for $U(x, \omega) \in H^1(\mathcal{D}), \forall a.e. \omega \in (\Omega, \mathcal{F}, \mathsf{P})$:

$$-\operatorname{div}\left(\boldsymbol{a}(x)\nabla U(x,\omega)\right) = 0 , \forall \, \boldsymbol{a}.\boldsymbol{e}.\, x \in \mathcal{D}$$
(1)

with stochastic Robin BC (flux $g \in L^2(\partial D)$ given):

$$n(x)^{\mathrm{T}} a(x) \nabla U(x, \omega) + \mathrm{Bi}(x, \omega) U(x, \omega) = g(x), \forall a.e. x \in \partial \mathcal{D}$$
 (2)

parametrized by random input field $\operatorname{Bi}(x,\omega) \in L^{\infty}(\partial \mathcal{D}) > 0$. Random output field: $S(\omega) := \mathcal{E}(U(\cdot,\omega)) = \int_{\Gamma_{\mathrm{R}}} U(\cdot,\omega)$

$$\mathsf{E}_{\mathsf{P}}\left(S(\omega)
ight) = \int_{\Omega} S(\omega) \ d\mathsf{P}(\omega)$$

$$\mathsf{Var}_{\mathsf{P}}(S(\omega)) = \int_{\Omega} S(\omega)^2 \, d\mathsf{P}(\omega) - \mathsf{E}_{\mathsf{P}}(S)^2$$

Reduced-Basis for PDEs with Stochastic Parameters : Overvie Technical Details

Technical Details Numerical results Motivation – Model Problem Computation Strategy

$$\mathbf{a}(x) = \begin{bmatrix} \kappa(x) & 0\\ 0 & \kappa(x) \end{bmatrix}, \quad \kappa(x) = \mathbf{1}_{\mathcal{D}_1} + \kappa \mathbf{1}_{\mathcal{D}_2} , \quad \forall x \in \mathcal{D} .$$
$$g(x) = \mathbf{1}_{\Gamma_R} , \operatorname{Bi}(x, \omega) = \operatorname{Bi}(x, \omega) \mathbf{1}_{\Gamma_B} , \quad \forall x \in \partial \mathcal{D} \subset (\overline{\Gamma_N} \cup \overline{\Gamma_R} \cup \overline{\Gamma_B}) .$$
$$\prod_{\Gamma_R} \mathcal{D}_2$$
$$\prod_{\Gamma_R} \mathcal{D}_2$$
$$(S. Byval) = \operatorname{Revec-Basis Approach of Uncertainties in PDS}$$

Motivation – Model Problem Computation Strategy

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters : Overview Motivation – Model Problem Computation Strategy

Technical Details

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Numerical results

э

Motivation – Model Problem Computation Strategy

Reformulation of the Problem

1. Karhunen–Loève (KL) expansion of random input $Bi(x, \omega)$

$$\mathrm{Bi}(x,\omega) = \mathsf{E}_{\mathsf{P}}(\mathrm{Bi})(x) + \widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_k} \Phi_k(x) Z_k(\omega) ,$$

Motivation – Model Problem Computation Strategy

Reformulation of the Problem

1. Karhunen–Loève (KL) expansion of random input $\operatorname{Bi}(x,\omega)$

$$\mathrm{Bi}(x,\omega) = \mathsf{E}_{\mathsf{P}}(\mathrm{Bi})(x) + \widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_k} \Phi_k(x) Z_k(\omega) ,$$

- $\mathcal{K} = \operatorname{rank} (\operatorname{possibly} \infty)$ of covariance operator for $\operatorname{Bi}(x, \omega)$,
- with eigenpairs $\left((\widetilde{\Upsilon}^2 \lambda_k), \Phi_k(x) \right)_{1 \le k \le \mathcal{K}}$,
- (Z_k(ω))_{1≤k≤K} = mutually uncorrelated L²_P(Ω) random variables,
- $\widetilde{\Upsilon}$ = positive amplitude parameter.

(日本) (日本) (日本)

Motivation – Model Problem Computation Strategy

Reformulation of the Problem

1. Karhunen–Loève (KL) expansion of random input $\operatorname{Bi}(x,\omega)$

$$\operatorname{Bi}(x,\omega) = \mathsf{E}_{\mathsf{P}}(\operatorname{Bi})(x) + \widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_k} \Phi_k(x) Z_k(\omega) ,$$

2. Truncation of $\operatorname{Bi}(x,\omega)$ up to order $K \leq \mathcal{K} : \operatorname{Bi}_{K}(x,\omega)$, $\longrightarrow \operatorname{Bi}_{K}(x,\omega)$ instead of $\operatorname{Bi}(x,\omega)$ in (1)–(2) $\longrightarrow U_{K}(x,\omega)$ solution to **new** BVP

(D) (A) (A) (A) (A)

Motivation – Model Problem Computation Strategy

Reformulation of the Problem

1. Karhunen–Loève (KL) expansion of random input $Bi(x, \omega)$

$$\mathrm{Bi}(x,\omega) = \mathsf{E}_{\mathsf{P}}(\mathrm{Bi})(x) + \widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_k} \Phi_k(x) Z_k(\omega) ,$$

 Truncation of Bi(x,ω) up to order K ≤ K : Bi_K(x,ω), → U_K(x,ω) solution to new BVP
 U_K(x,ω) ~ u_K(x; y^K(ω)), u_K(x; y^K) solves deterministic BVP - div (a(x)∇u_K(x; y^K)) = 0 in D (3) n(x)^Ta(x)∇u_K(x; y^K) + Bi_K(x; y^K)u_K(x; y^K) = g(x) on ∂D (4) + parameter with law y^K := (y₁,...,y_K) ~ γ̃√λ_k(Z_k(ω))_{1≤k≤K}.

Motivation – Model Problem Computation Strategy

Computation of statistical outputs

Monte-Carlo (MC) for (many) realizations $(S^m)_{1 \le m \le M}$; $M \gg 1$

$$E_M[S_K] = \sum_{m=1}^M \frac{S_K^m}{M}$$
 $V_M[S_K] = \sum_{m=1}^M \frac{(E_M[S_K] - S_K^m)^2}{M - 1}$

 \hookrightarrow

$$E_M[s_K] = \sum_{m=1}^M \frac{s_K(y_m^K)}{M} \quad V_M[s_K] = \sum_{m=1}^M \frac{\left(E_M[s_K] - s_K(y_m^K)\right)^2}{M - 1}$$

where

$$\forall y^{K}, \ s_{K}(y^{K}) = \mathcal{E}\left(u_{K}(\cdot; y^{K})\right) \Leftarrow \text{deterministic parametrized BVP}$$

イロト イポト イヨト イヨト

Motivation – Model Problem Computation Strategy

Computation of statistical outputs

Monte-Carlo (MC) for (many) realizations $(S^m)_{1 \le m \le M}$; $M \gg 1$

$$E_M[S_K] = \sum_{m=1}^M \frac{S_K^m}{M}$$
 $V_M[S_K] = \sum_{m=1}^M \frac{(E_M[S_K] - S_K^m)^2}{M - 1}$

 \hookrightarrow

$$E_M[s_K] = \sum_{m=1}^M \frac{s_K(y_m^K)}{M} \quad V_M[s_K] = \sum_{m=1}^M \frac{(E_M[s_K] - s_K(y_m^K))^2}{M - 1}$$

where

 $\forall y^{\mathcal{K}}, \ s_{\mathcal{K}}(y^{\mathcal{K}}) = \mathcal{E}\left(u_{\mathcal{K}}(\,\cdot\,;y^{\mathcal{K}})\right) \Leftarrow \text{deterministic parametrized BVP}$

3

J RB

Motivation – Model Problem Computation Strategy

The Reduced-Basis with output bounds method

- Offline: compute reduced basis {u_K(·; y_n^K), n = 1...N} for manifold {u_K(·; y^K)|y^K ∈ Range(y^K)} → selection of parameters y_n^K ∈ Range(y^K) in a trial sample of parameters (Greedy procedure).
- Online: compute reduced-basis approximations for any y^K ∈ Range(y^K) in vector space Span (u_K(·; y^K_n), n = 1...N)

$$u_{\mathcal{K}}(\cdot; y^{\mathcal{K}}) \simeq u_{\mathcal{N},\mathcal{K}}(\cdot; y^{\mathcal{K}}) = \sum_{n=1}^{N} \alpha_n(y^{\mathcal{K}}) u_{\mathcal{K}}(\cdot; y^{\mathcal{K}}_n)$$

 \longrightarrow coefficients $\alpha_n(y^K)$ minimize an approximation error in $L^2(\partial \mathcal{D})$.

Rk: parameters y_n^K maximize the upper bound for output error.

Motivation – Model Problem Computation Strategy

Benefits of the Reduced-Basis approach

- ► MC time computation \searrow (RB = $\frac{1}{50}$ Finite elem. FE) \Uparrow precomputed reduced basis for { $u_{\mathcal{K}}(\cdot; y^{\mathcal{K}})$ }
- ▶ no (sensible) loss of accuracy $(|E_M[s_K] - E_M[s_{N,K}]| \le 0.1\% |E_M[s_{N,K}]|$ and $\Delta V_M \le 20\%$) \uparrow *a posteriori* bounds for PDE output s_K
- ► + dependence on additional parameters ρ ($\neq y^{K}$), then RB time computation = $\frac{1}{200}$ FE with $\rho = (\kappa, \overline{Bi})$

$$\overline{\mathrm{Bi}} := \frac{1}{|\Gamma_{\mathrm{B}}|} \int_{\Gamma_{\mathrm{B}}} \textbf{E}_{\textbf{P}} \left(\mathrm{Bi} \right) \; .$$

 \uparrow reduced basis for larger manifold $u_{K}(\cdot; \varrho, y^{K})$

Motivation – Model Problem Computation Strategy

Relation to Prior Work

Two (expensive) computational approaches:

- 1. ω -strong
 - simulate probability law $y^{K}(\omega)$ (low-discrepency sequences),
 - compute $x \to u_{\mathcal{K}}(x; y^{\mathcal{K}}(\omega))$ solution to BVP (FE),
 - *large* MC evaluations for moments of U_K(x, ω) ∼ u_K(x; y^K(ω)) (slow – statistical – convergence).

2. ω -weak

- compute (x, y^K) → u_K(x; y^K) sol. to high-dimensional BVP (x: nodal – FE – basis, y^K: spectral – PC – basis [Ghanem-Spanos]),
- compute moments of U_K(x, ω) ∼ u_K(x; y^K(ω)) through *integral* weighted with *density* of y^K(ω) (– absolutely continuous – w.r.t. Lebesgue measure on R^K).

Motivation – Model Problem Computation Strategy

Relation to Prior Work

...

Many reduction attempts:

- [Schwab, Todor, Frauenfelder ; Wan, Karniadakis] sparse/adaptive spectral basis for y^K
- ▶ [Babuška, Nobile, Tempone, Webster] collocation points in y^K ⇒ (sparse) – pseudospectral – orthogonal polynomials
- [Matthies, Keese]
 Krylov iterative method (parallel computers)
- [Nair, Keane, Sachdeva] Krylov iterative method (reduced subspace)
- [Nouy, Le Maître] generalized spectral decomposition

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters : Overview Motivation – Model Problem Computation Strategy

Technical Details Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Numerical results

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1. $\operatorname{Bi}(x,\omega) \in L^2(\partial \mathcal{D}, L^2_{\mathbf{P}}(\Omega))$

・ロト ・ 同ト ・ ヨト ・ ヨト

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1.
$$\operatorname{Bi}(x,\omega) \in L^{2}(\partial \mathcal{D}, L^{2}_{\mathsf{P}}(\Omega)) \Rightarrow \mathsf{KL} \text{ expansion}$$

 $\operatorname{Bi}(x,\omega) = \mathsf{E}_{\mathsf{P}}(\operatorname{Bi})(x) + \sum_{k=1}^{\mathcal{K}} \sqrt{\tilde{\lambda}_{k}} \Phi_{k}(x) Z_{k}(\omega) .$ (5)

イロン イヨン イヨン イヨン

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1. Proposition: Hilbert-Schmidt for (compact) autocovariance

$$\mathsf{Cov}_{\mathsf{P}}(\mathrm{Bi})(x, y) = \int_{\Omega} (\mathrm{Bi}(\omega) - \mathsf{E}_{\mathsf{P}}(\mathrm{Bi}))_{x} (\mathrm{Bi}(\omega) - \mathsf{E}_{\mathsf{P}}(\mathrm{Bi}))_{y} d\mathsf{P}$$

 \rightarrow complete orthonormal basis $\{\Phi_k(x); k > 0\}$ of $L^2(\partial D) \ni f$

$$\int_{\partial \mathcal{D}} \mathbf{Cov_P} (\mathrm{Bi}) (x, y) f(y) \, dy = \sum_k \tilde{\lambda}_k \left(\int_{\partial \mathcal{D}} \Phi_k(y) f(y) \, dy \right) \Phi_k(x) \, ,$$

 \rightarrow decorrelated random variables $\mathsf{E}_{\mathsf{P}}\left(Z_k\right)=0,\;\mathsf{Var}_{\mathsf{P}}\left(Z_k\right)=1$ in $L^2_{\mathsf{P}}(\Omega)$

$$Z_k(\omega) = rac{1}{\sqrt{ ilde{\lambda}_k}} \int_{\partial \mathcal{D}} \left(\mathrm{Bi} - \mathsf{E}_{\mathsf{P}}\left(\mathrm{Bi}
ight) \right) \, \Phi_k, \qquad orall \, 1 \leq k \leq \mathcal{K} \; .$$

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1.
$$\operatorname{Bi}(x,\omega) \in L^2(\partial \mathcal{D}, L^2_{\mathbf{P}}(\Omega))$$

For practice, rescaling

$$\overline{\mathrm{Bi}} := \frac{1}{|\Gamma_{B}|} \int_{\Gamma_{B}} \mathbf{E}_{\mathbf{P}} (\mathrm{Bi}), \Upsilon := \frac{1}{\overline{\mathrm{Bi}}} \sqrt{\int_{\partial \mathcal{D}} \mathsf{Var}_{\mathbf{P}} (\mathrm{Bi})}, \sqrt{\lambda_{k}} := \frac{\sqrt{\tilde{\lambda}_{k}}}{\overline{\mathrm{Bi}} \Upsilon}$$
so

$$\operatorname{Bi}(x,\omega) = \overline{\operatorname{Bi}}\left(G(x) + \Upsilon \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_k} \,\Phi_k(x) \, Z_k(\omega)\right) \ . \tag{5}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1.
$$\operatorname{Bi}(x,\omega) = \overline{\operatorname{Bi}}(G(x) + \Upsilon \sum_k \sqrt{\lambda_k} \Phi_k(x) Z_k(\omega))$$

2. $\operatorname{Bi} \in (\overline{b}_{\min}, \overline{b}_{\max})$ a.e. in $\Gamma_{\mathrm{B}} \times \Omega$ ($0 < \overline{b}_{\min} < \overline{b}_{\max} < +\infty$), so
 $\operatorname{Bi}, \operatorname{Bi}^{-1} \in L^{\infty}(\Gamma_{\mathrm{B}}, L^{\infty}_{\mathbf{P}}(\Omega))$;

イロン イヨン イヨン イヨン

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1.
$$\operatorname{Bi}(x,\omega) = \overline{\operatorname{Bi}}(G(x) + \Upsilon \sum_{k} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega))$$

2. $\operatorname{Bi} \in (\overline{b}_{\min}, \overline{b}_{\max})$ a.e. $\operatorname{in} \Gamma_{\mathrm{B}} \times \Omega \ (0 < \overline{b}_{\min} < \overline{b}_{\max} < +\infty)$, so
 $\operatorname{Bi}, \operatorname{Bi}^{-1} \in L^{\infty} (\Gamma_{\mathrm{B}}, L^{\infty}_{\mathsf{P}}(\Omega))$;
3. (H1a) $\|\Phi_{k}\|_{L^{\infty}(\Gamma_{\mathrm{B}})} \leq \phi$ (H1b) $\sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} < \infty$,
and (H2) $\{Z_{k}; |Z_{k}(\omega)| < \sqrt{3}, \operatorname{P-a.s.}\}$ so
 $\|\operatorname{Bi}(x,\omega) - \operatorname{Bi}_{\mathcal{K}}(x,\omega)\|_{L^{\infty}(\Gamma_{\mathrm{B}}, L^{\infty}_{\mathsf{P}}(\Omega))} \xrightarrow{\mathcal{K} \to \mathcal{K}} 0$, (5)

イロン イヨン イヨン イヨン

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Random Input Field $Bi(x, \omega)$

1.
$$\operatorname{Bi}(x,\omega) = \overline{\operatorname{Bi}}(G(x) + \Upsilon \sum_{k} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega))$$

2. $\operatorname{Bi} \in (\overline{b}_{\min}, \overline{b}_{\max})$ a.e. $\operatorname{in} \Gamma_{\mathrm{B}} \times \Omega (0 < \overline{b}_{\min} < \overline{b}_{\max} < +\infty)$, so
 $\operatorname{Bi}, \operatorname{Bi}^{-1} \in L^{\infty}(\Gamma_{\mathrm{B}}, L^{\infty}_{\mathbf{P}}(\Omega))$;
3. (H1a) $\|\Phi_{k}\|_{L^{\infty}(\Gamma_{\mathrm{B}})} \leq \phi$ (H1b) $\sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} < \infty$,
and (H2) $\{Z_{k}; |Z_{k}(\omega)| < \sqrt{3}, \mathbf{P}\text{-a.s.}\}$ so
 $\|\operatorname{Bi}(x,\omega) - \operatorname{Bi}_{\mathcal{K}}(x,\omega)\|_{L^{\infty}(\Gamma_{\mathrm{B}}, L^{\infty}_{\mathbf{P}}(\Omega))} \xrightarrow{\mathcal{K} \to \mathcal{K}} 0$, (5)
4. (H3) *independent* random variables $\{Z_{k}\}$,

4. (H3) independent random variables
$$\{Z_k\}$$
,
(H4) $Z_k \sim \mathcal{U}(-\sqrt{3}, \sqrt{3})$, $\forall k$ and (H5) Υ bounded above so
 $\exists \bar{b}_{min} > 0 / \forall 1 \leq K \leq \mathcal{K}, \ \mathrm{Bi}_K \geq \bar{b}_{min} > 0$ a.e. in $\mathcal{D} \times \Omega$. (6)

イロン イヨン イヨン イヨン

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters : Overview Motivation – Model Problem Computation Strategy

Technical Details

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Numerical results

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Offline: parameters selection

Offline parameter selection in a trial sample $y^{\kappa} \in \Lambda \subset \text{Range}(y^{\kappa})$ \longrightarrow Greedy procedure (moderate cost):

Step $n = 1 \dots N - 1$, $\{y_i^K \in \Lambda | i = 1 \dots n\}$ already selected: ▶ compute RB approximations $\forall y^K \in \Lambda$ $u_{n,K}(\cdot; y^{K}) = \sum_{i=1}^{n} \alpha_{i}(y^{K}) u_{K}(\cdot; y_{i}^{K})$ • choose new selection $y_{n+1}^K \in \Lambda$ in $\operatorname{argmax} \| \boldsymbol{s}_{\boldsymbol{n} \boldsymbol{K}} - \boldsymbol{s}_{\boldsymbol{K}} \|$ Rk: alternative = POD (more expensive, not hierarchical)

イロト イポト イヨト イヨト

Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

A posteriori bounds for outputs

(RB) Approximation error $||s_{N,K} - s_K||$ \longrightarrow A posteriori estimation (between reduced $u_{N,K}$ and very accurate – FE – $\simeq u_K$) \rightarrow dual norm of the residual error $u_K - u_{N,K}$ +(KL) Approximation error for output s after truncation \longrightarrow A posteriori estimation (between the very accurate – FE – $\simeq u_{\kappa}$ and $\simeq u$) $\longrightarrow \|\mathrm{Bi} - \mathrm{Bi}_{\mathcal{K}}\|_{l^{\infty}}$ bounded Rk: (moderate cost of) online dual norm \leftarrow precomputed (linear PDE) Riesz representant (Hilbert)

Gaussian covariance kernel for Bi with correlation length δ

$$(\overline{\mathrm{Bi}}\Upsilon)^2 e^{-rac{(x-y)^2}{\delta^2}}$$

(decrease rates of spectrum faster when δ larger) $\delta = 0.5$ and $K \le 25 \rightarrow \Upsilon \le 0.058$ and N = 18 $\delta = 0.2$ and $K \le 60 \rightarrow \Upsilon \le 0.074$ and N = 32(greedy stops when maximal error bound is less than 10^{-3})

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Figure: Expected value $E_M[s_{N,K}]$ and variance $V_M[s_{N,K}]$ w.r.t. M ($\kappa = 2.0$ and $\overline{\text{Bi}} = 0.5$).

< E

Reduced-Basis for PDEs with Stochastic Parameters : Overvie Technical Details Numerical results

Figure: Global error bounds for (a) $\mathbf{E}_{\mathbf{P}}(S)$ and (b) $\mathbf{Var}_{\mathbf{P}}(S)$ w.r.t. N and K ($\kappa = 2.0$ and $\overline{\mathrm{Bi}} = 0.5$).

→ ∃ →

< A

Figure: Error bounds for $\mathbf{E}_{\mathbf{P}}(S)$ due to (a) approximation in $H^1(\mathcal{D})$ and (b) KL truncation w.r.t. N and K ($\kappa = 2.0$ and $\overline{\mathrm{Bi}} = 0.5$).

• • = •

Figure: Error bounds for $\operatorname{Var}_{\mathbf{P}}(S)$ due to (a) approximation in $H^1(\mathcal{D})$ and (b) KL truncation w.r.t. N and K ($\kappa = 2.0$ and $\overline{\operatorname{Bi}} = 0.5$).

• • = •

< A

Perspectives:

- generalization of the method (random input fields)
- combination with pseudospectral Galerkin method of [Babuška, Nobile, Tempone]

Acknowledgements: thanks to coworkers and G. Rozza (EPFL)

INRIA technical report (2008)RR - 6617 (submitted for publication) url: http://hal.inria.fr/inria-00311463/fr/

・ 同 ト ・ ヨ ト ・ ヨ ト ・