Reduced Basis Approach for PDEs with Stochastic Parameters: Heat Conduction with Variable Robin Coefficient

Sébastien Boyaval ${ }^{1,2}$, Claude Le Bris ${ }^{1,2}$,

Yvon Maday ${ }^{3,4}$, Ngoc Cuong Nguyen ${ }^{5}$ and Anthony T. Patera ${ }^{5}$
${ }^{1}$ CERMICS, Ecole des Ponts Paristech (Univ. Paris-Est), Marne-la-Vallée ${ }^{2}$ MICMAC team-project, INRIA, Rocquencourt, France
${ }^{3}$ UPMC Univ Paris 06, Laboratoire J.-L. Lions, Paris, France
${ }^{4}$ Div. of Applied Mathematics, Brown University, Providence, USA
${ }^{5}$ MIT, Dept. of Mechanical Engineering, Cambridge, USA

Groupe de recherche MASCOT - IHP, Paris, 2009

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters: Overview Motivation - Model Problem

Computation Strategy

Technical Details
Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Numerical results

Reduced-Basis (RB) [1] (= output-oriented model reduction) for Boundary Value Problems (BVP) with stochastic parameters $\mu(\omega)$:

- Partial Differential Equation (PDE: operator A, functions U, f)

$$
A(\mu(\omega)) U(\mu(\omega))=f(\mu(\omega)) \text { in } \mathcal{D},
$$

- Boudary Condition (BC: operator B, trace of U, function g)

$$
B(\mu(\omega)) U(\mu(\omega))=g(\mu(\omega)) \text { in } \partial \mathcal{D} .
$$

- Multiscale model [2]: macro U influenced by micro $\mu(\omega)$.
[1] C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera, and G.
Turinici. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. JFE, 124(1):7-80, 2002.
[2] S. Boyaval. Reduced-basis approach for homogenization beyond the periodic setting. SIAM MMS, 7(1):466-494, 2008.

Model Problem with Stochastic Parameters

Laplace equation for $U(x, \omega) \in H^{1}(\mathcal{D})$, \forall a.e. $\omega \in(\Omega, \mathcal{F}, \mathbf{P})$:

$$
\begin{equation*}
-\operatorname{div}(a(x) \nabla U(x, \omega))=0, \forall \text { a.e. } x \in \mathcal{D} \tag{1}
\end{equation*}
$$

with stochastic Robin $B C$ (flux $g \in L^{2}(\partial \mathcal{D})$ given):

$$
\begin{equation*}
\boldsymbol{n}(x)^{\mathrm{T}} \boldsymbol{a}(x) \nabla U(x, \omega)+\operatorname{Bi}(x, \omega) U(x, \omega)=g(x), \forall \text { a.e. } x \in \partial \mathcal{D} \tag{2}
\end{equation*}
$$

parametrized by random input field $\operatorname{Bi}(x, \omega) \in L^{\infty}(\partial \mathcal{D})>0$. Random output field: $S(\omega):=\mathcal{E}(U(\cdot, \omega))=\int_{\Gamma_{\mathrm{R}}} U(\cdot, \omega)$

$$
\begin{gathered}
\mathbf{E}_{\mathbf{P}}(S(\omega))=\int_{\Omega} S(\omega) d \mathbf{P}(\omega) \\
\operatorname{Var}_{\mathbf{P}}(S(\omega))=\int_{\Omega} S(\omega)^{2} d \mathbf{P}(\omega)-\mathbf{E}_{\mathbf{P}}(S)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \boldsymbol{a}(x)=\left[\begin{array}{cc}
\kappa(x) & 0 \\
0 & \kappa(x)
\end{array}\right], \quad \kappa(x)=1_{\mathcal{D}_{1}}+\kappa 1_{\mathcal{D}_{2}}, \quad \forall x \in \mathcal{D} . \\
& g(x)=1_{\Gamma_{\mathrm{R}}}, \operatorname{Bi}(x, \omega)=\operatorname{Bi}(x, \omega) 1_{\Gamma_{\mathrm{B}}}, \quad \forall x \in \partial \mathcal{D} \subset\left(\overline{\Gamma_{\mathrm{N}}} \cup \overline{\Gamma_{\mathrm{R}}} \cup \overline{\Gamma_{\mathrm{B}}}\right)
\end{aligned}
$$

S. Boyaval

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters: Overview Motivation - Model Problem

Computation Strategy

Technical Details
Assumptions on the Random Input Field Bi RB for BVP with Deterministic Parameters

Numerical results

Reformulation of the Problem

1. Karhunen-Loève (KL) expansion of random input $\operatorname{Bi}(x, \omega)$

$$
\operatorname{Bi}(x, \omega)=\mathbf{E}_{\mathbf{P}}(\mathrm{Bi})(x)+\widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)
$$

Reformulation of the Problem

1. Karhunen-Loève (KL) expansion of random input $\operatorname{Bi}(x, \omega)$

$$
\operatorname{Bi}(x, \omega)=\mathrm{E}_{\mathbf{P}}(\mathrm{Bi})(x)+\widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)
$$

- $\mathcal{K}=$ rank (possibly ∞) of covariance operator for $\operatorname{Bi}(x, \omega)$,
- with eigenpairs $\left(\left(\widetilde{\Upsilon}^{2} \lambda_{k}\right), \Phi_{k}(x)\right)_{1 \leq k \leq \mathcal{K}}$,
- $\left(Z_{k}(\omega)\right)_{1 \leq k \leq \mathcal{K}}=$ mutually uncorrelated $L_{\mathrm{P}}^{2}(\Omega)$ random variables,
- $\widetilde{\Upsilon}=$ positive amplitude parameter.

Reformulation of the Problem

1. Karhunen-Loève (KL) expansion of random input $\operatorname{Bi}(x, \omega)$

$$
\operatorname{Bi}(x, \omega)=\mathrm{E}_{\mathbf{P}}(\mathrm{Bi})(x)+\widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)
$$

2. Truncation of $\operatorname{Bi}(x, \omega)$ up to order $K \leq \mathcal{K}: \operatorname{Bi}_{K}(x, \omega)$, $\longrightarrow \operatorname{Bi}_{K}(x, \omega)$ instead of $\operatorname{Bi}(x, \omega)$ in (1)-(2) $\longrightarrow U_{K}(x, \omega)$ solution to new BVP

Reformulation of the Problem

1. Karhunen-Loève (KL) expansion of random input $\operatorname{Bi}(x, \omega)$

$$
\operatorname{Bi}(x, \omega)=\mathrm{E}_{\mathbf{P}}(\mathrm{Bi})(x)+\widetilde{\Upsilon} \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)
$$

2. Truncation of $\operatorname{Bi}(x, \omega)$ up to order $K \leq \mathcal{K}: \operatorname{Bi}_{K}(x, \omega)$, $\longrightarrow U_{K}(x, \omega)$ solution to new BVP
3. $U_{K}(x, \omega) \sim u_{K}\left(x ; y^{K}(\omega)\right), u_{K}\left(x ; y^{K}\right)$ solves deterministic BVP

$$
\begin{equation*}
-\operatorname{div}\left(a(x) \nabla u_{K}\left(x ; y^{K}\right)\right)=0 \text { in } \mathcal{D} \tag{3}
\end{equation*}
$$

$\boldsymbol{n}(x)^{\mathrm{T}} \boldsymbol{a}(x) \nabla u_{K}\left(x ; y^{K}\right)+\operatorname{Bi}_{K}\left(x ; y^{K}\right) u_{K}\left(x ; y^{K}\right)=g(x)$ on $\partial \mathcal{D}$

+ parameter with law $y^{K}:=\left(y_{1}, \ldots, y_{K}\right) \sim \widetilde{\Upsilon} \sqrt{\lambda_{k}}\left(Z_{k}(\omega)\right)_{1 \leq k \leq K}$.

Computation of statistical outputs

Monte-Carlo (MC) for (many) realizations $\left(S^{m}\right)_{1 \leq m \leq M} ; M \gg 1$

$$
E_{M}\left[S_{K}\right]=\sum_{m=1}^{M} \frac{S_{K}^{m}}{M} \quad V_{M}\left[S_{K}\right]=\sum_{m=1}^{M} \frac{\left(E_{M}\left[S_{K}\right]-S_{K}^{m}\right)^{2}}{M-1}
$$

\hookrightarrow

$$
E_{M}\left[s_{K}\right]=\sum_{m=1}^{M} \frac{s_{K}\left(y_{m}^{K}\right)}{M} \quad V_{M}\left[s_{K}\right]=\sum_{m=1}^{M} \frac{\left(E_{M}\left[s_{K}\right]-s_{K}\left(y_{m}^{K}\right)\right)^{2}}{M-1}
$$

where
$\forall y^{K}, s_{K}\left(y^{K}\right)=\mathcal{E}\left(u_{K}\left(\cdot ; y^{K}\right)\right) \Leftarrow$ deterministic parametrized BVP

Computation of statistical outputs

Monte-Carlo (MC) for (many) realizations $\left(S^{m}\right)_{1 \leq m \leq M} ; M \gg 1$

$$
E_{M}\left[S_{K}\right]=\sum_{m=1}^{M} \frac{S_{K}^{m}}{M} \quad V_{M}\left[S_{K}\right]=\sum_{m=1}^{M} \frac{\left(E_{M}\left[S_{K}\right]-S_{K}^{m}\right)^{2}}{M-1}
$$

\hookrightarrow

$$
E_{M}\left[s_{K}\right]=\sum_{m=1}^{M} \frac{s_{K}\left(y_{m}^{K}\right)}{M} \quad V_{M}\left[s_{K}\right]=\sum_{m=1}^{M} \frac{\left(E_{M}\left[s_{K}\right]-s_{K}\left(y_{m}^{K}\right)\right)^{2}}{M-1}
$$

where
$\Downarrow R B$
$\forall y^{K}, s_{K}\left(y^{K}\right)=\mathcal{E}\left(u_{K}\left(\cdot ; y^{K}\right)\right) \Leftarrow$ deterministic parametrized BVP

The Reduced-Basis with output bounds method

1. Offline: compute reduced basis $\left\{u_{K}\left(\cdot ; y_{n}^{K}\right), n=1 \ldots N\right\}$ for manifold $\left\{u_{K}\left(\cdot ; y^{K}\right) \mid y^{K} \in \operatorname{Range}\left(y^{K}\right)\right\}$
\longrightarrow selection of parameters $y_{n}^{K} \in \operatorname{Range}\left(y^{K}\right)$
in a trial sample of parameters (Greedy procedure).
2. Online: compute reduced-basis approximations for any $y^{K} \in \operatorname{Range}\left(y^{K}\right)$
in vector space $\operatorname{Span}\left(u_{K}\left(\cdot ; y_{n}^{K}\right), n=1 \ldots N\right)$

$$
u_{K}\left(\cdot ; y^{K}\right) \simeq u_{N, K}\left(\cdot ; y^{K}\right)=\sum_{n=1}^{N} \alpha_{n}\left(y^{K}\right) u_{K}\left(\cdot ; y_{n}^{K}\right)
$$

\longrightarrow coefficients $\alpha_{n}\left(y^{K}\right)$ minimize an approximation error in $L^{2}(\partial \mathcal{D})$.
Rk: parameters y_{n}^{K} maximize the upper bound for output error.

Benefits of the Reduced-Basis approach

- MC time computation $\searrow\left(\mathrm{RB}=\frac{1}{50}\right.$ Finite elem. $\left.-\mathrm{FE}-\right)$ \Uparrow precomputed reduced basis for $\left\{u_{K}\left(\cdot ; y^{K}\right)\right\}$
- no (sensible) loss of accuracy $\left(\left|E_{M}\left[s_{K}\right]-E_{M}\left[s_{N, K}\right]\right| \leq 0.1 \%\left|E_{M}\left[s_{N, K}\right]\right|\right.$ and $\left.\Delta V_{M} \leq 20 \%\right)$ \Uparrow a posteriori bounds for PDE output s_{K}
- + dependence on additional parameters $\varrho\left(\neq y^{K}\right)$, then RB time computation $=\frac{1}{200}$ FE with $\varrho=(\kappa, \overline{\mathrm{Bi}})$

$$
\overline{\mathrm{Bi}}:=\frac{1}{\left|\Gamma_{\mathrm{B}}\right|} \int_{\Gamma_{\mathrm{B}}} \mathrm{E}_{\mathrm{P}}(\mathrm{Bi}) .
$$

\Uparrow reduced basis for larger manifold $u_{K}\left(\cdot ; \varrho, y^{K}\right)$

Relation to Prior Work

Two (expensive) computational approaches:

1. ω-strong

- simulate probability law $y^{K}(\omega)$ (low-discrepency sequences),
- compute $x \rightarrow u_{K}\left(x ; y^{K}(\omega)\right)$ solution to BVP (FE),
- large MC evaluations for moments of
$U_{K}(x, \omega) \sim u_{K}\left(x ; y^{K}(\omega)\right)$
(slow - statistical - convergence).

2. ω-weak

- compute $\left(x, y^{K}\right) \rightarrow u_{K}\left(x ; y^{K}\right)$ sol. to high-dimensional BVP (x: nodal - FE - basis, y^{K} : spectral - PC - basis [Ghanem-Spanos]),
- compute moments of $U_{K}(x, \omega) \sim u_{K}\left(x ; y^{K}(\omega)\right)$ through integral weighted with density of $y^{K}(\omega)$ (- absolutely continuous - w.r.t. Lebesgue measure on R^{K}).

Relation to Prior Work

Many reduction attempts:

- [Schwab, Todor, Frauenfelder ; Wan, Karniadakis] sparse/adaptive spectral basis for y^{K}
- [Babuška, Nobile, Tempone, Webster] collocation points in $y^{K} \Rightarrow$ (sparse) - pseudospectral orthogonal polynomials
- [Matthies, Keese]

Krylov iterative method (parallel computers)

- [Nair, Keane, Sachdeva]

Krylov iterative method (reduced subspace)

- [Nouy, Le Maître]
generalized spectral decomposition

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters: Overview Motivation - Model Problem Computation Strategy

Technical Details
Assumptions on the Random Input Field Bi
RB for BVP with Deterministic Parameters

Numerical results
S. Boyaval Reduced-Basis Approach of Uncertainties in PDEs

Random Input Field $\operatorname{Bi}(x, \omega)$

1. $\operatorname{Bi}(x, \omega) \in L^{2}\left(\partial \mathcal{D}, L_{\mathbf{P}}^{2}(\Omega)\right)$

Random Input Field $\operatorname{Bi}(x, \omega)$

1. $\operatorname{Bi}(x, \omega) \in L^{2}\left(\partial \mathcal{D}, L_{\mathbf{P}}^{2}(\Omega)\right) \Rightarrow \mathrm{KL}$ expansion

$$
\begin{equation*}
\operatorname{Bi}(x, \omega)=\mathbf{E}_{\mathbf{P}}(\mathrm{Bi})(x)+\sum_{k=1}^{\mathcal{K}} \sqrt{\tilde{\lambda}_{k}} \Phi_{k}(x) Z_{k}(\omega) \tag{5}
\end{equation*}
$$

Random Input Field $\operatorname{Bi}(x, \omega)$

1. Proposition: Hilbert-Schmidt for (compact) autocovariance $\operatorname{Cov}_{\mathbf{P}}(\mathrm{Bi})(x, y)=\int_{\Omega}\left(\operatorname{Bi}(\omega)-\mathbf{E}_{\mathbf{P}}(\operatorname{Bi})\right)_{x}\left(\operatorname{Bi}(\omega)-\mathbf{E}_{\mathbf{P}}(\mathrm{Bi})\right)_{y} d \mathbf{P}$.
\rightarrow complete orthonormal basis $\left\{\Phi_{k}(x) ; k>0\right\}$ of $L^{2}(\partial \mathcal{D}) \ni f$
$\int_{\partial \mathcal{D}} \operatorname{Cov}_{\mathbf{P}}(\operatorname{Bi})(x, y) f(y) d y=\sum_{k} \tilde{\lambda}_{k}\left(\int_{\partial \mathcal{D}} \Phi_{k}(y) f(y) d y\right) \Phi_{k}(x)$,
\rightarrow decorrelated random variables $\mathbf{E}_{\mathbf{P}}\left(Z_{k}\right)=0, \operatorname{Var}_{\mathbf{P}}\left(Z_{k}\right)=1$ in $L_{\mathbf{p}}^{2}(\Omega)$

$$
Z_{k}(\omega)=\frac{1}{\sqrt{\tilde{\lambda}_{k}}} \int_{\partial \mathcal{D}}\left(\mathrm{Bi}-\mathrm{E}_{\mathbf{P}}(\mathrm{Bi})\right) \Phi_{k}, \quad \forall 1 \leq k \leq \mathcal{K}
$$

S. Boyaval Reduced-Basis Approach of Uncertainties in PDEs

Random Input Field $\operatorname{Bi}(x, \omega)$

$$
\text { 1. } \operatorname{Bi}(x, \omega) \in L^{2}\left(\partial \mathcal{D}, L_{\mathrm{p}}^{2}(\Omega)\right)
$$

For practice, rescaling

$$
\overline{\mathrm{Bi}}:=\frac{1}{\left|\Gamma_{B}\right|} \int_{\Gamma_{B}} \mathrm{E}_{\mathrm{P}}(\mathrm{Bi}), \Upsilon:=\frac{1}{\overline{\mathrm{Bi}}} \sqrt{\int_{\partial \mathcal{D}} \operatorname{Var}_{\mathrm{P}}(\mathrm{Bi})}, \sqrt{\lambda_{k}}:=\frac{\sqrt{\tilde{\lambda}_{k}}}{\overline{\mathrm{Bi}} \Upsilon}
$$

so

$$
\begin{equation*}
\operatorname{Bi}(x, \omega)=\overline{\operatorname{Bi}}\left(G(x)+\Upsilon \sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)\right) . \tag{5}
\end{equation*}
$$

Random Input Field $\operatorname{Bi}(x, \omega)$

1. $\operatorname{Bi}(x, \omega)=\overline{\operatorname{Bi}}\left(G(x)+\Upsilon \sum_{k} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)\right)$
2. $\mathrm{Bi} \in\left(\bar{b}_{\min }, \bar{b}_{\max }\right)$ a.e. in $\Gamma_{\mathrm{B}} \times \Omega\left(0<\bar{b}_{\min }<\bar{b}_{\max }<+\infty\right)$, so

$$
\mathrm{Bi}, \mathrm{Bi}^{-1} \in L^{\infty}\left(\Gamma_{\mathrm{B}}, L_{\mathrm{P}}^{\infty}(\Omega)\right) ;
$$

Random Input Field $\operatorname{Bi}(x, \omega)$

1. $\operatorname{Bi}(x, \omega)=\overline{\operatorname{Bi}}\left(G(x)+\Upsilon \sum_{k} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)\right)$
2. $\mathrm{Bi} \in\left(\bar{b}_{\min }, \bar{b}_{\max }\right)$ a.e. in $\Gamma_{\mathrm{B}} \times \Omega\left(0<\bar{b}_{\text {min }}<\bar{b}_{\text {max }}<+\infty\right)$, so

$$
\mathrm{Bi}, \mathrm{Bi}^{-1} \in L^{\infty}\left(\Gamma_{\mathrm{B}}, L_{\mathbf{P}}^{\infty}(\Omega)\right) ;
$$

3. (H1a) $\left\|\Phi_{k}\right\|_{L^{\infty}\left(\Gamma_{\mathrm{B}}\right)} \leq \phi \quad$ (H1b) $\sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}}<\infty$, and (H2) $\left\{Z_{k} ;\left|Z_{k}(\omega)\right|<\sqrt{3}\right.$, P-a.s. $\}$ so

$$
\begin{equation*}
\left\|\operatorname{Bi}(x, \omega)-\operatorname{Bi}_{K}(x, \omega)\right\|_{L^{\infty}\left(\Gamma_{\mathrm{B}}, L_{\mathrm{P}}^{\infty}(\Omega)\right)} \xrightarrow{K \rightarrow \mathcal{K}} 0, \tag{5}
\end{equation*}
$$

Random Input Field $\operatorname{Bi}(x, \omega)$

1. $\operatorname{Bi}(x, \omega)=\overline{\operatorname{Bi}}\left(G(x)+\Upsilon \sum_{k} \sqrt{\lambda_{k}} \Phi_{k}(x) Z_{k}(\omega)\right)$
2. $\mathrm{Bi} \in\left(\bar{b}_{\text {min }}, \bar{b}_{\text {max }}\right)$ a.e. in $\Gamma_{\mathrm{B}} \times \Omega\left(0<\bar{b}_{\text {min }}<\bar{b}_{\text {max }}<+\infty\right)$, so

$$
\mathrm{Bi}, \mathrm{Bi}^{-1} \in L^{\infty}\left(\Gamma_{\mathrm{B}}, L_{\mathrm{P}}^{\infty}(\Omega)\right) ;
$$

3. $(\mathrm{H} 1 \mathrm{a})\left\|\Phi_{k}\right\|_{L^{\infty}\left(\Gamma_{\mathrm{B}}\right)} \leq \phi \quad$ (H1b) $\sum_{k=1}^{\mathcal{K}} \sqrt{\lambda_{k}}<\infty$, and (H2) $\left\{Z_{k} ;\left|Z_{k}(\omega)\right|<\sqrt{3}\right.$, P-a.s. $\}$ so

$$
\begin{equation*}
\left\|\operatorname{Bi}(x, \omega)-\operatorname{Bi}_{K}(x, \omega)\right\|_{L^{\infty}\left(\Gamma_{\mathrm{B}}, L_{P}^{\infty}(\Omega)\right)} \xrightarrow{K \rightarrow \mathcal{K}} 0, \tag{5}
\end{equation*}
$$

4. (H3) independent random variables $\left\{Z_{k}\right\}$, (H4) $Z_{k} \sim \mathcal{U}(-\sqrt{3}, \sqrt{3}), \forall k$ and (H5) Υ bounded above so

$$
\begin{equation*}
\exists \bar{b}_{\min }>0 / \forall 1 \leq K \leq \mathcal{K}, \mathrm{Bi}_{K} \geq \bar{b}_{\text {min }}>0 \text { a.e. in } \mathcal{D} \times \Omega . \tag{6}
\end{equation*}
$$

Outline of the talk

Reduced-Basis for PDEs with Stochastic Parameters: Overview Motivation - Model Problem
 Computation Strategy

Technical Details
Assumptions on the Random Input Field Bi
RB for BVP with Deterministic Parameters

Numerical results

Offline: parameters selection

Offline parameter selection in a trial sample $y^{K} \in \Lambda \subset \operatorname{Range}\left(y^{K}\right)$ \longrightarrow Greedy procedure (moderate cost):
Step $n=1 \ldots N-1,\left\{y_{i}^{K} \in \Lambda \mid i=1 \ldots n\right\}$ already selected:

- compute RB approximations $\forall y^{K} \in \Lambda$

$$
u_{n, K}\left(\cdot ; y^{K}\right)=\sum_{i=1}^{n} \alpha_{i}\left(y^{K}\right) u_{K}\left(\cdot ; y_{i}^{K}\right)
$$

- choose new selection $y_{n+1}^{K} \in \Lambda$ in

$$
\operatorname{argmax}\left\|s_{n, K}-s_{K}\right\|
$$

Rk: alternative $=$ POD (more expensive, not hierarchical)

A posteriori bounds for outputs

(RB) Approximation error $\left\|s_{N, K}-s_{K}\right\|$
\longrightarrow A posteriori estimation
(between reduced $u_{N, K}$ and very accurate $-\mathrm{FE}-\simeq u_{K}$)
\longrightarrow dual norm of the residual error $u_{K}-u_{N, K}$
$+$
(KL) Approximation error for output s after truncation
\longrightarrow A posteriori estimation
(between the very accurate $-\mathrm{FE}-\simeq u_{K}$ and $\simeq u$)
$\longrightarrow\left\|\mathrm{Bi}-\mathrm{Bi}_{K}\right\|_{L^{\infty}}$ bounded
Rk: (moderate cost of) online dual norm \leftarrow precomputed (linear PDE) Riesz representant (Hilbert)

Gaussian covariance kernel for Bi with correlation length δ

$$
(\overline{\mathrm{Bi}} \Upsilon)^{2} e^{-\frac{(x-y)^{2}}{\delta^{2}}}
$$

(decrease rates of spectrum faster when δ larger)
$\delta=0.5$ and $K \leq 25 \rightarrow \Upsilon \leq 0.058$ and $N=18$
$\delta=0.2$ and $K \leq 60 \rightarrow \Upsilon \leq 0.074$ and $N=32$
(greedy stops when maximal error bound is less than 10^{-3})

(a) Expected value

(b) Variance

Figure: Expected value $E_{M}\left[s_{N, K}\right]$ and variance $V_{M}\left[s_{N, K}\right]$ w.r.t. M ($\kappa=2.0$ and $\overline{\mathrm{Bi}}=0.5$).

(b)

Figure: Global error bounds for (a) $\mathbf{E}_{\mathbf{p}}(S)$ and (b) $\operatorname{Var}_{\mathbf{p}}(S)$ w.r.t. N and $K \quad(\kappa=2.0$ and $\overline{\mathrm{Bi}}=0.5)$.

Figure: Error bounds for $\mathbf{E}_{\mathbf{p}}(S)$ due to (a) approximation in $H^{1}(\mathcal{D})$ and (b) KL truncation w.r.t. N and $K \quad(\kappa=2.0$ and $\overline{\mathrm{Bi}}=0.5)$.

(a)

(b)

Figure: Error bounds for $\operatorname{Var}_{P}(S)$ due to (a) approximation in $H^{1}(\mathcal{D})$ and (b) KL truncation w.r.t. N and $K \quad(\kappa=2.0$ and $\overline{\mathrm{Bi}}=0.5)$.

Perspectives:

- generalization of the method (random input fields)
- combination with pseudospectral Galerkin method of [Babuška, Nobile, Tempone]

Acknowledgements: thanks to coworkers and G. Rozza (EPFL)

INRIA technical report (2008)RR - 6617
(submitted for publication)
url: http://hal.inria.fr/inria-00311463/fr/

