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Motivation and approach



Introduction

Facts:

Deep Neural Networks are accurate on average, and their predictions are
usually right.

At the individual data-point level, what is the confidence of the model in its
own prediction ?

Consequences:

Deep models are currently deployed in scenarios where making mistakes is
cheap.

For critical uses-cases, we need to develop systems that are able to say “I
don’t know”.
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Introduction

This work is part of a vast movement in academic/industrial research looking
for a more robust AL
Focus on classification tasks.

i} Difference with interpretability methods: we are looking for a confidence
score associated to a prediction that enables to quickly identify problematic

inputs.
Main goal is to automate decision making while providing strong risk
guarantees.
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Bayesian framework ?

A principled approach to do probabilistic inference [HvC93, Nea96, BB98].

But, at the scale of modern deep neural networks, Bayesian methods face
serious computational issues [GG16, LPB17].

A recent article, [WRV120], examines Bayesien posteriors in Deep Neural
Networks.
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A last layer approach

Basic idea:

train end-to-end a deep classifier on input-output pairs (z, y) to obtain an
accurate task-dependent representation z of the data,

fit an ensemble of models on (z, y). The simplicity of this new dataset allows
to compute explicit uncertainty estimates.

We explore four concrete instances of uncertainty algorithms based on
Stochastic Gradient Descent (SGD) [MHB17],
Stochastic Gradient Langevin Dynamics (SGLD) [WT11],
the Bootstrap, see Section 8.4 of [FHT01],
Monte Carlo Dropout [GG16].
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A last layer approach

Core idea has some connections with transfer learning
[YCBL14, RASC14, DJV*14].

By sequentially tackling two tasks (representation learning and uncertainty
quantification), these algorithms performed on the last layer of the neural
networks reduce the computational cost.

Main take-home message: there is limited value in adding multiple
uncertainty layers to high-level representations in deep classifiers.
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Be careful with softmax values

Correct class: chimpanzee, 0.9999.

Histograms of py,.x values given
by Stochastic Gradient Langevin
Dynamics (SGI.D) on top of a
pre-trained VGG-16 network on
CIFAR-100,

{maxy, p (k| z, 8;) 120
Chimpanzee image, average Virong class: worm (true: seal), 0.8985.
P = 0.9999. i
Seal image, wrongly classified as
a worm. Class is predicted with
a high average softmax |

(Prmax = 0.8985).
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Uncertainty metrics



Uncertainty metrics

Problem description



X is a feature space, Y = {1, ..., K} a finite label set with K > 2 classes.
Training dataset D = {z;, %}, € (X, )" of N points independently
distributed according to a pair of random variables (X,Y).

Test set: T = {xj, yi ;5.

Network parameters (weights and bias) are denoted by 0.

Network trained using variants of stochastic gradient descent with the
cross-entropy loss.

{p (k|x:,0)}1, is the output probability distribution over ) predicted by the
network.

The classifier fy : X — ) is generally obtained by taking the argmax,
Jo(z) = argmaxycqy ey p (klz,0) for z € X.
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Uncertainty metrics

Uncertainty metrics



Calibration

A model is calibrated if, on average over input points z € X, the predicted
distribution {p (k|z,)}+_, does match the true underlying distribution over
the K classes.

In most works, the authors focus on pyax (7, 0) = max,cqr, . xy p (klz,0)
matching only.

Modern neural networks are often miscalibrated. Simple methods exist to
alleviate this issue, such as temperature scaling, [GPSW17].

Calibrated neural networks are important for model interpretability.

They do not offer a systematic and automated way to neither improve
accuracy nor detect out-of-distribution samples.
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Selective classification

Selective classification, also known as abstention, is not restricted to deep
learning, [BW08, CDM16, GECd18].

A selective classifier is a pair (f,r) where f is a classifier,and r : X — {0,1} is
a selection function which serves as a binary qualifier for f.

The selective classifier abstains from prediction at a point x € X if r(x) = 0,
and outputs f(x) when r(z) = 1.
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Selective classification

The performance of a selective classifier can be quantified using the notions of
coverage and selective risk.

The coverage is defined as cov(r) = E [r(X)], whereas selective risk is given
by

E{Y # f(X)} r(X)]
E [r(X)] '

Their empirical estimations over the test set 7 are:

srisk(f,r) =

1 Ntest
COVingest (T) = T(xl) )
Thest ;=
sriskn,__ (f,1) = imtt Wy # f(wi)} r(wi)
Ntest ) Z;L;elst T(er) :
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Selective classification

A natural way to define a selection function r is by means of a confidence

function x : X — R which quantifies how much we trust the f(z) prediction
for input x.

The selection function  is then constructed by thresholding , i.e. given s € R,

forall z € X, we set r5(x) = 1 {x(x) > s}. We only classify z if its confidence
is at least s.

18/62 Uncertainties for classification tasks in DNN THALES



Selective classification

Let S be the set of all x values for those points in the test dataset 7,

S ={k(x),z € T}

The performance of confidence function x can be measured using the Area
Under the Risk-Coverage curve (AURC) computed over 7

AURC(f, k) =

SriSkntcst (f? 7‘5) .
TNtest €S

Better confidence functions lead to a faster decrease of the associated risk
when we decrease coverage, which results in a lower AURC.
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Selective classification
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Out-of-distribution detection

i Out-of-distribution detection = find out when a data point is not drawn from
i the training data distribution.

See the preprint for the results on this metric.
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Quick detour to Bayesian statistics

In the Bayesian framework, a major obstacle often encountered in practice is
to sample from the posterior distribution § — p (6|D).

Approximation using workarounds such as variational inference [W]08], or
Markov Chain Monte Carlo algorithms, see e.g. Chapter 11 of [GSC'13].

The predictive posterior distribution is defined by

p(ylr) = /@p(ylx,e)p(em) do .

In practise:

1 Nsamples

Nsamples ;7

p(ylz) =

where {0;}.*""'** are approximately drawn according to the posterior

distribution.
23/62 Uncertainties for classification tasks in DNN THALES



Softmax Response (SR)

SR(z) = maxyeq,.. iy p (k|z) where {p (k:|gc)},§:1 is the predictive posterior
distribution.

Estimation:
SR(@) = o, P (o)
7 Associated classifier: f(z) = argmaxycqy gy p (k|z) and empirical estimation
f(z) = argmaxycqy gy P (K[2).
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Standard deviation of the posterior distribution

Classifier fixed: f(x) = arg maxy p (k|z).
Standard deviation of the probability at f(z) under the posterior:

2

STD?(a) = [ p(f(w)la.6)* p(61D) 40 - ( L p(@la.6)p(6D) de)

Estimation:

——2 1 Nsamples N 9 1 Nsamples R 2

STD xTr) = p X xy 9 — p T x’ 0 ,
@ Msamples ;= (f( )’ 2) (nsamples ; (f( ) Z>>

{6;};=2m"'* are approximately drawn according to the posterior distribution.
Confidence function is defined as k(z) = — STD(z).
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Entropy of ¢

Probability distribution over the K classes defined as
a(kle) = [ 1{fo@) = £} p(O[D) do

where fy(z) = arg maXpe(1, . K} P (k|x,0)
Idea of ¢: measure the amount of posterior mass under which each class is
selected.

Estimation:

Msamples

Z 1{fo,(x) =k} .

q (k|z) =

Nsamples

Confidence is based on the entropy of {gq (k|x)}k:1: k(z) = —H(q (-]x)).
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Algorithms



Last layer approach

Goal: approximately draw samples from the posterior distribution

0 — p(0|D).

Core idea: explicitly disentangling representation learning and uncertainty
estimation.

D: classification training dataset. We train a standard deep neural network to
convergence using the cross entropy loss and a classical optimizer.

0* = the parameters of the trained network after convergence.

Z = vector space containing the input to the last layer of the trained neural
network.

Compute the last layer features z € Z from the inputs z € A’ by making a
forward pass through the trained network.
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Last layer approach

We produce a new training dataset R = {z;, v; } Z]\i , which should provide a
simpler representation of the data for the classification task.

Last layer of the network is a dense layer # with a softmax activation, i.e. for
6 = (W, )
{p (k|z,0)}_, = softmax (Wz +b) .

Uncertainty estimation is carried out on R via any algorithm that computes

confidence estimates. They all compute an ensemble of models {6, };=™"*.
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Stochastic Gradient Langevin Dynamics (SGLD)

Stochastic Gradient Langevin Dynamics (SGLD) is a Monte Carlo Markov
Chain (MCMC) algorithm [WT11], adapted from the Langevin algorithm
[RT96] to large-scale datasets.

by the Bayes’ rule, posterior distribution:

N

0 — p(0D) < p (0) [ p (vilz:, 0)
=1

where 6 — p (6) is a prior distribution on ¢ (Gaussian prior in practice).
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Stochastic Gradient Langevin Dynamics (SGLD)

Update equation of SGLD:

1 Vo 0 29
Ok+1 =0k + (S > Vlogp (yilzi, 0k) + g]\}:(k)> +4/ W/Zkﬂ :

1ES
where
7 is a constant learning rate,
S a mini batch from R of size s € N*,

(Zk)ken+ an ii.d. sequence of standard Gaussian random variables.
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Stochastic Gradient Langevin Dynamics (SGLD)

SGLD applied with a constant learning rate ~.

Thinning technique to reduce the memory cost: given a thinning interval
i Nthinning € N* and a number of samples ngamples € N*, we run the Markov
¢ chain (0;)ren during ngamples X Mthinning Steps and at every nihinning iteration,
we save the current parameters of the (last layer or full) neural network 6.
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Stochastic Gradient Descent (SGD)

update equation of SGLD = update equation of Stochastic Gradient Descent
(SGD), apart from the addition of the Gaussian noise \/2v/N Z.
1] [MHB17] shows that, under certain assumptions, SGD with a carefully chosen

constant step-size can be seen as approximate sampling from a posterior
distribution with an appropriate prior.
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SGLD and SGD

Algorithm 1 SGLD and SGD

Input: data R, neural network 6, number of samples ngamples, thinning interval
Nthinning, Datch size s, learning rate .
Initialize 6 = 6*.
for i = 1 to ngamples do

forj=1to Nthinning do

0 < SGLD(0,~,s) or SGD(0,~, s)

end for

Save 6.
end for
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Monte-Carlo Dropout

Monte Carlo Dropout approximately samples from the posterior distribution
0 — p (6|D) when applied at inference time [GG16].

Widely used in practical applications [ZL17, LAA*17, NPAA18].

Dropout randomly sets a fraction pgrop € (0, 1) of input units to 0 at each
update during training time, or at each forward pass during test time.

We interleave a dropout layer after each max pooling layer in the VGG-type
neural network and before each dense layer.
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Monte-Carlo Dropout

Algorithm 2 MC-Dropout

Input: data R, neural network 6, number of samples ngamples, dropout rate parop,
batch size s, learning rate v, number of training epochs nepochs-

Initialize 6 = 6*.

Train ¢, using SGD with a learning rate v, batch size s, dropout rate pg.o, and a
number of epochs nepochs-

Save 6.

For a given input x, we run ng,mples forward passes from ¢ using dropout again.
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Bootstrap

Crossroad between the Bayesian and the frequentist approaches
[Efr12a, Efr12b].

Sample with replacement N data points from the training dataset R, and
generate a new bootstrapped dataset R p.

The last layer (multinomial logistic regression) or a full neural network is
trained on R p until convergence, and the parameters of the network 6 are
saved.

Repeat this as many times as models needed, and then compute their
ensemble.
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Bootstrap

Algorithm 3 Bootstrap

Input: data R, neural network 6, number of samples ngamples, batch size s, learn-
ing rate v, number of training epochs necpochs-
for i = 1 to ngamples do
Initialize 6 = 6*.
Sample a bootstrapped dataset R g from R.
Train § on R g, using SGD with a learning rate v, batch size s and a number of
epochs nepochs-
Save 6.
end for
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Experimental results



Description

Datasets: MNIST, CIFAR-10, CIFAR-100, and ImageNet.

Classical models: fully connected for MNIST, VGG-16 for CIFAR, and
NASNet for ImageNet.

Four algorithms: MC-Dropout, Bootstrap, SGD and SGLD.

Baseline algorithm: SGD-Point Estimate (SGD-PE) which computes the
softmax outputs provided by the pretrained neural network. Only one
confidence function for SGD-PE = the softmax response SR.
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Description

The algorithms are run both on the last layer and on the full neural networks
for MNIST and CIFAR-10/100.

Given the size of both ImageNet and the NASNet network, we assess the
potential benefit of multiple uncertainty layers on ImageNet by adding up to
3 dense hidden layers with 4032 neurons on top of NASNet.

min AURC = minimum value achieved using either SR, STD or the entropy of
¢ as a confidence function.

normalized AURC = ratio of min AURC over the AURC of SGD-PE (unique,
using SR as confidence function)

the lower is the AURC, the better is the result.
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AURC and MNIST

Normalized AURC for last-layer
(solid) and full network (striped)
versions of the four algorithms:
Bootstrap, MC-Dropout, SGD,
SGLD, and SGD-PE baseline, on
MNIST.
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I AURC and CIFAR-100

Normalized AURC for last-layer
(solid) and full network (striped)
versions of the four algorithms:
Bootstrap, MC-Dropout, SGD,
SGLD, and SGD-PE baseline, on
CIFAR-100.

nommalized AURG
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AURC and ImageNet

Normalized AURC for the 1 12-
(solid), 2 (45-degree stripes) to 3
(horizontally striped) dense "0
layer(s) versions of the g
algorithms: Bootstrap, 2
MC-Dropout, SGD, SGLD and S00
SGD-PE baseline, on ImageNet. g
The normalized AURC is based 04
on the AURC obtained using

SCD-PE on 2 dense layers on top 02
of NASNet.

0.0
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Summary of results

Adding multiple uncertainty layers does not help.
Softmax Response (SR) is a strong confidence function.
SGD Point-Estimate is actually a strong baseline.
SGLD is unstable on the full network.
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Adding multiple uncertainty layers does not help

Except on the MNIST dataset, where adding an extra hidden uncertainty
layer improves the AURC, the last layer and its full network counterpart
seem to perform similarly well for the four algorithms.

In the case of MNIST, the histograms for correctly classified points are similar
for both last-layer and full-network SGD versions. However, the full-network
exhibits a greater dispersion for incorrectly classified points (see scale of
y-axis). Both facts combined lead to a stronger AURC for the full-network
algorithm, as it can better tell the difference between both sets of points.

A different behavior can be observed on CIFAR-100, where the classification
task is more difficult. The histograms of the full-network SGD are more
dispersed for both correctly classified and misclassified points. In particular,
as opposed to the MNIST scenario, a number of correctly classified points are
no longer mapped to a high SR.
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Histograms for CIFAR-100
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Histograms for MNIST
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000 100
ao0o BO-
00O 60
4000 40
2000 20
Similar plot, but for the MNIST 0 0
05 086 07 08 e 1o 04 05 06 07 0B 0% 10
dataSCt full network correctly classified examples  full network misclassified examples
10000 T
50
9000
40-
6000
30-
AODO
20
2000 1o-
o

. i ) . . 04 05 0B 07 08 08 10 0.4 0.6 0.8 10
43/62  Uncertaintes For classificalon tasks in DN THALES



Softmax Response is a strong confidence function

We compared several confidence functions: SR, STD and the entropy of 4.

The softmax response SR does consistently outperform all the other
confidence functions.
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SGD Point-Estimate is a strong baseline

SGD-PE is particularly competitive on CIFAR-10/100.

Its main advantage is simplicity: it can be applied off-the-shelf and no
two-stage procedure is needed.

However, the method suffers in both MNIST and ImageNet, compared to the
other algorithms. Ensemble techniques may bring additional stability and
robustness in this context.

50/62 Uncertainties for classification tasks in DNN THALES



SGLD is unstable on the full network

If the learning rate is not very small, SGLD tends to diverge, i.e. the accuracy
(resp. the loss) decreases (resp. increases) over the iterations on the full
network.

Not visible when SGLD is only applied on the last layer of the neural network.

In that scenario, the logarithm of the posterior distribution 6 — p (6|D) is a
strongly log concave function.
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Thank you for your attention

Any questions ?
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