Probability of Detection Curves, Sensitivity Analysis and Kriging

Thomas BROWNE

EDF R&D-MRI Chatou - Université Paris 5

Supervisor: J-C. Fort (Paris 5)

Advisors: B. looss & L. Le Gratiet (EDF R&D-MRI Chatou)

Institut Henri Poincarré, Paris, France March 22nd, 2017

Thomas BROWNE PoD-curves, Sensitivity Analysis and Kriging

イロト イポト イヨト イヨト

æ

- 2 PoD-mean & PoD-quantiles
- 3 Sensitivity Analysis over PoD-Curves
- 4 PoD-Curves & Kriging

ヘロト ヘワト ヘリト ヘリト

э

Context : Defect detection

Cracks in a Weld of a Pressurized Water Reactor

Cracks can appear during the solidification of the weld
 We perform Non-Destructive Tests !

→ Ξ → < Ξ →</p>

э

Non-Destructive Tests : Ultrasounds

No defect : record the sending and echo of the ultrasound. Defect : reflection of the wave on the defect.

★ Ξ → ★ Ξ → ...

E DQC

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Review of the Influential Parameters

- $Y \in \mathbb{R}$: signal measure after NDT.
- a > 0 : size of defect. Y is an increasing function of a.
- ► $X \in \mathbb{R}^d$: structure's geometrical properties, $(X_1, ..., X_d) \perp$.
- t_s : the defect is detected when $Y(a, X = x) > t_s$.
- ▶ Presence of an observation noise : $(a, x) \rightarrow Y(a, x)$ is STOCHASTIC !

PoD : Probability of Detection curve

- For a same defect a > 0, one can get $Y(a, X = x) > t_s$ and $Y(a, X = x) < t_s$.
- Hence : probability of detection (PoD), *i.e.* for a > 0

$$\forall a > 0 \quad \pi_{\mathbf{X}=\mathbf{x}_1}(a) = \mathbb{P}\left(Y(a, \mathbf{X}=\mathbf{x}_1) > t_s \mid \mathbf{X}=\mathbf{x}_1\right)$$

프 🖌 🛪 프 🕨

PoD : Probability of Detection curve

- For a same defect a > 0, one can get $Y(a, X = x) > t_s$ and $Y(a, X = x) < t_s$.
- Hence : probability of detection (PoD), *i.e.* for a > 0

$$\forall a > 0 \quad \pi_{X=x_2}(a) \quad = \mathbb{P}_{\delta}\left(Y(a, X = x_2) > t_s \mid X = x_2\right)$$

→ < Ξ →</p>

PoD : Probability of Detection curve

- For a same defect a > 0, one can get $Y(a, X = x) > t_s$ and $Y(a, X = x) < t_s$.
- Hence : probability of detection (PoD), *i.e.* for a > 0

$$\forall a > 0 \quad \pi_{X=x_3}(a) \quad = \mathbb{P}_{\delta}\left(Y(a, X = x_3) > t_s \mid X = x_3\right)$$

Random cumulative distribution functions

FIGURE: 20 realizations of π_X .

- π_X is a random curve random CDF, function of *X*.
- Need to define tools to quantify a CDF random distribution.
- Wish to perform Sensitivity Analysis.

- PoD-mean & PoD-quantiles
 - 3 Sensitivity Analysis over PoD-Curves
- 4 PoD-Curves & Kriging

ヘロト ヘワト ヘリト ヘリト

э

Contrast Functions

Y's feature :
$$\theta_{\varphi}(Y) := \arg \min_{\theta \in \mathbb{R}} \mathbb{E}_{Y}[\varphi(Y - \theta)].$$

▶ Simple contrasts : φ convex, $\forall (y, \theta) \in \mathbb{R}^2 \quad \varphi(y - \theta) \ge 0$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Contrast Extension to CDF's

$$\pi_X$$
's feature : $\Theta_{\varphi}(\pi_X) := \arg \min_{F \in \mathcal{F}^2} \mathbb{E}_X[\psi_{\varphi}(\pi_X - F)].$

▶ Real simple contrasts : $\forall y, \theta \in \mathbb{R} \quad \varphi(y - \theta)$

 \longrightarrow Simple CDF-contrasts :

$$\forall F, G \in \mathcal{F}^2 \quad \psi_{\varphi}(F-G) = \min_{\substack{(X,Y) \ r.r.v. \\ X \sim F, Y \sim G}} \mathbb{E}_{(X,Y)}[\varphi(X-Y)].$$

• Theorem(Cambanis) : for the simple contrasts m et c_{α}

$$\begin{aligned} \forall F, G \in \mathcal{F}^2 \quad \psi_{\varphi}(F-G) &= \mathbb{E}_{U}[\varphi\left(F^{-1}\left(U\right) - G^{-1}\left(U\right)\right)] \quad U \sim \mathcal{U}([0,1]) \\ &= \int_{0}^{1} \varphi\left(F^{-1}\left(u\right) - G^{-1}\left(u\right)\right) du. \end{aligned}$$

N.B. : $F^{-1}(U) \sim F!$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

CDF-Contrasts

$$\pi_X$$
's feature : $\Theta_{arphi}(\pi_X) := rgmin_{F \in \mathcal{F}^2} \ \mathbb{E}_X[\psi_{arphi}(\pi_X - F)].$

$$\forall u \in]0,1[, \quad \Theta_{\varphi}(\pi_X)^{-1}(u) = \operatorname*{arg\,min}_{\theta \in \mathbb{R}} \mathbb{E}[\varphi(\pi_X^{-1}(u) - \theta)]$$
$$= \theta_{\varphi} \left(\pi_X^{-1}(u)\right)$$

PoD-mean :**PoD-\alpha-quantiles** : $\varphi = m : \mathbb{E}[Y] \to \mathcal{E}(\pi_X)$ $\varphi = c_\alpha : q^\alpha(Y) \to \mathcal{Q}^\alpha(\pi_X)$ $\mathcal{E}(\pi_X)^{-1}(u) = \mathbb{E}_X \left[\pi_X^{-1}(u) \right]$ $\mathcal{Q}^\alpha(\pi_X)^{-1}(u) = q_X^\alpha\left(\pi_X^{-1}(u) \right).$

PoD-mean & PoD-quantiles

- PoD-mean : $\forall u \in]0, 1[$ $\mathcal{E}(\pi_X)^{-1}(u) = \mathbb{E}_X \left[\pi_X^{-1}(u)\right]$
- ► PoD- α -quantile : $\forall u \in]0, 1[$ $\mathcal{Q}^{\alpha}(\pi_X)^{-1}(u) = q_X^{\alpha}(\pi_X^{-1}(u)),$ $\alpha = 0.75.$

FIGURE: 25 realizations of π_X in black, $\mathcal{E}(\pi_X)$, and $\mathcal{Q}^{0.75}(\pi_X)$.

1 PoD-Curve Definition

- 2 PoD-mean & PoD-quantiles
- 3 Sensitivity Analysis over PoD-Curves

イロト イポト イヨト イヨト

э

Goal-Oriented Sensitivity Analysis [N. Rachdi, 2011]

Respective Influence of Each Input over θ(Y)

Sensitivity Analysis with Respect to a Contrast

Need to quantify the variability of $\theta_{\varphi}(Y \mid X_i)$!

Sensitivity indices based on contrasts [Fort et al., 2016]

$$\begin{split} \mathcal{S}_{\varphi}^{Xi}(Y) &= \min_{\theta \in \mathbb{R}} \mathbb{E}\left[\varphi\left(Y, \theta\right)\right] - \mathbb{E}\left[\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\varphi\left(Y, \theta\right) \mid X_{i}\right]\right] \\ &= \mathbb{E}\left[\varphi\left(Y, \theta(Y)\right)\right] - \mathbb{E}_{X_{i}}\left[\varphi\left(Y, \theta(Y \mid X_{i})\right)\right]. \end{split}$$

 \rightarrow quantifies the variability of $\theta_{\varphi}(Y \mid X_i)$.

• If
$$\varphi(y - \theta) = (y - \theta)^2$$
, $S_{\varphi}^{\chi_i}(Y)$ is the Sobol index !

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Indices' Properties

$$S_{\varphi}^{Xi}(Y) = \min_{\theta \in \mathbb{R}} \mathbb{E}\left[\varphi\left(Y,\theta\right)\right] - \mathbb{E}\left[\min_{\theta \in \mathbb{R}} \mathbb{E}\left[\varphi\left(Y,\theta\right) \mid X_{i}\right]\right]$$

 $\blacktriangleright \ S^{X_i}_{\varphi}(Y) \geq 0.$

- ▶ We divide $S_{\varphi}^{X_i}(Y)$ by $\min_{\theta \in \mathbb{R}} \mathbb{E} \left[\varphi(Y, \theta) \right]$ so that $0 \leq S_{\varphi}^{X_i}(Y) \leq 1$.
- ► We proved [Browne et al., 2017] : $S_{\varphi}^{X_i}(Y) = 0 \Leftrightarrow \theta_{\varphi}(Y \mid X_i) = \theta_{\varphi}(Y) \text{ a.s.}$ $S_{\varphi}^{X_i}(Y) = 1 \Leftrightarrow (Y \mid X_i = x) = constant(x) \text{ a.s.}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Sensitivity Analysis : Extension to Random CDF's

Need to quantify the variability of $\Theta_{\varphi}(\pi_X \mid X_i)$!

Substitution :
$$\psi_{\varphi} \rightarrow \varphi, \pi_X \rightarrow Y$$
.

$$\mathcal{T}_{\varphi}^{Xi}(\pi_{X}) = \min_{G \in \mathcal{F}^{2}} \mathbb{E}\left[\psi_{\varphi}\left(\pi_{X}, G\right)\right] - \mathbb{E}\left[\min_{G \in \mathcal{F}^{2}} \mathbb{E}\left[\psi_{\varphi}\left(\pi_{X}, G\right) \mid X_{i}\right]\right].$$

$$\mathcal{T}_{\varphi}^{Xi}(\pi_{X}) = \int_{0}^{1} S_{\varphi}^{Xi}\left(\pi_{X}^{-1}\left(u\right)\right) du.$$

 $\longrightarrow \mathcal{T}_{\varphi}^{Xi}(\pi_X)$ quantifies the variability of $\Theta_{\varphi}(\pi_X \mid X_i)$.

Numerical Experiments : Toy-Function

For $(X_1, X_2, X_3) \sim \mathcal{U}(-\pi, \pi)$ iid :

$$Y(a, X) := a + \frac{3}{2} \left(\sin(X_1) + 7\sin(X_2)^2 + 0.1X_3^4\sin(X_1) \right) + \varepsilon(X),$$

with
$$\varepsilon(x) \sim \mathcal{N}\left(0, \delta(x)^2\right), \delta(x) := 2 + \frac{x_1 + x_2 + x_3}{6}$$
 and $t_s = 15$.

PoD-mean-oriented Sensitivity Analysis

PoD-quantiles-oriented Sensitivity Analysis

ヘロト 人間 ト ヘヨト ヘヨト

3

Toy-Function : SA over PoD-mean

FIGURE: Sensitivity Analysis over $\mathcal{E}(\pi_X)$: Barplot of $\mathcal{T}_{\varphi}^{X_i}(\pi_X)$ and $\mathcal{E}(\pi_X \mid X_i), i = 1, 2, 3$.

Toy-Function : SA over PoD-quantiles

FIGURE: Sensitivity Analysis over $Q^{\alpha}(\pi_X)$: Barplot of $\mathcal{T}_{\varphi}^{Xi}(\pi_X)$ with $\alpha = 0.1, 0.25, 0.5, 0.75$ and 0.9 and $Q^{0.5}(\pi_X \mid X_i), i = 1, 2, 3$.

1 PoD-Curve Definition

- 2 PoD-mean & PoD-quantiles
- 3 Sensitivity Analysis over PoD-Curves
- 4 PoD-Curves & Kriging

ヘロト ヘワト ヘリト ヘリト

э

Hypothesis :

$$Y(a, x) = \alpha_0 + \alpha_1 a + m(x) + \varepsilon(x),$$

with $\varepsilon(x) \sim \mathcal{N}(0, \delta^2(x))$ the observation noise.

- Linear contribution of a
- Additive Gaussian Noise ε
- ε depends only on *x*.

イロト 不得 とくほ とくほ とう

E DQC

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

PoD-curves & Kriging

Hypothesis :

$$Y(a, x) = \alpha_0 + \alpha_1 a + m(x) + \varepsilon(x),$$

with $\varepsilon(x) \sim \mathcal{N}(0, \delta^2(x))$ the observation noise.

$$\begin{aligned} \forall a > 0 \qquad \pi_X(a) &= \mathbb{P}\left(\alpha_0 + \alpha_1 a + m(X) + \varepsilon(X) > t_s \mid X\right) \\ &= \Phi\left(\frac{\alpha_0 + \alpha_1 a + m(X) - t_s}{\delta(X)} \mid X\right), \quad \Phi \quad \mathsf{CDF} \sim \mathcal{N}(0, 1), \\ \forall u \in]0, 1[\quad \pi_X^{-1}(u) \quad = \frac{t_s + \Phi^{-1}(u)\delta(X) - \alpha_0 - m(X)}{\alpha_1} \quad wrt \; X. \end{aligned}$$

Hypothesis :

$$Y(a, x) = \alpha_0 + \alpha_1 a + m(x) + \varepsilon(x),$$

with $\varepsilon(x) \sim \mathcal{N}(0, \delta^2(x))$ the observation noise.

$$\begin{aligned} \forall u \in]0,1[\quad \mathcal{E}(\pi_X)^{-1}(u) &= \mathbb{E}_X \left[\pi_X^{-1}(u) \right] \\ &= \frac{t_s + \Phi^{-1}(u) \mathbb{E}_X [\delta(X)] - \alpha_0 - \mathbb{E}_X [m(X)]}{\alpha_1} \\ \mathcal{Q}^{\alpha}(\pi_X)^{-1}(u) &= q_X^{\alpha} \left(\pi_X^{-1}(u) \right) \\ &= \frac{t_s - \alpha_0 + q_X^{\alpha} \left(\Phi^{-1}(u) \delta(X) - m(X) \right)}{\alpha_1} \end{aligned}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

₹ 990

Hypothesis :

$$Y(a, x) = \alpha_0 + \alpha_1 a + m(x) + \varepsilon(x),$$

with $\varepsilon(x) \sim \mathcal{N}\left(0, \delta^{2}\left(x\right)\right)$ the observation noise.

- Assumptions : $(x \to m(x)) \sim \mathcal{GP}(\mu_m(\cdot), \sigma_m(\cdot, \cdot))$, with $\sigma_m(x, x') = \Delta_m^2 K_m(x, x')$ and $K_m(x, x) = 1$.
- Assumptions : $(x \to \delta(x)) \sim \mathcal{GP}(\mu_{\delta}(\cdot), \sigma_{\delta}(\cdot, \cdot)),$ with $\sigma_{\delta}(x, x') = \Delta_{\delta}^{2} \mathcal{K}_{\delta}(x, x')$ and $\mathcal{K}_{\delta}(x, x) = 1.$

• Assumptions : $Z_m \perp Z_\delta$.

Joint Metamodels Approach [Marrel et al., 2012]...

ヘロト ヘアト ヘビト ヘビト

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PoD-curves & Kriging : Predicators

$$Y(a,x) = \alpha_0 + \alpha_1 a + m(x) + \varepsilon(x),$$

with $\varepsilon(x) \sim \mathcal{N}(0, \delta^2(x))$ the observation noise.

- ► Deterministic Kriging : $(\delta(\cdot) | \mathcal{D}) \sim \mathcal{GP}(\hat{\delta}(\cdot), \hat{\sigma}_{\delta}(\cdot, \cdot)),$ with $\hat{\delta}(x) = \mathbb{E}[Z_{\delta}(x) | \mathcal{D}], \hat{\sigma}_{\delta}(x, x') = \text{Cov}[Z_{\delta}(x), Z_{\delta}(x') | \mathcal{D}].$
- ► Stochastic Kriging : $(m(\cdot) | D) \sim \mathcal{GP}(\hat{m}(\cdot), \hat{\sigma}(\cdot, \cdot)),$ with $\hat{m}(x) = \mathbb{E}[Z_m(x) | D], \hat{\sigma}_m(x, x') = \text{Cov}[Z_m(x), Z_m(x') | D].$

PoD-curve Estimates

$$Y(a, x) = \alpha_0 + \alpha_1 a + m(x) + \varepsilon(x).$$

Kriging PoD-Curve Estimators :

$$\forall u \in]0,1[\quad \hat{\pi}_{X}^{-1}(u) \qquad = \frac{t_{s} + \Phi^{-1}(u)\delta(X) - \alpha_{0} - \hat{m}(X)}{\alpha_{1}} \quad wrt \ X.$$
$$\hat{\mathcal{E}}_{X}(\pi_{X})^{-1}(u) \qquad = \frac{t_{s} + \Phi^{-1}(u)\overline{\delta}(X) - \alpha_{0} - \overline{\tilde{m}}(X)}{\alpha_{1}}.$$
$$\hat{\mathcal{Q}}^{\alpha}(\pi_{X})^{-1}(u) \qquad = \frac{t_{s} - \alpha_{0} + \hat{q}^{\alpha}\left(\Phi^{-1}(u)\overline{\delta}(X) - \hat{m}(X)\right)}{\alpha_{1}}.$$

25/27

ヘロン 不通 とくほ とくほ とう

∃ 𝒫𝔄𝔄

PoD-curve Estimates

PoD-Curve Estimates and Confidence Intervals

- Kriging prediction : $\forall x \in \chi \quad \forall u \in]0, 1[\\ \pi_x^{-1}(u) = \\ \frac{t_s + \Phi^{-1}(u)\delta(X) - \alpha_0 - m(X)}{\alpha_1} \\ \sim \mathcal{N}\left(\hat{\pi}_x^{-1}(u), \frac{\Phi^{-1}(u)^2 \hat{\sigma}_{\delta}^2 + \hat{\sigma}_m^2}{\alpha_1^2}\right).$
- x_1, x_2 realizations of X: π_{x_1} and π_{x_2} .
- 95%-Pointwise Confidence Bounds

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusion

PoD-curves are fun !

- Kriging × Sensitivity Analysis
- Applications to an industrial simulator : ATHENA_2D
- ► Kriging → Sequential Design, Optimization Problems...

Browne, T., Fort, J. C., looss, B., & Le Gratiet, L. (2017).

Estimate of quantile-oriented sensitivity indices.

Browne T., looss B., Le Gratiet L., Lonchampt J., Remy E. (2017).

Stochastic simulators based optimization by Gaussian process metamodels - Application to maintenance investments planning issues

Quality and Reliability Engineering International, 32(6), 2067-2080.

J. C. Fort, T. Klein, N. Rachdi (2016).

New sensitivity analysis subordinated to a contrast

Communication in Statistics : Theory and Methods, 45(15), 4349-4364.

N. Rachdi

Statistical Learning and Computer Experiments

PhD thesis, Université Paul Sabatier, France, 2011.

Marrel A., Iooss B., Da Veiga S., Ribatet M. (2012).

Global Sensitivity Analysis of Stochastic Computer Models with Joint Metamodels

Statistics and Computing, 22(3), 833-847, Springer.

Kanishcheva K. (2014).

Statistical estimation of the PoD in a numerical experiments context

Master's degree thesis, Airbus Group.

Le Gratiet L., looss B., Blatman G., Browne T., Cordeiro S., Goursaud B. (2017).

Model Assisted Probability of Detection curves : New statistical tools and progressive methodology

Journal of Nondestructive Evaluation, 36, 1 : 8, Springer.

Thomas BROWNE PoD-curves, Sensitivity Analysis and Kriging

・ロン ・聞と ・ ほと ・ ほとう

1

Thank you for your attention !

ヘロア 人間 アメヨア 人口 ア

2

- ▶ Numerical Experiments : $n \in \mathbb{N}$ inputs $\{(a^1, x^1), \dots, (a^n, x^n)\}$.
- ► Noise : $\forall j = 1, ..., n, M \in \mathbb{N}$ replicates on $Y(a^{j}, x^{j})_{j=1,...,n} : (Y^{j,k})_{1 \le k \le M}$.
- Estimator for $m(x^j)$: $\tilde{m}(x^j) := \frac{1}{M} \sum_{k=1}^{M} Y^{j,k} \alpha_0 \alpha_1 a^j$.
- ► Noise Standard Deviation : $\delta(\mathbf{x}^j) \simeq \operatorname{sd}\left(\left(\mathbf{Y}^{j,k}\right)_{1 \le k \le M}\right)$.

ヘロア 人間 アメヨア ヘヨア

= 990

PoD-mean & Confidence Bounds

- 2 sources of error
- Kriging Error : $\hat{\delta}$, \hat{m} .
 - Monte-Carlo Error : $\hat{\delta}(X) \simeq \mathbb{E}[\hat{\delta}(X)]$ and $\overline{\hat{m}}(X) \simeq \mathbb{E}[\hat{m}(X)].$
- Bootstrap over the Confidence

< 🗇

э