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Context
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Bayesian calibration with discrepancy
Other topics and conclusion

Calibration of a computer code

Computer experiments:

Computer model (simulator) (x*, 8) — f(x*,0) € R® where

m physical parameters: x* € X C R™ observable and often controllable
inputs

m simulator parameters: # ¢ © c R? non-observable parameters,
required to run the simulator.
2 types:
m “calibration parameters”: physical meaning but unknown, necessary to make

the code mimic the reality,
B “tuning parameters”: no physical interpretation.

Goal:
Calibrate the code: finding “best” or “true” 6 from real observations / field
data.
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Validation

m Validation (rather than verification) is considered,

m Does the computer simulator correspond to field data ?

m The validation of the computer simulator depends on the known or
unknown precision of the field data

m Biased computer model, no setting of calibrated parameters leads to
outputs close to field data. What is the meaning of validation in that
context?

m prediction after the calibration step ?
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Outline

Context
m Two kinds of data
m Meta-modeling / emulator of the computer code

Bayesian calibration without discrepancy
m Known o2, unlimited simulator runs
m Unknown o2, unlimited simulator runs
m Unknown o2, limited number of runs

Bayesian calibration with discrepancy
m Calibration with discrepancy

Other topics and conclusion

P. Barbillon Calibration and validation of a computer code



Context
m Two kinds of data
m Meta-modeling / emulator of the computer code

Bayesian calibration without discrepancy
m Known ¢2, unlimited simulator runs
m Unknown o2, unlimited simulator runs
m Unknown o2, limited number of runs

Bayesian calibration with discrepancy
m Calibration with discrepancy

Bl Other topics and conclusion

«0O0)r» «F)» « =)

a

12N Ge



Context
m Two kinds of data
m Meta-modeling / emulator of the computer code

Bayesian calibration without discrepancy
m Known ¢2, unlimited simulator runs
m Unknown o2, unlimited simulator runs
m Unknown o2, limited number of runs

Bayesian calibration with discrepancy
m Calibration with discrepancy

Other topics and conclusion

«0O0)r» «F)» « =)

.
it
v

it

12N Ge



Context
Bayesian calibration without discrepancy Two kinds of data
Bayesian calibration with discrepancy Meta-modeling / emulator of the computer code
Other topics and conclusion

Field data

m Field data provided by physical experiments:

v =y (xi), .y (%),

m nis small, X4,...X, € X hard to set, sometimes uncontrollable, included
in a small domain...

m Model:
yr(xi) = ¢(xi) + e(xi)
where
m ((-) real physical process (unknown),
m <(x;) often assumed i.i.d. A(0, o?),
m o2 sometimes treated as known...
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Computer model / simulator

(x*,0) — f(x*,0) € R®

m physical parameters: x € X c R”,

m X* same meaning as in field data,
m extrapolation if x* > max(x;) or x* < min(x;).

m simulator parameters 8 ¢ © c R? non-observable parameters,
required to run the simulator. No difference here between calibration and
tuning.

The simulator is often an expensive black-box function.
= limited number N, of runs of the simulator.

P. Barbillon Calibration and validation of a computer code



Context
Bayesian calibration without discrepancy Two kinds of data
Bayesian calibration with discrepancy Meta-modeling / emulator of the computer code
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Relationship between the simulator and the data

fori=1,...,n,

m if the simulator sufficiently represents the physical system:
v =f(x;,0%) + e(x;),

i.e. for the unknown value 6 = 6" : f(x,0") = ¢(x) for any x € X,

m if the field observations are inconsistent with the simulations (irreducible
model discrepancy):

yi = (%, 07) + 6(x;) + e(x;) .

() models the difference between the simulator and the physical
system:

0(x) = ¢(x) = f(x,67),
but

m What does 6* mean ?

m A best fitting ?

m identifiability issues ?

m usually assumed to be smoother than the real physical process ¢(+)

Ref.: Kennedy and O’Hagan (2001), Hidgon et al. (2005)...
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Context
Bayesian calibration without discrepancy Two kinds of data
Bayesian calibration with discrepancy Meta-modeling / emulator of the computer code
Other topics and conclusion

Expensive black-box computer code

m Run the simulator for a given (x*, 8) is time-consuming / expensive.
m The simulator is a black-box, no intrusive methods are possible.

=- Only few runs of the simulator are possible then we cannot apply
algorithms (as in Bayesian calibration) which make a massive use of
simulator runs.

Using an emulator / metamodel / coarse model / approximation of the
simulator which is fast to compute, but:

m loss on precision of prediction,
B new uncertainty source: accuracy of the model approximation,
m taken into account.
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(X;, 0])
m space filling for x,

m with respect to the prior distribution on 6,
n x]’-‘ =X;?
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Context
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Bayesian calibration with discrepancy Meta-modeling / emulator of the computer code
Other topics and conclusion

Emulator using Gaussian Process:

m Very popular in computer experiments.

m integrated in a Bayesian framework: appears in the likelihood function
and a prior on the parameters of the Gaussian process are chosen.

m model uncertainty coming from approximation of f.
m After the calibration step, used in prediction for a new point x.
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Meta-modeling: prior distribution on f

Sacks et al. (1989).
f realization of a Gaussian process F:
v(x*,0) € E,

Q

F((x",0)) = > Buhi((x",0)) + Z((x",6)) = H((x",6))" B+ Z((x",6)),

k=1
ou
m hy, ..., hg regression functions and 3 parameters vector,
m Z centered Gaussians process with covariance function:
Cov(Z((x7,61)), Z((x3,62))) = o*K((X7,01), (%5, 62)),

where K is correlation kernel.

Hypotheses

B K((x{,01),(x3,62)) = ok exp(—&x 3 [X] — X3|* — €0 3 61 — 62[°)
m parameters ¢ = (3, o%, K parameters) assumed fixed (in practice,
maximum likelihood estimators);
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Meta-modeling: posterior

m vy =f((X",0)1),..., VN, = f((X*, 0)n,,) evaluations of f on a design

Nrun

m Process FPVun: Conditioning F to
F((XT7 01)) =Vi,..., F(xf\l,un» oNrun)) = VWNun-
Gaussian Process with mean m((x*, 8)) and covariance
C((x*,0),(x*,0))v(x*,0),(x*,0).

For all (x*,0) € E,
m m((x*,0)) approximates f((x*, 9)),
m C((x*,0),(x*,0)) uncertainty on this approximation.

For all (X}, 0;) € Dn,,,,
m m(x;,0;) = f(x;,0)),
u C((x;‘(z 0/)7 (xry 0!)) = 0
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Context

Bayesian calibration without discrepancy
Bayesian calibration with discrepancy
Other topics and conclusion

A calibration example

Known 02, unlimited simulator runs
Unknown o2, unlimited simulator runs
Unknown o2, limited number of runs

Hypotheses:
m The simulator represents sufficiently well the physical system:

y(x,):f(x,,B*)—i—e,, i=1,...,n.

But unknown 6*.
¢ ~ N(0,0?) i.i.d. with known o2,

c2=0.3
n==6,
" =0.6
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Bayesian calibration without discrepancy
Bayesian calibration with discrepancy
Other topics and conclusion

A calibration example

Known 52, unlimited simulator runs
Unknown o2, unlimited simulator runs
Unknown o2, limited number of runs

Prior:

prior distribution on unknown 6: =(-)

from expert judgment, past experiments .
Possible choice 7(8) = N (6o, 02) = N(0.5,0.04).
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Bayesian calibration with discrepancy 2
A A Unknown o<, limited number of runs
Other topics and conclusion

A calibration example

Data:
Couples (X1, yf), ..., (Xn, y}) from physical experiments.

Posterior distribution:
m(0ly") o I6ly") (6)

o exp (—2:, S (y(xi) — £(x;,0))° — 2%3(9 - 90)2>
i=1

m Analytical posterior if 8 — f(x, 0) is a linear map,

m Otherwise MH sampling to simulate according to the posterior
distribution.
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Context

Bayesian calibration without discrepancy

Known o2
Unknown o

, unlimited simulator runs

, unlimited simulator runs

Bayesian calibration with discrepancy
Other topics and conclusion

A calibration example

Unknown o2, limited number of runs

]

Prior with data: B o

{} Metropolis-Hastings algorithm {

- - -
Posterior on ¢: - o
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Context 2 . .
. L 5 . Known o<, unlimited simulator runs
Bayesian calibration without discrepancy Unknown o2 unlimited simulator runs
Bayesian calibration with discrepancy 2
n A Unknown &<, limited number of runs
Other topics and conclusion

More details on the MH algorithm

Initialisation:
6° chosen.

Update:
iterationst=1,...,
E Proposal: 67" = 0" + N(0, 72).
Compute .
. (Gt
a(9t7at+1) = 75(9,“‘%))
Acceptation:

1 6™'  with probability (6", 6+")
ot =23 7 )
0 otherwise.

Note that the ratio a(6', #'*') needs several computations of f(x, 8) at each
step since

7(6ly") o« exp (—2], S () ~ (%, 8))° — 556 - 90)2> :
i=1 0
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Context

Bayesian calibration without discrepancy
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Other topics and conclusion

Known &2, unlimited simulator runs
Unknown o2, unlimited simulator runs
Unknown o2, limited number of runs

Unknown o2

m prior distribution on o2: 7(c?) = ZG(5,2)

m Gibbs algorithm to simulate couples (8, o?) from 7 (0, o2|y"). lterate :
MH algorithm to simulate 6; from =(-|yF, 0,271 ),
conditional simulation of 2 from = (-y”, 8;).
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Context
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with a bad prior....

Known o2, unlimited simulator runs

Unknown o2, unlimited simulator runs
, limited number of runs

Unknown o2

prior on 0: 7(0) = A/(0.2,0.04) and n = 12 field data
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Context

Bayesian calibration without discrepancy
Bayesian calibration with discrepancy
Other topics and conclusion

Likelihood with a Gaussian process hypothesis on f

Known &2, unlimited simulator runs
Unknown o2, unlimited simulator runs
Unknown 02, limited number of runs

. z = (y1F7 R 7yﬁ7 f(xT7 01)7 ) f(xltlmm 0Nrun))
m likelihood on z

_ 1 _
6. 12) o 72l exp (- (2~ )5 (@ 1))

where
m  is the mean of the Gaussian process,

|
pN
2= ( 7 o )
with ¥, = 02/, and X, is obtained as the covariance matrix corresponding
to the points: (x1,8), ..., (Xn,0), (X7, 61),..., (x;;,m,o,\,,un).
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Bayesian calibration without discrepancy
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Dealing with GP parameters

Known &2, unlimited simulator runs
Unknown o2, unlimited simulator runs
Unknown 02, limited number of runs

m prior distribution on 1 and covariance parameters Hidgon et al. (2005)
= MCMC inference

m MLE estimators Kennedy and O’Hagan (2001)

m treated as fixed,
m only computer data f(xj,01), ..., f(x,*vmn, On,,,) are used (n < Npp) for MLE

m likelihood /(8, +2|z):

160, 2J2) o |56 | /2 exp (— L (yF — m(x,0)TE (v — m(x,0))
y 2 y

where
| m( ) is the mean of the GP conditioned to simulator data,
[ ] ZyF = Zy;-‘ +3¥=0 2+ $s where ¥ is constructed with the covariance
function C of the conditioned GP.
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Context

Bayesian calibration without discrepancy
B ian calibration with discrepancy
Other topics and conclusion

Calibration with discrepancy

Model discrepancy

yi = f(%i,0%) + 6(x;) + e(x;) .
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No value of & makes the simulator corresponding to the fied data
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Context
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Calibration with discrepancy

Modelisation of ¢:
Sensible to assume: §(x) = §(X + dx)
Gaussian Process hypothesis on ¢ with possible:
B zero mean,
m smooth a priori on covariance function,
m combining with Gaussian process hypothesis on f.

Meaning of 6:
m few information on @ if there is a systematic discrepancy ?

m the model f(x, 8) is informative through @ on the shape of the physical
phenomenon ¢(-) ?
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Bayeslan callbrallon without discrepancy
ion with di: P

Other topics and conc\uslon

Prior specification on §

Calibration with discrepancy

E(5()) =0

m Covariance function:
Ks(x,x') = o exp (—&[1x = X'|[?)

m 7(c%) =7G(3,1)
B (&) oc (1 —exp(—&s)) " ° exp(—&s)

m Kennedy and O’Hagan (2001)proposed a Gaussian approximation of
n(yF|¢s, 0%) to use ML estimators for &5, o2.
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Context

Bayesian calibration without discrepancy
Bayesian calibration with discrepancy
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Calibration with discrepancy

Likelihood

. 1 .
l(07 U§7£5|y“:) X |Zy’:| 12 exp (_E(y’c - m(X, 0))TZVF1 (yF - m(x7 9))) )

where
m m(-) is the mean of the GP conditioned to simulator data,

m ¥ r = 0?l,+ ¥ + X; where £ is constructed with the covariance
function C of the conditioned GP on f and X; is constructed with the
covariance function of the GP on 4.
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Calibration with discrepancy

lterate :

MH algorithm to simulate 8; from 7 (-|y", &.1-1,05 :_+),
MH algorithm to simulate &5,;—1 from 7r(~|y"',0,,o§,,_1),
MH algorithm to simulate o5, 4 from 7(-ly", 8¢, &5.).
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| n=6,

n Nrun = 12,

m o? assumed known,
m different bias :

5(X):0
6(x):3
5(x) =2—-x
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Calibration with discrepancy

Remarks

m same difficulties with bad prior,

m validation if the bias can be considered flat and equal to 0 ?
m difficulties to identify a non constant bias...
m not tested with unknown o2
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Context

Bayeslan callbrallon without discrepancy
ion with di: P

Other topics and conc\uslon

Some considerations on bias

Calibration with discrepancy

m Brynjarsdéttir and O’Hagan (2013)advocated for taken into account a
constraint form for the bias.

m Bachoc et al. proposed a validation method where the calibration makes
use of a linearisation of the simulator.
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Context

Bayesian calibration without discrepancy
Bayesian calibration with discrepancy
Other topics and conclusion

Prediction with a calibrated simulator:

Once the model is calibrated:
Posterior distribution on 8: =(-|y", ...)
Prediction of the physical phenomenon ((-), for x™" ?

m If no discrepancy, no emulator, ¢(x"") can be estimated through

é‘(xneW) _ /@ f(xnew’ 9)7T(9|VF)d9 .

m otherwise ¢(x™") has a Gaussian process as posterior distribution with
mean and covariance depending on 6.
= combining this distribution with =(-|y", (f(x;, 6;)),)
integration of the posterior mean of ¢(x™"):

/elE(C(X"eW)\yF, (F(x7,6));, 0)x (Bly", (F(x;. 6))),)-

P. Barbillon Calibration and validation of a computer code
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Context

Bayesian calibration without discrepancy
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Other topics and conclusion

Concerns and questions

Identifiability concerns

m If there is discrepancy, very little information on 8 and meaning of “best”
or “true” 6 ?

m If measurement error distribution (¢; ~ A(0, o)) unknown = lack of
identifiability.
m Prediction can be accurate in a non-identifiable model...
Validation ?
m Validate with unknown o2 ?
m Validate with model discrepancy ?

m Incorporate a bias and validate if the bias can be assumed identically
null.

m Discrepancy between prior on calibration parameters and posterior.
MCMC issues

m Gibbs on a potentially big number of parameters,

m each MH chain has to be tune.
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