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Calibration of a computer code

Computer experiments:

Computer model (simulator) (x∗,θ) 7→ f (x∗,θ) ∈ R
s where

physical parameters: x∗ ∈ X ⊂ R
m observable and often controllable

inputs

simulator parameters: θ ∈ Θ ⊂ R
d non-observable parameters,

required to run the simulator.

2 types:

“calibration parameters”: physical meaning but unknown, necessary to make
the code mimic the reality,
“tuning parameters”: no physical interpretation.

Goal:

Calibrate the code: finding “best” or “true” θ from real observations / field

data.
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Validation

Validation (rather than verification) is considered,

Does the computer simulator correspond to field data ?

The validation of the computer simulator depends on the known or

unknown precision of the field data

Biased computer model, no setting of calibrated parameters leads to

outputs close to field data. What is the meaning of validation in that

context?

prediction after the calibration step ?
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Field data

Field data provided by physical experiments:

yF = y
F (x1), . . . , y

F (xn) ,

n is small, x1, . . . xn ∈ X hard to set, sometimes uncontrollable, included

in a small domain...

Model:

y
F (xi) = ζ(xi) + ǫ(xi) ,

where

ζ(·) real physical process (unknown),

ǫ(xi ) often assumed i.i.d. N (0, σ2),

σ2 sometimes treated as known...
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Computer model / simulator

(x∗
,θ) 7→ f (x∗

,θ) ∈ R
s

physical parameters: x ∈ X ⊂ R
m,

x∗ same meaning as in field data,
extrapolation if x∗ > max(xi ) or x∗ < min(xi ).

simulator parameters θ ∈ Θ ⊂ R
d non-observable parameters,

required to run the simulator. No difference here between calibration and

tuning.

The simulator is often an expensive black-box function.

⇒ limited number Nrun of runs of the simulator.
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Relationship between the simulator and the data

for i = 1, . . . , n,

if the simulator sufficiently represents the physical system:

y
F
i = f (xi ,θ

∗) + ǫ(xi) ,

i.e. for the unknown value θ = θ∗ : f (x, θ∗) = ζ(x) for any x ∈ X,

if the field observations are inconsistent with the simulations (irreducible

model discrepancy):

y
F
i = f (xi ,θ

∗) + δ(xi) + ǫ(xi) .

δ(·) models the difference between the simulator and the physical

system:

δ(x) = ζ(x)− f (x, θ∗) ,

but

What does θ∗ mean ?
A best fitting ?
identifiability issues ?
usually assumed to be smoother than the real physical process ζ(·)

Ref.: Kennedy and O’Hagan (2001), Hidgon et al. (2005)...
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Expensive black-box computer code

Run the simulator for a given (x∗,θ) is time-consuming / expensive.

The simulator is a black-box, no intrusive methods are possible.

⇒ Only few runs of the simulator are possible then we cannot apply

algorithms (as in Bayesian calibration) which make a massive use of

simulator runs.

Using an emulator / metamodel / coarse model / approximation of the

simulator which is fast to compute, but:

loss on precision of prediction,

new uncertainty source: accuracy of the model approximation,

taken into account.
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Choosing a design of experiments

Choose Nrun couples

(x∗
j , θj)

space filling for x ,

with respect to the prior distribution on θ,

x∗
j = xi ?

where the simulator is called.
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Emulator using Gaussian Process:

Very popular in computer experiments.

integrated in a Bayesian framework: appears in the likelihood function

and a prior on the parameters of the Gaussian process are chosen.

model uncertainty coming from approximation of f .

After the calibration step, used in prediction for a new point x.
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Meta-modeling: prior distribution on f

Sacks et al. (1989).

f realization of a Gaussian process F :

∀(x∗,θ) ∈ E ,

F ((x∗
,θ)) =

Q
∑

k=1

βk hk ((x
∗
,θ)) + Z ((x∗

,θ)) = H((x∗
,θ))T

β + Z ((x∗
,θ)) ,

où

h1, . . . , hQ regression functions and β parameters vector,

Z centered Gaussians process with covariance function:

Cov(Z ((x∗
1 ,θ1)),Z ((x∗

2 ,θ2))) = σ
2
K ((x∗

1 ,θ1), (x
∗
2 ,θ2)) ,

where K is correlation kernel.

Hypotheses

K ((x∗
1 ,θ1), (x

∗
2 ,θ2)) = σ2

K exp(−ξx∗
∑

|x∗
1 − x∗

2 |
α − ξθ

∑

|θ1 − θ2|
α)

parameters φ = (β, σ2,K parameters) assumed fixed (in practice,

maximum likelihood estimators);
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Meta-modeling: posterior

v1 = f ((x∗,θ)1), . . . , vNrun = f ((x∗,θ)Nrun ) evaluations of f on a design

DNrun

Process F DNrun : Conditioning F to

F ((x∗
1 ,θ1)) = v1, . . . ,F (x∗

Nrun
,θNrun )) = vNrun .

Gaussian Process with mean m((x∗,θ)) and covariance

C((x∗,θ), (x∗,θ)′) ∀(x∗,θ), (x∗,θ)′.

For all (x∗,θ) ∈ E ,

m((x∗,θ)) approximates f ((x∗,θ)),
C((x∗,θ), (x∗,θ)) uncertainty on this approximation.

For all (x∗
i ,θi) ∈ DNrun ,

m(x∗
i
,θi ) = f (x∗

i
,θi ),

C((x∗
i
,θi ), (x

∗
i
,θi )) = 0.
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Meta-modeling / emulator of the computer code

Gaussian process emulator: illustration

Figure: Posterior mean and realisations of the conditioned process
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A calibration example

Hypotheses:

The simulator represents sufficiently well the physical system:

y(xi) = f (xi ,θ
∗) + ǫi , i = 1, . . . , n .

But unknown θ∗.

ǫi ∼ N (0, σ2) i.i.d. with known σ2.

σ2 = 0.3

n = 6,

θ∗ = 0.6
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A calibration example

Prior:

prior distribution on unknown θ: π(·)
from expert judgment, past experiments...

Possible choice π(θ) = N (θ0, σ
2
0) = N (0.5, 0.04).
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A calibration example

Data:

Couples (x1, y
F
1 ), . . . , (xn, y

F
n ) from physical experiments.

Posterior distribution:

π(θ|yF ) ∝ l(θ|yF ) · π(θ)

∝ exp

(

−
1

2σ2

n
∑

i=1

(y(xi)− f (xi ,θ))
2 −

1

2σ2
0

(θ − θ0)
2

)

Analytical posterior if θ 7→ f (x,θ) is a linear map,

Otherwise MH sampling to simulate according to the posterior

distribution.
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A calibration example

Prior with data:
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More details on the MH algorithm

Initialisation:

θ0 chosen.

Update:

iterations t = 1, . . . ,

1 Proposal: θ̃t+1 = θt +N (0, τ 2).

2 Compute

α(θt
, θ̃

t+1) =
π(θ̃t+1|yF )

π(θt |yF )

3 Acceptation:

θ
t+1 =

{

θ̃t+1 with probability α(θt , θ̃t+1)
θt otherwise.

Note that the ratio α(θt , θ̃t+1) needs several computations of f (x,θ) at each

step since

π(θ|yF ) ∝ exp

(

−
1

2σ2

n
∑

i=1

(y(xi)− f (xi ,θ))
2 −

1

2σ2
0

(θ − θ0)
2

)

.
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prior distribution on σ2: π(σ2) = IG(5, 2)
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Gibbs algorithm to simulate couples (θ, σ2) from π(θ, σ2|yF ). Iterate :

1 MH algorithm to simulate θt from π(·|yF , σ2
t−1

),

2 conditional simulation of σ2
t from π(·|yF ,θt ).
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Figure: known σ2 vs unknown σ2
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with a bad prior....

prior on θ: π(θ) = N (0.2, 0.04) and n = 12 field data
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Likelihood with a Gaussian process hypothesis on f

z = (yF
1 , . . . , y

F
n , f (x

∗
1 ,θ1), . . . , f (x

∗
Nrun

,θNrun ))

likelihood on z

l(θ, σ2|z) ∝ |Σz|
−1/2

exp

(

−
1

2
(z − µ)TΣ−1

z (z − µ)

)

where

µ is the mean of the Gaussian process,

Σz = Σf +

(

Σy 0
0 0

)

with Σy = σ2In and Σf is obtained as the covariance matrix corresponding
to the points: (x1,θ), . . . , (xn,θ), (x∗

1
,θ1), . . . , (x

∗
Nrun

,θNrun
).
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Dealing with GP parameters

prior distribution on µ and covariance parameters Hidgon et al. (2005)

⇒ MCMC inference

MLE estimators Kennedy and O’Hagan (2001)

treated as fixed,
only computer data f (x∗

1
,θ1), . . . , f (x

∗
Nrun

,θNrun
) are used (n < Nrun) for MLE

likelihood l(θ, σ2|z):

l(θ, σ2|z) ∝ |Σ̃yF |
−1/2 exp

(

−
1

2
(yF − m(x,θ))T Σ̃−1

yF (yF − m(x,θ))

)

where

m(·) is the mean of the GP conditioned to simulator data,

Σ̃
yF = Σ

yF + Σ̃f = σ
2In + Σ̃f where Σ̃f is constructed with the covariance

function C of the conditioned GP.
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Model discrepancy

y
F
i = f (xi ,θ

∗) + δ(xi) + ǫ(xi) .
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Calibration with discrepancy

Modelisation of δ:

Sensible to assume: δ(x) ≈ δ(x + dx)

Gaussian Process hypothesis on δ with possible:

zero mean,

smooth a priori on covariance function,

combining with Gaussian process hypothesis on f .

Meaning of θ:

few information on θ if there is a systematic discrepancy ?

the model f (x,θ) is informative through θ on the shape of the physical

phenomenon ζ(·) ?
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Prior specification on δ

E(δ(·)) = 0,

Covariance function:

Kδ(x, x
′) = σ

2
δ exp

(

−ξδ‖x − x′‖2
)

π(σ2) = IG(3, 1)

π(ξδ) ∝ (1 − exp(−ξδ))
−0.6 exp(−ξδ)

Kennedy and O’Hagan (2001)proposed a Gaussian approximation of

π(yF |ξδ, σ
2
δ) to use ML estimators for ξδ, σ

2
δ .
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Calibration with discrepancy

Likelihood

l(θ, σ2
δ, ξδ|y

F ) ∝ |Σ̃yF |
−1/2

exp

(

−
1

2
(yF − m(x,θ))T Σ̃−1

yF (yF − m(x,θ))

)

,

where

m(·) is the mean of the GP conditioned to simulator data,

Σ̃yF = σ2In + Σ̃f +Σδ where Σ̃f is constructed with the covariance

function C of the conditioned GP on f and Σδ is constructed with the

covariance function of the GP on δ.
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Gibbs algorithm

Iterate :

1 MH algorithm to simulate θt from π(·|yF , ξδ,t−1, σ
2
δ,t−1),

2 MH algorithm to simulate ξδ,t−1 from π(·|yF ,θt , σ
2
δ,t−1),

3 MH algorithm to simulate σ2
δ,t−1 from π(·|yF ,θt , ξδ,t).
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An example

n = 6,

Nrun = 12,

σ2 assumed known,

different bias :

1 δ(x) = 0
2 δ(x) = 3
3 δ(x) = 2 − x
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δ(x) = 3
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δ(x) = 2 − x
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Calibration with discrepancy

Remarks

same difficulties with bad prior,

validation if the bias can be considered flat and equal to 0 ?

difficulties to identify a non constant bias...

not tested with unknown σ2
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Calibration with discrepancy

Some considerations on bias

Brynjarsdóttir and O’Hagan (2013)advocated for taken into account a

constraint form for the bias.

Bachoc et al. proposed a validation method where the calibration makes

use of a linearisation of the simulator.
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Outline

1 Context

Two kinds of data

Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

Known σ2, unlimited simulator runs

Unknown σ2, unlimited simulator runs

Unknown σ2, limited number of runs

3 Bayesian calibration with discrepancy

Calibration with discrepancy

4 Other topics and conclusion
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Prediction with a calibrated simulator:

Once the model is calibrated:

Posterior distribution on θ: π(·|yF , ...)

Prediction of the physical phenomenon ζ(·), for xnew ?

If no discrepancy, no emulator, ζ(xnew ) can be estimated through

ζ̂(xnew ) =

∫

Θ

f (xnew
,θ)π(θ|yF )dθ .

otherwise ζ(xnew ) has a Gaussian process as posterior distribution with

mean and covariance depending on θ.

⇒ combining this distribution with π(·|yF , (f (x∗
j ,θj))j)

integration of the posterior mean of ζ(xnew ):

∫

Θ

E(ζ(xnew )|yF
, (f (x∗

j ,θj))j ,θ)π(θ|y
F
, (f (x∗

j ,θj))j) .
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Prediction without discrepancy, with emulator
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Prediction with discrepancy, with emulator, bad prior
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Concerns and questions

Identifiability concerns

If there is discrepancy, very little information on θ and meaning of “best”

or “true” θ ?

If measurement error distribution (ǫi ∼ N (0, σ2)) unknown ⇒ lack of

identifiability.

Prediction can be accurate in a non-identifiable model...

Validation ?

Validate with unknown σ2 ?

Validate with model discrepancy ?

Incorporate a bias and validate if the bias can be assumed identically

null.

Discrepancy between prior on calibration parameters and posterior.

MCMC issues

Gibbs on a potentially big number of parameters,

each MH chain has to be tune.
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