Calibration and validation of a computer code

Pierre BARBILLON

AgroParisTech / INRA MIA UMR 518

13/11/13

Journée Validation GDR MASCOT NUM

- E - >

• • • • • • • • • • • • • •

Calibration of a computer code

Computer experiments:

Computer model (simulator) $(\mathbf{x}^*, \boldsymbol{\theta}) \mapsto f(\mathbf{x}^*, \boldsymbol{\theta}) \in \mathbb{R}^s$ where

- **physical parameters:** $\mathbf{x}^* \in \mathbb{X} \subset \mathbb{R}^m$ observable and often controllable inputs
- **simulator parameters**: $\theta \in \Theta \subset \mathbb{R}^d$ non-observable parameters, required to run the simulator.
 - 2 types:
 - "calibration parameters": physical meaning but unknown, necessary to make the code mimic the reality,
 - "tuning parameters": no physical interpretation.

Goal:

Calibrate the code: finding "best" or "true" θ from real observations / field data.

(日)

Validation

- Validation (rather than verification) is considered,
- Does the computer simulator correspond to field data ?
- The validation of the computer simulator depends on the known or unknown precision of the field data
- Biased computer model, no setting of calibrated parameters leads to outputs close to field data. What is the meaning of validation in that context?

prediction after the calibration step ?

Outline

1 Context

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- **Known** σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- **U**nknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Outline

1 Context

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Two kinds of data

Meta-modeling / emulator of the computer code

Plan

1 Context

Two kinds of data

Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Field data

Field data provided by physical experiments:

$$\mathbf{y}^{F} = y^{F}(\mathbf{x}_{1}), \ldots, y^{F}(\mathbf{x}_{n}),$$

■ n is small, $x_1, ..., x_n \in X$ hard to set, sometimes uncontrollable, included in a small domain...

Model:

$$\boldsymbol{y}^{\boldsymbol{F}}(\mathbf{x}_i) = \zeta(\mathbf{x}_i) + \epsilon(\mathbf{x}_i),$$

where

- $\boldsymbol{\zeta}(\cdot)$ real physical process (unknown),
- $\epsilon(\mathbf{x}_i)$ often assumed i.i.d. $\mathcal{N}(0, \sigma^2)$,
- σ^2 sometimes treated as known...

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Computer model / simulator

 $(\mathbf{x}^*, \boldsymbol{\theta}) \mapsto f(\mathbf{x}^*, \boldsymbol{\theta}) \in \mathbb{R}^s$

physical parameters: $\mathbf{x} \in \mathbb{X} \subset \mathbb{R}^{m}$,

- **x*** same meaning as in field data,
- extrapolation if $\mathbf{x}^* > \max(\mathbf{x}_i)$ or $\mathbf{x}^* < \min(\mathbf{x}_i)$.
- **simulator parameters** $\theta \in \Theta \subset \mathbb{R}^d$ non-observable parameters, required to run the simulator. No difference here between calibration and tuning.

The simulator is often an expensive black-box function.

 \Rightarrow limited number N_{run} of runs of the simulator.

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Relationship between the simulator and the data

for *i* = 1, . . . , *n*,

■ if the simulator sufficiently represents the physical system:

$$\mathbf{y}_i^F = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \epsilon(\mathbf{x}_i),$$

i.e. for the unknown value $\theta = \theta^* : f(\mathbf{x}, \theta^*) = \zeta(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{X}$,

if the field observations are inconsistent with the simulations (irreducible model discrepancy):

$$y_i^F = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \delta(\mathbf{x}_i) + \epsilon(\mathbf{x}_i).$$

 $\delta(\cdot)$ models the difference between the simulator and the physical system:

$$\delta(\mathbf{x}) = \zeta(\mathbf{x}) - f(\mathbf{x}, \theta^*),$$

but

- What does θ^* mean ?
- A best fitting ?
- identifiability issues ?
- usually assumed to be smoother than the real physical process $\zeta(\cdot)$

Ref.: Kennedy and O'Hagan (2001), Hidgon et al. (2005)..., and the second secon

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Plan

1 Context

Two kinds of data

Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Expensive black-box computer code

- **R**un the simulator for a given (\mathbf{x}^*, θ) is time-consuming / expensive.
- The simulator is a black-box, no intrusive methods are possible.

 \Rightarrow Only few runs of the simulator are possible then we cannot apply algorithms (as in Bayesian calibration) which make a massive use of simulator runs.

Using an emulator / metamodel / coarse model / approximation of the simulator which is fast to compute, but:

- loss on precision of prediction,
- new uncertainty source: accuracy of the model approximation,
- taken into account.

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Choosing a design of experiments

Choose N_{run} couples

$(\mathbf{x}_{j}^{*},\theta_{j})$

space filling for x,

• with respect to the prior distribution on θ ,

 $\blacksquare \mathbf{x}_i^* = \mathbf{x}_i ?$

where the simulator is called.

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Emulator using Gaussian Process:

- Very popular in computer experiments.
- integrated in a Bayesian framework: appears in the likelihood function and a prior on the parameters of the Gaussian process are chosen.
- model uncertainty coming from approximation of f.
- After the calibration step, used in prediction for a new point **x**.

< □ > < 同 > < 回 > < 回 > .

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Meta-modeling: prior distribution on f

Sacks et al. (1989). f realization of a Gaussian process F: $\forall (\mathbf{x}^*, \theta) \in E$,

$$F((\mathbf{x}^*, \boldsymbol{\theta})) = \sum_{k=1}^{Q} \beta_k h_k((\mathbf{x}^*, \boldsymbol{\theta})) + Z((\mathbf{x}^*, \boldsymbol{\theta})) = H((\mathbf{x}^*, \boldsymbol{\theta}))^T \beta + Z((\mathbf{x}^*, \boldsymbol{\theta})),$$

où

■ h_1, \ldots, h_Q regression functions and β parameters vector,

■ *Z* centered Gaussians process with covariance function:

$$\operatorname{Cov}(Z((\mathbf{x}_1^*, \theta_1)), Z((\mathbf{x}_2^*, \theta_2))) = \sigma^2 \mathcal{K}((\mathbf{x}_1^*, \theta_1), (\mathbf{x}_2^*, \theta_2)),$$

where K is correlation kernel.

Hypotheses

- $\mathbf{I} \mathcal{K}((\mathbf{x}_1^*, \boldsymbol{\theta}_1), (\mathbf{x}_2^*, \boldsymbol{\theta}_2)) = \sigma_{\mathcal{K}}^2 \exp(-\xi_{\mathbf{x}^*} \sum |\mathbf{x}_1^* \mathbf{x}_2^*|^{\alpha} \xi_{\boldsymbol{\theta}} \sum |\boldsymbol{\theta}_1 \boldsymbol{\theta}_2|^{\alpha})$
- parameters $\phi = (\beta, \sigma^2, K \text{ parameters})$ assumed fixed (in practice, maximum likelihood estimators);

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Meta-modeling: posterior

■ $v_1 = f((\mathbf{x}^*, \theta)_1), \dots, v_{N_{run}} = f((\mathbf{x}^*, \theta)_{N_{run}})$ evaluations of *f* on a design $D_{N_{run}}$

Process $F^{D_{Nrun}}$: Conditioning F to $F((\mathbf{x}_1^*, \theta_1)) = v_1, \ldots, F(\mathbf{x}_{Nrun}^*, \theta_{Nrun})) = v_{Nrun}$. Gaussian Process with mean $m((\mathbf{x}^*, \theta))$ and covariance $C((\mathbf{x}^*, \theta), (\mathbf{x}^*, \theta)') \forall (\mathbf{x}^*, \theta), (\mathbf{x}^*, \theta)'$.

For all $(\mathbf{x}^*, \theta) \in E$, $m((\mathbf{x}^*, \theta))$ approximates $f((\mathbf{x}^*, \theta))$, $C((\mathbf{x}^*, \theta), (\mathbf{x}^*, \theta))$ uncertainty on this approximation.

For all
$$(\mathbf{x}_i^*, \theta_i) \in D_{N_{run}}$$
,
 $\mathbf{m}(\mathbf{x}_i^*, \theta_i) = f(\mathbf{x}_i^*, \theta_i)$,
 $\mathbf{C}((\mathbf{x}_i^*, \theta_i), (\mathbf{x}_i^*, \theta_i)) = 0$

< D > < (2) > < (2) > < (2) >

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Two kinds of data Meta-modeling / emulator of the computer code

Gaussian process emulator: illustration

Figure: Posterior mean and realisations of the conditioned process

・ロ・・ (日・・ ヨ・・

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Outline

Context

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

< ロ > < 同 > < 回 > < 回 >

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Plan

1 Contex

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- **Known** σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

A calibration example

Hypotheses:

The simulator represents sufficiently well the physical system:

$$y(\mathbf{x}_i) = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \epsilon_i, \quad i = 1, \dots, n.$$

- But unknown θ^* .
- $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ i.i.d. with known σ^2 .
- σ² = 0.3
- *n* = 6,
- θ* = 0.6

(日)

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

A calibration example

Prior:

prior distribution on unknown θ : $\pi(\cdot)$ from expert judgment, past experiments... Possible choice $\pi(\theta) = \mathcal{N}(\theta_0, \sigma_0^2) = \mathcal{N}(0.5, 0.04)$.

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

A calibration example

Data: Couples $(\mathbf{x}_1, y_1^F), \dots, (\mathbf{x}_n, y_n^F)$ from physical experiments.

Posterior distribution:

$$\begin{aligned} \pi(\boldsymbol{\theta}|\mathbf{y}^{\mathsf{F}}) &\propto & l(\boldsymbol{\theta}|\mathbf{y}^{\mathsf{F}}) \cdot \pi(\boldsymbol{\theta}) \\ &\propto & \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(y(\mathbf{x}_i) - f(\mathbf{x}_i,\boldsymbol{\theta}))^2 - \frac{1}{2\sigma_0^2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^2\right) \end{aligned}$$

- Analytical posterior if $\theta \mapsto f(\mathbf{x}, \theta)$ is a linear map,
- Otherwise MH sampling to simulate according to the posterior distribution.

イロト イポト イヨト イヨト

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

A calibration example

Prior with data:

 \Downarrow Metropolis-Hastings algorithm \Downarrow

P. Barbillon

Calibration and validation of a computer code

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

More details on the MH algorithm

Initialisation:

 θ^0 chosen.

Update:

iterations t = 1, ...,Proposal: $\tilde{\theta}^{t+1} = \theta^t + \mathcal{N}(0, \tau^2)$. Compute

$$\alpha(\theta^{t}, \tilde{\theta}^{t+1}) = \frac{\pi(\tilde{\theta}^{t+1} | \mathbf{y}^{F})}{\pi(\theta^{t} | \mathbf{y}^{F})}$$

3 Acceptation:

 $\theta^{t+1} = \begin{cases} \tilde{\theta}^{t+1} & \text{with probability } \alpha(\theta^t, \tilde{\theta}^{t+1}) \\ \theta^t & \text{otherwise.} \end{cases}$

Note that the ratio $\alpha(\theta^t, \tilde{\theta}^{t+1})$ needs several computations of $f(\mathbf{x}, \theta)$ at each step since

$$\pi(\theta|\mathbf{y}^{\mathsf{F}}) \propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(y(\mathbf{x}_i) - f(\mathbf{x}_i, \theta))^2 - \frac{1}{2\sigma_0^2}(\theta - \theta_0)^2\right).$$

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Plan

Contex

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- **Known** σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Unknown σ^2

П

Prior distribution on
$$\sigma^2$$
: $\pi(\sigma^2) = \mathcal{IG}(5,2)$

Gibbs algorithm to simulate couples (θ, σ^2) from $\pi(\theta, \sigma^2 | \mathbf{y}^F)$. Iterate :

- **1** MH algorithm to simulate $\boldsymbol{\theta}_t$ from $\pi(\cdot | \mathbf{y}^F, \sigma_{t-1}^2)$,
- **2** conditional simulation of σ_t^2 from $\pi(\cdot | \mathbf{y}^F, \boldsymbol{\theta}_t)$.

イロト イポト イヨト イヨト

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Posterior distributions

크

Bayesian calibration without discrepancy

Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Comparison

Figure: known σ^2 vs unknown σ^2

<ロト <回ト < 回ト < 回ト :

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

with a bad prior....

prior on θ **:** $\pi(\theta) = \mathcal{N}(0.2, 0.04)$ and n = 12 field data

Figure: known σ^2 vs unknown σ^2

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Plan

Contex

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- **U**nknown σ^2 , limited number of runs
- Bayesian calibration with discrepancy
 Calibration with discrepancy
- 4 Other topics and conclusion

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Likelihood with a Gaussian process hypothesis on f

$$\mathbf{z} = (\mathbf{y}_1^F, \dots, \mathbf{y}_n^F, f(\mathbf{x}_1^*, \boldsymbol{\theta}_1), \dots, f(\mathbf{x}_{N_{run}}^*, \boldsymbol{\theta}_{N_{run}}))$$

likelihood on z

$$l(\boldsymbol{\theta}, \sigma^2 | \mathbf{z}) \propto |\Sigma_{\mathbf{z}}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{z}-\mu)^T \Sigma_{\mathbf{z}}^{-1}(\mathbf{z}-\mu)\right)$$

where

• μ is the mean of the Gaussian process,

$$\Sigma_{\mathbf{z}} = \Sigma_f + \left(egin{array}{cc} \Sigma_y & 0 \\ 0 & 0 \end{array}
ight)$$

with $\Sigma_{\gamma} = \sigma^2 I_n$ and Σ_f is obtained as the covariance matrix corresponding to the points: $(\mathbf{x}_1, \theta), \dots, (\mathbf{x}_n, \theta), (\mathbf{x}_1^*, \theta_1), \dots, (\mathbf{x}_{N_{run}}^*, \theta_{N_{run}}).$

(日)

Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

Dealing with GP parameters

- prior distribution on μ and covariance parameters Hidgon et al. (2005) ⇒ MCMC inference
- MLE estimators Kennedy and O'Hagan (2001)
 - treated as fixed,
 - only computer data $f(\mathbf{x}_1^*, \theta_1), \ldots, f(\mathbf{x}_{N_{run}}^*, \theta_{N_{run}})$ are used $(n < N_{run})$ for MLE • likelihood $I(\theta, \sigma^2 | \mathbf{z})$:

$$\textit{I}(\boldsymbol{\theta},\sigma^{2}|\boldsymbol{z}) \propto |\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{y}^{F}}|^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{y}^{F}-\textit{m}(\boldsymbol{x},\boldsymbol{\theta}))^{T}\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{y}^{F}}^{-1}(\boldsymbol{y}^{F}-\textit{m}(\boldsymbol{x},\boldsymbol{\theta}))\right)$$

where

- \blacksquare $m(\cdot)$ is the mean of the GP conditioned to simulator data,
- $\quad \tilde{\Sigma}_{\mathbf{y}F} = \Sigma_{\mathbf{y}F} + \tilde{\Sigma}_f = \sigma^2 I_n + \tilde{\Sigma}_f \text{ where } \tilde{\Sigma}_f \text{ is constructed with the covariance function } C \text{ of the conditioned GP.}$

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion Known σ^2 , unlimited simulator runs Unknown σ^2 , unlimited simulator runs Unknown σ^2 , limited number of runs

unlimited runs versus $N_{run} = 12$

<ロト <回ト < 回ト < 回ト :

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

Outline

Context

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- **U**nknown σ^2 , limited number of runs

Bayesian calibration with discrepancy Calibration with discrepancy

4 Other topics and conclusion

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

Plan

Context

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs

Bayesian calibration with discrepancy Calibration with discrepancy

4 Other topics and conclusion

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

Model discrepancy

$$\mathbf{y}_i^{\mathsf{F}} = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \delta(\mathbf{x}_i) + \epsilon(\mathbf{x}_i).$$

No value of θ makes the simulator corresponding to the fied data

Modelisation of δ :

Sensible to assume: $\delta(\mathbf{x}) \approx \delta(\mathbf{x} + d\mathbf{x})$

Gaussian Process hypothesis on δ with possible:

- zero mean,
- smooth a priori on covariance function,
- combining with Gaussian process hypothesis on f.

Meaning of θ :

- few information on θ if there is a systematic discrepancy ?
- the model $f(\mathbf{x}, \theta)$ is informative through θ on the shape of the physical phenomenon $\zeta(\cdot)$?

Calibration with discrepancy

Prior specification on δ

 $\blacksquare \mathbb{E}(\delta(\cdot)) = 0,$

Covariance function:

$$\mathcal{K}_{\delta}(\mathbf{x}, \mathbf{x}') = \sigma_{\delta}^{2} \exp\left(-\xi_{\delta} \|\mathbf{x} - \mathbf{x}'\|^{2}\right)$$

$$\pi(\sigma^2) = \mathcal{IG}(3,1)$$
$$\pi(\xi_{\delta}) \propto (1 - \exp(-\xi_{\delta}))^{-0.6} \exp(-\xi_{\delta})$$

• Kennedy and O'Hagan (2001)proposed a Gaussian approximation of $\pi(\mathbf{y}^F|\xi_{\delta}, \sigma_{\delta}^2)$ to use ML estimators for $\xi_{\delta}, \sigma_{\delta}^2$.

イロト 不得 トイヨト イヨト

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

Likelihood

$$I(\boldsymbol{\theta}, \sigma_{\delta}^{2}, \xi_{\delta} | \mathbf{y}^{F}) \propto |\tilde{\boldsymbol{\Sigma}}_{\mathbf{y}^{F}}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{y}^{F} - m(\mathbf{x}, \boldsymbol{\theta}))^{T} \tilde{\boldsymbol{\Sigma}}_{\mathbf{y}^{F}}^{-1}(\mathbf{y}^{F} - m(\mathbf{x}, \boldsymbol{\theta}))\right) ,$$

where

- **\square** $m(\cdot)$ is the mean of the GP conditioned to simulator data,
- $\tilde{\Sigma}_{\mathbf{y}^F} = \sigma^2 I_n + \tilde{\Sigma}_f + \Sigma_{\delta}$ where $\tilde{\Sigma}_f$ is constructed with the covariance function *C* of the conditioned GP on *f* and Σ_{δ} is constructed with the covariance function of the GP on δ .

< ロ > < 同 > < 三 > < 三 > -

Gibbs algorithm

Calibration with discrepancy

Iterate :

- **1** MH algorithm to simulate θ_t from $\pi(\cdot | \mathbf{y}^F, \xi_{\delta,t-1}, \sigma_{\delta,t-1}^2)$,
- **2** MH algorithm to simulate $\xi_{\delta,t-1}$ from $\pi(\cdot | \mathbf{y}^F, \boldsymbol{\theta}_t, \sigma_{\delta,t-1}^2)$,
- **3** MH algorithm to simulate $\sigma_{\delta,t-1}^2$ from $\pi(\cdot | \mathbf{y}^F, \boldsymbol{\theta}_t, \xi_{\delta,t})$.

(日)

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

An example

- *n* = 6,
- *N*_{run} = 12,
- σ^2 assumed known,
- different bias :

1
$$\delta(\mathbf{x}) = 0$$

2 $\delta(\mathbf{x}) = 3$
3 $\delta(\mathbf{x}) = 2 - \mathbf{x}$

<ロト <回ト < 回ト < 回ト :

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

 $\delta(\mathbf{x}) = \mathbf{0}$

イロン イ理 とく ヨン イヨン

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

 $\delta(\mathbf{x}) = \mathbf{3}$

イロン イ理 とく ヨン イヨン

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

 $\delta(\mathbf{x}) = 2 - \mathbf{x}$

<ロ> <問> <問> < 回> < 回> 、

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Calibration with discrepancy

Remarks

- same difficulties with bad prior,
- validation if the bias can be considered flat and equal to 0 ?
- difficulties to identify a non constant bias...
- \blacksquare not tested with unknown σ^2

(日)

Calibration with discrepancy

Some considerations on bias

- Brynjarsdóttir and O'Hagan (2013)advocated for taken into account a constraint form for the bias.
- Bachoc et al. proposed a validation method where the calibration makes use of a linearisation of the simulator.

Outline

1 Context

- Two kinds of data
- Meta-modeling / emulator of the computer code

2 Bayesian calibration without discrepancy

- Known σ^2 , unlimited simulator runs
- Unknown σ^2 , unlimited simulator runs
- Unknown σ^2 , limited number of runs

Bayesian calibration with discrepancy Calibration with discrepancy

4 Other topics and conclusion

Prediction with a calibrated simulator:

Once the model is calibrated:

Posterior distribution on θ : $\pi(\cdot | \mathbf{y}^F, ...)$

Prediction of the physical phenomenon $\zeta(\cdot)$, for **x**^{*new*} ?

If no discrepancy, no emulator, $\zeta(\mathbf{x}^{new})$ can be estimated through

$$\hat{\zeta}(\mathbf{x}^{new}) = \int_{\Theta} f(\mathbf{x}^{new}, \theta) \pi(\theta | \mathbf{y}^{\mathsf{F}}) d\theta$$

otherwise ζ(**x**^{new}) has a Gaussian process as posterior distribution with mean and covariance depending on θ.
 ⇒ combining this distribution with π(·|**y**^F, (f(**x**_j^{*}, θ_j))_j) integration of the posterior mean of ζ(**x**^{new}):

$$\int_{\Theta} \mathbb{E}(\zeta(\mathbf{x}^{new})|\mathbf{y}^{F},(f(\mathbf{x}_{j}^{*},\boldsymbol{\theta}_{j}))_{j},\boldsymbol{\theta})\pi(\boldsymbol{\theta}|\mathbf{y}^{F},(f(\mathbf{x}_{j}^{*},\boldsymbol{\theta}_{j}))_{j}).$$

< D > < (2) > < (2) > < (2) >

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Prediction without discrepancy, with emulator

<ロト <回ト < 回ト < 回ト :

크

Bayesian calibration without discrepancy Bayesian calibration with discrepancy Other topics and conclusion

Prediction with discrepancy, with emulator

<ロ> <問> <問> < 同> < 同> < 同> -

크

Prediction with discrepancy, with emulator, bad prior

・ロト ・回ト ・ヨト ・ヨト

Concerns and questions

Identifiability concerns

- If there is discrepancy, very little information on θ and meaning of "best" or "true" θ ?
- If measurement error distribution (ε_i ∼ N(0, σ²)) unknown ⇒ lack of identifiability.
- Prediction can be accurate in a non-identifiable model...

Validation ?

- Validate with unknown σ^2 ?
- Validate with model discrepancy ?
- Incorporate a bias and validate if the bias can be assumed identically null.
- Discrepancy between prior on **calibration** parameters and posterior.

MCMC issues

- Gibbs on a potentially big number of parameters,
- each MH chain has to be tune.

イロト 不得 トイヨト イヨト

References

Calibration of computer models

- Dave Hidgon et al., 2005. Combining Field Data and Computer Simulations for Calibration and Prediction. SIAM 26(2).
- Marc Kennedy and Anthony O'Hagan, 2001. Bayesian Calibration of Computer Models. Journal of the Royal Statistical Society B 68.
- Jenny Brynjarsdóttir and Anthony O'Hagan, 2013. J. of Uncertainty Quantification.

Validation of computer models

- Susie Bayarri et al., 2002. A Framework for Validation of Computer Models. Technometrics 49(2).
- François Bachoc et al., 2013.Gaussian process computer model validation method

Gaussian Process emulator:

- Thomas Santner et al., 2003. The Design and Analysis of Computer Experiments. Springer-Verlag.
- Kai-Tai Fang et al., 2006. Design and Modeling for Computer Experiments. Computer Science and Data Analysis. Chapman & Hall/CRC.

< ロ > < 同 > < 三 > < 三 > -