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Field data

Field data provided by physical experiments:

y
F = y

F (x1), . . . , y
F (xn) ,

n is small, x1, . . . xn ∈ X hard to set, sometimes uncontrollable, included

in a small domain...

Model:

y
F (xi) = ζ(xi) + ǫ(xi) ,

where

ζ(·) real physical process (unknown),

ǫ(xi ) often assumed i.i.d. N (0, σ2),

σ2 sometimes treated as known...
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Computer model / simulator

Computer experiments:

Computer model (simulator) (x∗,θ) 7→ f (x∗,θ) ∈ R
s where

physical parameters: x∗ ∈ X ⊂ R
m observable and often controllable

inputs

x∗ same meaning as in field data,
extrapolation if x∗ > max(xi ) or x∗ < min(xi ).

simulator parameters: θ ∈ Θ ⊂ R
d non-observable parameters,

required to run the simulator.

2 types:

“calibration parameters”: physical meaning but unknown, necessary to make
the code mimic the reality,
“tuning parameters”: no physical interpretation.

f designed to mimic the unknown physical process ζ(·) for a value of θ.

The simulator is often an expensive black-box function.

⇒ limited number Nrun of runs of the simulator.

P. Barbillon Sequential designs for computer experiments
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Relationship between the simulator and the data

for i = 1, . . . , n,

if the simulator sufficiently represents the physical system:

y
F
i = f (xi ,θ

∗) + ǫ(xi) ,

i.e. for the unknown value θ = θ∗ : f (x, θ∗) = ζ(x) for any x ∈ X,

if the field observations are inconsistent with the simulations (irreducible

model discrepancy):

y
F
i = f (xi ,θ

∗) + δ(xi) + ǫ(xi) .

δ(·) models the difference between the simulator and the physical

system:

δ(x) = ζ(x)− f (x, θ∗) ,

but
What does θ∗ mean ?
A best fitting ?
identifiability issues ?
usually assumed to be smoother than the real physical process ζ(·)

Ref.: Kennedy and O’Hagan (2001), Hidgon et al. (2005)...
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A calibration example

Hypotheses:

The simulator represents sufficiently well the physical system:

y
F (xi) = f (xi ,θ

∗) + ǫi , i = 1, . . . , n .

But unknown θ∗.

ǫi ∼ N (0, σ2) i.i.d. with known σ2.

σ2 = 0.3

n = 6,

θ∗ = 0.6
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A calibration example

Prior:

prior distribution on unknown θ: π(·)
from expert judgment, past experiments...

Possible choice π(θ) = N (θ0, σ
2
0) = N (0.5, 0.04).
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A calibration example

Data:

Couples (x1, y
F
1 ), . . . , (xn, y

F
n ) from physical experiments.

Posterior distribution:

π(θ|yF ) ∝ l(θ|yF ) · π(θ)

∝ exp

(

−
1

2σ2

n
∑

i=1

(yF (xi)− f (xi ,θ))
2 −

1

2σ2
0

(θ − θ0)
2

)

Analytical posterior if θ 7→ f (x,θ) is a linear map,

Otherwise MH sampling to simulate according to the posterior

distribution.
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A calibration example

Prior with data:
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More details on the MH algorithm

Initialisation:

θ0 chosen.

Update:

iterations t = 1, . . . ,

1 Proposal: θ̃t+1 = θt +N (0, τ 2).

2 Compute

α(θt
, θ̃

t+1) =
π(θ̃t+1|yF )

π(θt |yF )

3 Acceptation:

θ
t+1 =

{

θ̃t+1 with probability α(θt , θ̃t+1)
θt otherwise.

Note that the ratio α(θt , θ̃t+1) needs several computations of f (x,θ) at each

step since

π(θ|yF ) ∝ exp

(

−
1

2σ2

n
∑

i=1

(yF (xi)− f (xi ,θ))
2 −

1

2σ2
0

(θ − θ0)
2

)

.
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Unknown σ
2

prior distribution on σ2: π(σ2) = IG(5, 2)
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Gibbs algorithm to simulate couples (θ, σ2) from π(θ, σ2|yF ). Iterate :

1 MH algorithm to simulate θt from π(·|yF , σ2
t−1

),

2 conditional simulation of σ2
t from π(·|yF ,θt ).
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Posterior distributions
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Comparison
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Figure : known σ2 vs unknown σ2
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with a bad prior....

prior on θ: π(θ) = N (0.2, 0.04) and n = 12 field data
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Expensive black-box computer code

Run the simulator for a given (x∗,θ) is time-consuming / expensive.

The simulator is a black-box, no intrusive methods are possible.

⇒ Only few runs of the simulator are possible then we cannot apply

algorithms (as in Bayesian calibration) which make a massive use of

simulator runs.

Using an emulator / metamodel / coarse model / approximation of the

simulator which is fast to compute, but:

loss on precision of prediction,

new uncertainty source: accuracy of the model approximation,

taken into account.
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Choosing a design of experiments

Choose Nrun couples

(x∗
j , θj)

space filling for x ,

with respect to the prior distribution on θ,

x∗
j = xi ?

where the simulator is called.
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Emulator using Gaussian Process:

Very popular in computer experiments.

integrated in a Bayesian framework: appears in the likelihood function

and a prior on the parameters of the Gaussian process are chosen.

model uncertainty coming from approximation of f .

After the calibration step, used in prediction for a new point x.
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Meta-modeling: prior distribution on f

Sacks et al. (1989).

f realization of a Gaussian process F :

∀(x∗,θ) ∈ E ,

F ((x∗
,θ)) =

Q
∑

k=1

βk hk ((x
∗
,θ)) + Z ((x∗

,θ)) = H((x∗
,θ))T

β + Z ((x∗
,θ)) ,

où

h1, . . . , hQ regression functions and β parameters vector,

Z centered Gaussians process with covariance function:

Cov(Z ((x∗
1 ,θ1)),Z ((x∗

2 ,θ2))) = σ
2
K ((x∗

1 ,θ1), (x
∗
2 ,θ2)) ,

where K is correlation kernel.

Hypotheses

K ((x∗
1 ,θ1), (x

∗
2 ,θ2)) = σ2

K exp(−ξx∗
∑

|x∗
1 − x∗

2 |
α − ξθ

∑

|θ1 − θ2|
α)

parameters φ = (β, σ2,K parameters) assumed fixed (in practice,

maximum likelihood estimators);
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Meta-modeling: posterior

v1 = f ((x∗,θ)1), . . . , vNrun = f ((x∗,θ)Nrun ) evaluations of f on a design

DNrun

Process F DNrun : Conditioning F to

F ((x∗
1 ,θ1)) = v1, . . . ,F (x∗

Nrun
,θNrun )) = vNrun .

Gaussian Process with mean m((x∗,θ)) and covariance

C((x∗,θ), (x∗,θ)′) ∀(x∗,θ), (x∗,θ)′.

For all (x∗,θ) ∈ E ,

m((x∗,θ)) approximates f ((x∗,θ)),
C((x∗,θ), (x∗,θ)) uncertainty on this approximation.

For all (x∗
i ,θi) ∈ DNrun ,

m(x∗
i
,θi ) = f (x∗

i
,θi ),

C((x∗
i
,θi ), (x

∗
i
,θi )) = 0.
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Gaussian process emulator: illustration
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Figure : Posterior mean and pointwise credible interval
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Likelihood with a Gaussian process hypothesis on f

z = (yF
1 , . . . , y

F
n , f (x

∗
1 ,θ1), . . . , f (x

∗
Nrun

,θNrun ))

likelihood on z

l(θ, σ2|z) ∝ |Σz|
−1/2

exp

(

−
1

2
(z − µ)TΣ−1

z (z − µ)

)

where

µ is the mean of the Gaussian process,

Σz = Σf +

(

Σy 0
0 0

)

with Σy = σ2In and Σf is obtained as the covariance matrix corresponding
to the points: (x1,θ), . . . , (xn,θ), (x∗

1
,θ1), . . . , (x

∗
Nrun

,θNrun
).
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Dealing with GP parameters

prior distribution on µ and covariance parameters Hidgon et al. (2005)

⇒ MCMC inference

MLE estimators Kennedy and O’Hagan (2001)

treated as fixed,
only computer data f (x∗

1
,θ1), . . . , f (x

∗
Nrun

,θNrun
) are used (n < Nrun) for MLE

likelihood l(θ, σ2|z):

l(θ, σ2|z) ∝ |Σ̃yF |
−1/2 exp

(

−
1

2
(yF − m(x,θ))T Σ̃−1

yF (yF − m(x,θ))

)

where

m(·) is the mean of the GP conditioned to simulator data,

Σ̃
yF = Σ

yF + Σ̃f = σ
2In + Σ̃f where Σ̃f is constructed with the covariance

function C of the conditioned GP.
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unlimited runs versus Nrun = 12
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Principle

1 Construct a first exploratory design: Dn s. t. n ≤ N,

2 For i = n + 1...N do Di = Di−1 ∪ {xi} where

xi ∈ arg max Crit(Di−1, f ) .

Crit(Di−1, f ) can be adapted to the applied goal (optimization, estimation of

probability of rare event).
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Expected Improvement criterion

Goal: Find the global extremum (here minimum e.g.) of f ,

Expected improvement criterion proposed by Jones et al. (1998):

EIn(x) = E((minn − F (x))+|F (Dn)) ,

where minn is the current minimum value:

minn = min
1,...,n

f (xi)

Closed-form computation:

EIn(x) = (minn−mDn (x))Φ

(

minn − mDn (x)
√

CDn (x, x)

)

+
√

CDn (x, x)φ

(

minn − mDn (x)
√

CDn (x, x)

)

where Φ and φ are respectively the cdf and the pdf of N (0, 1).
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Example step 2
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Example step 4
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Example:

θ = 12,

(x1, x2, x3) = (0.1, 0.3, 0.8),

f (x , θ) = (6 · x − 2)2 · sin(θ · x − 4) + ǫ,

ǫi ∼ N (0, 0.12) i.i.d.,

prior θ ∼ U [5, 15],

yi = f (xi , θ) + ǫi .
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Motivation for adaptive designs in calibration

Quality of calibration (Bayesian or ML) is affected by choice in the numerical

design.

• Calibration with unlimited runs of f

θ
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LHS maximin design
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Motivation for adaptive designs in calibration

• Calibration with emulator built from a design with N = 30 calls to f

θ
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Likelihood for calibration

l(θ|z):

l(θ|z) ∝ |Σ̃yF |
−1/2

exp

(

−
1

2
(yF − m(x,θ))T Σ̃−1

yF (yF − m(x,θ))

)

where

yF is the vector of field data,

m(·) is the mean of the GP conditioned to simulator data,

Σ̃yF = ΣyF + Σ̃f = σ2In + Σ̃f where Σ̃f is constructed with the covariance

function C of the conditioned GP.

Optimization goal : maximize the likelihood ⇒ Expected Improvement for

calibration.
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EI

Maximize the likelihood l(θ|z) over θ ⇔ Minimize MC(θ) = ‖yF − f (x,θ)‖2

over θ.

For given:

field experiments yF = yF (x1), . . . , y
F (xn),

Dk numerical design on X×Θ with M points,

m0 current minimal value of MC(θ).

EI criterion:

EIDk
(θ) = EDk

(

(m0 − MC(θ))+
)

,

to be minimised.

EI criterion is applied to a function of f .
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EI computation

EIDk
(θ) =

∫

B(0,
√

m0)

(m0 − MC(θ)) dFDM

= m0 · PDM
(MC(θ) ≤ m0)− EDM

(

MC(θ)IMC(θ)≤m0

)

no close form computation,

PDM
(MC(θ) ≤ m0) is an upper bound and easier to compute,

importance sampling may be used for the second term.
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Algorithm

1 Build a first space-filling design D0 on X×Θ,

2 Find the maximum: θ̃0 of l(θ|z),

3 Evaluate f (x1, θ̃0), . . . , f (xn, θ̃0).

4 Set m0 = MC(θ̃0),

5 for k=1..., repeat

1 Compute EIDk
on a grid on Θ,

2 θ̃k = arg maxΘ EIDk
(θ),

3 Evaluate f (x1, θ̃k ), . . . , f (xn, θ̃k )
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Adapted design
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Bayesian calibration based on the adapted design
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Figure : Bayesian calibration with unlimited runs vs Bayesian calibration with N = 30
chosen by EGO
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Outline

1 Calibration context

Two kinds of data

Bayesian Calibration

Meta-modeling / emulator of the computer code

Calibration with emulator

2 Expected Improvement

Efficient Global Optimization

Calibration

3 Conclusion
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Conclusion

Designs of numerical experiments adapted to calibration purpose,

Robustness in calibration.

Higher dimension questions, number of field experiments, dimension of

θ...

New field experiments ?

discrepancy issues ?
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Model discrepancy

y
F
i = f (xi ,θ

∗) + δ(xi) + ǫ(xi) .
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