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Motivations, context

General kriging settings: L2 random field Z indexed by D ⊂ Rd

known covariance function k(·, ·)

mean function is a linear combination of known basis functions.
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Motivations, context

General kriging settings: L2 random field Z indexed by D ⊂ Rd

known covariance function k(·, ·)

mean function is a linear combination of known basis functions.

n ≥ 0 obs. Z (X n) at points X n = {x1, . . . , xn},

q ≥ 1 new obs. Z (X q) at points X q = {xn+1, . . . , xn+q}.

M ≥ 1 conditional simulations of Z ; conditioned on the obs. Z (X n).
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Motivations, context

General kriging settings: L2 random field Z indexed by D ⊂ Rd

known covariance function k(·, ·)

mean function is a linear combination of known basis functions.

n ≥ 0 obs. Z (X n) at points X n = {x1, . . . , xn},

q ≥ 1 new obs. Z (X q) at points X q = {xn+1, . . . , xn+q}.

M ≥ 1 conditional simulations of Z ; conditioned on the obs. Z (X n).

Update problem

Can we take advantage of previous computations to quickly obtain M

conditional simulations conditioned on the n + q observations

Z (X n),Z (X q) ?
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Motivations, context

Figure: GRF simulations conditioned on n = 6 observations (black curves)

and n+q = 9 observations (red curves). The black circles stand for n = 6 initial

observations and the blue triangles represent q = 3 additional observations.
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Main result

Update of GRF conditional simulations

Let Z (1), . . . ,Z (M) be independent replicates of Z |Z (X n), i.e.,

simulations of Z conditioned on the n observations Z (X n). Then, the

random fields

Z ⋆(i) := Z (i) + λ⊤
n,q(Z (X q)− Z (i)(X q)) (i ∈ {1, . . . ,M}) (1)

have the same conditional distribution as Z conditioned on the n + q

observations Z (X n),Z (X q) for any conditioning values zn ∈ Rn,

zq ∈ Rq .

Furthermore, the kriging weights λn,q are given by:

λn,q(x) = K−1
n,q kn(x ,X q),

where Kn,q := kn(X q ,X q) = (kn(xn+i , xn+j))1≤i,j≤q .
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Main result

Two ingredients are used to prove this property:
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Main result

Two ingredients are used to prove this property:

(1) Kriging residual (or kriging conditioning) algorithm:

Figure: Left: kriging residual obtained by non-conditional simulation of a repli-

cate Z (i) of a non-stationary GRF Z (black solid line) and its simple kriging

mean (blue dashed line) based on q = 3 observations (blue triangles) at a

design X q . Right: conditional simulation of Z (solid black line).
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Main result

(2) The Kriging update formulas:

Mn+q(x) =Mn(x) + λn,q(x)
⊤(Z (X q)− Mn(X q)) (2)

kn+q(x , x
′) =kn(x , x

′)− λn,q(x)
⊤Kn,qλn,q(x

′) (3)

λn,q(x) =K−1
n,q kn(x ,X q) (4)
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Main result

(2) The Kriging update formulas:

Mn+q(x) =Mn(x) + λn,q(x)
⊤(Z (X q)− Mn(X q)) (2)

kn+q(x , x
′) =kn(x , x

′)− λn,q(x)
⊤Kn,qλn,q(x

′) (3)

λn,q(x) =K−1
n,q kn(x ,X q) (4)

The kriging residual algorithm updates a GP realization Z by adding

the difference between two updated kriging mean function to the “old”

GP simulation. Thus, only this difference needs to be computed:
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Main result

(2) The Kriging update formulas:

Mn+q(x) =Mn(x) + λn,q(x)
⊤(Z (X q)− Mn(X q)) (2)

kn+q(x , x
′) =kn(x , x

′)− λn,q(x)
⊤Kn,qλn,q(x

′) (3)

λn,q(x) =K−1
n,q kn(x ,X q) (4)

The kriging residual algorithm updates a GP realization Z by adding

the difference between two updated kriging mean function to the “old”

GP simulation. Thus, only this difference needs to be computed:

This difference reduces to λ⊤
n,q(Z (X q)− Z

(i)(X q)).
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Let’s assume that we have M GRF simulations in p points

Ep = (e1, . . . , ep) conditioned on n obs. at points X n.
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Let’s assume that we have M GRF simulations in p points

Ep = (e1, . . . , ep) conditioned on n obs. at points X n.

Goal: “update” these simulations by conditioning on q additional obs.

at points X q .
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Let’s assume that we have M GRF simulations in p points

Ep = (e1, . . . , ep) conditioned on n obs. at points X n.

Goal: “update” these simulations by conditioning on q additional obs.

at points X q .

Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep
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Let’s assume that we have M GRF simulations in p points

Ep = (e1, . . . , ep) conditioned on n obs. at points X n.

Goal: “update” these simulations by conditioning on q additional obs.

at points X q .

Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep

Algorithm in 3 steps:

1 Simulate Z (i)(X q) in the case X q * Ep

2 Compute the q kriging weights λn,q(x) for all x ∈ Ep.

3 Update the GRF simulations.
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Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep
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Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep

Step 1: Simulate Z (i)(X q) in the case X q * Ep.

Requires to simulate conditionally on n +p observations.

(n + p)× (n + p) matrix inversion: O(n + p)3 cost.
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Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep

Step 1: Simulate Z (i)(X q) in the case X q * Ep.

Requires to simulate conditionally on n +p observations.

(n + p)× (n + p) matrix inversion: O(n + p)3 cost.

Step 2: Compute the q kriging weights λn,q(x) for all x ∈ Ep.

Remember that: λn,q(x) = kn(X q ,X q)
−1kn(x ,X q)

Thus, only kriging covariances need to be computed. No big

matrix storage or inversion.

This step is where the new algorithm is much faster than a

“classical” kriging residual algorithm. Essentially, we gain a factor

O(n/q).
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Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep
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Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep

Step 3 has a O(Mpq) cost in both the new and “classical” algorithm.
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Algorithm

Z ⋆(i)(x) := Z (i)(x)+λn,q(x)
⊤(Z (X q)−Z (i)(X q)) , i ∈ {1, . . . ,M}, x ∈ Ep

Step 3 has a O(Mpq) cost in both the new and “classical” algorithm.

Figure: Computation times in function of M, n, p, q. (favorable case)
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Some perspectives

Benefits of the update formula beyond computational savings.

The formulas explicitly quantify the effect of the q newly

assimilated observations on the sample paths.

Limitations: covariance parameters need to be known.

Limitations: numerical instabilities when applied recursively ?

Perspectives: Efficient computations of Monte-Carlo estimates

based on GRF simulations in sequential settings (e.g. IAGO

algorithm of Villemonteix et. al. 2009).
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