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Surrogate models are now commonly used for emulating complex
computer codes

UQ, optimization, ...

Very often, computer codes simulate real physical phenomena, which
usually have specific properties

Symmetries

Bound constraints (e.g. concentrations between O and 1, ...)
Monotonicity w.r.t. some input variables

Solutions of PDEs (e.g. null Laplacian, divergence or curl free, ...)

It is of great interest to incorporate such constraints in the proxy model
Physics and expected behavior are respected (engineers like that !)
Predictions and robustness may be improved
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INTRODUCTION

< Incorporation of bounds and monotonicity constraints have already been
studied in nonparametric regression

= 1D setting
= Ramsay 2005, Bigot and Gadat 2010

= Kernel regression
= Dette and Scheder 2006
= Constraints on weights: Hall and Huang 2001, Racine et al. 2009

< Here, we focus on the GP regression framework
= Several recent papers on the topic ...
= ... but no full-scale industrial application yet
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INTRODUCTION

- The GP regression framework is very powerful when considering linear
equality constraints

= Gaussianity + linear constraints make it possible to design adapted covariance
functions (kernels)
= This produces trajectories that intrinsically respect the constraints

= This « simple » remark gave rise to several interesting examples

= General theory recently studied (Ginsbourger et al. 2013)
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INTRODUCTION

Sample paths of a GP with kernels designed for spatial
symmetries

!
-

Ginsbourger et al. 2013
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INTRODUCTION

Sample paths of a GP with kernels designed for specific
constraints (null integral, solution of ODE and null Laplacian)
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Sample paths of a 2D-GP with kernels for curl-free and

divergence free fields
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The GP regression framework is very powerful when considering linear
equality constraints

However, inequality constraints cannot be handled so easily
This included bound and monotonicity constraints
But also bounds on integrals or divergence/curl

Previous work on GP regression with inequality constraints

Monotonicity
Data-augmentation: Abrahamsen and Benth 2001
Weights: Yoo and Kyriadis 2006
Sampling: Michalak 2008, Kleijnen and van Beers 2010
Constrained posterior distribution: Riihimaki and Vehtari 2010, Wang and Berger 2011
Expansion on a dedicated basis + constraints on weights: Mattouk 2014

Any linear inequality constraints
Expectation of truncated normal distributions: Da Veiga and Marrel 2012
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GP regression with inequality
constraints
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STANDARD GP REGRESSION

- Notations
= Computer code f: RP - R
° Inputs x = (z%,...,2"7) € RP
o Output Yy = f(x)

T
= Observations (Xiayi)izl,m,n Xs = [X Ys = [yla s 7yn]

< Model: Output seen as realization of stationary Gaussian process
Y(x) = fo(x) + Z(x)

J
> Conditioning fo(x) = ;ﬂjfj (x) = F(z)8 C(1)=0’R(T)

= MLE estimates

N —1 —1 T p—1
B = (F,Ry™'F,) ' FT R},

—~

1 n A " . > 1
o? = (Y.~ F.B) RNV, — Fp) V7 = argmino®det(Ry)

= Predictor

12/ GP regression with inequality constraints: Adaptive strategies / ANR Chorus Workshop 30/04/2014 Q S AFR AN

This document and the information therein are the property of Snecma, They must not be copied or communicated to a third party without the prior written authorization of Snecma. Snecma



To incorporate the constraints, we propose to keep the conditional
expectation framework

Predictions are equal to the expectation of the GP (conditioned at the observations)
given that it respects the inequality constraints

For example, the corresponding predictor for bound constraints may be
E (Y/(X*)’VX cl,a<Y(x)< b)

Note the link with with extrema of random fields ...

Y (x*)| min Y (x) > Y (x) <
E (Y(X )| I}{lelIIIY(X) > a,r}xgg;(Y(X) < b)

... but no tractable formula exists for joint distributions in the general case
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- We thus propose a discrete-location approximation:

E (Y(X*)]‘V’X cl,a<Y(x)< b)

1 g

E (f/(x*)\w —1,...,N, a<Y(x;) < b)

= Same approximation in Riihimaki and Vehtari 2010, Wang and Berger 2011

- This generalizes easily to other constraints
~ N

~ ) oY ¥ * /
E(Vx)¥Wi=1,...,N, 2= (x))>0| E[YE)D wY(x)<M
agjj )
1=1
Monotonicity Conservation
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

Standard framework:

= Take all trajectories which interpolate the
observations

= Compute the average to get the kriging predictor

= (If desired, the variance yields a measure of
accuracy)
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Standard framework:

= Take all trajectories which interpolate the
observations

= Compute the average to get the kriging predictor

= (If desired, the variance yields a measure of
accuracy)

Here:

Take all trajectories which interpolate the
observations

Select those which respect the constraints of bounds,

m

onotonicity, ...

Compute the average to get the new kriging predictor

(If desired, the variance yields a measure of
accuracy)
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But how can we compute such expectations ?

This is where the linearity assumption comes into play
Bounds, monotonicity, integral, divergence/curl constraints are linear w.r.t. the output

The GP obtained by stacking the output and the quantities related to the constraints
is then a GP too

The problem reduces to compute moments of a multivariate normal vector subject to

linear equality constraints
Truncated normal distribution

17/ GP regression with inequality constraints: Adaptive strategies / ANR Chorus Workshop 30/04/2014 \f’ SAFRAN
N
Snecma



GP REGRESSION WITH INEQUALITY CONSTRAINTS

- The truncated multivariate normal distribution
= Given a multivariate normal vector ...

1 1 _
7 = (Zl, ceey Zp) (bM,Z(Z) = (27r)p/2 det(2)1/2 exp <—§(z — ,U,)TE 1(Z — ,Uj))
= ... its truncated version has the following p.d.f.

P2 (2) fora<z<b,

bu,s,ab(2) = { P(a<z<b)’

0, otherwise.

= |Its expectation is given by

b1 bi—1 pbit1 by
E(Z) = / / / (ﬁu,g’a’b(zl,...,Z,'_l,z,zi+1,...,2p)dzl...dZi_1d2i+1 de
ai @j—1 @41 a

P

= Other formulas for the covariance, linear and elliptical constraints available since the 60’s
(Tallis 61, Tallis 63, Tallis 65)
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- The truncated multivariate normal distribution

p
E(Zla<Z<b)=p+ Y ow(Felar) — Fr(br))
k=1
- Available formulas involve Gaussian integrals with dimensionality equal to
the number of points where we impose the constraints
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The truncated multivariate normal distribution

E(Zila<Z <b)=pu+» ou(Frlar) — Fr(by))

Available formulas involve Gaussian integrals with dimensionality equal to
the number of points where we impose the constraints

We thus need efficient approximations when this number is large (as it
should be !)

Genz numerical approximation of Gaussian integrals (Genz 92)
Cholesky decomposition + QMC integration: up to 1000 points

Sampling from a truncated Gaussian
Gibbs sampler (Geweke 91, Robert 95) + fast univariate sampler: up to 1000 points

Correlation-free formula (« crude » covariance tapering)

¢(a1—u1) _ gb(bl_.ul)

011 011

(I)<51—M1) _ (I)(al—ul)

011 011

E(Zila1 < Z7 <by) = p1 + 011
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In practice

Train the standard GP surrogate on the observations: Ycond

Set up you constraints
Compute the full covariance matrix of Ycond and Zconst where Zconst is the GP on the
quantity which must be constrained (Y, its derivatives, its integral, ...)

Select the constraint points (e.g. equally spaced on a grid, or optimized LHS)

Compute the expectation of the conditioned GP at the constraint points subject to
truncation

The final predictor is obtained by further conditioning Ycond given that Zconst is
equal to the above expectation (Kotz et al. 2000)
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EXAMPLES

Simple incorporation of monotonicity on 100 equally-
spaced constraint points
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predictor
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predictor
with
bounded
derivative
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Additional results available in our paper
Extensive 1D studies with several kernels
One 2D example

But efficient generalization to higher dimensional problems is not so easy
From a theoretical perspective, no change in the formulas

However, « spanning » the subset where we impose constraints will necessitate
much more constraint points in the discrete-location approximation

Genz numerical integration and sampling cannot be used with several thousands of
constraints
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Additional results available in our paper
Extensive 1D studies with several kernels

One 2D example

But efficient generalization to higher dimensional problems is not so easy

From a theoretical perspective, no change in the formulas
However, « spanning » the subset where we impose constraints will necessitate
much more constraint points in the discrete-location approximation
Genz numerical integration and sampling cannot be used with several thousands of
constraints

Our idea is to use the correlation induced among the constraint points (and with the

observations)
It is not necessary to place constraint points where the predictor has a high probability to
respect the constraints (e.g. close to another constraint point, or where the prediction

variance is very low)
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the

constraints locations
= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location
= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations
= In the GP framework, it is straightforward to compute the probability that the GP does not

respect the constraints at any location
= Constraint points are thus added one at a time, at locations where this probability is the

highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
highest
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GP REGRESSION WITH INEQUALITY CONSTRAINTS

- This motivates the design of an adaptive strategy for choosing the
constraints locations

= In the GP framework, it is straightforward to compute the probability that the GP does not
respect the constraints at any location

= Constraint points are thus added one at a time, at locations where this probability is the
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EXAMPLES

Erreur métamodele sans contraintes
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2D-GP predictor with constraints on the sign of the curl
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2D-GP predictor with constraints on the sign of the divergence
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Current tests on 5D challenging function with monotonicity w.r.t. one input
variable

Adaptive strategy performs very well

Computational trick

Instead of using Genz n times, find the constraint locations with the correlation-free
formula (no cost)

Once the locations are found, the final prediction is performed with Genz
Results seem to indicate that we have almost no lost of prediction accuracy

Paper to be submitted soon
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CONCLUSION & OUTLOOK
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Theoretical framework to incorporate any linear inequality constraints in
GP regression

Truncated normal distribution + approximation formulas for moments

From a practical point of view, high-dimensional problems can be
accommodated with an adaptive strategy
Even in low-dimensional examples, it is more efficient to choose the constraint
locations sequentially
The correlation-free trick heavily accelerates the search

For challenging applications, advanced computational tools will certainly
be necessary
Machine learning methods may be of great help, with adaptation

Incomplete Choleshy decomposition (Bach and Jordan 2002)
Random Kitchen Sink (Rahimi and Recht 2007, 2008)
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