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Presentation of the problem
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Reminder and notation

Let YS = (Ys, s ∈ S) be a standardized Gaussian random vector with
covariance matrix C.

(Simple) kriging:

If s ∈ S and A ⊂ S. The kriging of Ys on YA is a linear estimator
Y A

s =
∑

α∈A λαYα. The weights λα are chosen so as to minimize the
estimation variance V ar{Ys − Y A

s }. They are solutions of the linear system
∑

β∈AλβCα,β = Cα,s α ∈ A

The estimation variance is

σ2A
s = V ar{Ys − Y A

s } = 1 −
∑

α∈AλαCα,s

Conditional distribution:

Ys|YA = yA is normally distributed. More precisely, we have

Ys|YA = yA ∼ N
(

yA
s , σ2A

s

)
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Simulation of a Gaussian random vector

using the Gibbs sampler

Problem:

Simulate the Gaussian vector YS iteratively.

Algorithm:

(i) reset yc
S;

(ii) put yn
S = yc

S;

(iii) select s ∼ U(S) and generate yn
s ∼ N

(

yS\s
s , σ2S\s

s

)

;

(iv) put yc
S = yn

S and goto (ii).

Problem:

When S is large, the kriging matrices cannot be inverted.
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Simulation of a Gaussian random vector

using the Gibbs sampler; approximate algorithm

To illustrate the approach, the components of
S are depicted as the nodes of a square grid,
which makes it possible to consider kriging
neighbourhoods as balls Bs,r.

r

Algorithm:
(i) reset yc

S;
(ii) put yn

S = yc
S;

(iii) select s ∼ U(S) and generate yn
s ∼ N

(

y
Bs,r\s
s , σ

2Bs,r\s
s

)

;
(iv) put yc

S = yn
S and goto (ii).
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Example (10000 components), spherical covariance (range 10)

Neighbourhood radius of 15

0 200 400 600

800 1000 1200 1400
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Example (10000 components), spherical covariance (range 10)

Neighbourhood radius of 5

0 200 400 600

800 1000 1200 1400
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Gibbs sampler

for Gaussian random vectors

A propagative version
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Two useful remarks

Remark 1:

Let YS ∼ N (0, C). The kriging estimate yS\s
s and its estimation variance

σ
2S\s
s can be expressed using the inverse C−1 of matrix C:

yS\s
s = −

∑

t6=s

C−1
st

C−1
ss

yt σ2S\s
s =

1

C−1
ss

Remark 2:

Galli and Gao (2001): If X = C−1Y , then X ∼ N (0, C−1).

Consequence:

As (C−1)−1 = C, the Gibbs sampler can be run exactly on X.

Idea:

Apply the exact Gibbs sampler to X and transport the results to Y using
the relation Y = CX.
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Running the Gibbs sampler on X

Remark:

XS\s
s = −

∑

t6=s

Cst

Css
Xt = −

∑

t6=s

CstXt = Xs − Ys

V ar{Xs − XS\s
s } =

1

Css
= 1

Algorithm:

(i) reset xc
S;

(ii) put xn
S = xc

S;

(iii) select p ∼ U(S) and generate xn
p ∼ N (xc

p − yc
p, 1);

(iv) put xc
S = xn

S and goto (ii).

Definition:

The point p is called a pivot.
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Transporting the Gibbs sampler to Y

If xn
p ∼ N (xc

p − yc
p, 1), then xn

p = xc
p − yc

p + u with u ∼ N . Then

yn
s =

∑

t

Cstx
n
t =

∑

t6=p

Cstx
c
t + Cspx

n
p

= yc
s − Cspx

c
p + Csp(x

c
p − yc

p + u) = yc
s + Csp(u − yc

p)

Taking s = p, we obtain yn
p = u, which finally gives

yn
s = yc

s + Csp(y
n
p − yc

p) s ∈ S

Algorithm:

(i) reset yc
S;

(ii) select p ∼ U(S) and generate yn
p ∼ N ;

(iii) put yn
s = yc

s + Csp(y
n
p − yc

p) for each s ∈ S;

(iv) put yc
S = yn

S and goto (ii).
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Example of a vector with 10000 components

Spherical covariance function with range 10

0 10 20 30

40 50 60 70
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Variograms of simulations
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Spherical covariance (10)

Simulation variograms obtained after 1, 2, 3, 5, 7, 10, 15 and 20 scans. In
black, the variogram model.
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Generalizations

Generating the pivot value

yn
p can be generated as a function of yc

p, e.g. yn
p ∼ N (ryc

p, 1 − r2). It is
sometimes convenient to draw yn close to yc.

Blocking strategy

yn
s = yc

s + Csp(y
n
p − yc

p) ⇐⇒ yn
s − Cspy

n
p = yc

s − Cspy
c
p

Thus, kriging residuals are preserved by the propagative approach of the
Gibbs sampler.

This remark remains valid when the pivot p is replaced by a family P of
pivots.

(i) put yc = 0;

(ii) select P at random in S and generate yn
P ∼ N (0, CPP);

(iii) put yn
s = yc

s + yn,P
s − yc,P

s for each s ∈ S;

(iv) put yc = yn, and goto (ii).
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Application

Simulation of a non-stationary
Gaussian random field
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Simulation of a nonstationary

Gaussian random field

Let Z be a nonstationary Gaussian random field. It can be written as
m + σY , where Y is a (non necessarily stationary), standardized Gaussian
random field.

Problem:

Generate Z in the discrete domain S.

Notation:

Let C be the covariance matrix of YS.

Algorithm:

(i) generate yS ∼ N (0, C);

(ii) put zs = ms + σsys for each s ∈ S.
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Example: point source model

Cs,t = exp
(

−λ|s − t|
)

exp
(

−µ
∣

∣e−ν|s| − e−ν|t|
∣

∣

)

m = 0 and σ = 1. λ = 0.05, µ = 5 and ν = 0.0025.

Simulation field 600 × 400.
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Application

Conditional simulation
of a Cox process
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Motivation

A piece of land is covered with trees. It is partitioned into congruent plots.

The number of trees is known on a number of plots.

We want to predict the number of trees on each plot.

5

2

0

This can be done by averaging a set of conditional simulations. The spatial
distribution of trees is modelled by a Cox process.
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Cox process

Definition:

A Cox process is a Poisson point process with random intensity function.

Remark:

The random intensity function is also called potential.
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Properties of the Cox process

Let NS = (Ns, s ∈ S) be the number of trees on all plots, and let ZS be
their potential.

Mean value:

E{Ns} = E{Zs}

Covariance between plots:

Cov{Ns, Nt} =

{

Cov{Zs, Zt} if s 6= t
V ar{Zs} + E{Zs} if s = t

Conditional distribution:

Given the potential, the numbers of trees on differents plots are conditionally
independent.

P{NS = nS|ZS = zS} =
∏

s∈S

exp(−zs)
zns
s

ns!
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Cox-lognormal process

The potential is lognormally distributed, i.e. ZS = exp(µ + σYS), where YS

is a standardized Gaussian random vector (covariance matrix C).

µ = 1.364 and σ = 0.7. Cs,t = exp(−|s − t|/15).

Simulation field 300 × 200 unit plots.

24



Conditional simulation

of a Cox-lognormal process
Problem:

Generate NS given NA = nA for some A ⊂ S.

Idea:

At each iteration, candidate values are proposed for yS using the propagative
version of the Gibbs sampler. They are accepted or rejected using
Metropolis-Hastings criterion.

Algorithm:

(i) put yc
S = 0;

(ii) generate p ∼ U(S) and yn
p ∼ N ;

(iii) put zc
A = eµ+σyc

A, zn
A = zc

A eσCAp(y
n
p−yc

p), and generate u ∼ U ;

(iv) if u > p(nA|z
n
A)/p(nA|z

c
A), then goto (ii);

(v) put yc
S = yc

S + CSp(y
n
p − yc

p);

(vi) goto (ii).
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20 conditioning data points

”Reality” (TL), conditioning data points (TR), and two conditional simulations (BL and BR)
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100 conditioning data points

”Reality” (TL), conditioning data points (TR), and two conditional simulations (BL and BR)
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500 conditioning data points

”Reality” (TL), conditioning data points (TR), and two conditional simulations (BL and BR)
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Conclusions

An iterative algorithm, derived from the Gibbs sampler, has been proposed
for simulating Gaussian random vectors.

At each iteration, a component is selected and randomly assigned a new
value. This value is then linearly propagated to the other components.

Because it does not require the inversion of the covariance matrix, this
algorithm does not incur the dimensionality problem of the standard Gibbs
sampler.

This can be used to simulate random processes related to Gaussian random
fields even if they are nonstationary or subject to soft constraints.
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Rate of convergence

Let Y (n) the random vector generated at the nth scan.

Systematic scan

If Y (0) ∼ N (0, C(0)), then Y (n) ∼ N (0, C(n)). Besides, we have

C(n) − C = Bn
(

C(0) − C
)

tBn

where B = (Id − L)−1U . The matrices Id, L and U are respectively the
identity matrix, the lower and upper parts of C

C = Id + L + U

If follows that the rate of convergence is governed by the square of the
spectral radius of B.
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