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Motivations

» Objective: replace the output of a code, called gz2(x}, by 2 metamodel.

o(x):xe QIR =R

» Framework: a coarse version g of gv is available.

g{x) : High-
[ fidelity code

g1(x}: Low-
{ fidelity code. J

e

Principle: build a metamodel of g2{x) which integrates as well observations of the
coarse code output. — Multi-fidelity co-kriging model
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Recursive formulation of the model

» Multi-fidelity co-kriging model:[Kennedy & O'Hagan (2000), Le Gratiet (2013), Le Gratiet (2014)]

{ Zo(x) = pZi (x) + 3(x)
Z;(x) 1 6(x)

where  Zi(x) ~ [Z(X)|Z1 = g1,B, 01, 01], with g1 = gi(x),x € Dy

and  Zi(x) ~ GP (F(x)By, 07n(x, % 61)) , 8(x) ~ GP (£(x)8;, o3rs(x,%: 65))
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Recursive formulation of the model

» Multi-fidelity co-kriging model:[Kennedy & O'Hagan (2000), Le Gratiet (2013), Le Gratiet (2014)]

{ Zo(x) = pZi (x) + 3(x)
Z;(x) 1 6(x)

where  Zi'(x) ~ [Z1(x)|Z1 = g1, 8, , 01, 61], with g1 = gi(x),x € D1

and  Zi(x) ~ GP (F(x)By, 07n(x, % 61)) , 8(x) ~ GP (£(x)8;, o3rs(x,%: 65))

» Parameters estimation:

> 01, 05,07, 02 : maximum likelihood method

> ﬂl,( ’i‘s ) : analytical posterior distribution (Bayesian inference)
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Recursive formulation of the model

» Multi-fidelity co-kriging model:[Kennedy & O'Hagan (2000), Le Gratiet (2013), Le Gratiet (2014)]

{ Zo(x) = pZi (x) + 3(x)
Z;(x) 1 6(x)

where ZI*(X) ~ [Zl(X)|Zl = g1 7ﬁ1 aU%a 01]7 with g1 = g1(X),x € D,

and  Zi(x) ~ GP (F(x)By, 07n(x, % 61)) , 8(x) ~ GP (£(x)8;, o3rs(x,%: 65))

» Parameters estimation:

> 01, 05,07, 02 : maximum likelihood method
> ﬂl,( ’i‘s ) : analytical posterior distribution (Bayesian inference)
> Finally, ZZ*(X) ~ [ZQ(X)'ZQ =g, 7 = g1] with g» = gz(X),X €D,

We suppose that Do C D; and 61, 85,02, 6% are known.
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Predictive distribution

» In Universal Cokriging, the predictive distribution of Z5(x) is not Gaussian.

The predictive mean and variance can be decomposed as:

nz(x) = El2(x)|Z: = g, Z1 = g

Pz, (x) + ps(x)

var (Z2(x)|Z2 = g2, Z1 = g1])

0%,(x)
= 6,07 (x) +05(x)
» Remarks:

> in uz(x): B and p are replaced by their posterior means.

> in 0%,(x): we infer from the posterior distributions of 3 and p.
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Generalizations

> Generalizations for the AR(1) model:

> s> 2 levels of code.

p(x) = £,(x)Bp.

Bayesian formulation.

Non-nested experimental design sets (see L. Le Gratiet thesis 2013).

> Extend the AR(1) approach (see F. Zertuche):
2>(x) = Pp(Zi(x)) + 6(x)

vvyy

> Other Bayesian formulation with (see Qian and Wu 2008):

> p(x) a Gaussian process.
> z1(x) is supposed as known.
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Sequential design
> Objective: we want to minimize the following generalization error:

IMSEZ/UZ(X)dXZ&i/U%l(x)dx—}-/ag(x)dx
Q Q Q

we select a new point x,+1 such that :

)
Xni1 = argmax oz, (x)
X -
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Sequential design
> Objective: we want to minimize the following generalization error:

IMSEz/U%z(x)dxz(if,/U%l(x)dx—l—/ag(x)dx
Q Q Q

» Sequential strategy: we select a new point x,11 such that :

Xnt1 = arg max oz, (x)
X
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Sequential design

> Objective: we want to minimize the following generalization error:

IMSE:/a%z(x)dxzﬁf,/aﬁl(x)dx—l—/ag(x)dx
Q Q Q

» Sequential strategy: we select a new point x,11 such that :

Xnt1 = arg max oz, (x)
X

» Question : which code level should be simulated ?
» What is the contribution of each code level to the model error?
2 ~2 2 2
07, (Xn41) = 6,07, (Xn11) + 05 (Xn+1)

> What is computational cost of each code ?
> What is the expected reduction of the generalization error ?
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Code level selection

» What is computational cost of each code ?

» C : CPU time ration between gz(x) and gi(x).
> 1 run of gi(x) and g2(x) < C + 1 runs of gi(x) (i.e. D> C Dy)
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Code level selection

» What is computational cost of each code ?

» C : CPU time ration between gz(x) and gi(x).

> 1 run of gi(x) and g2(x) < C + 1 runs of gi(x) (i.e. D> C Dy)
» What is the expected reduction of the error?

> Reduction of the generalization error for Zi(x) :

d

6,2,0% (Xn+1) H 9;

i=1

> Reduction of the generalization error for the bias d(x) :

d
o3 (xa1) [ ] 05
i=1
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[llustration of the design criterion
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Code level selection

» Expected error reduction for the code level 2 :
d d
6507, (0mer) [ [ 01+ 08 (xna) [ ] 05
i=1 i=1

Expected error reduction for the code level 1 :
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Code level selection

» Expected error reduction for the code level 2 :
d d
~2 2 i 2 i
6,07 (Xnt1) H 01 + o5(xnt1) H 05
i=1 i=1

» Expected error reduction for the code level 1 :
d

(C+1)650% (xnr1) [ 61

i=1
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Code level selection

» Expected error reduction for the code level 2 :
o o
2 2 i 2 i
5oz, (Xn—1) H 01 + 75(x0s1) H 8;
i—1 =1
» Expected error reduction for the code level 1 :

(C+ 1) G’z| {Xn41) H 0]

-1

> It is worth simulating g(x) if :

o
(C+1) 6,07 (xor)} [ [ 01 < 6207 o Hﬂl + 5 (xn1) Hea
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Code level selection

» Expected error reduction for the code level 2 :
o o
2 2 i 2 i
5oz, (Xn—1) H 01 + 75(x0s1) H 8;
i—1 =1
» Expected error reduction for the code level 1 :

(C+ 1) G’z| {Xn41) H 0]

-1

> It is worth simulating g(x) if :

o
(C+1) 6,07 (xor)} [ [ 01 < 6207 o Hﬂl + 5 (xn1) Hea

pfle(xnu)l_[; 161 1
sao'zl(xnﬂ}“, |‘9J +‘T§(Xn l)lL 19r C 1
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New strategy

» Problem: the following criterion does not take into account the real prediction
error
2
Xnt1 = argmaxoz,(x)
X

to take into account the true prediction error we consider the
following criterion (adjusted variance) :
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New strategy

» Problem: the following criterion does not take into account the real prediction
error
2
Xnt1 = argmaxoz,(x)
X

> New strategy: to take into account the true prediction error we consider the
following criterion (adjusted variance) :

(1)
A e )
Xpt1 = arg max 6207, uk(X) <1 +> " %Levi,l)

+odun() (1+ 5, oot oy )
0,57

where V; ; is the Voronoi cell associated to x,.(j), j=12i=1,...,nj.
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[llustration of the new criterion
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Academic example: the Schubert's function

g(x} = (i i cos ((: + l)x:l + l)) ifcos ((r + l)x2 + :')

i=1 i=L
f . ™ i - . . ™
Max variance Kleijnen criterion
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Ij KLELNEX, JD'C axD vax BEERs, WCM (2004}, Application-driven sequential designs
for simulation experiments : Kriging metamodelling, Journal of the Operational Research
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Academic example: the Schubert's function

glx} = Z_S: icos ({: +1)x' + f)

Adjusted variance
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Application : spherical tank under internal pressure

> High-fidelity code: ga(x) is the von Mises stress at point 1, 2 or 3 provided by a
finit elements code. x = (P Rinc, Tshell Tcap Eanenr Ecap Ty, shell; (-T\-'cap = 8)

F . internal pression.

Rige: Lank internal radius.
Tohel) tank thicknsss.

Teap: cap Lhickness.

Enell tank Yeung's modulus.
Ecap: cap Young's modulus.
T el Tank vield stress.
O';'-l'--"P: cap yield siress.
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Application : spherical tank under internal pressure

> High-fidelity code: ga(x) is the von Mises stress at point 1, 2 or 3 provided by a
finit elements code. x = (P Rinc, Tshell Tcap Eanenr Ecap Uvshcll (-T\-'cap = 8)

F o internal pression.

Rige: Lank internal radius.
Tohel) tank thicknsss.

Teap: cap Lhickness.

Enell tank Yeung's modulus.
Ecap: cap Young's modulus.
Fyepell: Tank vield stress.
Tycap: FAp yield siress.

» Low-fidelity code:

g1 is the 1D approximation of gz {perfectly spherical
tank).

(Rint + Topen)’
(Rmr + Tshe.".l’) - y.

r.lTl

| L

ai{x)
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Application :

spherical tank under internal pressure

> High-fidelity code: ga(x) is the von Mises stress at point 1, 2 or 3 provided by a

finit elements code. x = (P Rinc. Tshell Tcap EsIn_II Ecap Uvsholl (-T\-'cap

F o internal pression.

Rige: Lank internal radius.
Tape: tank thicknsss.

Teap: cap Lhickness.

Enell tank Yeung's modulus.
Ecap: cap Young's modulus.
Fyepell: Tank vield stress.
Tycap: FAp yield siress.

» Low-fidelity code:

g1 is the 1D approximation of gz {perfectly spherical
tank).

3 (Ru’nr T -Jrsf'!eh’)-j
X - -
gl{ ) 2 (Rmr + Tshe.".l’}j - R‘g

L

.

d =8)

ﬂ.

QE‘E
@7

_/

» Co-kriging multi-fidelity model built with n; = 100 and n; = 20.
The model efficiency (- is estimated from a test set of 7000 points. G == 86%.
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