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Recursive formulation of the model
◮ Multi-fidelity co-kriging model:[Kennedy & O’Hagan (2000), Le Gratiet (2013), Le Gratiet (2014)]

{

Z2(x) = ρZ∗

1 (x) + δ(x)
Z∗

1 (x) ⊥ δ(x)

where Z
∗

1 (x) ∼ [Z1(x)|Z1 = g1 ,β1 , σ
2
1 , θ1], with g1 = g1(x), x ∈ D1

and Z1(x) ∼ GP

(

f
t
1(x)β1, σ

2
1r1(x , x̃ ;θ1)

)

, δ(x) ∼ GP

(

f
t
δ(x)βδ, σ

2
δrδ(x , x̃ ;θδ)

)

◮ Parameters estimation:

◮ θ1, θδ,σ
2
1 , σ

2
δ : maximum likelihood method

◮ β1,
(

βδ

ρ

)

: analytical posterior distribution (Bayesian inference)
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◮ Finally, Z∗

2 (x) ∼ [Z2(x)|Z2 = g2,Z1 = g1] with g2 = g2(x), x ∈ D2

We suppose that D2 ⊂ D1 and θ1, θδ,σ
2
1 , σ

2
δ are known.
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Predictive distribution

◮ In Universal Cokriging, the predictive distribution of Z∗

2 (x) is not Gaussian.

The predictive mean and variance can be decomposed as:

µZ2 (x) = E [Z2(x)|Z2 = g2,Z1 = g1]

= ρ̂µZ1 (x) + µδ(x)

σ2
Z2
(x) = var (Z2(x)|Z2 = g2,Z1 = g1])

= σ̂2
ρσ

2
Z1
(x) + σ2

δ(x)

◮ Remarks:

◮ in µZ2 (x): β and ρ are replaced by their posterior means.

◮ in σ2
Z2
(x): we infer from the posterior distributions of β and ρ.
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Generalizations

◮ Generalizations for the AR(1) model:

◮ s > 2 levels of code.
◮ ρ(x) = f ′ρ(x)βρ.
◮ Bayesian formulation.
◮ Non-nested experimental design sets (see L. Le Gratiet thesis 2013).

◮ Extend the AR(1) approach (see F. Zertuche):

Z2(x) = ψ(Z1(x)) + δ(x)

◮ Other Bayesian formulation with (see Qian and Wu 2008):

◮ ρ(x) a Gaussian process.
◮ z1(x) is supposed as known.
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Sequential design

◮ Objective: we want to minimize the following generalization error:

IMSE =

∫

Q

σ
2
Z2 (x)dx = σ̂

2
ρ

∫

Q

σ
2
Z1 (x)dx +

∫

Q

σ
2
δ(x)dx

◮ Sequential strategy: we select a new point xn+1 such that :

xn+1 = argmax
x
σ
2
Z2 (x)
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◮ Question : which code level should be simulated ?

◮ What is the contribution of each code level to the model error?

σ
2
Z2
(xn+1) = σ̂

2
ρσ

2
Z1
(xn+1) + σ

2
δ(xn+1)

◮ What is computational cost of each code ?
◮ What is the expected reduction of the generalization error ?
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Code level selection

◮ What is computational cost of each code ?

◮ C : CPU time ration between g2(x) and g1(x).

◮ 1 run of g1(x) and g2(x) ⇔ C + 1 runs of g1(x) (i.e. D2 ⊂ D1)

◮ What is the expected reduction of the error?

◮ Reduction of the generalization error for Z1(x) :

σ̂
2
ρσ

2
Z1(xn+1)

d
∏

i=1

θ
i
1

◮ Reduction of the generalization error for the bias δ(x) :

σ
2
δ(xn+1)

d
∏

i=1

θ
i
δ
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Code level selection

◮ Expected error reduction for the code level 2 :

σ̂
2
ρσ

2
Z1(xn+1)

d
∏

i=1

θ
i
1 + σ

2
δ(xn+1)

d
∏

i=1

θ
i
δ

◮ Expected error reduction for the code level 1 :

(C + 1) σ̂2
ρσ

2
Z1 (xn+1)

d
∏

i=1

θ
i
1
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Code level selection

◮ Expected error reduction for the code level 2 :

σ̂
2
ρσ

2
Z1(xn+1)

d
∏

i=1

θ
i
1 + σ

2
δ(xn+1)

d
∏

i=1

θ
i
δ

◮ Expected error reduction for the code level 1 :

(C + 1) σ̂2
ρσ

2
Z1 (xn+1)

d
∏

i=1

θ
i
1

◮ It is worth simulating g2(x) if :

(C + 1) σ̂2
ρσ

2
Z1 (xn+1)

d
∏

i=1

θ
i
1 < σ̂

2
ρσ

2
Z1 (xn+1)

d
∏

i=1

θ
i
1 + σ

2
δ(xn+1)

d
∏

i=1

θ
i
δ

i.e.
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New strategy

◮ Problem: the following criterion does not take into account the real prediction
error

xn+1 = argmax
x
σ
2
Z2 (x)

◮ New strategy: to take into account the true prediction error we consider the
following criterion (adjusted variance) :

xn+1 = argmax
x

σ̂2
ρσ

2
Z1,UK

(x)

(

1 +
∑n1

i=1

ε2LOO,1(x
(1)
i

)

σ2
LOO,1

(x
(1)
i

)
1x∈Vi,1

)

+σ2
δ,UK (x)

(

1 +
∑n2

i=1

ε2LOO,δ(x
(2)
i

)

σ2
LOO,δ

(x
(2)
i

)
1x∈Vi,2

)

where Vi,j is the Voronoi cell associated to x
(j)
i , j = 1, 2, i = 1, . . . , nj .
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