










Some potential applications of multi-fidelity surrogate modeling

Flow around an RAE 2822 airfoil.

Han, Z.H., Görtz, S. (2012), Hierarchical kriging model for variable-fidelity surrogate modeling, AIAA J. 50(9).
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Some potential applications of multi-fidelity surrogate modeling

Rayleigh-Bénard instability, or natural convection

Parussini L, Venturi D., Perdikaris P. and Karniadakis G.E. (2017), Multi-fidelity Gaussian process regression for prediction of

random fields, Journal of Computational Physics

Introduction

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 6



1 Some reminders or not

2 Gaussian process regression for univariate functions

3 Gaussian process regression for vectorial functions

4 Gaussian process regression for multi-fidelity vectorial functions - linear case

5 Gaussian process regression for multi-fidelity vectorial functions - nonlinear case

Outline
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Gaussian Vector

A random vector Z = (Z1, . . . , Zn)′ is said to be Gaussian if its PDF fZ is written
as :

fZ(z) = 1√(2π)ndetΣZ

exp{−1

2
(z −µZ)T Σ

−1

Z (z −µZ)} ,

Analogously to a Gaussian random variable, Z is characterized by :

its mean µZ = E(Z) = (E(Z1), . . . ,E(Zn))T
its covariance matrix ΣZ = E ((Z − E [Z])T (Z − E [Z]))

ΣZ =
⎛
⎜⎜⎜
⎝

Var(Z1) cov(Z1, Z2) . . . cov(Z1, Zn)
cov(Z2, Z1) Var(Z2) . . . cov(Z2, Zn)⋮ ⋮ ⋱ ⋮
cov(Zn, Z1) cov(Zn, Z2) . . . Var(Zn)

⎞
⎟⎟⎟
⎠

ΣZ is symmetric since cov(Zi, Zj) = cov(Zj , Zi).

Let’s assume ΣZ is invertible.

Reminders : Gaussian vectors and Gaussian processes
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2D graphic visualization

cov(Z1, Z2) = 0 cov(Z1, Z2) = 0.5 cov(Z1, Z2) = 0.9

Reminders : Gaussian vectors and Gaussian processes
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Définition

Z is a n-dimensional Gaussian vector if any linear combination of its
components follows a Gaussian distribution

∀a ∈ Rn
a

T
Z = n∑

i=1

aiZi is Gaussian

Properties

The components of a Gaussian vector are Gaussian (note that the converse is not
true).

The components of a Gaussian vector Z are independent if they are uncorrelated
(ΣZ is diagonal).

If the components of a vector are Gaussian and independent then this vector is
Gaussian.

The sum of two independent Gaussian vectors is a Gaussian vector.

Reminders : Gaussian vectors and Gaussian processes
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Two remarkable properties

Stability by affine transformation

If Z is a Gaussian vector of dimension n, mean Z and covariance matrix ΣZ , then
for any matrix M of size m and any vector y of size m, X =MZ + y is also a
Gaussian vector with :

E(X) =MµZ + y, cov(X) =MΣZM
′
.

Generation of independent realizations

To generate independent realizations of a Gaussian vector Z from a reduced
centered Gaussian variable, we use the following result :

Z et Rξ +µZ have the same law

Z Gaussian vector of mean µZ and covariance matrix ΣZ ,

ξ centered Gaussian vector whose components are independent and of
variance 1.

R a matrix such that RR′ = ΣZ (Cholesky decomposition).

Reminders : Gaussian vectors and Gaussian processes
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An essential property : stability by conditioning

Gaussian conditioning theorem

Let Z1 and Z2 be two Gaussian vectors of sizes n1 and n2 such that : :

( Z1

Z2

) ∼ Nn1+n2
(( µ1

µ2

) ,( Σ11 Σ12

Σ21 Σ22

))
with µ1 and µ2 mean vectors of size n1 and n2 respectively, the covariance
matrices Σ11 of size n1 × n1, Σ12 of size n1 × n2, Σ21 = Σt

12 and Σ22 of size
n2 × n2.

Then the distribution of Z1 conditionally at Z2 is also Gaussian :

(Z1 ∣ Z2 = z2) ∼ N(µcond(z2), [Σcond(z2)]),
⎧⎪⎪⎨⎪⎪⎩

µ
cond(z2) = µ1 +Σ12Σ

−1

22 (z2 −µ
2
) ,

Σ
cond(z2) = Σ11 −Σ12Σ

−1

22Σ21.

Reminders : Gaussian vectors and Gaussian processes
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Illustration of Gaussian conditioning

Let X ∼ N(0,1), Z ∼ N(0,1), E [XZ] = ρ ∈ [−1,1]. Quantify the influence of the
observation of X = x on the distribution of Z.

Law of Z conditional on X :

Reminders : Gaussian vectors and Gaussian processes
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Illustration of Gaussian conditioning

Let X ∼ N(0,1), Z ∼ N(0,1), E [XZ] = ρ ∈ [−1,1]. Quantify the influence of the
observation of X = x on the distribution of Z.

Law of Z conditional on X : (Z ∣ X = x) ∼ N (ρx,1 − ρ2).

Reminders : Gaussian vectors and Gaussian processes
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Illustration of Gaussian conditioning

Let X ∼ N(0,1), Z ∼ N(0,1), E [XZ] = ρ ∈ [−1,1]. Quantify the influence of the
observation of X = x on the distribution of Z.

Law of Z conditional on X : (Z ∣ X = x) ∼ N (ρx,1 − ρ2).
We condition Z by the fact that X = −1.

Conditioning changes the mean and reduces the variance !

Reminders : Gaussian vectors and Gaussian processes
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Illustration of Gaussian conditioning

Let X ∼ N(0,1), Z ∼ N(0,1), E [XZ] = ρ ∈ [−1,1]. Quantify the influence of the
observation of X = x on the distribution of Z.

Law of Z conditional on X : (Z ∣ X = x) ∼ N (ρx,1 − ρ2).
We condition Z by the fact that X = 0

Conditioning changes the mean and reduces the variance !

Reminders : Gaussian vectors and Gaussian processes
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Illustration of Gaussian conditioning

Let X ∼ N(0,1), Z ∼ N(0,1), E [XZ] = ρ ∈ [−1,1]. Quantify the influence of the
observation of X = x on the distribution of Z.

Law of Z conditional on X : (Z ∣ X = x) ∼ N (ρx,1 − ρ2).
We condition Z by the fact that X = 1

Conditioning changes the mean and reduces the variance !

Reminders : Gaussian vectors and Gaussian processes
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Gaussian processes

A random process (or field) Z(x),x ∈ Rd, is a random variable with values in a
functional space.

A realization of a random process is a function of Rd in R.

The Gaussian process can be considered as natural extension of the Gaussian
vector in infinite dimension.

A random field is said to be Gaussian if for all N ∈ N∗ and for all {x(1), . . . ,x(n)},
the random vector (Z(x(1)), . . . , Z(x(n))) is Gaussian.

A Gaussian process is then completely defined by :

Reminders : Gaussian vectors and Gaussian processes
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Gaussian processes

A random process (or field) Z(x),x ∈ Rd, is a random variable with values in a
functional space.

A realization of a random process is a function of Rd in R.

The Gaussian process can be considered as natural extension of the Gaussian
vector in infinite dimension.

A random field is said to be Gaussian if for all N ∈ N∗ and for all {x(1), . . . ,x(n)},
the random vector (Z(x(1)), . . . , Z(x(n))) is Gaussian.

A Gaussian process is then completely defined by :

its mean function : µ(x) = E [Z(x)],
it represents the trend of the Gaussian process,

its covariance function : C(x, x̃) = E [(Z(x) − µ(x)) (Z(x̃) − µ(x̃))],
we note : Z(x) ∼ GP (µ(x),C(x, x̃)).

Reminders : Gaussian vectors and Gaussian processes
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From Gaussian vectors to Gaussian processes - illustration

Gaussian vectors are difficult to visualize in dimensions > 2, we try to represent the
points next to each other.

For 2 components instead of this representation, we have this one
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Each line is one realization of the Gaussian vector.

Z has a mean equal to zero and a given covariance matrix.

Reminders : Gaussian vectors and Gaussian processes
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From Gaussian vectors to Gaussian processes - illustration

Gaussian vectors are difficult to visualize in dimensions > 2, we try to represent the
points next to each other.

For 10 components For 50 components
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Each line is one realization of the Gaussian vector in the corresponding dimension

To think about Gaussian process, we have just to change the indexation (for x ∈ R)

Reminders : Gaussian vectors and Gaussian processes
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Covariance functions, also called covariance kernels

C(x, x̃) must be symmetric.

Reminders : Gaussian vectors and Gaussian processes
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Covariance functions, also called covariance kernels

C(x, x̃) must be symmetric.

C(x, x̃) must be positive definite : for all (ai)i=1,...,n ∈ R and distinct(x(i))i=1,...,n ∈ Rd, it satisfies the following property :
n∑

i,j=1

aiajC(x(i),x(j)) ≥ 0

and ∑n
i,j=1 aiajC(x(i),x(j)) = 0 if and only if ai = 0 for all i = 1, . . . , n.

Reminders : Gaussian vectors and Gaussian processes
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Covariance functions, also called covariance kernels

C(x, x̃) must be symmetric.

C(x, x̃) must be positive definite : for all (ai)i=1,...,n ∈ R and distinct(x(i))i=1,...,n ∈ Rd, it satisfies the following property :
n∑

i,j=1

aiajC(x(i),x(j)) ≥ 0

and ∑n
i,j=1 aiajC(x(i),x(j)) = 0 if and only if ai = 0 for all i = 1, . . . , n.

The covariance kernel describe relations between Z(x) and Z(x̃) :

Reminders : Gaussian vectors and Gaussian processes
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Covariance functions, also called covariance kernels

C(x, x̃) must be symmetric.

C(x, x̃) must be positive definite : for all (ai)i=1,...,n ∈ R and distinct(x(i))i=1,...,n ∈ Rd, it satisfies the following property :
n∑

i,j=1

aiajC(x(i),x(j)) ≥ 0

and ∑n
i,j=1 aiajC(x(i),x(j)) = 0 if and only if ai = 0 for all i = 1, . . . , n.

The covariance kernel describe relations between Z(x) and Z(x̃) :

Let C1(x, x̃) = 1, a Gaussian process Z(x) with mean zero and covariance function
C1 is constant : ∀x ∈ Rd, Z(x) =X, where X ∼ N(0, 1)

Reminders : Gaussian vectors and Gaussian processes
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Covariance functions, also called covariance kernels

C(x, x̃) must be symmetric.

C(x, x̃) must be positive definite : for all (ai)i=1,...,n ∈ R and distinct(x(i))i=1,...,n ∈ Rd, it satisfies the following property :
n∑

i,j=1

aiajC(x(i),x(j)) ≥ 0

and ∑n
i,j=1 aiajC(x(i),x(j)) = 0 if and only if ai = 0 for all i = 1, . . . , n.

The covariance kernel describe relations between Z(x) and Z(x̃) :

Let C1(x, x̃) = 1, a Gaussian process Z(x) with mean zero and covariance function
C1 is constant : ∀x ∈ Rd, Z(x) =X, where X ∼ N(0, 1)

Let C2(x, x̃) = 1{x=x̃}, a Gaussian process Z(x) with mean zero and covariance
function C2 is composed of independant Gaussian values.

Reminders : Gaussian vectors and Gaussian processes
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Covariance functions, also called covariance kernels

C(x, x̃) must be symmetric.

C(x, x̃) must be positive definite : for all (ai)i=1,...,n ∈ R and distinct(x(i))i=1,...,n ∈ Rd, it satisfies the following property :
n∑

i,j=1

aiajC(x(i),x(j)) ≥ 0

and ∑n
i,j=1 aiajC(x(i),x(j)) = 0 if and only if ai = 0 for all i = 1, . . . , n.

The covariance kernel describe relations between Z(x) and Z(x̃) :

Let C1(x, x̃) = 1, a Gaussian process Z(x) with mean zero and covariance function
C1 is constant : ∀x ∈ Rd, Z(x) =X, where X ∼ N(0, 1)

Let C2(x, x̃) = 1{x=x̃}, a Gaussian process Z(x) with mean zero and covariance
function C2 is composed of independant Gaussian values.

Stationarity covariance function :

C(x, x̃) is said to be stationary if it is a function of (x− x̃). The relation between
Z(x) and Z(x̃) is uniquely determined by the distance between x and x̃. A GP
with a stationary covariance functions is said to be stationary.

Reminders : Gaussian vectors and Gaussian processes
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Gaussian processes - illustration

From the representations of five of their realizations, can we say that Z1(x), Z2(x),
Z3(x) and Z4(x) are Gaussian processes ? Is their covariance stationary ?

x

Z
1
(x

)

x

Z
2
(x

)

x

Z
3
(x

)

x

Z
4
(x

)

Reminders : Gaussian vectors and Gaussian processes
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Some standard stationary covariance kernel on R

We focus on stationary covariance kernel which can be written C(x, x̃) = σ2R(x, x̃)
where R(x, x̃) is a correlation function.

"Nugget" kernels : C(x, x̃) = σ2
δ0(x − x̃),

Linear kernels : C(x, x̃) = σ2
max (0,1 − ∣x − x̃∣

θ
),

Exponential kernels : C(x, x̃))σ2
exp(− ∣x − x̃x∣

θ
),

Gaussian kernels : C(x, x̃) = σ2
exp(−(x − x̃)2

θ2
),

Matern kernels, with Γ the Euler function and BIII
ν the Bessel function of the

third type : C(x, x̃) = σ2 1

2ν−1Γ(ν) (2
√
ν
∣x − x̃∣
θ
)ν BIII

ν (2√ν ∣x − x̃∣
θ
).

→ parameterized by three parameters : variance σ2, correlation lengths θi, power ν.

Reminders : Gaussian vectors and Gaussian processes
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Parametric stationary covariance kernel - illustration on R

Comment the influence of the choice of the covariance kernel and the power

Matern : ν = 5/2, σ = 1, θ = 0.4
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Matern : ν = 3/2, σ = 1, θ = 0.4
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Exponential : σ = 1, θ = 0.4
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Reminders : Gaussian vectors and Gaussian processes
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Parametric stationary covariance kernel - illustration on R

Comment the influence of the variance parameter. What is the GP mean ? We choose a
Matern kernel with ν = 5/2

σ = 0.3, θ = 0.3
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Reminders : Gaussian vectors and Gaussian processes
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Parametric stationary covariance kernel - illustration on R

Comment the influence of correlation length parameter.We choose a Matern kernel with
ν = 5/2. We choose a Matern kernel with ν = 5/2

σ = 1, θ = 0.01
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Reminders : Gaussian vectors and Gaussian processes
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Still about covariance kernels

Sum and product of covariance kernels :

Let C1(x, x̃) and C2(x, x̃) be two covariance kernels on X , then :

C1(x, x̃) +C2(x, x̃) or C1(x, x̃)C2(x, x̃) is a covariance kernel on X .

Product with a deterministic function :

Let C(x, x̃) be a covariance kernel on X and f ∶ X → R a deterministic function :

f(x)C(x, x̃)f(x̃) is a covariance kernel on X .

Kernel mapping :

Let C2(x, x̃) be a covariance kernels on X2 and f ∶ X2 → X1 a function :

C1(x, x̃) = C2(f(x), f(x̃)) is a covariance kernel on X1.

Tensorization :

Let C1, . . . ,Cd be covariance kernels on R :

C(x, x̃) = C1(x1, x̃1) × ⋅ ⋅ ⋅ ×Cd(xd, x̃d), x = (x1, . . . , ud)
is a covariance kernel on R

d.

Reminders : Gaussian vectors and Gaussian processes
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Standard covariance kernel on R
d

We can use isotropic covariance kernel :

C(x, x̃) = σ2
ψ(∣∣x − x̃∣∣/θ)

The correlation length θ is common to all directions. It controls how fast
covariance changes with distance.

We can also use tensorized covariance kernels on R
d :

C(x, x̃) = σ2
d∏

i=1

ψ(∣xi − x̃i∣/θi)
For i = 1, . . . , d ,θi is the correlation length for the variable i. It control how fast
covariance changes in the direction i. θi small means that the variable plays an
important role in the covariance changes.

For example, for the Matern covariance kernel on R
d, we use :

ψ(t) = 1

2ν−1Γ(ν) (2
√
νt)ν BIII

ν (2√νt)
.

Reminders : Gaussian vectors and Gaussian processes
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Remarks on Gaussian processes

To create a Gaussian process, it is sufficient to create a mean function and a
covariance function.

Any function can be a mean function

For the covariance function, the crux is to create a definite positive function.

We presented a catalog of available covariance function on R
d.

Covariance function controls the order of magnitude (with σ2) and the speed of
variation of the Gaussian process (with θ)

The regularity of the Gaussian process is directly related to the differentiability of
the covariance function (parameter ν for Matern covariance for example)

Reminders : Gaussian vectors and Gaussian processes
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Gaussian process conditioning

Let x↦ Z(x) be a Gaussian process with mean µ(x) and covariance C(x, x̃).
We search the distribution of Z(x) conditioned by values at points in
D = {x(1), . . . ,x(n)} : (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) = (Z(x) ∣Z = z).

Reminders : Gaussian vectors and Gaussian processes
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Gaussian process conditioning

Let x↦ Z(x) be a Gaussian process with mean µ(x) and covariance C(x, x̃).
We search the distribution of Z(x) conditioned by values at points in
D = {x(1), . . . ,x(n)} : (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) = (Z(x) ∣Z = z).
First, we express the joint distribution of Z(x) and Z :

(Z(x)
Z
) =N1+n ((µ(x)

µ
) ,(C(x,x) r′(x)

r(x) CD

))
with µ = (µ(x(1)), . . . , µ(x(n))), r(x) = (C(x,x(1)), . . . ,C(x,x(n))) and

CD = (C(x(i),x(j)))
i,j=1 ...,n

.

Reminders : Gaussian vectors and Gaussian processes
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Gaussian process conditioning

Let x↦ Z(x) be a Gaussian process with mean µ(x) and covariance C(x, x̃).
We search the distribution of Z(x) conditioned by values at points in
D = {x(1), . . . ,x(n)} : (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) = (Z(x) ∣Z = z).
First, we express the joint distribution of Z(x) and Z :

(Z(x)
Z
) =N1+n ((µ(x)

µ
) ,(C(x,x) r′(x)

r(x) CD

))
with µ = (µ(x(1)), . . . , µ(x(n))), r(x) = (C(x,x(1)), . . . ,C(x,x(n))) and

CD = (C(x(i),x(j)))
i,j=1 ...,n

.

By Gaussian conditioning theorem, we obtain :

Zcond(x) = (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) is a Gaussian process, with
mean and covariance conditioned µcond(x) et Ccond(x, x̃) such that :

µ
cond(x) = µ(x) + r

′(x)C−1

D (z −µ)
C

cond(x, x̃) = C(x, x̃) − r
′(x)C−1

D r(x̃)

Reminders : Gaussian vectors and Gaussian processes
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Sampling of a conditioned Gaussian process

We want to create realizations of Zcond(x) = (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn)
at points in X .

We note D = {x(1), . . . ,x(n)} and we write Zcond(x) = (Z(x) ∣ Z(D) = z)
We have seen previously that Zcond(x) ∼ GP (µcond(x),Ccond(x, x̃)).
We note Ccond

X
= [Ccond(x́(i), x́(j))]i=1,...,l, (x́(i))i=1,...,l ∈ X .

Reminders : Gaussian vectors and Gaussian processes
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Sampling of a conditioned Gaussian process

We want to create realizations of Zcond(x) = (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn)
at points in X .

We note D = {x(1), . . . ,x(n)} and we write Zcond(x) = (Z(x) ∣ Z(D) = z)
We have seen previously that Zcond(x) ∼ GP (µcond(x),Ccond(x, x̃)).
We note Ccond

X
= [Ccond(x́(i), x́(j))]i=1,...,l, (x́(i))i=1,...,l ∈ X .

Cholesky’s decomposition of the covariance matrix : Ccond
X = LXL′X

A realization of Zcond(x) at points in X can be obtained by sampling a noise
ξ = [ξi]i=1,...,l where (ξi)i=1,...,l ∼N (0,1) are independant with the following
equation :

Z
cond(X ) = LX ξ + µcond(X ).

Can obviously be use to sample a unconditioned GP : take µ(x) and C(x, x̃).
However, when we want to deal with large l, the cholesky decomposition can be
coslty → numerically easier to sample of a unconditioned GP.

Reminders : Gaussian vectors and Gaussian processes
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Samping of a conditioned Gaussian process

Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Zcond(x) at X can be obtained by sampling a unconditioned GP
Z̃(x) ∼ GP(0,C(x, x̃)) at X and following the result :

Z
cond(X ) = µcond(X ) + Z̃(X ) − µ̃cond(X )

with µ̃cond(X ) = r(X )′C−1

D Z̃(D) corresponds to the mean of Z̃(x) conditioned by
its own values at D, r(X ) = (C(X ,x(1)), . . . ,C(X ,x(n)))

Gaussian vectors and Gaussian processes
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Samping of a conditioned Gaussian process

Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :
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Z
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cov (µ̃cond(x), Z̃(x̃)) = r(x)′C−1
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A realization of Zcond(x) at X can be obtained by sampling a unconditioned GP
Z̃(x) ∼ GP(0,C(x, x̃)) at X and following the result :

Z
cond(X ) = µcond(X ) + Z̃(X ) − µ̃cond(X )

with µ̃cond(X ) = r(X )′C−1

D Z̃(D) corresponds to the mean of Z̃(x) conditioned by
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Samping of a conditioned Gaussian process

Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Zcond(x) at X can be obtained by sampling a unconditioned GP
Z̃(x) ∼ GP(0,C(x, x̃)) at X and following the result :

Z
cond(X ) = µcond(X ) + Z̃(X ) − µ̃cond(X )

with µ̃cond(X ) = r(X )′C−1

D Z̃(D) corresponds to the mean of Z̃(x) conditioned by
its own values at D, r(X ) = (C(X ,x(1)), . . . ,C(X ,x(n)))
To sample an unconditioned GP, several methods could be mentioned :

− Fourier spectral decomposition
Stein, M. (1999), Interpolation of Spatial Data, New York : Springer Series in Statistics.

− Karhunen-Loeve spectral decomposition
Rasmussen, C. and Williams C. (2006), Gaussian Processes for Machine Learning, Cambridge : MIT Press.

− Propagative version of the Gibbs sampler
Lantuéjoul, C. and Desassis N. (2012), Simulation of a Gaussian random vector : A propagative version of the Gibbs

sampler, In The 9th International Geostatistics Congress, Norway.

Gaussian vectors and Gaussian processes
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1 Some reminders or not

2 Gaussian process regression for univariate functions

3 Gaussian process regression for vectorial functions

4 Gaussian process regression for multi-fidelity vectorial functions - linear case

5 Gaussian process regression for multi-fidelity vectorial functions - nonlinear case

Outline
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Gaussian process model principle

GPR is also known as kriging models in geostatistics.

Gaussian process regression (GPR)
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A common choice for the mean is to take a linear form.
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Gaussian process model principle

GPR is also known as kriging models in geostatistics.

We are interested in approximating an function z(x) ∈ R with x ∈ Rd from few of
its observations at points in the DOE D = {x(1), . . . ,x(n)}. We note
z = (z1, . . . , zn) these observations.

Gaussian process model hypothesis : representing the unknown fonction z(x) by
a realization of a Gaussian process (it is the prior)

The approximation entirely based on the theory of conditioned Gaussian processes
except that neither the mean function nor the covariance function is known.

When the mean is known, it is called simple kriging, and when the mean is
unknown, it is called universal kriging.

A common choice for the mean is to take a linear form.

z(x) is a realization of Z(x) with : Z(x) ∼ PG(f ′(x)β,C(x, x̃)) where f(x) is

a vector of p known functions and β the unknown coefficients of the trend.
Rasmussen, C.E. and Williams,C.K.I. (2006), Gaussian Processes for Machine Learning, The MIT Press.

Santner, T.J., Williams, B.J. and Notz, W.I. (2003), The design and Analysis of Computer Experiments, Springer Series in
Statistics.

Gaussian process regression (GPR)
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Gaussian process prediction - known parameters

if we know C(x, x̃) and β, we obtain same result as before :

Zcond(x) = (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) is a Gaussian variable, with
mean and variance conditioned µC(x) and σ2

C(x) such that :

µC(x) = f
′(x)β + r

′(x)C−1

D (z −Fβ)
σ

2

C(x) = C(x,x) − r
′(x)C−1

D r(x)
where F =

⎛⎜⎝
f1(x(1)) ⋯ fp(x(1))
⋮ ⋮

f1(x(n)) ⋯ fp(x(n))
⎞⎟⎠ is the matrix of regressors.

Gaussian process regression (GPR)
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Gaussian process prediction - known parameters

if we know C(x, x̃) and β, we obtain same result as before :

Zcond(x) = (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) is a Gaussian variable, with
mean and variance conditioned µC(x) and σ2

C(x) such that :

µC(x) = f
′(x)β + r

′(x)C−1

D (z −Fβ)
σ

2

C(x) = C(x,x) − r
′(x)C−1

D r(x)
where F =

⎛⎜⎝
f1(x(1)) ⋯ fp(x(1))
⋮ ⋮

f1(x(n)) ⋯ fp(x(n))
⎞⎟⎠ is the matrix of regressors.

Remarks :

The conditioned mean interpolates the observations.
To release this, simply take CD + τ2In instead of CD in µC(x) and σ2

C(x)
(τ2 is the noise variance)

The conditioned mean does not depend on the variance σ2

The conditioned variance does not depend on the observations z.

These equations refers to simple kriging.

Gaussian process regression (GPR)
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Gaussian process prediction - unknown parameters - MLE estimation

if only C(x, x̃) is known, we obtain the following likelihood for parameters β :

f(z∣β) = 1

(2π)n/2√det CD

exp(−1

2
(z −Fβ)′C−1

D
(z −Fβ)) ,

Gaussian process regression (GPR)
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Gaussian process prediction - unknown parameters - MLE estimation

if only C(x, x̃) is known, we obtain the following likelihood for parameters β :

f(z∣β) = 1

(2π)n/2√det CD

exp(−1

2
(z −Fβ)′C−1

D
(z −Fβ)) ,

The maximum likelihood estimate (MLE) of β is given by :

β̂ = (F′C−1

D
F)−1

F
′C−1

D
z.

It corresponds to its generalized least squares estimate.

Gaussian process regression (GPR)
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Gaussian process prediction - unknown parameters - MLE estimation

if only C(x, x̃) is known, we obtain the following likelihood for parameters β :

f(z∣β) = 1

(2π)n/2√det CD

exp(−1

2
(z −Fβ)′C−1

D
(z −Fβ)) ,

The maximum likelihood estimate (MLE) of β is given by :

β̂ = (F′C−1

D
F)−1

F
′C−1

D
z.

It corresponds to its generalized least squares estimate.

Zcond(x) = (Z(x) ∣ Z(x(1)) = z1, . . . , Z(x(n)) = zn) is then a Gaussian variable,
with mean and variance conditioned µC(x) and σ2

C(x) such that :

µC(x) = f
′(x)β̂ + r(x)T C

−1

D (z −Fβ̂)
σ

2

C(x) = C(x,x) − r(x)T C
−1

D r(x) +u
′(x) (F′C−1

D F)−1

u(x)
with u(x) = F′C−1

D r(x) − f(x)
The variance incorporates an additional part due to the estimation of β.

These equations refer to universal kriging.

Gaussian process regression (GPR)
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Gaussian process prediction - unknown parameters - MLE

If the covariance function is also unknown, a common choice is a parametric form
such that C(x, x̃) = σ2R(x, x̃; θ).
To estimate σ2, we substitute the value of β̂ in the likelihood and maximize it, we
obtain :

σ̂
2 = (z −Fβ̂)′R−1

D (z −Fβ̂)σ2

n
.

σ2 can also be estimated with a restricted maximum likelihood method.

Gaussian process regression (GPR)
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Gaussian process prediction - unknown parameters - MLE

If the covariance function is also unknown, a common choice is a parametric form
such that C(x, x̃) = σ2R(x, x̃; θ).
To estimate σ2, we substitute the value of β̂ in the likelihood and maximize it, we
obtain :

σ̂
2 = (z −Fβ̂)′R−1

D (z −Fβ̂)σ2

n
.

σ2 can also be estimated with a restricted maximum likelihood method.

The estimation of θ, is conducted by substituting β and σ2 by their MLE in the
likelihood :

f(z∣θ) = (2πσ̂2)−n/2(det RD)1/2 exp(−n

2
)

θ can be estimates by minimizing the opposite of this log-likelihood (called the
concentrated log-likelihood)
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Gaussian process prediction - unknown parameters - bayesian estimate

For the mean, it is of course possible to prior distribution

For Gaussian prior on β, (Z(x) ∣ D) is a Gaussian process. For p(β)∝ 1, it
corresponds to the MLE.

Gaussian process regression (GPR)
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Gaussian process prediction - unknown parameters - bayesian estimate

For the mean, it is of course possible to prior distribution

For Gaussian prior on β, (Z(x) ∣ D) is a Gaussian process. For p(β)∝ 1, it
corresponds to the MLE.

For the σ2 parameter of the covariance function, if we give inverse gamma prior,
the distributions (Z(x) ∣ D) is tractable after integrating the posterior
distribution of the variance parameter σ2 : (Z(x) ∣ D) is a t-process. In practice,
for reasonable n, this is indistinguishable from a GP.
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Gaussian process prediction - unknown parameters - bayesian estimate

For the mean, it is of course possible to prior distribution

For Gaussian prior on β, (Z(x) ∣ D) is a Gaussian process. For p(β)∝ 1, it
corresponds to the MLE.

For the σ2 parameter of the covariance function, if we give inverse gamma prior,
the distributions (Z(x) ∣ D) is tractable after integrating the posterior
distribution of the variance parameter σ2 : (Z(x) ∣ D) is a t-process. In practice,
for reasonable n, this is indistinguishable from a GP.

For θ, in general case, we have to use sampling techniques (Markov Chain Monte
Carlo for example) to estimate conditioned distribution which is not necessary
Gaussian

This is called a full Bayesian approach

For more information :
J. O. Berger, V. De Oliveira, and B. Sansó ,(2001), Objective Bayesian analysis of spatially correlated data, Journal of
the American Statistical Association.

Muré, J. (2018), Objective Bayesian analysis of Kriging models with anisotropic correlation kernel, PhD
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Illustration of Gaussian process prediction - the noisy-free case

Function to approximate
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Illustration of Gaussian process prediction - the noisy case
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Illustration of Gaussian process prediction - the noisy case

Conditioning with noise
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One word on the validation (Leave-One-Out case)

Let µC(−i)(x) and σ2

C(−i)(x) the conditioned mean and variance functions

obtained without the observation zi = z(x(i)).
It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

Gaussian process regression (GPR)
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One word on the validation (Leave-One-Out case)

Let µC(−i)(x) and σ2

C(−i)(x) the conditioned mean and variance functions

obtained without the observation zi = z(x(i)).
It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

Evaluation of the predictive qualities of the conditioned mean :

Q2 = 1 − var(z(x) − µC(x))
var(z(x)) ≃ 1 − ∑n

i=1 (z(x(i)) − µC(−i)(x(i)))2
∑n

i=1(z(x(i)) − z̄)2 , z̄ = 1

n

n

∑
i=1

zi
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One word on the validation (Leave-One-Out case)

Let µC(−i)(x) and σ2

C(−i)(x) the conditioned mean and variance functions

obtained without the observation zi = z(x(i)).
It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

Evaluation of the predictive qualities of the conditioned mean :

Q2 = 1 − var(z(x) − µC(x))
var(z(x)) ≃ 1 − ∑n

i=1 (z(x(i)) − µC(−i)(x(i)))2
∑n

i=1(z(x(i)) − z̄)2 , z̄ = 1

n

n

∑
i=1

zi

Evaluation of the globale predictive qualities :

ε
2 = var(z(x) − µC(x))

σ2

C(x) ≃ 1

n

n

∑
i=1

(z(x(i)) − µC(−i)(x(i)))2
σ2

C(−i)
(x)

The target value is 1.
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One word on the validation (Leave-One-Out case)

Let µC(−i)(x) and σ2

C(−i)(x) the conditioned mean and variance functions

obtained without the observation zi = z(x(i)).
It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

Evaluation of the predictive qualities of the conditioned mean :

Q2 = 1 − var(z(x) − µC(x))
var(z(x)) ≃ 1 − ∑n

i=1 (z(x(i)) − µC(−i)(x(i)))2
∑n

i=1(z(x(i)) − z̄)2 , z̄ = 1

n

n

∑
i=1

zi

Evaluation of the globale predictive qualities :

ε
2 = var(z(x) − µC(x))

σ2

C(x) ≃ 1

n

n

∑
i=1

(z(x(i)) − µC(−i)(x(i)))2
σ2

C(−i)
(x)

The target value is 1.

Just for information : it is possible to use LOO results for estimating the
parameters σ2 ant θ.Bachoc, F. 2013, Parametric estimation of covariance function in Gaussian-process based

Kriging models. Application to uncertainty quantification for computer experiments, PhD.

Gaussian process regression (GPR)

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 37



1 Some reminders or not

2 Gaussian process regression for univariate functions

3 Gaussian process regression for vectorial functions

4 Gaussian process regression for multi-fidelity vectorial functions - linear case

5 Gaussian process regression for multi-fidelity vectorial functions - nonlinear case

Outline
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The bivariate case - objective

We want now to approximate the last component z2(x) of
z(x) = (z1(x), z2(x)) ∈ R2 with x ∈ Rd.

We assume that z1(x) and z2(x) are observed without measurement error

Gaussian process regression for vectorial functions
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We want now to approximate the last component z2(x) of
z(x) = (z1(x), z2(x)) ∈ R2 with x ∈ Rd.

We assume that z1(x) and z2(x) are observed without measurement error

This extension is called co-kriging and was first developed in geostatistics
Chilès, J. and Delfiner, P. (1999). Geostatistics : modeling spatial uncertainty. Wiley series in probability and statistics.

Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag.
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The bivariate case - objective

We want now to approximate the last component z2(x) of
z(x) = (z1(x), z2(x)) ∈ R2 with x ∈ Rd.

We assume that z1(x) and z2(x) are observed without measurement error

This extension is called co-kriging and was first developed in geostatistics
Chilès, J. and Delfiner, P. (1999). Geostatistics : modeling spatial uncertainty. Wiley series in probability and statistics.

Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag.

For the approximation, we have z1 = (z1(x(1)1
), . . . , z1(x(n1)

1
))′ the observations

of z1(x) at points in D1 = {x(1)1
, . . . ,x

(n1)
1
} and z2 = (z2(x(1)1

), . . . , z2(x(n2)
1
))′

observations of z2(x) at points in D2 = {x(1)2
, . . . ,x

(n2)
2
}.

So, the column vector of observations is written z(2) = ((z1)′, (z2)′)′.
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The bivariate case - objective

We want now to approximate the last component z2(x) of
z(x) = (z1(x), z2(x)) ∈ R2 with x ∈ Rd.

We assume that z1(x) and z2(x) are observed without measurement error

This extension is called co-kriging and was first developed in geostatistics
Chilès, J. and Delfiner, P. (1999). Geostatistics : modeling spatial uncertainty. Wiley series in probability and statistics.

Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag.

For the approximation, we have z1 = (z1(x(1)1
), . . . , z1(x(n1)

1
))′ the observations

of z1(x) at points in D1 = {x(1)1
, . . . ,x

(n1)
1
} and z2 = (z2(x(1)1

), . . . , z2(x(n2)
1
))′

observations of z2(x) at points in D2 = {x(1)2
, . . . ,x

(n2)
2
}.

So, the column vector of observations is written z(2) = ((z1)′, (z2)′)′.
z1(x) and z2(x) can be dependent

If we want to approximate z2(x), it is important to take into account z1(x) too.

We want to approximate z2(x) by taking into account the observations z(2)

Gaussian process regression for vectorial functions
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The bivariate case - assumptions and notations

Analogously to the GPR, we suppose that z(x) is a realization of a bivariate GP
Z(x) = (Z1(x), Z2(x)) with mean m(x) and covariance function V(x, x̃) :

m(x) = (m1(x)
m2(x)) and V(x, x̃) = (C11(x, x̃) C12(x, x̃)

C21(x, x̃) C22(x, x̃)) ,
where Cij(x, x̃) = cov (Zi(x), Zj(x̃)) and mi(x) = E [Zi(x)], i, j = 1,2 :

Gaussian process regression for vectorial functions
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The bivariate case - assumptions and notations

Analogously to the GPR, we suppose that z(x) is a realization of a bivariate GP
Z(x) = (Z1(x), Z2(x)) with mean m(x) and covariance function V(x, x̃) :

m(x) = (m1(x)
m2(x)) and V(x, x̃) = (C11(x, x̃) C12(x, x̃)

C21(x, x̃) C22(x, x̃)) ,
where Cij(x, x̃) = cov (Zi(x), Zj(x̃)) and mi(x) = E [Zi(x)], i, j = 1,2 :

We note Z(2) = ((Z1)′, (Z2)′)′ the values of Z1(x) and Z2(x) at points in D1

and D2 respectively.
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The bivariate case - assumptions and notations

Analogously to the GPR, we suppose that z(x) is a realization of a bivariate GP
Z(x) = (Z1(x), Z2(x)) with mean m(x) and covariance function V(x, x̃) :

m(x) = (m1(x)
m2(x)) and V(x, x̃) = (C11(x, x̃) C12(x, x̃)

C21(x, x̃) C22(x, x̃)) ,
where Cij(x, x̃) = cov (Zi(x), Zj(x̃)) and mi(x) = E [Zi(x)], i, j = 1,2 :

We note Z(2) = ((Z1)′, (Z2)′)′ the values of Z1(x) and Z2(x) at points in D1

and D2 respectively.

We suppose (as in a univariate case) that the ith component of m(x) is of the
form mi(x) = f ′i(x)βi with f ′i(x) a vector of functions of size pi.

We note M(s) = (M1,M2) the values of m1(x) and m2(x) at points in D1 and
D2 respectively.

We note Mi = f ′i(Di)βi ∶= Fiβi with Fi a matrix of size ni × pi, i = 1,2.

Gaussian process regression for vectorial functions
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The bivariate case - joint distribution

As in the univariate case, we search the distribution of Z2(x) conditionnally to the
observations of the two components z(2). We note it [Z2(x)∣Z1 = z1,Z2 = z2]

Gaussian process regression for vectorial functions
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The bivariate case - joint distribution

As in the univariate case, we search the distribution of Z2(x) conditionnally to the
observations of the two components z(2). We note it [Z2(x)∣Z1 = z1,Z2 = z2]
First, we consider the joint distribution of Z2(x) and Z(2) given by :

⎛⎜⎝
Z2(x)

Z1

Z2

⎞⎟⎠ ∼N
⎛⎜⎝
⎛⎜⎝

f ′2(x)β2

F1β
1

F2β
2

⎞⎟⎠
⎛⎜⎝
C22(x,x) r′21(x) r′22(x)

r12(x) C11 C12

r22(x) C21 C22

⎞⎟⎠
⎞⎟⎠ ,

with, for j = 1,2, r2j(x) = (C2j(x,x(1)j ), . . . ,C2j(x,x(nj)

j )) and

rj2(x) = (Cj2(x(1)j ,x), . . . ,Cj2(x(nj)

j ,x)) are column vectors of size nj ,

Cij = (Cij(x(k)i ,x
(l)
j ))k=1,...,ni

l=1,...,nj

are matrix of size ni × nj .
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The bivariate case - joint distribution

As in the univariate case, we search the distribution of Z2(x) conditionnally to the
observations of the two components z(2). We note it [Z2(x)∣Z1 = z1,Z2 = z2]
First, we consider the joint distribution of Z2(x) and Z(2) given by :

⎛⎜⎝
Z2(x)

Z1

Z2

⎞⎟⎠ ∼N
⎛⎜⎝
⎛⎜⎝

f ′2(x)β2

F1β
1

F2β
2

⎞⎟⎠
⎛⎜⎝
C22(x,x) r′21(x) r′22(x)

r12(x) C11 C12

r22(x) C21 C22

⎞⎟⎠
⎞⎟⎠ ,

with, for j = 1,2, r2j(x) = (C2j(x,x(1)j ), . . . ,C2j(x,x(nj)

j )) and

rj2(x) = (Cj2(x(1)j ,x), . . . ,Cj2(x(nj)

j ,x)) are column vectors of size nj ,

Cij = (Cij(x(k)i ,x
(l)
j ))k=1,...,ni

l=1,...,nj

are matrix of size ni × nj .

Although in general Cij(x, x̃) ≠ Cji(x, x̃), we have the equality r2j(x) = rj2(x)
and Cij = C′ji.

Indeed, the equality cov (Zi(x), Zj(x̃)) = cov (Zj(x̃), Zi(x)) implies that

Csj(x, x̃) = Cjs(x̃, x) and thus rij(x) = rji(x) and Cij = C′ji.

Gaussian process regression for vectorial functions
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The bivariate case - predictive distribution

If the mean m(x) and covariance function V(x, x̃) are known, the conditional
distribution [Z2(x)∣Z1 = z1,Z2 = z2] is gaussian with conditioned mean µZ2

(x)
and variance σ2

Z2
(x) functions given by :⎧⎪⎪⎪⎨⎪⎪⎪⎩
µZ2
(x) = f

′
2(x)β2

+ r
′
2(x)V−1

2 (z(2) −M
(2)) ,

σ
2

Z2
(x) = C22(x,x) − r

′
2(x)V−1

2 r2(x),

where r′2(x) = (r′21(x),r′22(x)) and V2 = (C11 C12

C21 C22

) .
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The bivariate case - predictive distribution

If the mean m(x) and covariance function V(x, x̃) are known, the conditional
distribution [Z2(x)∣Z1 = z1,Z2 = z2] is gaussian with conditioned mean µZ2

(x)
and variance σ2

Z2
(x) functions given by :⎧⎪⎪⎪⎨⎪⎪⎪⎩
µZ2
(x) = f

′
2(x)β2

+ r
′
2(x)V−1

2 (z(2) −M
(2)) ,

σ
2

Z2
(x) = C22(x,x) − r

′
2(x)V−1

2 r2(x),

where r′2(x) = (r′21(x),r′22(x)) and V2 = (C11 C12

C21 C22

) .
The predictive mean µZ2

(x) is the surrogate model for the component z2(x) of
z(x) and the predictive variance σ2

Z2
(x) represents the model mean squared error.

µZ2
(x) interpolates z2(x) at points of the experimental design D2 and σ2

Z2
(x)

equals zero at these points. But, we can integrate a noise variance in the model as
presented for the univariate case.

Gaussian process regression for vectorial functions
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The bivariate case - predictive distribution

If the mean m(x) and covariance function V(x, x̃) are known, the conditional
distribution [Z2(x)∣Z1 = z1,Z2 = z2] is gaussian with conditioned mean µZ2

(x)
and variance σ2

Z2
(x) functions given by :⎧⎪⎪⎪⎨⎪⎪⎪⎩
µZ2
(x) = f

′
2(x)β2

+ r
′
2(x)V−1

2 (z(2) −M
(2)) ,

σ
2

Z2
(x) = C22(x,x) − r

′
2(x)V−1

2 r2(x),

where r′2(x) = (r′21(x),r′22(x)) and V2 = (C11 C12

C21 C22

) .
The predictive mean µZ2

(x) is the surrogate model for the component z2(x) of
z(x) and the predictive variance σ2

Z2
(x) represents the model mean squared error.

µZ2
(x) interpolates z2(x) at points of the experimental design D2 and σ2

Z2
(x)

equals zero at these points. But, we can integrate a noise variance in the model as
presented for the univariate case.

We note that the matrix V2 must be positive definite. We will present, after an
illustration, covariance structures which ensure this property.

Gaussian process regression for vectorial functions
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The bivariate case - illustration

Let the bivariate Gaussian process (Z1(x), Z2(x)), x ∈ R defined by :

{ Z1(x) = a1δ1(x) + a2δ2(x)
Z2(x) = b1δ1(x) + b2δ2(x) ,

where δ1(x) and δ2(x) are two independent Gaussian processes with means zero

and covariances k1(x, x̃) and k2(x, x̃) such that :

k1(x, x̃) is a 5/2-Matérn kernel with σ2 = 1 and θ = 0.2,
k2(x, x̃) is a 3/2-Matérn kernel with σ2 = 1 and θ = 0.3.

Gaussian process regression for vectorial functions

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 43



The bivariate case - illustration

Let the bivariate Gaussian process (Z1(x), Z2(x)), x ∈ R defined by :

{ Z1(x) = a1δ1(x) + a2δ2(x)
Z2(x) = b1δ1(x) + b2δ2(x) ,

where δ1(x) and δ2(x) are two independent Gaussian processes with means zero

and covariances k1(x, x̃) and k2(x, x̃) such that :

k1(x, x̃) is a 5/2-Matérn kernel with σ2 = 1 and θ = 0.2,
k2(x, x̃) is a 3/2-Matérn kernel with σ2 = 1 and θ = 0.3.
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The bivariate case - illustration

(Z1(x), Z2(x)) is Gaussian (linear combination of (δ1(x), δ2(x)).
(Z1(x), Z2(x)) has zero mean and covariance structure :
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The bivariate case - illustration

(Z1(x), Z2(x)) is Gaussian (linear combination of (δ1(x), δ2(x)).
(Z1(x), Z2(x)) has zero mean and covariance structure :

V(x, x̃) = ( a2

1k1(x, x̃) + a2

2k2(x, x̃) a1b1k1(x, x̃) + a2b2k2(x, x̃)
a1b1k1(x, x̃) + a2b2k2(x, x̃) b2

1k1(x, x̃) + b2

2k2(x, x̃) ) .
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The bivariate case - illustration

(Z1(x), Z2(x)) is Gaussian (linear combination of (δ1(x), δ2(x)).
(Z1(x), Z2(x)) has zero mean and covariance structure :

V(x, x̃) = ( a2

1k1(x, x̃) + a2

2k2(x, x̃) a1b1k1(x, x̃) + a2b2k2(x, x̃)
a1b1k1(x, x̃) + a2b2k2(x, x̃) b2

1k1(x, x̃) + b2

2k2(x, x̃) ) .
For a1 = 0.5, a2 = 3, b1 = 1 and b2 = −4 :
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The bivariate case - illustration

We consider a realization of Z1(x) and Z2(x) (noted z1(x) and z2(x))
We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in D1.

If we consider the same points in D1 and D2, taking into account z1(x) does not
bring any additional information than that provided by z2(x) information.
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The bivariate case - illustration

We consider a realization of Z1(x) and Z2(x) (noted z1(x) and z2(x))
We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in D1.

If we consider the same points in D1 and D2, taking into account z1(x) does not
bring any additional information than that provided by z2(x) information.
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in blue : GPR on z2(x)
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The bivariate case - illustration

We consider a realization of Z1(x) and Z2(x) (noted z1(x) and z2(x))
We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in D1.

If we consider the same points in D1 and D2, taking into account z1(x) does not
bring any additional information than that provided by z2(x) information.
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The bivariate case - illustration

We consider a realization of Z1(x) and Z2(x) (noted z1(x) and z2(x))
We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in D1.

If we consider more points in D1 than D2, the information provided by z1(x)
allows us to build a more predictive and accurate model for z2(x).
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in blue : univariate GPR, in red and green : bivariate GPR
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The bivariate case - Linear model of coregionalization (LMC)

LMC, widely used in geostatistics, is an approach to construct an admissible
matrix-valued covariance.

A valid covariance structure V(x, x̃) must satisfy the condition of positive
definiteness. For any (Di)i=1,2 the following covariance matrix

V2 = (C11(D1,D1) C12(D1,D2)
C21(D2,D1) C22(D2,D2)) = (C11 C12

C21 C22

) has to be positive definite.
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The bivariate case - Linear model of coregionalization (LMC)

LMC, widely used in geostatistics, is an approach to construct an admissible
matrix-valued covariance.

A valid covariance structure V(x, x̃) must satisfy the condition of positive
definiteness. For any (Di)i=1,2 the following covariance matrix

V2 = (C11(D1,D1) C12(D1,D2)
C21(D2,D1) C22(D2,D2)) = (C11 C12

C21 C22

) has to be positive definite.

In the LMC, the components of Z(x) are expressed as linear combinations of t
independent Gaussian processes δj(x) with covariance kernel Cj(x, x̃) :

Zi(x) = t∑
j=1

α
i
jδj(x), i = 1,2.
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The bivariate case - Linear model of coregionalization (LMC)

LMC, widely used in geostatistics, is an approach to construct an admissible
matrix-valued covariance.

A valid covariance structure V(x, x̃) must satisfy the condition of positive
definiteness. For any (Di)i=1,2 the following covariance matrix

V2 = (C11(D1,D1) C12(D1,D2)
C21(D2,D1) C22(D2,D2)) = (C11 C12

C21 C22

) has to be positive definite.

In the LMC, the components of Z(x) are expressed as linear combinations of t
independent Gaussian processes δj(x) with covariance kernel Cj(x, x̃) :

Zi(x) = t∑
j=1

α
i
jδj(x), i = 1,2.

Z(x) = (Z1(x), Z2(x)) is then a bivariate Gaussian process and we have :

cov (Zi(x), Zj(x̃)) = t∑
k=1

α
i
kα

j

kCk(x, x̃)
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The bivariate case - Linear model of coregionalization (LMC)

The covariance structure of Z(x) is : V(x, x̃) = ∑t
k=1 [αi

kα
j

k
]

i,j=1,2
Ck(x, x̃)

The matrix [αi
kα

j

k
]

i,j=1,2
is nonnegative definite, for all k = 1, . . . , t :

(α1

kα
1

k α1

kα
2

k

α2

kα
1

k α2

kα
2

k

) = (α1

k

α2

k

)(α1

k α2

k) .
The t matrices [αi

kα
j

k
]

i,j=1,2
are known as the coregionalization matrices.
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The bivariate case - Linear model of coregionalization (LMC)

The covariance structure of Z(x) is : V(x, x̃) = ∑t
k=1 [αi

kα
j

k
]

i,j=1,2
Ck(x, x̃)

The matrix [αi
kα

j

k
]

i,j=1,2
is nonnegative definite, for all k = 1, . . . , t :

(α1

kα
1

k α1

kα
2

k

α2

kα
1

k α2

kα
2

k

) = (α1

k

α2

k

)(α1

k α2

k) .
The t matrices [αi

kα
j

k
]

i,j=1,2
are known as the coregionalization matrices.

The regularity of any Gaussian process Zi(x) is the one of the roughest latent
process δj(x).
The LMC considers that all outputs provide the same level of information.

For more details :
Goulard, M. and Voltz, M. (1992). Linear coregionalization model :tools for estimation and choice of
cross-variogram matrix. Mathematical Geology, 24(3) :269-286.
Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag, Berlin.

LMC is not the only method for building admissible matrix-valued covariance
Bonilla, E., Ming, K., Chai, A. and Williams, C. Multi-task Gaussian process prediction (2007). Proceedings of
the 20th International Conference on Neural Information Processing Systems, 153–160.
Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative methods for
current environmental issues, 37-56, Springer.
. . .
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The multivariate case (just to get the formulas . . . )

The general form of GPR for vectorial function is easily generalized for s outputs,
the notations are the same as before but a little be more arduous. . .

We want to approximate zs(x) of z(x) = (z1(x), . . . , zs(x)) ∈ Rs by taking into
account (zt(x))t=1,...,s−1

We consider that z(x) is a realization of a multivariate Gaussian process
Z(x) = (Z1(x), . . . , Zs(x)) with mean m(x) and matrix-valued covariance
function V(x, x̃) such that :

m(x) = ⎛⎜⎝
f ′1(x)β1⋮
f ′s(x)βs

⎞⎟⎠ and V(x, x̃) = ⎛⎜⎝
C11(x, x̃) . . . c1s(x, x̃)⋮ ⋱ ⋮
Cs1(x, x̃) . . . Css(x, x̃)

⎞⎟⎠
Notations : Dt = {x(1)t , . . . ,x

(nt)
t } the DOE for the component t

zt = zt(Dt) = (zt(x(1)t ), . . . , zt(x(nt)
t ))′ ; z(s) = (z′1, . . . ,z′s)′

Zt = Zt(Dt) = (Zt(x(1)t ), . . . , Zt(x(nt)
t ))′ ; Z(s) = (Z′1, . . . ,Z′s)′

Mt = f ′t(Dt)βt ∶= Ftβt ; M(s) = (M1, . . . ,Ms)

Gaussian process regression for vectorial functions
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The multivariate case (just to get the formulas . . . )

We have the following joint distribution :

⎛⎜⎜⎜⎝
Zs(x)

Z1⋮
Zs

⎞⎟⎟⎟⎠
∼ N
⎛⎜⎜⎜⎝

f ′s(x)βs

F1β
1⋮

Fsβs

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Css(x,x) r′s1(x) . . . r′ss(x)

r1s(x) C11 . . . C1s⋮ ⋮ ⋱ ⋮
rss(x) Cs1 . . . Css

⎞⎟⎟⎟⎠
,

with rsj(x) = [Csj(x, x(k)j )]k=1,...,nj
, rjs(x) = [Cjs(x(k)j ,x)]k=1,...,nj

and

Cij = [Cij(x(k)i , x
(l)
j )]k=1,...,ni

l=1,...,nj

.

For (βt)t=1,...,s and V(x, x̃) known, the predictive distribution
(Zs(x)∣Z(s) = z(s)) is Gaussian with mean µs(x) and variance σ2

s(x) given by :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µZs(x) = f

′
s(x)βs + r

′
s(x)V−1

s (z(s) −M
(s)) ,

σ
2

Zs
(x) = Css(x,x) − r

′
s(x)V−1

s rs(x),

where r′s(x) = (r′s1(x) . . . r′ss(x)) and Vs = ⎛⎜⎝
C11 . . . C1s⋮ ⋱ ⋮
Cs1 . . . Css

⎞⎟⎠ .

Gaussian process regression for vectorial functions
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A particular case : Co-kriging models using function derivatives

The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.

As usual, we suppose that z(x) is a realization of Z(x) ∼ PG(f ′(x)β,C(x, x̃))

Gaussian process regression for vectorial functions
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A particular case : Co-kriging models using function derivatives

The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.

As usual, we suppose that z(x) is a realization of Z(x) ∼ PG(f ′(x)β,C(x, x̃))
First, we have the following result : ∂Z(x)/∂xi, x = (x1, . . . , xd) exists if and only
if its covariance kernel C(x, x̃) is twice differentiable with respect to xi.
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A particular case : Co-kriging models using function derivatives

The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.

As usual, we suppose that z(x) is a realization of Z(x) ∼ PG(f ′(x)β,C(x, x̃))
First, we have the following result : ∂Z(x)/∂xi, x = (x1, . . . , xd) exists if and only
if its covariance kernel C(x, x̃) is twice differentiable with respect to xi.

Secondly, as the differential operator is linear, if the covariance kernels are well
defined, then the stochastic process (Z(x), (∂Z(x)/∂xi)i=1,...,d) is Gaussian.
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A particular case : Co-kriging models using function derivatives

The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.

As usual, we suppose that z(x) is a realization of Z(x) ∼ PG(f ′(x)β,C(x, x̃))
First, we have the following result : ∂Z(x)/∂xi, x = (x1, . . . , xd) exists if and only
if its covariance kernel C(x, x̃) is twice differentiable with respect to xi.

Secondly, as the differential operator is linear, if the covariance kernels are well
defined, then the stochastic process (Z(x), (∂Z(x)/∂xi)i=1,...,d) is Gaussian.

We have the following cross covariances, for i, j = 1, . . . , d :

cov(Z(x), ∂Z(x̃)
∂x̃i

) = ∂C(x, x̃)
∂x̃i

,

cov(∂Z(x)
∂xi

,
∂Z(x̃)
∂x̃j

) = ∂2C(x, x̃)
∂xi∂x̃j

.
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A particular case : Co-kriging models using function derivatives

Let Z the values of Z(x) at points in D = {x(1), . . . ,x(1)},
x(j) = (x(j)

1
, . . . , x

(j)
d ) ∈ Rd, j = 1, . . . , n .

Similarly, z and z(i) are the values of z(x) and ∂z(x)/∂xi at points in D.
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A particular case : Co-kriging models using function derivatives

Let Z the values of Z(x) at points in D = {x(1), . . . ,x(1)},
x(j) = (x(j)

1
, . . . , x

(j)
d ) ∈ Rd, j = 1, . . . , n .

Similarly, z and z(i) are the values of z(x) and ∂z(x)/∂xi at points in D.

We have just to express the predictive distribution of (Z(x),Z, (Z(i))i=1,...,d) by
following the same formalism presented before.

− Express the joint distribution (Z(x),Z, (Z(i))i=1,...,d)
− Use the Gaussian conditioning theorem

For more details about GPR with derivatives :

Morris, M. D., Mitchell, T. J., and Ylvisaker, D. (1993). Bayesian design and analysis of

computer experiments : use of derivatives in surface prediction. Technometrics,

35(3) :243–255.

Mitchell, T., Morris, M., and Ylvisaker, D. (1994). Asymptotically optimum experimental

designs for prediction of deterministic functions given derivative information. Journal of

statistical planning and inference, 41(3) :377–389.
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Co-kriging models using function derivatives - illustration

Let Z(x) be a Gaussian process with mean zero and Gussian covariance kernel
C(x, x̃) = 4 exp (−(x − x̃)2/2θ2) with θ = 0.1 and x ∈ [0,1].

We find :

cov(Z(x), dZ
dx̃
(x̃)) = 4

(x − x̃)
θ2

exp(−(x − x̃)2
2θ2

)

cov(dZ
dx
(x), dZ

dx̃
(x̃)) = 4( 1

θ2
− (x − x̃)2

θ4
) exp(−(x − x̃)2

2θ2
) .

Now let us condition Z(x) at points D = (0.0,0.2,0.4,0.7,0.9) with
z(D) = (−1,2,6,−2,6) and (dz/dx)(D) = (0,−20,40,0,15).
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1 Some reminders or not

2 Gaussian process regression for univariate functions

3 Gaussian process regression for vectorial functions

4 Gaussian process regression for multi-fidelity vectorial functions - linear case

5 Gaussian process regression for multi-fidelity vectorial functions - nonlinear case

Outline
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Multi-fidelity framework

We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x, x̃) is of primary importance.

When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.

Linear model with 2 levels of code
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Multi-fidelity framework

We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x, x̃) is of primary importance.

When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.

We need to assume a relationship between the two outputs !

Recall the multi-fidelity context : z1(x) and z2(x) are the outputs of the code
modelling the same phenomenon with different computation times and accuracies.
We want to approximate z2(x) which is the most accurate and costly code.

For example z2(x) can be the output of a 3D modeling and z1(x) the output of a 2D or
1D modeling.

For example, z2(x) may be the output of an expensive numerical reference code and

z1(x) may be an earlier version of it, neglecting certain phenomena.

Linear model with 2 levels of code
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Multi-fidelity framework

We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x, x̃) is of primary importance.

When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.

We need to assume a relationship between the two outputs !

Recall the multi-fidelity context : z1(x) and z2(x) are the outputs of the code
modelling the same phenomenon with different computation times and accuracies.
We want to approximate z2(x) which is the most accurate and costly code.

For example z2(x) can be the output of a 3D modeling and z1(x) the output of a 2D or
1D modeling.

For example, z2(x) may be the output of an expensive numerical reference code and

z1(x) may be an earlier version of it, neglecting certain phenomena.

A linear relationship between the two outputs appears to be appropriate in a
multifidelity framework : the expensive code can be seen as the sum of the light
code at a scale factor and an error term.

Linear model with 2 levels of code
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The case where one knows perfectly z1(x) - linear regression

The simplest model is to approximate the costly code z2(x) by linear regression
assuming that the cheaper code z1(x) is a regression function :

ẑ2(x) = ρz1(x) + p∑
i=1

fi(x)βi

Linear model with 2 levels of code
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The case where one knows perfectly z1(x) - linear regression

The simplest model is to approximate the costly code z2(x) by linear regression
assuming that the cheaper code z1(x) is a regression function :

ẑ2(x) = ρz1(x) + p∑
i=1

fi(x)βi

In matrix form, linear regression model is given by : Z2 = Fβ + ε

Z2 = (Z2(x(1)), . . . , Z2(x(n2)))′, the random vector of observations

(Z2(x(i)))i=1,...,n2
are assumed to be i.id.

F =
⎛⎜⎝

z1(x(1)) f1(x(1)) ⋯ fp(x(1))
⋮ ⋮

z1(x(n2)) f1(x(n2)) ⋯ fp(x(n2))
⎞⎟⎠ is the matrix of regressors,

β = (ρ, β1, . . . , βp)′ is the vector of coefficients,

ε = (ε1, . . . , εn2
the vector of the random vector of the residuals such that(εi)i=1,...,n2

are i.id, E(εi) = 0 and var(εi) = σ2.

Least-squares estimate of the regression coefficient β : β̂ = (F′F)−1
F′z2.

No more details : it’s a classical linear model !

Linear model with 2 levels of code
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The case where one knows perfectly z1(x) - Gaussian process regression

We suppose now that z2(x) is a realization of a Gaussian process Z2(x).
The model become : Z2(x) = ρz1(x) + δ(x)
where δ(x) ∼ GP (f ′δ(x)βδ, σ

2

δRδ(x, x̃)), fδ(x) is a vector of p known fonctions.

Linear model with 2 levels of code
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The case where one knows perfectly z1(x) - Gaussian process regression

We suppose now that z2(x) is a realization of a Gaussian process Z2(x).
The model become : Z2(x) = ρz1(x) + δ(x)
where δ(x) ∼ GP (f ′δ(x)βδ, σ

2

δRδ(x, x̃)), fδ(x) is a vector of p known fonctions.

Then we have : Z2(x) ∼ GP ((z1(x) f ′δ(x))( ρβδ

) , σ2

δRδ(x, x̃))
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The case where one knows perfectly z1(x) - Gaussian process regression

We suppose now that z2(x) is a realization of a Gaussian process Z2(x).
The model become : Z2(x) = ρz1(x) + δ(x)
where δ(x) ∼ GP (f ′δ(x)βδ, σ

2

δRδ(x, x̃)), fδ(x) is a vector of p known fonctions.

Then we have : Z2(x) ∼ GP ((z1(x) f ′δ(x))( ρβδ

) , σ2

δRδ(x, x̃))
We are in the case of GPR for univariate functions !

→ universal kriging with the conditioned mean and variance functions of Z2(x)
incorporates the estimation of β = (ρ,β′δ)′ done by (MLE) :

β̂ = (F′R−1

δ,D2
F)−1

F
′
R
−1

δ,D2
z2.,

F is already definied in the previous slide.

Linear model with 2 levels of code
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The case where one knows perfectly z1(x) - Gaussian process regression

We suppose now that z2(x) is a realization of a Gaussian process Z2(x).
The model become : Z2(x) = ρz1(x) + δ(x)
where δ(x) ∼ GP (f ′δ(x)βδ, σ

2

δRδ(x, x̃)), fδ(x) is a vector of p known fonctions.

Then we have : Z2(x) ∼ GP ((z1(x) f ′δ(x))( ρβδ

) , σ2

δRδ(x, x̃))
We are in the case of GPR for univariate functions !

→ universal kriging with the conditioned mean and variance functions of Z2(x)
incorporates the estimation of β = (ρ,β′δ)′ done by (MLE) :

β̂ = (F′R−1

δ,D2
F)−1

F
′
R
−1

δ,D2
z2.,

F is already definied in the previous slide.

Finally, one could almost see Gaussian process regression for univariate functions
as multifidelity with the trend as coarse code :

Z2(x) = f
′
β + δ(x) with δ(x) ∼ GP (0, σ2

δRδ(x, x̃))
.

Linear model with 2 levels of code
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Notations and assumptions

As usual in the GPR framework, we suppose that z(x) = (z1(x), z2(x)) is a
realization of a bivariate Gaussian proces (Z1(x), Z2(x))
We keep the same notations as before.

Dt = {x(1)t , . . . ,x
(nt)
t } the DOE for the component t

zt = zt(Dt) = (zt(x(1)t ), . . . , zt(x(nt)
t ))′ ; z(s) = (z′1, . . . ,z′s)′

Zt = Zt(Dt) = (Zt(x(1)t ), . . . , Zt(x(nt)
t ))′ ; Z(s) = (Z′1, . . . ,Z′s)′

Mt = f ′t(Dt)βt ∶= Ftβt ; M(s) = (M1, . . . ,Ms)
ft(x) = (f1,t, . . . , fpt,t)
We add an assumption : the two DOE are nested D2 ⊆D1

This is not a big assumption : as coarse code is less expensive than reference code,
it is assumed that observations can facilement be added to coarse code.

AR(1) model with 2 levels of code
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The AR(1) model

In the AR(1) model, the dependency between the two levels of code is assumed to
be as follows : M. Kennedy and A. O’Hagan (2000), Predicting the output from a complex computer code when

fast approximations are available, Biometrika. Forrester A.I.J., Sobester, A. and A.J. Keane (2007), Multi-fidelity

optimization via surrogate modelling, Proc. R. Soc.

Z2(x) = ρZ1(x) + δ(x)
where δ(x) is a Gaussian process independent of Z1(x),
δ(x) ∼ GP (mδ(x) = f ′δ(x)βδ,Cδ(x, x̃) = σ2

δRδ(x, x̃))
Z1(x) ∼ GP (m1(x) = f ′1(x)β1

,C1(x, x̃) = σ2

1R1(x, x̃))
ρ represents a scale factor between Z2(x) and Z1(x).

AR(1) model with 2 levels of code
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The AR(1) model

In the AR(1) model, the dependency between the two levels of code is assumed to
be as follows : M. Kennedy and A. O’Hagan (2000), Predicting the output from a complex computer code when

fast approximations are available, Biometrika. Forrester A.I.J., Sobester, A. and A.J. Keane (2007), Multi-fidelity

optimization via surrogate modelling, Proc. R. Soc.

Z2(x) = ρZ1(x) + δ(x)
where δ(x) is a Gaussian process independent of Z1(x),
δ(x) ∼ GP (mδ(x) = f ′δ(x)βδ,Cδ(x, x̃) = σ2

δRδ(x, x̃))
Z1(x) ∼ GP (m1(x) = f ′1(x)β1

,C1(x, x̃) = σ2

1R1(x, x̃))
ρ represents a scale factor between Z2(x) and Z1(x).
In fact, the AR(1) model is derived from the following Markov property :

Cov(Z2(x), Z1(x̃)∣Z1(x)) = 0 ∀x ≠ x̃.

The property means that if Z1(x) is known, then nothing more can be learn about
Z2(x) from any other run of the cheaper code Z1(x̃) for x̃ ≠ x.

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) =
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)

V(x, x̃) =
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)

V(x, x̃) = ( σ2

1R1(x, x̃) ρσ2

1R1(x, x̃)
ρσ2

1R1(x, x̃) ρ2σ2

1R1(x, x̃) + σ2

δRδ(x, x̃)) ,
We want to express the joint distribution of Z2(x) and Z(2) (do it again) :

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)

V(x, x̃) = ( σ2

1R1(x, x̃) ρσ2

1R1(x, x̃)
ρσ2

1R1(x, x̃) ρ2σ2

1R1(x, x̃) + σ2

δRδ(x, x̃)) ,
We want to express the joint distribution of Z2(x) and Z(2) (do it again) :

− First, Z(2) = (Z′1,Z′2)′ is a gaussian vector of size n1 + n2 with :

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)

V(x, x̃) = ( σ2

1R1(x, x̃) ρσ2

1R1(x, x̃)
ρσ2

1R1(x, x̃) ρ2σ2

1R1(x, x̃) + σ2

δRδ(x, x̃)) ,
We want to express the joint distribution of Z2(x) and Z(2) (do it again) :

− First, Z(2) = (Z′1,Z′2)′ is a gaussian vector of size n1 + n2 with :

E [Z(2)] = ( f ′1(D1)β1

ρf ′1(D2)β1
+ f ′δ(D2)βδ

), with f
′
i(Dj) =

⎛⎜⎜⎝
f
′
i(x(1)j

)
⋮

f
′
i(x(nj)

j
)
⎞⎟⎟⎠ and

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)

V(x, x̃) = ( σ2

1R1(x, x̃) ρσ2

1R1(x, x̃)
ρσ2

1R1(x, x̃) ρ2σ2

1R1(x, x̃) + σ2

δRδ(x, x̃)) ,
We want to express the joint distribution of Z2(x) and Z(2) (do it again) :

− First, Z(2) = (Z′1,Z′2)′ is a gaussian vector of size n1 + n2 with :

E [Z(2)] = ( f ′1(D1)β1

ρf ′1(D2)β1
+ f ′δ(D2)βδ

), with f
′
i(Dj) =

⎛⎜⎜⎝
f
′
i(x(1)j

)
⋮

f
′
i(x(nj)

j
)
⎞⎟⎟⎠ and

V2 = Cov(Z1,Z2) = ( σ2

1R1(D1,D1) ρσ2

1R1(D1,D2)
ρσ2

1R1(D2,D1) ρ2σ2

1R1(D2,D2) + σ2

δRδ(D2,D2))
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Joint distribution of Z2(x) and observations

We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(x) = ( f ′1(x)β1

ρf ′1(x)β1
+ f ′δ(x)βδ

)

V(x, x̃) = ( σ2

1R1(x, x̃) ρσ2

1R1(x, x̃)
ρσ2

1R1(x, x̃) ρ2σ2

1R1(x, x̃) + σ2

δRδ(x, x̃)) ,
We want to express the joint distribution of Z2(x) and Z(2) (do it again) :

− First, Z(2) = (Z′1,Z′2)′ is a gaussian vector of size n1 + n2 with :

E [Z(2)] = ( f ′1(D1)β1

ρf ′1(D2)β1
+ f ′δ(D2)βδ

), with f
′
i(Dj) =

⎛⎜⎜⎝
f
′
i(x(1)j

)
⋮

f
′
i(x(nj)

j
)
⎞⎟⎟⎠ and

V2 = Cov(Z1,Z2) = ( σ2

1R1(D1,D1) ρσ2

1R1(D1,D2)
ρσ2

1R1(D2,D1) ρ2σ2

1R1(D2,D2) + σ2

δRδ(D2,D2))
Thus, Z(2) ∼Nn1+n2

(Hβ,V2) with H = ( f
′
1
(D1) 0

ρf
′
1
(D2) f

′
δ(D2)) and β = (β1

βδ
) .

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now easily write the desired joint distribution :

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now easily write the desired joint distribution :

(Z2(x)
Z(2)

) ∼N ((h′(x)β
Hβ

) ,(ρ2σ2

1 + σ2

δ r′2(x)
r2(x) V2

)) where h′(x) = (ρf ′1(x), f ′δ(x))
and : r′2(x) = Cov(Z2(x), Z

(2))
= (ρσ2

1R1({x}, D1), ρ2σ2
1R1({x}, D2) + σ2

δ Rδ({x}, D2))
with Ri({x}, Dj) = (Ri(x, x

(1)
j
), . . . , Ri(x, x

(nj)

j
))

Conditional distribution of Z2(x) given Z(2)(do it again)

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now easily write the desired joint distribution :

(Z2(x)
Z(2)

) ∼N ((h′(x)β
Hβ

) ,(ρ2σ2

1 + σ2

δ r′2(x)
r2(x) V2

)) where h′(x) = (ρf ′1(x), f ′δ(x))
and : r′2(x) = Cov(Z2(x), Z

(2))
= (ρσ2

1R1({x}, D1), ρ2σ2
1R1({x}, D2) + σ2

δ Rδ({x}, D2))
with Ri({x}, Dj) = (Ri(x, x

(1)
j
), . . . , Ri(x, x

(nj)

j
))

Conditional distribution of Z2(x) given Z(2)(do it again)

As before, we suppose that we know the mean m(x) and the covariance function
V(x, x̃). That is to say, that we know β

1
, βδ, ρ, σ1, σδ, R1(⋅, ⋅) and Rδ(⋅, ⋅)

AR(1) model with 2 levels of code
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Joint distribution of Z2(x) and observations

We can now easily write the desired joint distribution :

(Z2(x)
Z(2)

) ∼N ((h′(x)β
Hβ

) ,(ρ2σ2

1 + σ2

δ r′2(x)
r2(x) V2

)) where h′(x) = (ρf ′1(x), f ′δ(x))
and : r′2(x) = Cov(Z2(x), Z

(2))
= (ρσ2

1R1({x}, D1), ρ2σ2
1R1({x}, D2) + σ2

δ Rδ({x}, D2))
with Ri({x}, Dj) = (Ri(x, x

(1)
j
), . . . , Ri(x, x

(nj)

j
))

Conditional distribution of Z2(x) given Z(2)(do it again)

As before, we suppose that we know the mean m(x) and the covariance function
V(x, x̃). That is to say, that we know β

1
, βδ, ρ, σ1, σδ, R1(⋅, ⋅) and Rδ(⋅, ⋅)

By Gaussian conditionning, the conditional distribution [Z2(x)∣Z1 = z1,Z2 = z2] is
gaussian with mean µZ2

(x) and variance σ2

Z2
(x) given by :⎧⎪⎪⎪⎨⎪⎪⎪⎩

µZ2
(x) = h

′(x)β + r
′
2(x)V−1

2 (z(2) −Hβ) ,
σ

2

Z2
(x) = ρ2

σ
2

1 + σ
2

δ − r
′
2(x)V−1

2 r2(x),
Known as the simple multi-fidelity co-kriging.

AR(1) model with 2 levels of code
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About the scale factor ρ

By definition, we have Cov(Z1(x), Z1(x̃)) = σ2

1R1(x, x̃) and we have seen that

Cov(Z2(x), Z1(x̃)) = ρσ2

1R1(x, x̃), so we can express ρ as :

ρ = Cov(Z2(x), Z1(x))
var(Z1(x))

It both represents the correlation degree and the scale factor between two
successive levels of code :

AR(1) model with 2 levels of code
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About the scale factor ρ

By definition, we have Cov(Z1(x), Z1(x̃)) = σ2

1R1(x, x̃) and we have seen that

Cov(Z2(x), Z1(x̃)) = ρσ2

1R1(x, x̃), so we can express ρ as :

ρ = Cov(Z2(x), Z1(x))
var(Z1(x))

It both represents the correlation degree and the scale factor between two
successive levels of code :

If Z1(x) and Z2(x)) are uncorellated, i.e. ρ = 0, the equations simplify and this
amounts to approximating z1(x) and z2(x) by Gaussian process regression in an
independent way.

The addition of information from z1(x) cannot degrade the GPR approximation of
z2(x).

AR(1) model with 2 levels of code
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Academic 1D illutration

The "cheap" code (in red) : z1(x) = 0.5(6x − 2)2sin(12x − 4) + 10(x − 0.5) − 5

The expensive code (in black) : z2(x) = 2z1(x) − 20x + 20
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Same DOE : we learn nothing more about z2(x).

AR(1) model with 2 levels of code
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Academic 1D illutration

The "cheap" code (in red) : z1(x) = 0.5(6x − 2)2sin(12x − 4) + 10(x − 0.5) − 5

The expensive code (in black) : z2(x) = 2z1(x) − 20x + 20
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Nested DOE : knowledge of z1(x) gives us information about z2(x).
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AR(1) multi-fidelity model parameters estimation

Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients β.

AR(1) model with 2 levels of code
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AR(1) multi-fidelity model parameters estimation

Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients β.

We must also take into account of estimation of the scaling parameter ρ in the
AR(1) model.

AR(1) model with 2 levels of code

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 64



AR(1) multi-fidelity model parameters estimation

Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients β.

We must also take into account of estimation of the scaling parameter ρ in the
AR(1) model.

According to the hypothesis of independence between Z1(x) and δ(x), we can
estimate (β1, σ

2

1 , θ1) and (ρ, βδ, σ
2

δ , θδ) separately.
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AR(1) multi-fidelity model parameters estimation

Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients β.

We must also take into account of estimation of the scaling parameter ρ in the
AR(1) model.

According to the hypothesis of independence between Z1(x) and δ(x), we can
estimate (β1, σ

2

1 , θ1) and (ρ, βδ, σ
2

δ , θδ) separately.

For Z1(x) we proceed as in the univariate case : MLE or Bayesian procedure for
β

1
, then σ2

1 and then θ1 or full-bayesian estimation.
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AR(1) multi-fidelity model parameters estimation

Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients β.

We must also take into account of estimation of the scaling parameter ρ in the
AR(1) model.

According to the hypothesis of independence between Z1(x) and δ(x), we can
estimate (β1, σ

2

1 , θ1) and (ρ, βδ, σ
2

δ , θδ) separately.

For Z1(x) we proceed as in the univariate case : MLE or Bayesian procedure for
β

1
, then σ2

1 and then θ1 or full-bayesian estimation.

For Z2(x) we need to estimate ρ and βδ together, indeed we can’t suppose ρ and
β to be independant.

MLE or Bayesian procedure for (βδ, ρ), then σ2

δ and then θδ or full-bayesian
estimation.
Le Gratiet, L. (2013), Bayesian analysis of hierarchical multifidelity codes, SIAM/ASA J. on Uncertain. Quantif.

MA, P. (2019), Objective Bayesian Analysis of a Cokriging Model for Hierarchical Multi delity Codes

AR(1) model with 2 levels of code
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The model is easily generalized to s levels

We have s levels of code (zt(x))t=1,...,s sorted by increasing order of fidelity and
modeled by Gaussian processes (Zt(x))t=1,...,s, x ∈ Rd. We want to approximate
zs(x), the most accurate and costly code.

AR(1) model for s levels : Zt(x) = ρt−1Zt−1(x) + δt(x) t = 2, . . . , s

where δt(x) ∼ GP (f ′t(x)βt, σ
2

tRt(x, x̃)) is independent of Zt−1(x), . . . , Z1(x)
and Z1(x) ∼ GP (f ′1(x)β1

, σ2

1R1(x, x̃))

AR(1) model with s levels of code
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The model is easily generalized to s levels

We have s levels of code (zt(x))t=1,...,s sorted by increasing order of fidelity and
modeled by Gaussian processes (Zt(x))t=1,...,s, x ∈ Rd. We want to approximate
zs(x), the most accurate and costly code.

AR(1) model for s levels : Zt(x) = ρt−1Zt−1(x) + δt(x) t = 2, . . . , s

where δt(x) ∼ GP (f ′t(x)βt, σ
2

tRt(x, x̃)) is independent of Zt−1(x), . . . , Z1(x)
and Z1(x) ∼ GP (f ′1(x)β1

, σ2

1R1(x, x̃))
Proceeding in the same way as for 2 levels, one may find that the conditioned
distribution [Zs(x)∣Z1 = z1, . . .Zs = zs] (with all parameters known) is Gaussian
with :

µZs(x) = h
′
s(x)β + k

′
s(x)V−1

s (z −Hsβ)
σ

2

Zs
(x) = σ2

Zs
− k

′
s(x)V−1

s ks(x).
We don’t define the notations but we can see that the formulation is similar to the
one with 2 levels. For instance : V−1

s is a ∑s
t=1 nt ×∑s

t=1 nt matrix , Hs is a

∑s
t=1 nt ×∑s

t=1 pt matrix (pt the size of f ′1(x)), . . .

AR(1) model with s levels of code
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Multi-fidelity co-kriging model : recursive formulation

Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

Recursive AR(1) model with 2 levels of code
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Multi-fidelity co-kriging model : recursive formulation

Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

The recursive AR(1) model is done by : Le Gratiet L. & Garnier J. (2014), Recursive co-kriging model

for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantif.

{ Z2(x) = ρZ̃1(x) + δ(x)
Z̃1(x) ⊥ δt(x) ,

As before δ(x) ∼ GP (f ′δ(x)βδ,Cδ(x, x̃) = σ2

δRδ(x, x̃)) . But, differently than

before Z̃1(x) is a GP with distribution [Z1(x)∣Z1 = z1,β1
, σ2

1 , θ1].

Recursive AR(1) model with 2 levels of code
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Multi-fidelity co-kriging model : recursive formulation

Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

The recursive AR(1) model is done by : Le Gratiet L. & Garnier J. (2014), Recursive co-kriging model

for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantif.

{ Z2(x) = ρZ̃1(x) + δ(x)
Z̃1(x) ⊥ δt(x) ,

As before δ(x) ∼ GP (f ′δ(x)βδ,Cδ(x, x̃) = σ2

δRδ(x, x̃)) . But, differently than

before Z̃1(x) is a GP with distribution [Z1(x)∣Z1 = z1,β1
, σ2

1 , θ1].
→ We know its mean and its covariance (see GPR for univariate functions) :

µZ1
(x) = f

′
1(x)β1

+ r1

′(x)R−1

1,D1
(z1 − f

′
1(D1)β1

σ
2

Z1
(x) = σ2

1(1 − r1

′(x)R−1

1,D1
r1(x))
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Multi-fidelity co-kriging model : recursive formulation

Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

The recursive AR(1) model is done by : Le Gratiet L. & Garnier J. (2014), Recursive co-kriging model

for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantif.

{ Z2(x) = ρZ̃1(x) + δ(x)
Z̃1(x) ⊥ δt(x) ,

As before δ(x) ∼ GP (f ′δ(x)βδ,Cδ(x, x̃) = σ2

δRδ(x, x̃)) . But, differently than

before Z̃1(x) is a GP with distribution [Z1(x)∣Z1 = z1,β1
, σ2

1 , θ1].
→ We know its mean and its covariance (see GPR for univariate functions) :

µZ1
(x) = f

′
1(x)β1

+ r1

′(x)R−1

1,D1
(z1 − f

′
1(D1)β1

σ
2

Z1
(x) = σ2

1(1 − r1

′(x)R−1

1,D1
r1(x))

We can now deduce the distribution [Z2(x)∣Z1 = z1,Z2 = z2] (with mean and
covariance functions known)

Recursive AR(1) model with 2 levels of code
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Multi-fidelity co-kriging model : recursive formulation

Once again we suppose that all means and covariances parameters (i.e. β
1
, βδ, ρ,

σ1, σδ, R1(⋅, ⋅) and Rδ(⋅, ⋅) are known.

The conditioned distribution [Z2(x)∣Z1 = z1,Z2 = z2] is Gaussian with mean
µZ2
(x) and variance σZ2

(x) done by :

µZ2
(x) = ρµZ1

(x) + µδ(x)
σ

2

Z2
(x) = ρσ2

Z1
(x) + σ2

δ(x)
where µδ(x) and σ2

δ(x) are the mean and the variance function of the conditioned
distribution [δ(x)∣Z2 = z2] :

µδ(x) = f ′δ(x)βδ + rδ
′(x)R−1

δ,D2
(z2 − ρz1(D2) − f

′
δ(D2)βδ)

σ
2

δ(x) = σ2

δ(1 − rδ
′(x)R−1

δ,D2
rδ(x))
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Multi-fidelity co-kriging model : recursive formulation

Once again we suppose that all means and covariances parameters (i.e. β
1
, βδ, ρ,

σ1, σδ, R1(⋅, ⋅) and Rδ(⋅, ⋅) are known.

The conditioned distribution [Z2(x)∣Z1 = z1,Z2 = z2] is Gaussian with mean
µZ2
(x) and variance σZ2

(x) done by :

µZ2
(x) = ρµZ1

(x) + µδ(x)
σ

2

Z2
(x) = ρσ2

Z1
(x) + σ2

δ(x)
where µδ(x) and σ2

δ(x) are the mean and the variance function of the conditioned
distribution [δ(x)∣Z2 = z2] :

µδ(x) = f ′δ(x)βδ + rδ
′(x)R−1

δ,D2
(z2 − ρz1(D2) − f

′
δ(D2)βδ)

σ
2

δ(x) = σ2

δ(1 − rδ
′(x)R−1

δ,D2
rδ(x))

It can be shown that the original AR(1) model and its recursive formulation have
the same conditioned distribution [Z2(x)∣Z1 = z1,Z2 = z2].

Recursive AR(1) model with 2 levels of code
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The recursive AR(1) is easily generalised

Easily generalised, for t = 2, . . . , s, the model become :

{ Zt(x) = ρt−1(x)Z̃t−1(x) + δt(x)
Z̃t−1(x) ⊥ δt(x) ,

where Z̃t−1(x) is a Gaussian process with distribution

[Zt−1(x)∣Z(t−1) = z(t−1),βt−1
, ρt−2, σ

2

t−1],
δt(x) ∼ GP (f ′t(x)βt, σ

2

tRt(x, x̃)) is defined in the same way as before

Ds ⊆Ds−1 ⊆ ⋅ ⋅ ⋅ ⊆D1 are nested designs

The conditioned distribution [Zs(x)∣Z1 = z1, . . .Zs = zs] (with all parameters
known) is Gaussian with :

µZt(x) = ρt−1µZt−1
(x) + µδt(x)

σ
2

Zt
(x) = ρt−1σ

2

Zt−1
(x) + σ2

δt
(x)

Recursive AR(1) model with s levels of code
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The recursive AR(1) is easily generalised

Easily generalised, for t = 2, . . . , s, the model become :

{ Zt(x) = ρt−1(x)Z̃t−1(x) + δt(x)
Z̃t−1(x) ⊥ δt(x) ,

where Z̃t−1(x) is a Gaussian process with distribution

[Zt−1(x)∣Z(t−1) = z(t−1),βt−1
, ρt−2, σ

2

t−1],
δt(x) ∼ GP (f ′t(x)βt, σ

2

tRt(x, x̃)) is defined in the same way as before

Ds ⊆Ds−1 ⊆ ⋅ ⋅ ⋅ ⊆D1 are nested designs

The conditioned distribution [Zs(x)∣Z1 = z1, . . .Zs = zs] (with all parameters
known) is Gaussian with :

µZt(x) = ρt−1µZt−1
(x) + µδt(x)

σ
2

Zt
(x) = ρt−1σ

2

Zt−1
(x) + σ2

δt
(x)

The model can also be generalised to the case where the scale parameter ρ
depends on x. Then it is assumed that ρt−1(x) = g′t−1(x)βρt−1

.

Recursive AR(1) model with s levels of code
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About the nested design assumption

The nested property of the design sets is not necessary to build the model, but
it allows for a simple estimation of the model parameters.

Exemple of easy construction
See also : Forrester & al (2007), Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A

Qian & al (2009), Construction of nested space-filling designs, The Annals of Statistics, . . .

AR(1) model with 2 levels of code
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About the nested design assumption

The nested property of the design sets is not necessary to build the model, but
it allows for a simple estimation of the model parameters.

Exemple of easy construction
See also : Forrester & al (2007), Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A

Qian & al (2009), Construction of nested space-filling designs, The Annals of Statistics, . . .

First we build the experimental design set

D2 for the most accurate code z2(x).
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Then we build D̃1 the experimental design

set from which we will build D1.
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About the nested design assumption

The nested property of the design sets is not necessary to build the model, but
it allows for a simple estimation of the model parameters.

Exemple of easy construction
See also : Forrester & al (2007), Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A

Qian & al (2009), Construction of nested space-filling designs, The Annals of Statistics, . . .

We find the points of D̃1 the closest to

those of D2 and we remove them.
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D1 is built by concatenating D2 and D̃1

without its removed points.
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Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?
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Yes : ρ = 1,
z1(x) is a realization of GP of mean zero and of covariance Matern 5/2
δ(x) is a realization of GP of mean zero and of covariance Matern 5/2.
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Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?
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Yes : ρ = ρ0 + ρ1x,
z1(x) is a realization of GP of mean β0 + β1x and of covariance Matern 3/2
δ(x) is a realization of GP of mean γ0 + γ1x and of covariance Matern 3/2.
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Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?

1.5 2.0 2.5 3.0

0
1

2
3

z2(x)

z
1
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

x
z
(x

)

AR(1) model with 2 levels of code

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 73



Are the assumptions of the model verified ?
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Yes : ρ = 0.5,
z1(x) is a realization of GP of mean β0 + β1x and of covariance Matern 5/2
δ(x) is a realization of GP of mean γ0 + γ1x and of covariance Matern 5/2.

AR(1) model with 2 levels of code

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 73



Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?
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No : Z2(x) = √Z1(x) + δ(x),
z1(x) is a realization of GP of mean β0 + β1x and of covariance Matern 5/2
δ(x) is a realization of GP of mean γ0 + γ1x and of covariance Matern 5/2.
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Some remarks on AR(1) model

Despite the assumption of linearity which may seem restrictive, the model is really
adapted to many multi-fidelity applications (different models of the same
phenomenon)

However, there are cases where this assumption is not valid and where other
methods should be considered (non linear relationship)

The recursive formulation has allowed it to become numerically lighter and has
made it quite popular in recent years.

It is not designed to be used on a very large number of levels.

In this case we speak of tunable fidelity, and approaches based on PGR exist.

Picheny, V. and Ginsbourger, D. (2013), A nonstationary space-time Gaussian process model for partially converged
simulations, SIAM/ASA Journal on Uncertainty Quantification.

Tuo R. Wu C. F. J. and Yu, D (2014), Surrogate modeling of computer experiments with different mesh densities,

Technometrics.
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1 Some reminders or not

2 Gaussian process regression for univariate functions

3 Gaussian process regression for vectorial functions

4 Gaussian process regression for multi-fidelity vectorial functions - linear case

5 Gaussian process regression for multi-fidelity vectorial functions - nonlinear case

Outline
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