Cea

Multi-Fidelity surrogate modeling

Claire Cannamela & Baptiste Kerleguer

16 Juin 2021

Numerical analysis Summer school 2021 - CEA EDF INRIA




Introduction

Metamodel/surrogate model

Input parameters

Physical system Surrogate model

Computer code

&

™J
™

Hexp (:L‘) Onum (:I:) ﬁ ( "I:)

Numerical analysis Summer schanl 2021 - CCA CRE INRIA Multi-Fidelity surrogats madeling —



Introduction

Multi-fidelity surrogate model

m Objective : Replace the output of a code, called z2(x}, by a metamodel.

mlx)izeQclR’ » R

Low Fidelity Code =) (&)

1,

——— > Low Fidelity

Enriched

—— Surrogate Model

m Principle :B build 2 metamodel of z2(#) which integrates as well cbservations of
the coarse code output z| ().
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Introduction

Some potential applications of multi-fidelity surrogate modeling

Sea surface temperature estimation from satellite observations and in-situ measurements
Prempraneerac P, Perdikaris P, Karniadakis G. E. and Chryssosiomidis C. (2017), "Sea Surface Temperalure estimation lrom
zalellite obeervations and in-silu measuremencs using mullilidelivy Gaussian MProcess regression," 2017 International Conlerence
an Digital Arts, Media and Technology.

Low Fidelity: Satelite High Fidelity: MYRA in-sifu Measurements
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Figure L Multifidelicy data sources: Left: The MODerate-reeolurion Imeging Spectroradiorcter (0001S) Torra on
Uitsird MASA sastelliLe with Lhe spatial vesohtion ol 0,041 degees (ko) 3 0.041 degrees |oegitude), whizh is
equrralens o the veschiton of 4 x4 km Owerdel et al. 20130 feght: Massachusetts Warer Resouree Authority
(IWEA] in ity messuremends shown in cec, The NERACOOS buoy AL is shown in bluw, and i i wsed only e
validation proposs.
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Introduction

Some potential applications of multi-fidelity surrogate modeling

Infection rate of Plasmodium falciparum among African children.
Cutajar K. Pullin M, Damiancu A, Lawrence M. Gonzélez | (2019) Deep Gaussian processes for multi-fidelity madeling. arXiv

preprint arXiv 190307320

TRUE HIGH-FIDELITY PREERICTEY HIGH-FIDELITY 1YPP SAMPLES

Figure 50 Real-world experiment indicating the infection rate of Plasmodivim faloiparum among African children.
Lighter-sheded regions denote higher infection rares in that arca of the continent. Left: True infection rates recorded
lor the year 2005, Ceaer: mE-nae predictions given low-lidelity data from 2005 and limited high-lidelity training
points (marked in red) from 2015, Righe: White squares show the samples drawn from a DIP using the posterior
covariance of the MF-DGP medel as its kernel,
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Introduction

Some potential applications of multi-fidelity surrogate modeling

Flow around an RAE 2822 airfoil.

Han, Z.H., Gértz, S. (2012), Hierarchical kriging model for variable-fidelity surrogate modeling, AIAA J. 50(9).

a) Grid for inviscid flow computations ~low b) Grid for viscous flow computations — high
fidelity (26 samples) fidelity (4 samples)
Fig. 6  Computational grids for the low- and high-fidelity computations of the flow around an RAE 2822 airfoil.
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Introduction

Some potential applications of multi-fidelity surrogate modeling

Rayleigh-Bénard instability, or natural convection

Parussini L, Venturi D., Perdikaris P. and Karniadakis G.E. (2017), Multi-fidelity Gaussian process regression for prediction of

random fields, Journal of Computational Physics
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Fig. 10. Stochastic Rayleigh-Bénard convection. Steady-state temperature field corresponding to one-roll convection patterns within a wide rang
numbers, Le., between 2.6 x 10° and 10°. Shown are simulations results with different resolutions in physical space,
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Outline

Some reminders or not
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Reminders : Gaussian vectors and Gaussian processes

Gaussian Vector

m A random vector Z = (Z1,...,7,)" is said to be Gaussian if its PDF fz is written
as :

f2(2) = xp {5 (- 12)"S7 (- ) |

1
—€
\/ (QTF)”thEz
m Analogously to a Gaussian random variable, Z is characterized by :

- its mean p, = E(Z) = (E(Z1),...,E(Zn))"
- its covariance matrix Xz =E ((Z -E[Z])" (Z -E[Z]))

Var(Z1) cov(Z1,Z2) ... cov(Z1,Zy)
> cov(Za, Z1) Var(Z2) coo cov(Za, Zn)
z = . . . .
cov(Zn,Z1) cov(Zn,Z2) ... Var(Z,)

Yz is symmetric since cov(Z;, Z;) = cov(Z;, Z;).
Let's assume Xz is invertible.
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Reminders : Gaussian vectors and Gaussian processes

2D graphic visualization

cov(Z1,Z2) =0 cov(Z1,Z3) = 0.5 cov(Z1, Z2) = 0.9
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Reminders : Gaussian vectors and Gaussian processes

Définition
m Z is a n-dimensional Gaussian vector if any linear combination of its

components follows a Gaussian distribution

n
T . )
Va eR" a' Z =Y a;Z; isGaussian
i

Properties

m The components of a Gaussian vector are Gaussian (note that the converse is not
true).

m The components of a Gaussian vector Z are independent if they are uncorrelated
(X2 is diagonal).

m If the components of a vector are Gaussian and independent then this vector is
Gaussian.

m The sum of two independent Gaussian vectors is a Gaussian vector.
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Reminders : Gaussian vectors and Gaussian processes

Two remarkable properties
m Stability by affine transformation

If Z is a Gaussian vector of dimension n, mean Z and covariance matrix Xz, then
for any matrix M of size m and any vector y of size m, X = MZ +y is also a
Gaussian vector with :

F(X)=Mpz+y, cov(X)=MEzM'.

m Generation of independent realizations

To generate independent realizations of a Gaussian vector Z from a reduced
centered Gaussian variable, we use the following result :

Z et RE&+ pz have the same law

- Z Gaussian vector of mean pz and covariance matrix Xz,

- & centered Gaussian vector whose components are independent and of
variance 1.

- R a matrix such that RR' = ¥z (Cholesky decomposition).

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling



Reminders : Gaussian vectors and Gaussian processes

An essential property : stability by conditioning

m Gaussian conditioning theorem

Let Z1 and Z5 be two Gaussian vectors of sizes n1 and no such that : :

Zy Y [731 Y11 a2
Z2 ni+ng ll/2 9 221 222
with 11 and p2 mean vectors of size n; and no respectively, the covariance

matrices Y11 of size ny x n1, Y12 of size ny x na, Yoy = Etlz and Y22 of size
n2 X Nag.

Then the distribution of Z; conditionally at Z5 is also Gaussian :

(Z1] Za2 = 22) ~ N(p"(22),[2°" (22)]),

B (22) = pa + D12353 (22 - py)
Econd(Z2) = 211 - 2122;;221.
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Reminders : Gaussian vectors and Gaussian processes

lllustration of Gaussian conditioning

Let X ~N(0,1), Z~N(0,1), E[XZ] = pe[-1,1]. Quantify the influence of the
observation of X =z on the distribution of Z.

Law of Z conditional on X :
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Reminders : Gaussian vectors and Gaussian processes

lllustration of Gaussian conditioning

Let X ~N(0,1), Z~N(0,1), E[XZ] = pe[-1,1]. Quantify the influence of the
observation of X =z on the distribution of Z.

Law of Z conditional on X : (Z | X =x) ~ N(pz,1-p*).
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Reminders : Gaussian vectors and Gaussian processes

lllustration of Gaussian conditioning

Let X ~N(0,1), Z~N(0,1), E[XZ] = pe[-1,1]. Quantify the influence of the
observation of X =z on the distribution of Z.

Law of Z conditional on X : (Z | X =x) ~ N(pz,1-p*).

We condition Z by the fact that X = -1.
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Conditioning changes the mean and reduces the variance!
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Reminders : Gaussian vectors and Gaussian processes

lllustration of Gaussian conditioning

Let X ~N(0,1), Z~N(0,1), E[XZ] = pe[-1,1]. Quantify the influence of the
observation of X =z on the distribution of Z.

Law of Z conditional on X : (Z | X =x) ~ N(pz,1-p*).

We condition Z by the fact that X =0

S — N(O,1)
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Conditioning changes the mean and reduces the variance!
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Reminders : Gaussian vectors and Gaussian processes

lllustration of Gaussian conditioning

Let X ~N(0,1), Z~N(0,1), E[XZ] = pe[-1,1]. Quantify the influence of the
observation of X =z on the distribution of Z.

Law of Z conditional on X : (Z | X =x) ~ N(pz,1-p*).

We condition Z by the fact that X =1
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Conditioning changes the mean and reduces the variance!
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Reminders : Gaussian vectors and Gaussian processes

Gaussian processes

m A random process (or field) Z(z),x € R%, is a random variable with values in a
functional space.

m A realization of a random process is a function of R? in R.

m The Gaussian process can be considered as natural extension of the Gaussian
vector in infinite dimension.

m A random field is said to be Gaussian if for all NV € N* and for all {:c(l), .. .,w(”)},
the random vector (Z(m(l))7 . .,Z(m("))) is Gaussian.

m A Gaussian process is then completely defined by :
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Reminders : Gaussian vectors and Gaussian processes

Gaussian processes

m A random process (or field) Z(z),x € R%, is a random variable with values in a
functional space.

m A realization of a random process is a function of R? in R.

m The Gaussian process can be considered as natural extension of the Gaussian
vector in infinite dimension.

m A random field is said to be Gaussian if for all NV € N* and for all {:c(l), .. .,w(”)},
the random vector (Z(m(l))7 . .,Z(m("))) is Gaussian.

m A Gaussian process is then completely defined by :

m its mean function : p(x) =E[Z(x)],

it represents the trend of the Gaussian process,
m its covariance function : C(xz,2) =E[(Z(z) - p(x)) (Z(&) - u(Z))],
m we note : Z(x) ~ GP (u(x),C(x,2)).
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Reminders : Gaussian vectors and Gaussian processes

From Gaussian vectors to Gaussian processes - illustration

Gaussian vectors are difficult to visualize in dimensions > 2, we try to represent the
points next to each other.

For 2 components instead of this representation, we have this one

[V o~

X —X

X *—X

o X N *—x
o+ o+

X »—x

T x T e—x
ik %

2 K 0 i 2 2 8 10
Z dimension

Each line is one realization of the Gaussian vector.

Z has a mean equal to zero and a given covariance matrix.
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Reminders : Gaussian vectors and Gaussian processes

From Gaussian vectors to Gaussian processes - illustration

Gaussian vectors are difficult to visualize in dimensions > 2, we try to represent the
points next to each other.

For 10 components For 50 components

2 ‘ ) 50
dimension dimension

Each line is one realization of the Gaussian vector in the corresponding dimension

To think about Gaussian process, we have just to change the indexation (for = € R)
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Reminders : Gaussian vectors and Gaussian processes

Covariance functions, also called covariance kernels

m C(x,2) must be symmetric.
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Reminders : Gaussian vectors and Gaussian processes

Covariance functions, also called covariance kernels
m C(x,2) must be symmetric.

m C(z,&) must be positive definite : for all (a;)i-1,...,» € R and distinct
(D) 21 € RY, it satisfies the following property :

Z aia]-C(:L'(i), :L'(j)) >0

. A
and X7,y aiajC(:v(l),:v(J)) =0ifandonlyifa;=0foralli=1,...,n.
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Reminders : Gaussian vectors and Gaussian processes

Covariance functions, also called covariance kernels
m C(x,2) must be symmetric.

m C(z,&) must be positive definite : for all (a;)i-1,...,» € R and distinct
(D) 21 € RY, it satisfies the following property :

Z aiajC(m(i),:c(j)) >0
. A
and X7,y aiajC(:v(l),:v(J)) =0ifandonlyifa;=0foralli=1,...,n.

m The covariance kernel describe relations between Z(x) and Z(Z) :
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Reminders : Gaussian vectors and Gaussian processes

Covariance functions, also called covariance kernels
m C(x,2) must be symmetric.

m C(z,&) must be positive definite : for all (a;)i-1,...,» € R and distinct
(D) 21 € RY, it satisfies the following property :

Z aiajC(m(i),:c(j)) >0
. A
and X7,y aiajC(:v(l),:v(J)) =0ifandonlyifa;=0foralli=1,...,n.

m The covariance kernel describe relations between Z(x) and Z(Z) :

Let Cy(x, &) =1, a Gaussian process Z(x) with mean zero and covariance function
C1 is constant : Y e R?, Z(x) = X, where X ~ N(0,1)
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Reminders : Gaussian vectors and Gaussian processes

Covariance functions, also called covariance kernels
m C(x,2) must be symmetric.

m C(z,&) must be positive definite : for all (a;)i-1,...,» € R and distinct
(D) 21 € RY, it satisfies the following property :

Z aiajC(m(i),:c(j)) >0
. A
and X7,y aiajC(:v(l),:v(J)) =0ifandonlyifa;=0foralli=1,...,n.

m The covariance kernel describe relations between Z(x) and Z(Z) :

Let Cy(x, &) =1, a Gaussian process Z(x) with mean zero and covariance function
C1 is constant : Y e R?, Z(x) = X, where X ~ N(0,1)

Let C2(x,&) = 1{5-5}, a Gaussian process Z(x) with mean zero and covariance
function C is composed of independant Gaussian values.
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Reminders : Gaussian vectors and Gaussian processes

Covariance functions, also called covariance kernels
m C(x,2) must be symmetric.

m C(z,&) must be positive definite : for all (a;)i-1,...,» € R and distinct
(D) 21 € RY, it satisfies the following property :

Z aiajC(m(i),:c(j)) >0
. A
and X7,y aiajC(:v(l),:v(J)) =0ifandonlyifa;=0foralli=1,...,n.

m The covariance kernel describe relations between Z(x) and Z(Z) :

Let Cy(x, &) =1, a Gaussian process Z(x) with mean zero and covariance function
C1 is constant : Y e R?, Z(x) = X, where X ~ N(0,1)

Let C2(x,&) = 1{5-5}, a Gaussian process Z(x) with mean zero and covariance
function C is composed of independant Gaussian values.
m Stationarity covariance function :

C(z, ) is said to be stationary if it is a function of (x —&). The relation between
Z(x) and Z(&) is uniquely determined by the distance between  and &. A GP
with a stationary covariance functions is said to be stationary.
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Reminders : Gaussian vectors and Gaussian processes

Gaussian processes - illustration

From the representations of five of their realizations, can we say that Z(z), Z2(x),
Z3(x) and Zi(x) are Gaussian processes ? Is their covariance stationary ?

\ ff\/

Zy(x)
)/
/
7/
Z5(x)

o //’ N %

Z3(x)
5
Z4(x)

X X
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Reminders : Gaussian vectors and Gaussian processes

Some standard stationary covariance kernel on R

We focus on stationary covariance kernel which can be written C(z,#) = 0* R(x, &)
where R(x,Z) is a correlation function.

= "Nugget" kernels : C(z,%) = 0260 (x - &),

m Linear kernels : C(z,#) = 0° max (0’ 1- | *96|)

0

= Exponential kernels : C(z,%))o” exp(—‘x;ﬂ),

=2
m Gaussian kernels : C'(z,%) = 0° exp (—%)

m Matern kernels, with I the Euler function and BLIT the Bessel function of the

252 e )

— parameterized by three parameters : variance o2, correlation lengths 0;, power v

hi : r)=0" ———
third type : C(z,%) = o~ T 1F( )
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Reminders : Gaussian vectors and Gaussian processes

Parametric stationary covariance kernel - illustration on R

Comment the influence of the choice of the covariance kernel and the power

Matern : v =5/2,0=1,0=04

00 072 04 x 0’6 0’8 170

Matern : v =3/2,0=1,0=04 Exponential : 0=1,0=0.4
1 A\

W

AR U
agd e
06 08 10

00 072 04 x 0’6 0’8 170 00 02 04 X
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Reminders : Gaussian vectors and Gaussian processes

Parametric stationary covariance kernel - illustration on R

Comment the influence of the variance parameter. What is the GP mean ? We choose a
Matern kernel with v =5/2

0=0.3,0=0.3 0=1.3,0=0.3
’)3/0 EO
N N

-

? 7
0.0 02 0.4 N 06 08 10 0.0 0.2 04 X 0.6 038 1.0
0=0.6,0=03 0c=1,0=0.3
o
N
A‘_ Av_
o o
N N
T b
L i
0.0 02 0.4 N 06 08 10 0.0 0.2 04 X 0.6 08 1.0
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Reminders : Gaussian vectors and Gaussian processes

Parametric stationary covariance kernel - illustration on R

Comment the influence of correlation length parameter.We choose a Matern kernel with
v =5/2. We choose a Matern kernel with v =5/2

oc=1,0=0.5

ng)

-

-3

ng) 1 2

-

-3
3

0.0 02 04 N 06 08 1.0 70.0 02 0.4 X 06 08 1.0
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Reminders : Gaussian vectors and Gaussian processes

Still about covariance kernels

m Sum and product of covariance kernels :
Let Ci(x,2) and C2(x, &) be two covariance kernels on X, then :
Ci(x, &) + Ca(x,x) or Ci(x,&)C2(x, &) is a covariance kernel on X.
m Product with a deterministic function :
Let C'(x, &) be a covariance kernel on X and f : X — R a deterministic function :
f(x)C(z,z)f(&) is a covariance kernel on X.
m Kernel mapping :
Let C2(x,Z) be a covariance kernels on X» and f : X> — X a function :
Ci(z,z) = Co(f(x), f(2)) is a covariance kernel on X;.
m Tensorization :
Let C1,...,Cq4 be covariance kernels on R :
C(I,@) = C1({E1,§31) X oo X Cd(xd,jd)y xr = (.Z‘l, cee ,ud)

is a covariance kernel on R,
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Reminders : Gaussian vectors and Gaussian processes

Standard covariance kernel on R¢

m We can use isotropic covariance kernel :

~ 2 ~
C(z,z) = o™¢(|le - 2||/0)
The correlation length 6 is common to all directions. It controls how fast
covariance changes with distance.

m We can also use tensorized covariance kernels on R? :
54
C(x, ) =0 [[v(lw: - 2:il/0:)
=1
Fori=1,...,d ,0; is the correlation length for the variable i. It control how fast

covariance changes in the direction 7. §; small means that the variable plays an
important role in the covariance changes.

m For example, for the Matern covariance kernel on Rd, we use :
1 v oS IIT
t) = —— (2V/vt) B, 2 t
U(0) = gy (V) B (2vi)
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Reminders : Gaussian vectors and Gaussian processes

Remarks on Gaussian processes

m To create a Gaussian process, it is sufficient to create a mean function and a
covariance function.

m Any function can be a mean function
m For the covariance function, the crux is to create a definite positive function.
m We presented a catalog of available covariance function on R%.

= Covariance function controls the order of magnitude (with ) and the speed of
variation of the Gaussian process (with 0)

m The regularity of the Gaussian process is directly related to the differentiability of
the covariance function (parameter v for Matern covariance for example)
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Reminders : Gaussian vectors and Gaussian processes

Gaussian process conditioning

m Let x — Z(x) be a Gaussian process with mean u(x) and covariance C'(z, Z).

m We search the distribution of Z(x) conditioned by values at points in
D={zW . 2™} (Z(x)| Z(x®)=2,....2(x™) = 2,) = (Z(z) |Z = 2).
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Reminders : Gaussian vectors and Gaussian processes

Gaussian process conditioning

m Let x — Z(x) be a Gaussian process with mean u(x) and covariance C'(z, Z).

m We search the distribution of Z(x) conditioned by values at points in
D={zW . 2™} (Z(x)| Z(x®)=2,....2(x™) = 2,) = (Z(z) |Z = 2).

m First, we express the joint distribution of Z(x) and Z :
Z(z)\ _ w@) (Clz.z) r'(x)
(&) ((3) (55 )
with g = (u(2®), ..., w(x™)), r(x) = (C’(:B,:B(l))7 . .,C(a:7a:("))) and
Cp = (C(w(i),w(j)))

ij=1...,n"
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Reminders : Gaussian vectors and Gaussian processes

Gaussian process conditioning

m Let x — Z(x) be a Gaussian process with mean u(x) and covariance C'(z, Z).

m We search the distribution of Z(x) conditioned by values at points in
D={zW . 2™} (Z(x)| Z(x®)=2,....2(x™) = 2,) = (Z(z) |Z = 2).

m First, we express the joint distribution of Z(x) and Z :
2@\ _ o ((#@®) (Claz) ()
Z e p )\ r(x) Cp
with 1= (u(@ D)., u(@)), () = (C(w, D), .., C(z,a™)) and
Cp = (C(w(i)’w(j)))i,jzl...,n'

m By Gaussian conditioning theorem, we obtain :

z" () = (Z(x) | Z(&WD) = 21,..., Z(x™) = 2,) is a Gaussian process, with
mean and covariance conditioned ;™ (x) et C*°™(x,%) such that :

p (@) = p(a) + ' (2)Cp (2 - p)
"z, &) = Oz, &) - 7' (x)Cp r(@)
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Reminders : Gaussian vectors and Gaussian processes

llustration of the conditioning of a Gaussian process

It is assumed that Z(x) is a stationary Gaussian process with mean p(2) =0 and
covariance function C'(z, ") = cxp (- (& — 2’7 /100).

0.2 04 06 08
5
. —Z()
—Z(0,)
—Z(63)
—Z(6a)
= 0.5 1
X

Z initially unconditioned
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Reminders : Gaussian vectors and Gaussian processes

llustration of the conditioning of a Gaussian process

It is assumed that Z(x) is a stationary Gaussian process with mean p(2) =0 and
covariance function C'(z, ") = cxp (- (& — 2’7 /100).

5
—Z(04)
—Z(th) @F’Z{x](z)
Z(0) = Points connus
—Z(U;ﬂ
% 0.5 1

Z conditioned at 1 point
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Reminders : Gaussian vectors and Gaussian processes

llustration of the conditioning of a Gaussian process

It is assumed that Z(x) is a stationary Gaussian process with mean p(2) =0 and
covariance function C'(z, ") = cxp (- (& — 2’7 /100).

&
:gzﬂ @rzix(2)
_g%gﬂ a Points connus
2 0.5 1

7 conditioned at 2 points
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Reminders : Gaussian vectors and Gaussian processes

llustration of the conditioning of a Gaussian process

It is assumed that Z(x) is a stationary Gaussian process with mean p(2) =0 and
covariance function C'(z, ") = cxp (- (& — 2’7 /100).

—Z(th)
—Z(02) ®rz(0(2)
—%Ejﬂ s Points connus

7 conditioned at 3 points
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Reminders : Gaussian vectors and Gaussian processes

llustration of the conditioning of a Gaussian process

It is assumed that Z(x) is a stationary Gaussian process with mean p(2) =0 and
covariance function C'(z, ") = cxp (- (& — 2’7 /100).

-

0 0.5

@Pd(x]{ZJ

a Points connus

7 conditioned at 4 points
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Reminders : Gaussian vectors and Gaussian processes

llustration of the conditioning of a Gaussian process

It is assumed that Z(x) is a stationary Gaussian process with mean p(2) =0 and
covariance function C'(z, ") = cxp (- (& — 2’7 /100).

0 0.5 1
5
—~ ,f _Z(Hl)
X ol /v —5%‘2% ®pP7p)(2)
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Reminders : Gaussian vectors and Gaussian processes

Sampling of a conditioned Gaussian process

We want to create realizations of Z<"(z) = (Z(z) | Z(2V) = z1,..., Z(2™) = z,)
at points in X.

We note D = {V ..., 2™} and we write Z°"(z) = (Z(x) | Z(D) = z)
We have seen previously that Z<™(z) ~ GP (,uCO"d(ac),CCO"d (z,)).

We note C%"d = [Ccond(ﬂe(i),ié(j))]i:l,m,l, (:i:(i))i:l,m,l ek .
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Reminders : Gaussian vectors and Gaussian processes

Sampling of a conditioned Gaussian process

We want to create realizations of Z<"(z) = (Z(z) | Z(2V) = z1,..., Z(2™) = z,)
at points in X.

We note D = {V ..., 2™} and we write Z°"(z) = (Z(x) | Z(D) = z)
We have seen previously that Z<™(z) ~ GP (,uCO"d(ac),CCO"d (z,)).
We note C<™ = [C™ (&, &) ]icr, 1, (2P )ict, i€ X

m Cholesky’s decomposition of the covariance matrix : C<™ = Ly L’

A realization of Z°"(x) at points in X can be obtained by sampling a noise
& =1[&]iz1,.... where (&)iz1,...1 ~N(0,1) are independant with the following
equation :

Zcond(X) _ L)(g 4 Hcond(X).

Can obviously be use to sample a unconditioned GP : take u(zx) and C'(z, ).

However, when we want to deal with large [, the cholesky decomposition can be
coslty — numerically easier to sample of a unconditioned GP.
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Zcond(X) _ ucond(X) 4 Z(X) _ ﬂcond(X)

with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Zcond(X) _ Mcond(X) 4 Z(X) _ ﬂcond(X)

with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))

Why does it work ?
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Zcond(X) _ Mcond(X) 4 Z(X) _ ﬂcond(X)

with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))

Why does it work ?
Y (z) = peond () + Z(x) - i"(x) is Gaussian
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Zcond(X) _ Mcond(X) 4 Z(X) _ ﬂcond(X)

with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))

Why does it work ?
Y (z) = peond () + Z(x) - i"(x) is Gaussian
E[Y ()] = B[4 (@) + Z(x) - 1(2) O 2(D)] =y ()
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Zcond(X) _ Mcond(X) 4 Z(X) _ ﬂcond(X)

with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))

Why does it work ?
Y (z) = peond () + Z(x) - i"(x) is Gaussian
E[Y ()] = B[4 (@) + Z(x) - 1(2) O 2(D)] =y ()

cov (Y (x),Y(&)) = cov (Z(w)7 Z(;i:)) + cov ([f“"d(w), fcond (i:)) - 2cov (ﬂc""d (), Z(:i:))
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Zcond(X) _ Mcond(X) 4 Z(X) _ ﬂcond(X)

with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))

Why does it work ?

Y (z) = peond () + Z(x) - i"(x) is Gaussian

E[Y ()] = B[4 (@) + Z(2) - r(2) C5 Z(D)] = p"(a)

cov (Y (@), Y (2)) = cov (Z(x), Z(2)) + cov (i (z), i« (&) ) - 2cov (<™ (x), Z(z))
cov (i (@), i (2)) = r(x)' Cplcov (Z(D), Z(D)) Cpir(2) = r(z) CHir(w)

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling



Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Z() = () 4 Z() - ()
with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))
Why does it work ?
Y (@) = 4o (2) + Z(z) - i (x) is Gaussian
E[Y ()] = B[4 (2) + Z(x) - () CF Z(D)] = o ()
cov (Y (), Y (&) = cov (Z(x), Z(&)) + cov (A<M (x), i< (&) ) - 2cov (A< (z), Z())
cov (M (), i (E)) = () C3lcov (Z(D), Z(D)) CHlr (&) = r(x) Cplr(x)
cov (i (z), Z(%)) = r(x) Cqleov (Z(D), Z(7)) = r(x)' Cplr (%)
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :

Z() = () 4 Z() - ()
with (X)) = 7(X)'Cp Z(D) corresponds to the mean of Z(z) conditioned by
its own values at D, r(X) = (C(X,w(l)), . .,C(X7:c(”)))
Why does it work ?
Y (@) = 4o (2) + Z(z) - i (x) is Gaussian
E[Y (2)] = E[1(2) + Z(2) - r(2) O3 Z(D)] = j= (x)
cov (Y (), Y (&) = cov (Z(x), Z(&)) + cov (A<M (x), i< (&) ) - 2cov (A< (z), Z())
cov (M (), i (E)) = () C3lcov (Z(D), Z(D)) CHlr (&) = r(x) Cplr(x)
cov (i (z), Z(%)) = r(x) Cqleov (Z(D), Z(7)) = r(x)' Cplr (%)
—cov (Y (z),Y(2)) = C(z, &) - r(z) Cpr(z) = C(z,z)
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (chiles & Delfiner, 1999)

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))

M(X)cond
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :
A realization of Z®"(x) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i©"(X) = 7(X) CH Z(D) corresponds to the mean of Z(a) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))

~
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :
A realization of Z®"(x) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))

~

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling _



Samping of a conditioned Gaussian process

Gaussian vectors and Gaussian processes

m Sample a conditioned GP from a unconditioned GP (chiles & Delfiner, 1999)

A realization of Z°"(x) at X can be obtained by sampling a unconditioned GP

Z(x) ~GP(0,C(x,%)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by

its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (chiles & Delfiner, 1999)

A realization of Z°"(x) at X can be obtained by sampling a unconditioned GP

Z(x) ~GP(0,C(x,%)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)
with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by

its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))
o a(x)cond

Z(x)
3

X
Multi-Fidelity surrogate modeling
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :
A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))

_ ﬁ(X)Cond
N\

Z(x)
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :
A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))

_ ﬁ(X)Cond

Z(x)
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :
A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~GP(0,C(x,x)) at X and following the result :
Zcond(X) _ ucond(X) " Z(X) _ ﬂcond(X)

with i°"(X) = 7(X) CH Z(D) corresponds to the mean of Z(x) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C(X,m(")))

Z(X)cond
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Gaussian vectors and Gaussian processes

Samping of a conditioned Gaussian process
m Sample a conditioned GP from a unconditioned GP (Chiles & Delfiner, 1999) :

A realization of Z%"(2) at X can be obtained by sampling a unconditioned GP
Z(x) ~ GP(0,C(x,&)) at X and following the result :
Zcond(X) _ 'ucond(X) " Z(X) _ ﬂcond(X)
with i°"(X) = (X)) CH Z(D) corresponds to the mean of Z(x) conditioned by
its own values at D, r(X) = (C(X,a:(l)), . .,C’(X,a:(")))
m To sample an unconditioned GP, several methods could be mentioned :

— Fourier spectral decomposition
Stein, M. (1999), Interpolation of Spatial Data, New York : Springer Series in Statistics.

— Karhunen-Loeve spectral decomposition
Rasmussen, C. and Williams C. (2006), Gaussian Processes for Machine Learning, Cambridge : MIT Press.

— Propagative version of the Gibbs sampler
Lantuéjoul, C. and Desassis N. (2012), Simulation of a Gaussian random vector : A propagative version of the Gibbs

sampler, In The 9th International Geostatistics Congress, Norway.
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Outline

Gaussian process regression for univariate functions

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling



Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.
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Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.

m We are interested in approximating an function z(z) € R with = € R from few of
its observations at points in the DOE D = {ct:(l)7 e ,m(")}. We note
z=(z1,...,2n) these observations.
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Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.

m We are interested in approximating an function z(z) € R with = € R from few of
its observations at points in the DOE D = {ct:(l)7 e ,m(")}. We note
z=(z1,...,2n) these observations.

m Gaussian process model hypothesis : representing the unknown fonction z(x) by
a realization of a Gaussian process (it is the prior)
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Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.

m We are interested in approximating an function z(z) € R with = € R from few of
its observations at points in the DOE D = {ct:(l)7 e ,m(")}. We note
z=(z1,...,2n) these observations.

m Gaussian process model hypothesis : representing the unknown fonction z(x) by
a realization of a Gaussian process (it is the prior)

m The approximation entirely based on the theory of conditioned Gaussian processes
except that neither the mean function nor the covariance function is known.
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Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.

m We are interested in approximating an function z(z) € R with = € R from few of
its observations at points in the DOE D = {ct:(l)7 e ,m(")}. We note
z=(z1,...,2n) these observations.

m Gaussian process model hypothesis : representing the unknown fonction z(x) by
a realization of a Gaussian process (it is the prior)

m The approximation entirely based on the theory of conditioned Gaussian processes
except that neither the mean function nor the covariance function is known.

m When the mean is known, it is called simple kriging, and when the mean is
unknown, it is called universal kriging.
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Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.

m We are interested in approximating an function z(z) € R with = € R from few of
its observations at points in the DOE D = {ct:(l)7 e ,m(")}. We note
z=(z1,...,2n) these observations.

m Gaussian process model hypothesis : representing the unknown fonction z(x) by
a realization of a Gaussian process (it is the prior)

m The approximation entirely based on the theory of conditioned Gaussian processes
except that neither the mean function nor the covariance function is known.

m When the mean is known, it is called simple kriging, and when the mean is
unknown, it is called universal kriging.

m A common choice for the mean is to take a linear form.
z(x) is a realization of Z(x) with : Z(z) ~ PG(f'(x)B,C(x,%)) where f(z) is

a vector of p known functions and B3 the unknown coefficients of the trend.
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Gaussian process regression (GPR)

Gaussian process model principle

m GPR is also known as kriging models in geostatistics.

m We are interested in approximating an function z(z) € R with = € R from few of
its observations at points in the DOE D = {ct:(l)7 e ,m(")}. We note
z=(z1,...,2n) these observations.

m Gaussian process model hypothesis : representing the unknown fonction z(x) by
a realization of a Gaussian process (it is the prior)

m The approximation entirely based on the theory of conditioned Gaussian processes
except that neither the mean function nor the covariance function is known.

m When the mean is known, it is called simple kriging, and when the mean is
unknown, it is called universal kriging.

m A common choice for the mean is to take a linear form.
z(x) is a realization of Z(x) with : Z(z) ~ PG(f'(x)B,C(x,%)) where f(z) is

a vector of p known functions and B3 the unknown coefficients of the trend.
Rasmussen, C.E. and Williams,C.K.1. (2006), Gaussian Processes for Machine Learning, The MIT Press.

Santner, T.J., Williams, B.J. and Notz, W.I. (2003), The design and Analysis of Computer Experiments, Springer Series in
Statistics.
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Gaussian process regression (GPR)

Gaussian process prediction - known parameters
m if we know C(x, &) and S, we obtain same result as before :

zeM(x) = (Z(x) | Z(&D) = z1,..., Z(x'™) = 2,) is a Gaussian variable, with
mean and variance conditioned pc () and o2 (x) such that :

po(z) =f'(z)8 + r'(a:)C_Dl(z -FpB)
O’?)($) =C(z,x) - r'(x)CBlr(m)

fi (M) o (M)

where F = is the matrix of regressors.

f(™) (™)
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Gaussian process regression (GPR)

Gaussian process prediction - known parameters
m if we know C(x, &) and S, we obtain same result as before :
Ze(x) = (Z(x) | Z(w(l)) =21,.. .,Z(:c(")) = z,,) is a Gaussian variable, with
mean and variance conditioned pc () and o2 (x) such that :
po(z) =f'(x)B+7'(z)Cp (2~ FB)
oce(z) = C(z,z) — 7' (x)Cp r(z)

fi (M) o (M)

where F = is the matrix of regressors.

f(™) (™)
m Remarks :

— The conditioned mean interpolates the observations.
To release this, simply take Cp + 721, instead of Cp in puc(x) and o&(x)
(72 is the noise variance)

~ The conditioned mean does not depend on the variance o
- The conditioned variance does not depend on the observations z.

— These equations refers to simple kriging.
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - MLE estimation

m if only C(x, &) is known, we obtain the following likelihood for parameters 3 :

[(zlB) = m exp (*%(Z *Fﬁ)IC_Dl (z- F,@)),
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - MLE estimation

m if only C(x, &) is known, we obtain the following likelihood for parameters 3 :

[(zlB) = m exp (*%(Z *Fﬁ)IC_Dl (z- F,@)),

m The maximum likelihood estimate (MLE) of 3 is given by :
B = (F'CoF) 'FCpz.
It corresponds to its generalized least squares estimate.
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - MLE estimation

m if only C(x, &) is known, we obtain the following likelihood for parameters 3 :

[(zlB) = m exp (*%(Z *Fﬁ)IC_Dl (z- F,@)),

m The maximum likelihood estimate (MLE) of 3 is given by :
B = (F'CoF) 'FCpz.

It corresponds to its generalized least squares estimate.
m Zo"(x) = (Z(x) | Z(zP) = z1,..., Z(x™) = 2,) is then a Gaussian variable,

with mean and variance conditioned () and 0% (x) such that :

e (@) = £ ()5 + r(2)" Cp (2~ F)
oe(x) = C(z,x) —r(z) Cpr(x)+u(x) (F'CS F)71 u(x)
with u(x) = F'Cpr(z) - f(x)
The variance incorporates an additional part due to the estimation of 3.

These equations refer to universal kriging.
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - MLE

m If the covariance function is also unknown, a common choice is a parametric form
such that C(z, %) = 0> R(x, &;6).

m To estimate o2, we substitute the value of /3’ in the likelihood and maximize it, we
obtain :
2 _ (z—FB)'Rp (z-FB)o’
g = .
n

o2 can also be estimated with a restricted maximum likelihood method.
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - MLE

m If the covariance function is also unknown, a common choice is a parametric form
such that C(z, %) = 0> R(x, &;6).

m To estimate o2, we substitute the value of B in the likelihood and maximize it, we
obtain :
2 _ (z—FB)'Rp (z-FB)o’
g = .
n

o2 can also be estimated with a restricted maximum likelihood method.

m The estimation of 6, is conducted by substituting 3 and o by their MLE in the
likelihood :
F(20) = (2762)™/?(det Rp )2 exp (_g)

0 can be estimates by minimizing the opposite of this log-likelihood (called the
concentrated log-likelihood)
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - bayesian estimate

m For the mean, it is of course possible to prior distribution

For Gaussian prior on 3, (Z(x) | D) is a Gaussian process. For p(8) o 1, it
corresponds to the MLE.
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - bayesian estimate

m For the mean, it is of course possible to prior distribution

For Gaussian prior on 3, (Z(x) | D) is a Gaussian process. For p(8) o 1, it
corresponds to the MLE.

m For the o® parameter of the covariance function, if we give inverse gamma prior,
the distributions (Z(x) | D) is tractable after integrating the posterior
distribution of the variance parameter ¢* : (Z(a) | D) is a t-process. In practice,
for reasonable n, this is indistinguishable from a GP.
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Gaussian process regression (GPR)

Gaussian process prediction - unknown parameters - bayesian estimate

m For the mean, it is of course possible to prior distribution

For Gaussian prior on 3, (Z(x) | D) is a Gaussian process. For p(8) o 1, it
corresponds to the MLE.

m For the o® parameter of the covariance function, if we give inverse gamma prior,
the distributions (Z(x) | D) is tractable after integrating the posterior
distribution of the variance parameter ¢* : (Z(a) | D) is a t-process. In practice,
for reasonable n, this is indistinguishable from a GP.

m For 0, in general case, we have to use sampling techniques (Markov Chain Monte
Carlo for example) to estimate conditioned distribution which is not necessary
Gaussian

This is called a full Bayesian approach

m For more information :

J. O. Berger, V. De Oliveira, and B. Sansé ,(2001), Objective Bayesian analysis of spatially correlated data, Journal of
the American Statistical Association.

Muré, J. (2018), Objective Bayesian analysis of Kriging models with anisotropic correlation kernel, PhD
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Gaussian process regression (GPR)

lllustration of Gaussian process prediction - the noisy-free case

Function to approximate known observations

21 =
wn
o g,
2] Yo
1 <7
‘ T
L A 5 1 3 8§ 4 5 & 7
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Gaussian process regression (GPR)

lllustration of Gaussian process prediction - the noisy-free case

Conditioning

Mean and variance

2(x)
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Gaussian process regression (GPR)

lllustration of Gaussian process prediction - the noisy case

Function to approximate known observations

%, %
9 o1
w mi
T -1
o T2 s A s 8T o 1 2 3 & 5 & 7
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Gaussian process regression (GPR)

lllustration of Gaussian process prediction - the noisy case

Conditioning with noise Mean and variance

=5 3
L %m
<7 &
[t} )
] T
oo E s s E 6 1 3 & 1 5 & 7
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Gaussian process regression (GPR)

One word on the validation (Leave-One-Out case)

B Let poi(x) and aé<7i)(m) the conditioned mean and variance functions
obtained without the observation z; = z(z(").

It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.
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Gaussian process regression (GPR)

One word on the validation (Leave-One-Out case)
B Let poi(x) and aé<7i)(m) the conditioned mean and variance functions
obtained without the observation z; = z(z(").
It is possible to have these quantities directly without having to build the n models

Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

m Evaluation of the predictive qualities of the conditioned mean :

_var(z(e) - po(=) | 1 iy (2(2?) - Mc(—i)(ﬁ'f(i)))2

@2=1 var(z(z)) Yin (2(2) - 2)?

7i= Zi

n

1
"z
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Gaussian process regression (GPR)

One word on the validation (Leave-One-Out case)
B Let poi(x) and aé<7i)(m) the conditioned mean and variance functions
obtained without the observation z; = z(z(").

It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

m Evaluation of the predictive qualities of the conditioned mean :

_var(z(z) - pe(x)) -  r (z(:c(i)) _ NC(—i)($(i)))2
var(z(z)) - Y (2(x®) - 2)?

Zi

Q2=1

_ 1 n
y 4= —
nizi
m Evaluation of the globale predictive qualities :

. . 2
2 var(a(@) —pe() | 1 (3@) —poey (@)

- U%(x) n;3a Ué(,i>(m)

The target value is 1.
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Gaussian process regression (GPR)

One word on the validation (Leave-One-Out case)
B Let poi(x) and aé«i)(m) the conditioned mean and variance functions
obtained without the observation z; = z(z(").

It is possible to have these quantities directly without having to build the n models
Dubrule, O. (1983). Cross validation of kriging in a unique neighborhood. Mathematical Geology.

m Evaluation of the predictive qualities of the conditioned mean :

_var(z(z) - pe(x)) -  r (z(:c(i)) _ Mc(fi)(ﬂl(i))f
var(z(z)) - Y (2(x®) - 2)?

n

Q2=1 7i= Zi

L
ni:
m Evaluation of the globale predictive qualities :

. . 2
2 var(a(@) —pe() | 1 (3@) —poey (@)

- U?}(m) n;3a Ué(,i>(m)

The target value is 1.

m Just for information : it is possible to use LOO results for estimating the
parameters 0'2 ant 0.Bachoc, F. 2013, Parametric estimation of covariance function in Gaussian-process based

Kriging models. Application to uncertainty quantification for computer experiments, PhD.
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Outline

Gaussian process regression for vectorial functions
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Gaussian process regression for vectorial functions

The bivariate case - objective

m We want now to approximate the last component z3(x) of
z(z) = (z1(x), z2(x)) € R? with z € R?.

We assume that zi(x) and z2(x) are observed without measurement error
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Gaussian process regression for vectorial functions

The bivariate case - objective

m We want now to approximate the last component z3(x) of
z(z) = (z1(x), z2(x)) € R? with z € R?.

We assume that zi(x) and z2(x) are observed without measurement error
m This extension is called co-kriging and was first developed in geostatistics

Chiles, J. and Delfiner, P. (1999). Geostatistics : modeling spatial uncertainty. Wiley series in probability and statistics.

Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag.
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Gaussian process regression for vectorial functions

The bivariate case - objective

m We want now to approximate the last component z3(x) of
z(z) = (z1(x), z2(x)) € R? with z € R?.

We assume that zi(x) and z2(x) are observed without measurement error

m This extension is called co-kriging and was first developed in geostatistics
Chiles, J. and Delfiner, P. (1999). Geostatistics : modeling spatial uncertainty. Wiley series in probability and statistics.

Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag.

m For the approximation, we have z; = (z1(z{"),..., 21 (z{"™))’ the observations
of z1(z) at points in Dy = {x{", ... 2{"} and 25 = (22(z{"), ..., 2a(x{"?))’
observations of z2(x) at points in Ds = {acgl), . .,:cgnz)}.

So, the column vector of observations is written z® = ((z1)’, (z2)")".
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Gaussian process regression for vectorial functions

The bivariate case - objective

m We want now to approximate the last component z3(x) of
z(z) = (z1(x), z2(x)) € R? with z € R?.

We assume that zi(x) and z2(x) are observed without measurement error
m This extension is called co-kriging and was first developed in geostatistics

Chiles, J. and Delfiner, P. (1999). Geostatistics : modeling spatial uncertainty. Wiley series in probability and statistics.

Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag.

m For the approximation, we have z; = (z1(z{"),..., 21 (z{"™))’ the observations
of z1(z) at points in Dy = {x{", ... 2{"} and 25 = (22(z{"), ..., 2a(x{"?))’
observations of z2(x) at points in Ds = {acgl), . .,:cgnz)}.

So, the column vector of observations is written z® = ((z1)’, (z2)")".

m z1(x) and z2(x) can be dependent
If we want to approximate z2(x), it is important to take into account z1(z) too.

We want to approximate z2(x) by taking into account the observations z?
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Gaussian process regression for vectorial functions

The bivariate case - assumptions and notations

m Analogously to the GPR, we suppose that z(x) is a realization of a bivariate GP
Z(x) = (Z1(x), Z2(x)) with mean m(x) and covariance function V(z, Z) :

o) - (n3)) e v (123 223

where Cy;(z, &) = cov (Z;(x), Z;(Z)) and mi(x) =E[Z;(x)], i, =1,2:
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Gaussian process regression for vectorial functions

The bivariate case - assumptions and notations

m Analogously to the GPR, we suppose that z(x) is a realization of a bivariate GP
Z(x) = (Z1(x), Z2(x)) with mean m(x) and covariance function V(z, Z) :

_ L. &) = Cu(z,z) Cia(z,2)
m(w)—(mQ(x)) and V(z, &) (021(;c,ic) 022((37@))7

where Cy;(z, &) = cov (Z;(x), Z;(Z)) and mi(x) =E[Z;(x)], i, =1,2:

m We note Z® = ((Z1)',(Z2)")’ the values of Z;(x) and Z(x) at points in D
and D respectively.
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Gaussian process regression for vectorial functions

The bivariate case - assumptions and notations

m Analogously to the GPR, we suppose that z(x) is a realization of a bivariate GP
Z(x) = (Z1(x), Z2(x)) with mean m(x) and covariance function V(z, Z) :

o) - (n3)) e v (123 223

where Cy;(z, &) = cov (Z;(x), Z;(Z)) and mi(x) =E[Z;(x)], i, =1,2:

m We note Z® = ((Z1)',(Z2)")’ the values of Z;(x) and Z(x) at points in D
and D respectively.

= We suppose (as in a univariate case) that the i*" component of m(z) is of the
form m;(x) = f{(z)B,; with f/(x) a vector of functions of size p;.

We note M(®) = (M}, M) the values of m; () and ma(z) at points in D; and
D2 respectively.

We note M; = f{(D;) 3, := F; 3, with F; a matrix of size n; x p;, i =1, 2.
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Gaussian process regression for vectorial functions

The bivariate case - joint distribution

m As in the univariate case, we search the distribution of Z>(x) conditionnally to the
observations of the two components z(?). We note it [Za(z)|Z1 = 21, Zs = 22]
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Gaussian process regression for vectorial functions

The bivariate case - joint distribution

m As in the univariate case, we search the distribution of Z>(x) conditionnally to the
observations of the two components z(?). We note it [Za(z)|Z1 = 21, Zs = 22]

m First, we consider the joint distribution of Z>(x) and YA given by :

Zs(x) £2(2)B,\ (Coz(m, ) 7Th1(x) 7Th(2)
Z, |~N F.3, riz(x) Cu Ci2 ,
Z- Fzﬁg r22 ($) Co Ca

. . 1 (n5)
with, for j =1,2, re;(x) = (Czj(w,m; )),...,ng(x,wj / )) and
rio(x) = (ng(:c;.l),:c), . ,Cf;z(m;nj)7 :c)) are column vectors of size n;,

C;j = (Ci]-(acgk), m§.l)))k:l """" n, are matrix of size n; x n;.

1=1,..., n;
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Gaussian process regression for vectorial functions

The bivariate case - joint distribution

m As in the univariate case, we search the distribution of Z>(x) conditionnally to the
observations of the two components z(?). We note it [Za(z)|Z1 = 21, Zs = 22]

m First, we consider the joint distribution of Z>(x) and yAS given by :

Zs(x) £2(2)B,\ (Coz(m, ) 7Th1(x) 7Th(2)
Z, |~N F.3, riz(x) Cu Ci2 ,
Z- Fzﬁg r22 ($) Co Ca

. . 1 (n5)
with, for j =1,2, re;(x) = (Czj(w,m; )),...,ng(x,wj / )) and
rio(x) = (ng(:c;l),:c), e ,G;z(m;nj),az)) are column vectors of size n;,

C;j = (Ci]-(mz(.k), m§l)))k:l """" n, are matrix of size n; x n;.

1=1,..., n;

m Although in general C;;(x, &) # Cji(x, &), we have the equality r2;(x) = r;2(x)
and Cij = CJ,Z
Indeed, the equality cov (Z;(x), Z;(&)) = cov (Z;(&), Z;(x)) implies that
Csj (z,2) = st(f,l‘) and thus Tij(:c) = rji(:c) and Cz‘j = C;z
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Gaussian process regression for vectorial functions

The bivariate case - predictive distribution

m If the mean m(x) and covariance function V(x, ) are known, the conditional
distribution [Z2(x)|Z1 = 21, Z2 = z2] is gaussian with conditioned mean iz, ()
and variance o, (x) functions given by :

pzs (@) = f3(2) B, + ri(2) V3! (2P - M@,

0%,(@) = Coa(w, ) ~ 75 (2) V3 ra (),

/ / / C C
where r5(x) = (15 (), 75 (x)) and V3 = (C; 02122)
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Gaussian process regression for vectorial functions

The bivariate case - predictive distribution

m If the mean m(x) and covariance function V(x, ) are known, the conditional
distribution [Z2(x)|Z1 = 21, Z2 = z2] is gaussian with conditioned mean iz, ()
and variance o, (x) functions given by :

pzs (@) = f3(2) B, + ri(2) V3! (2P - M@,

0%,(@) = Coa(w, ) ~ 75 (2) V3 ra (),

where r5(x) = (5 (x), 755 (x)) and Vg = (CH 012).

Ca Co

m The predictive mean puz, () is the surrogate model for the component z2(x) of
z(x) and the predictive variance U%Q (x) represents the model mean squared error.

m jiz,(z) interpolates z2(x) at points of the experimental design D2 and o7, (z)
equals zero at these points. But, we can integrate a noise variance in the model as
presented for the univariate case.
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Gaussian process regression for vectorial functions

The bivariate case - predictive distribution

m If the mean m(x) and covariance function V(x, ) are known, the conditional
distribution [Z2(x)|Z1 = 21, Z2 = z2] is gaussian with conditioned mean iz, ()
and variance o, (x) functions given by :

pzs (@) = f3(2) B, + ri(2) V3! (2P - M@,

0%,(@) = Coa(w, ) ~ 75 (2) V3 ra (),

where r5(x) = (5 (x), 755 (x)) and Vg = (CH 012).

Ca Co

m The predictive mean puz, () is the surrogate model for the component z2(x) of
z(x) and the predictive variance U%Q (x) represents the model mean squared error.

m jiz,(z) interpolates z2(x) at points of the experimental design D2 and o7, (z)
equals zero at these points. But, we can integrate a noise variance in the model as
presented for the univariate case.

m We note that the matrix V2 must be positive definite. We will present, after an
illustration, covariance structures which ensure this property.
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m Let the bivariate Gaussian process (Z1(x), Z2(x)), x € R defined by :
{ Zi(x) =a101(x) + a202(x)
Za(x) =b101(x) + b2d2(x)
where §;(z) and d2(z) are two independent Gaussian processes with means zero
and covariances ki (x,Z) and kz2(x,Z) such that :

- ki(z,%) is a 5/2-Matérn kernel with 6% = 1 and 6 = 0.2,
- ko(z,%) is a 3/2-Matérn kernel with 6% =1 and 6 = 0.3.
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Gaussian process regression for vectorial functions

The bivariate case - illustration

m Let the bivariate Gaussian process (Z1(x), Z2(x)), x € R defined by :
Zi(x) =a101(x) + a202(x)
Za(x) =b101(x) + b2d2(x)
where §;(z) and d2(z) are two independent Gaussian processes with means zero
and covariances ki (x,Z) and kz2(x,Z) such that :
- ki(z,%) is a 5/2-Matérn kernel with 6% = 1 and 6 = 0.2,
- ko(z,%) is a 3/2-Matérn kernel with 6% =1 and 6 = 0.3.
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m (Z1(z),Z2(x)) is Gaussian (linear combination of (01(z),d2(z)).

m (Z1(x),Z2(x)) has zero mean and covariance structure :
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m (Z1(z),Z2(x)) is Gaussian (linear combination of (01(z),d2(z)).

m (Z1(x),Z2(x)) has zero mean and covariance structure :

Vi(z,7) - akq (x,2) + a%kg(x,fj) a1biki(z, &) + azboka(x, T)
’ - a1b1k1(1},f)+a2b2k2($,i‘) b%kl(x,2)+b%k2(:r,i)
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m (Z1(z),Z2(x)) is Gaussian (linear combination of (01(z),d2(z)).

m (Z1(x),Z2(x)) has zero mean and covariance structure :

a%kl(:p,i) +a§k2(x,§:) alblkl(.ib,f}) +a2b2k2(:v,£)

V(:C,{E) - a1b1/<:1 (lf,f) + agbzkg (x,i’) b%lﬁ (LL’, i’) + b%kz(l’, CE)

m Fora; =0.5,a2=3,b1=1and by =—-4:

Zi(x)
0

-5

-10

-10

-15
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m We consider a realization of Z;(z) and Zz(z) (noted z1(z) and z2(x))

m We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in Dj.

m If we consider the same points in Dy and Do, taking into account z1(z) does not
bring any additional information than that provided by z2(z) information.
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m We consider a realization of Z;(z) and Zz(z) (noted z1(z) and z2(x))

m We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in Dj.

m If we consider the same points in Dy and Do, taking into account z1(z) does not
bring any additional information than that provided by z2(z) information.

in blue : GPR on 23(z)
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m We consider a realization of Z1(x) and Z2(x) (noted z1(x) and z2(x))

m We want to reconstruct z2(x) from its values at points in D2 and the values of
z1(x) at points in Dj.

m If we consider the same points in Dy and D, taking into account z1(z) does not
bring any additional information than that provided by z2(z) information.

in blue : univariate GPR, in red : bivariate GPR
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Gaussian process regression for vectorial functions

The bivariate case - illustration
m We consider a realization of Z1(x) and Z2(x) (noted z1(x) and z2(x))

m We want to reconstruct z2(«) from its values at points in D2 and the values of
z1(z) at points in Dy.

m If we consider more points in D; than Dy, the information provided by z1(x)
allows us to build a more predictive and accurate model for zz(z).

z(x)

in blue : univariate GPR, in red and green : bivariate GPR
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Gaussian process regression for vectorial functions

The bivariate case - Linear model of coregionalization (LMC)

m LMC, widely used in geostatistics, is an approach to construct an admissible
matrix-valued covariance.

m A valid covariance structure V(z, &) must satisfy the condition of positive
definiteness. For any (D, );-1,2 the following covariance matrix

V2:(011(D1,D1) C1z(D1,D2))_ Cii Ci

Co1(D2.D1)  Coz(Ds,Ds) = (021 022) has to be positive definite.
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Gaussian process regression for vectorial functions

The bivariate case - Linear model of coregionalization (LMC)

m LMC, widely used in geostatistics, is an approach to construct an admissible
matrix-valued covariance.

m A valid covariance structure V(z, &) must satisfy the condition of positive
definiteness. For any (D, );-1,2 the following covariance matrix

V, = (Cll(Dl,Dl) Clz(DlyDQ)) _ (Cn Ci2

Co1(Ds,D1)  Coa(Ds,D2) ) =\ Can 022) has to be positive definite.

m In the LMC, the components of Z(x) are expressed as linear combinations of ¢
independent Gaussian processes d,(x) with covariance kernel C;(x, &) :

t .
Zi(x) =Y ajé;(x),i=1,2.
-1

J
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Gaussian process regression for vectorial functions

The bivariate case - Linear model of coregionalization (LMC)

m LMC, widely used in geostatistics, is an approach to construct an admissible
matrix-valued covariance.

m A valid covariance structure V(z, &) must satisfy the condition of positive
definiteness. For any (D, );-1,2 the following covariance matrix

V, = (Cll(Dl,Dl) Clz(DlyDQ)) _ (Cn Ci2

Co1(Ds,D1)  Coa(Ds,D2) ) =\ Can 022) has to be positive definite.

m In the LMC, the components of Z(x) are expressed as linear combinations of ¢
independent Gaussian processes d,(x) with covariance kernel C;(x, &) :

t .
Zi(x) =Y ajé;(x),i=1,2.
-1

J

m Z(x)=(Z1(x),Z2(x)) is then a bivariate Gaussian process and we have :

cov (Zi(x), Z; (%)) = ;aZaiCk(a:,:i)
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Gaussian process regression for vectorial functions

The bivariate case - Linear model of coregionalization (LMC)

m The covariance structure of Z(x) is : V(z,%) = ¥i_; [af;a',i] Cr(zx, )

i,j=1,2

® The matrix [a};ai]i i1 is nonnegative definite, for all k=1,...,t:

11 12 1
QRO Qpag ) (O 1 2
2 1 2 2= 2 J\&¥ o).
[eTNeN [eTeN (&N

The t matrices [azai] are known as the coregionalization matrices.

i,j=1,2
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Gaussian process regression for vectorial functions

The bivariate case - Linear model of coregionalization (LMC)

. . ~\ _ «t i g ~
m The covariance structure of Z(x) is : V(z,&) = Y}, [o%ozk]mﬂ’2 Cr(zx, )
. i g . . . _ .
® The matrix [akak]i,j:l,z is nonnegative definite, for all k=1,...,¢:
11 1 2 1
Qg ) Qg 1 2
2 1 2 2= 2% Q).
Q.  QpQy Qg
The t matrices [azai]i o1 ArE known as the coregionalization matrices.

m The regularity of any Gaussian process Z;(x) is the one of the roughest latent
process d;(x).

m The LMC considers that all outputs provide the same level of information.

m For more details :
— Goulard, M. and Voltz, M. (1992). Linear coregionalization model :tools for estimation and choice of
cross-variogram matrix. Mathematical Geology, 24(3) :269-286.
— Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag, Berlin.

m LMC is not the only method for building admissible matrix-valued covariance
= Bonilla, E., Ming, K., Chai, A. and Williams, C. Multi-task Gaussian process prediction (2007). Proceedings of
the 20th International Conference on Neural Information Processing Systems, 153-160.
— Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative methods for
current environmental issues, 37-56, Springer.
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Gaussian process regression for vectorial functions

The multivariate case (just to get the formulas ...)

m The general form of GPR for vectorial function is easily generalized for s outputs,
the notations are the same as before but a little be more arduous. ..

m We want to approximate zs(x) of z(x) = (z1(x),...,zs(x)) € R® by taking into
account (z¢(@))e=1,....s-1

m We consider that z(z) is a realization of a multivariate Gaussian process

Z(x)=(Z1(x),...,Zs(x)) with mean m(x) and matrix-valued covariance
function V(a, &) such that :
f{(w)ﬁl C11($,i¢) P cls(w,@)
m(x) = : and V(z,%) = : :
fi(x)B, Ca(z, ) ... Css(x,&)

m Notations : Dy = {xil), . .,min”)} the DOE for the component ¢
7 = 2(Dy) = (zt(mgl)), . ,zt(mgm)))'; 2 = (2),...,2)
Zi = Z:(Dy) = (Z(2), ..., Z(2")) ;2 = (2., ZL)
M, = f/(D;)B, = F:8,; M = (M,,...,M,)
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Gaussian process regression for vectorial functions

The multivariate case (just to get the formulas ...)

m We have the following joint distribution :

Zs(x) f(x)B,\(Css(z,x) 75 (xz) ... ri(x)
Z, | N F.3, ris(x) Cui Cis
Zs Fs'ﬂs rss‘(x) C"S1 C‘sS

with r;(z) = [Csj(a),x;k))]k:l,...,nj, ris(z) = [st(azgk),$)]k:1,...,n_7 and
Cij = [CZj (l‘gk)7:L‘;l))]kzzl,...m,i~

I=1,...,n;

m For (B,)i=1,...s and V(z, &) known, the predictive distribution
(Zs(x)|Z®) = 2*)) is Gaussian with mean p.(x) and variance o2 () given by :

nz. (@) = £1(2)8, + i)V (2 - M),
a%s (z) = Css(x, ) - r, (x)Vglrs(x),
Cll .. ClS
where 7l (z) = (rli(z) ... ri(z)) and V.=| : .
Cs1 ... Cg
Multi-Fidelity surrogate modeling “
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Gaussian process regression for vectorial functions

A particular case : Co-kriging models using function derivatives

m The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.

m As usual, we suppose that z(x) is a realization of Z(z) ~ PG(f'(z)B3,C(x, %))

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling “



Gaussian process regression for vectorial functions

A particular case : Co-kriging models using function derivatives

m The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.
m As usual, we suppose that z(x) is a realization of Z(z) ~ PG(f'(z)B3,C(x, %))

m First, we have the following result : 8Z(x)/dxi, © = (x1,...,24) exists if and only
if its covariance kernel C'(x, &) is twice differentiable with respect to x;.
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Gaussian process regression for vectorial functions

A particular case : Co-kriging models using function derivatives

m The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.
m As usual, we suppose that z(x) is a realization of Z(z) ~ PG(f'(z)B3,C(x, %))

m First, we have the following result : 8Z(x)/dxi, © = (x1,...,24) exists if and only
if its covariance kernel C'(x, &) is twice differentiable with respect to x;.

m Secondly, as the differential operator is linear, if the covariance kernels are well
defined, then the stochastic process (Z(x), (0Z(x)/0x:)i-1,...,a) is Gaussian.
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Gaussian process regression for vectorial functions

A particular case : Co-kriging models using function derivatives

m The objective here is not to approximate a component of a vectorial function but
approximate a univariate function z(x) by using its derivatives function.

But the formalism is near the GPR formalism for vectorial functions.
m As usual, we suppose that z(x) is a realization of Z(z) ~ PG(f'(z)B3,C(x, %))

m First, we have the following result : 8Z(x)/dxi, © = (x1,...,24) exists if and only
if its covariance kernel C'(x, &) is twice differentiable with respect to x;.

m Secondly, as the differential operator is linear, if the covariance kernels are well
defined, then the stochastic process (Z(x), (0Z(x)/0x:)i-1,...,a) is Gaussian.

m We have the following cross covariances, for i,j=1,...,d :
0Z(x) _ 0C(x,x)
cov(Z(m),Tji) = Tem
0Z(z) 0Z(z)\ _ 0°C(z,)
axi ’ 853.7' - 8%‘49:%7 '
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Gaussian process regression for vectorial functions

A particular case : Co-kriging models using function derivatives

m Let Z the values of Z(x) at points in D = {m(l), . ,a:(l)},
zW) = (argj),...,.rfi])) eRY j=1,....n.

m Similarly, z and z(;) are the values of z(x) and 0z(z)/0x; at points in D.
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Gaussian process regression for vectorial functions

A particular case : Co-kriging models using function derivatives
m Let Z the values of Z(x) at points in D = {a:(l), . ,a:(l)},
zW) = (argj),...,xfi])) eRY j=1,....n.
m Similarly, z and z(;) are the values of z(x) and 0z(z)/0x; at points in D.
m We have just to express the predictive distribution of (Z(x),Z, (Z;))i-1,...,a) by
following the same formalism presented before.
— Express the joint distribution (Z(x),Z,(Z;))i=1,...,d)

— Use the Gaussian conditioning theorem

m For more details about GPR with derivatives :

Morris, M. D., Mitchell, T. J., and Ylvisaker, D. (1993). Bayesian design and analysis of
computer experiments : use of derivatives in surface prediction. Technometrics,

35(3) :243-255.

Mitchell, T., Morris, M., and Ylvisaker, D. (1994). Asymptotically optimum experimental
designs for prediction of deterministic functions given derivative information. Journal of
statistical planning and inference, 41(3) :377-389.
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Gaussian process regression for vectorial functions

Co-kriging models using function derivatives - illustration

m Let Z(x) be a Gaussian process with mean zero and Gussian covariance kernel
C(z,%) =4exp (—(z-%)?/20%) with 6 =0.1 and z € [0,1].

m We find :

cov(Z(m),%(@) :4(1’9—2 )exp( (fzef) )

(*(:n) Zw@)- (1 (“”f))Xp(_@%m))

m Now let us condition Z(z) at points D = (0.0,0.2,0.4,0.7,0.9) with
2(D) = (-1,2,6,-2,6) and (dz/dz)(D) = (0,-20,40,0,15).
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Gaussian process regression for vectorial functions

Co-kriging models using function derivatives - illustration

Illustration of the predictive means and confidence intervals obtained with a simple
kriging (dotted line) and a simple co-kriging using the derivatives (solid line).

Z(x)

Multi-Fidelity surrogats madealing
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Outline

Gaussian process regression for multi-fidelity vectorial functions - linear case
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Linear model with 2 levels of code

Multi-fidelity framework

m We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x,Z) is of primary importance.

m When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.
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Linear model with 2 levels of code

Multi-fidelity framework

m We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x,Z) is of primary importance.

m When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.

m We need to assume a relationship between the two outputs!
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Linear model with 2 levels of code

Multi-fidelity framework

m We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x,Z) is of primary importance.

m When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.

m We need to assume a relationship between the two outputs!

m Recall the multi-fidelity context : z1(x) and z2(x) are the outputs of the code
modelling the same phenomenon with different computation times and accuracies.
We want to approximate z2(x) which is the most accurate and costly code.

For example za(x) can be the output of a 3D modeling and z1(x) the output of a 2D or
1D modeling.

For example, z2(x) may be the output of an expensive numerical reference code and
z1(x) may be an earlier version of it, neglecting certain phenomena.
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Linear model with 2 levels of code

Multi-fidelity framework

m We have seen the GPR formalism for vectorial functions in a general framework,
where the covariance structure V(x,Z) is of primary importance.

m When neither z1(x) nor z2(x) are known, it is difficult or impossible to know (or
assume) a covariance structure.

m We need to assume a relationship between the two outputs!

m Recall the multi-fidelity context : z1(x) and z2(x) are the outputs of the code
modelling the same phenomenon with different computation times and accuracies.
We want to approximate z2(x) which is the most accurate and costly code.

For example za(x) can be the output of a 3D modeling and z1(x) the output of a 2D or
1D modeling.

For example, z2(x) may be the output of an expensive numerical reference code and
z1(x) may be an earlier version of it, neglecting certain phenomena.

m A linear relationship between the two outputs appears to be appropriate in a
multifidelity framework : the expensive code can be seen as the sum of the light
code at a scale factor and an error term.
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Linear model with 2 levels of code

The case where one knows perfectly z;(z) - linear regression

m The simplest model is to approximate the costly code z2(x) by linear regression
assuming that the cheaper code z1(x) is a regression function :

5a(x) = paa () + iﬁ(w)@
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Linear model with 2 levels of code

The case where one knows perfectly z;(z) - linear regression

m The simplest model is to approximate the costly code z2(x) by linear regression
assuming that the cheaper code z1(x) is a regression function :

P
2(x) = pz21(x) + Y fi(@)Bs
i=1
m In matrix form, linear regression model is given by : Zs = F(@ + ¢

Zs = (Zg(a:(l)), ce ZQ(QZ(T]Q)))’, the random vector of observations

(Z2(2P))iz1,. ., are assumed to be i.id.

21 (M) f(xz®) o £ (2M)

F= : : is the matrix of regressors,
zl(w(”2)) fl(w(”z)) fp(m("2))

B=(p,B1,...,Bp)" is the vector of coefficients,

€ =(e1,...,&n, the vector of the random vector of the residuals such that

(€4)i=1,...,n, arei.id, E(g;) =0 and var(e;) = o2
m Least-squares estimate of the regression coefficient 8 : 8 = (F'F) ™' F'zs.
m No more details : it's a classical linear model !
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Linear model with 2 levels of code

The case where one knows perfectly z;(x) - Gaussian process regression

m We suppose now that z2(x) is a realization of a Gaussian process Z(x).
m The model become : Z>(x) = pz1(x) + 6(x)

where §(z) ~ GP (f5(z)B5,05 Rs(x, &), f5(x) is a vector of p known fonctions

Numerical analysis Summer school 2021 - CEA EDF INRIA

Multi-Fidelity surrogate modeling _



Linear model with 2 levels of code

The case where one knows perfectly z;(x) - Gaussian process regression
m We suppose now that z2(x) is a realization of a Gaussian process Z(x).

m The model become : Z>(x) = pz1(x) + 6(x)
where §(z) ~ GP (f5(z)Bs,05 Rs(x,&)), f5(x) is a vector of p known fonctions.

m Then we have : Zo(x) ~ GP ((zl(x) f5(x)) (,8'05) ,U?R(;(:c,fc))
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Linear model with 2 levels of code

The case where one knows perfectly z;(x) - Gaussian process regression
m We suppose now that z2(x) is a realization of a Gaussian process Z(x).
m The model become : Z>(x) = pz1(x) + 6(x)
where §(z) ~ GP (f5(z)Bs,05 Rs(x,&)), f5(x) is a vector of p known fonctions.

m Then we have : Zo(x) ~ GP ((zl(x) f5(x)) (,8'05) ,U?R(;(:c,fc))

m We are in the case of GPR for univariate functions!

— universal kriging with the conditioned mean and variance functions of Z(x)
incorporates the estimation of 3 = (p, 85)" done by (MLE) :

B=(FR;b,F) 'FR;p,2.,
F is already definied in the previous slide.
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Linear model with 2 levels of code

The case where one knows perfectly z;(x) - Gaussian process regression
m We suppose now that z2(x) is a realization of a Gaussian process Z(x).

m The model become : Z>(x) = pz1(x) + 6(x)
where §(z) ~ GP (f5(z)Bs,05 Rs(x,&)), f5(x) is a vector of p known fonctions.

m Then we have : Zo(x) ~ GP ((zl(x) f5(x)) (,8'05) ,U?R(;(:c,fc))

m We are in the case of GPR for univariate functions!
— universal kriging with the conditioned mean and variance functions of Z(x)
incorporates the estimation of 3 = (p, 85)" done by (MLE) :
B=(FR;b,F) 'FR;p,2.,
F is already definied in the previous slide.

m Finally, one could almost see Gaussian process regression for univariate functions
as multifidelity with the trend as coarse code :

Zy(z) = '8 +6(x) with §(z) ~ GP (0,05 Rs(z,Z))
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AR(1) model with 2 levels of code

Notations and assumptions

m As usual in the GPR framework, we suppose that z(z) = (z1(x), 22(x)) is a
realization of a bivariate Gaussian proces (Z;(x), Z2(x))
m We keep the same notations as before.
D, = {x!V, ..., ("} the DOE for the component ¢
zi = 2(Dy) = (ze(2), . 2 (2)) 2 = (2], 2L)
Zi = Z:(Dy) = (Ze(2V), ..., Ze(2("))'; 2 = (Z},...,Z})
M, = £/(Dy)B, = Fif,; M = (M., M)
fi(x)=(f1e,- - Ep,t)

m We add an assumption : the two DOE are nested D, ¢ D,

This is not a big assumption : as coarse code is less expensive than reference code,
it is assumed that observations can facilement be added to coarse code.
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AR(1) model with 2 levels of code

The AR(1) model

m In the AR(1) model, the dependency between the two levels of code is assumed to
be as follows : m. Kennedy and A. O’Hagan (2000), Predicting the output from a complex computer code when
fast approximations are available, Biometrika. Forrester A.l.J., Sobester, A. and A.J. Keane (2007), Multi-fidelity

optimization via surrogate modelling, Proc. R. Soc.
Za(x) = pZi(w) + 8(x)
where §(x) is a Gaussian process independent of Zi(x),
5(x) ~ GP (ms(@) = £(x)Bs, Cs(w, &) = o2 Ry (, &)
Zy(z) ~ GP (ma(a) = f{(x) B,, C1 (2, 2) = 0f Ra (2, Z))

p represents a scale factor between Zs(x) and Z: ().
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AR(1) model with 2 levels of code

The AR(1) model

m In the AR(1) model, the dependency between the two levels of code is assumed to
be as follows : m. Kennedy and A. O’Hagan (2000), Predicting the output from a complex computer code when
fast approximations are available, Biometrika. Forrester A.l.J., Sobester, A. and A.J. Keane (2007), Multi-fidelity

optimization via surrogate modelling, Proc. R. Soc.
Za(x) = pZi(w) + 8(x)
where §(x) is a Gaussian process independent of Zi(x),
5(@) ~ GP (ms(@) = £5(2)B;. Cs(@, @) = o3 Ro(,8))
Z1(2) ~ GP (ma (@) = £ ()B,, C1 (2, 8) = 07 R (, )
p represents a scale factor between Zs(x) and Z: ().
m In fact, the AR(1) model is derived from the following Markov property :
Cov(Za(z), Z1(&)|Z1(x)) =0 Ve + .

The property means that if Z1(x) is known, then nothing more can be learn about
Zs(x) from any other run of the cheaper code Z;(Z) for & + x.
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations
m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(zx) =
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(z) = ( fi(x)B,
pfi(x)B, +£5(x)B5
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :
_ fi(z)B,
() (pf{ (2)8, +13()8;

V(x,z) =
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(z) = ( fi(x)B,
pfi(x)B, +£5(x)B5

IRy (z, %) poiR (x, %)
poiRi(x,&) pPoiRi(z,2) + o3 Rs(z,2) )’

V(z, &) = (

m We want to express the joint distribution of Zs(z) and Z® (do it again) :
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(z) = ( fi(x)B,
pfi(x)B, +£5(x)B5

IRy (z, %) poiR (x, %)
poiRi(x,&) pPoiRi(z,2) + o3 Rs(z,2) )’

V(z, &) = (

m We want to express the joint distribution of Zs(z) and Z® (do it again) :

— First, Z® = (Z},Z%)" is a gaussian vector of size n; + ny with :
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

_ fi(z)B,
i) = (pf{ (2)8, +13()8;
IRy (z, %) poiR (x, %)
poiRi(x,&) pPoiRi(z,2) + o3 Rs(z,2) )’

V(z, &) = (

m We want to express the joint distribution of Zs(z) and Z® (do it again) :

— First, Z® = (Z},Z%)" is a gaussian vector of size n; + ny with :
(1)
£ ;)

and

@] = f{(Dl)ﬁ . 7 ) —
E[Z ] B (pf{(Dz)ﬁl +ft§ED2)55)' with £/(D;) =

£/(a}")
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(z) = ( fi(x)B,
pfi(x)B, +£5(x)B5

IRy (z, %) poiR (x, %)
poiRi(x,&) pPoiRi(z,2) + o3 Rs(z,2) )’

V(z, &) = (

m We want to express the joint distribution of Zs(z) and Z® (do it again) :

— First, Z® = (Z},Z%)" is a gaussian vector of size n; + ny with :

£(D1)3 fl)
E[Z® :( L , with f/(D;) = : and
(2] pfi(D2)B, +f5(D2)B; «(Ds) oo (ng)
fi(ar:j )
2 2
o1 R1(D1,Dx1) poiRi (D1, D)
Vo =Cov(Z1,Z>) =
2 ov(Z1,2Z2) (pO'%Rl(DQ,Dl) pQU%R1(D2,D2)+U§R6(D27D2)
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AR(1) model with 2 levels of code

Joint distribution of Z>(x) and observations

m We can now express the mean and the covariance Z(x) = (Z1(x), Z2(x)) (do it) :

m(z) = ( fi(x)B,
pfi(x)B, +£5(x)B5

IRy (z, %) poiR (x, %)
poiRi(x,&) pPoiRi(z,2) + o3 Rs(z,2) )’

V(z, &) = (

m We want to express the joint distribution of Zs(z) and Z® (do it again) :

— First, Z® = (Z},Z%)" is a gaussian vector of size n; + ny with :

£(D1)3 fl)
E[Z® :( L , with f/(D;) = : and
(2] pfi(D2)B, +f5(D2)B; «(Ds) oo (ng)
fi(ar:j )
2 2
o1 R1(D1,Dx1) poiRi (D1, D)
Vo =Cov(Z1,Z>) =
2 ov(Z1,2Z2) (pO'%Rl(DQ,Dl) pQU%R1(D2,D2)+U§R6(D27D2)

@ . : _( fi(D1) 0 _(B
Thus, Z N sny (HB, V) with H = (pfl‘{(Dg) fg(Dz)) and 8 = (ﬁg)'
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AR(1) model with 2 levels of code

Joint distribution of Z;(x) and observations
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AR(1) model with 2 levels of code

Joint distribution of Z;(x) and observations

m We can now easily write the desired joint distribution :
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AR(1) model with 2 levels of code

Joint distribution of Z;(x) and observations
m We can now easily write the desired joint distribution :

Zs(x h'(x ‘ol +0: rh(x / / /
Y e
and : rh(x) = Cov(Za(z),Z2)

(po%R1({w},D1)7p205R1({w},D2) +U§R5({$},D2))
with Ri({2},D;) = (i), Ra(e,ai"))

Conditional distribution of Z(z) given Z® (do it again)
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AR(1) model with 2 levels of code

Joint distribution of Z;(x) and observations
m We can now easily write the desired joint distribution :

Zs(x h'(x ‘ol +0: rh(x / / /
Y e
and : rh(x) = Cov(Za(z),Z2)

(po%R1({w},D1)7p205R1({w},D2) +U§R5({$},D2))
with Ri({2},D;) = (i), Ra(e,ai"))

Conditional distribution of Z(z) given Z® (do it again)

m As before, we suppose that we know the mean m(x) and the covariance function
V(z,&). That is to say, that we know 8, Bs, p, 01, 05, Ri(-,-) and Rs(-,)
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AR(1) model with 2 levels of code

Joint distribution of Z;(x) and observations
m We can now easily write the desired joint distribution :

Zs(x h'(x ‘ol +0: rh(x / / /
Y e
and : rh(x) = Cov(Za(z),Z2)

(po%R1({w},D1)7p205R1({w},D2) +U§R5({$},D2))
with Ri({2},D;) = (i), Ra(e,ai"))

Conditional distribution of Z(z) given Z® (do it again)

m As before, we suppose that we know the mean m(x) and the covariance function
V(z,&). That is to say, that we know 8, Bs, p, 01, 05, Ri(-,-) and Rs(-,)

m By Gaussian conditionning, the conditional distribution [Z2(x)|Z1 = z1,Z2 = 2z2] is
gaussian with mean 11z, (z) and variance o7, (z) given by :

pzs (@) =W (2)B + ry(x) V3! (2% - HB),
0%, (@) = ploi + 05 — (@) Va'ra(a),
Known as the simple multi-fidelity co-kriging.
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AR(1) model with 2 levels of code

About the scale factor p

m By definition, we have Cov(Zi(x), Z1(&)) = 07 R1(x,%) and we have seen that

Cov(Za(x), Z1(&)) = poiRi(x, &), so we can express p as :

_ Cov(Zz(z), Z1(x))
var(Zi(x))

It both represents the correlation degree and the scale factor between two
successive levels of code :
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AR(1) model with 2 levels of code

About the scale factor p

m By definition, we have Cov(Zi(x), Z1(&)) = 07 R1(x,%) and we have seen that

Cov(Za(x), Z1(&)) = poiRi(x, &), so we can express p as :

_ Cov(Zz(z), Z1(x))
var(Zi(x))

It both represents the correlation degree and the scale factor between two
successive levels of code :

m If Z1(x) and Z>(x)) are uncorellated, i.e. p =0, the equations simplify and this
amounts to approximating z1(x) and z2(x) by Gaussian process regression in an
independent way.

m The addition of information from z1 () cannot degrade the GPR approximation of
ZQ((II)
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AR(1) model with 2 levels of code

Academic 1D illutration
The "cheap" code (in red) : z1 () = 0.5(6x — 2)?sin(12x — 4) + 10(z - 0.5) = 5
The expensive code (in black) : z2(z) = 221 (x) — 20z + 20

Same DOE : we learn nothing more about z2(z).
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AR(1) model with 2 levels of code

Academic 1D illutration
The "cheap" code (in red) : z1 () = 0.5(6x — 2)?sin(12x — 4) + 10(z - 0.5) = 5
The expensive code (in black) : z2(z) = 221 (x) — 20z + 20

Nested DOE : knowledge of z;(x) gives us information about z2(z).
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AR(1) model with 2 levels of code

Academic 1D illutration
The "cheap" code (in red) : z1 () = 0.5(6x — 2)?sin(12x — 4) + 10(z - 0.5) = 5
The expensive code (in black) : z2(z) = 221 (x) — 20z + 20

Nested DOE : knowledge of z;(x) gives us information about z2(z).
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AR(1) model with 2 levels of code

Academic 1D illutration
The "cheap" code (in red) : z1 () = 0.5(6x — 2)?sin(12x — 4) + 10(z - 0.5) = 5
The expensive code (in black) : z2(z) = 221 (x) — 20z + 20

0.0 0.2 0.4 06 0.8 10
X

Nested DOE : knowledge of z;(x) gives us information about z2(z).
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AR(1) model with 2 levels of code

AR(1) multi-fidelity model parameters estimation

m Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients 3.
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AR(1) model with 2 levels of code

AR(1) multi-fidelity model parameters estimation

m Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients 3.

m We must also take into account of estimation of the scaling parameter p in the
AR(1) model.
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AR(1) model with 2 levels of code

AR(1) multi-fidelity model parameters estimation

m Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients 3.

m We must also take into account of estimation of the scaling parameter p in the
AR(1) model.

m According to the hypothesis of independence between Zi(x) and d(x), we can
estimate (31, 07,601) and (p, Bs,03,0s) separately.
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AR(1) model with 2 levels of code

AR(1) multi-fidelity model parameters estimation

m Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients 3.

m We must also take into account of estimation of the scaling parameter p in the
AR(1) model.

m According to the hypothesis of independence between Zi(x) and d(x), we can
estimate (31, 07,601) and (p, Bs,03,0s) separately.

m For Zi(x) we proceed as in the univariate case : MLE or Bayesian procedure for
B, then o and then 0; or full-bayesian estimation.
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AR(1) model with 2 levels of code

AR(1) multi-fidelity model parameters estimation

m Reminder : for the GPR in the univariate case, the universal kriging equations
allow to take into account the uncertainties due to the estimation of the trend
coefficients 3.

m We must also take into account of estimation of the scaling parameter p in the
AR(1) model.

m According to the hypothesis of independence between Zi(x) and d(x), we can
estimate (31, 07,601) and (p, Bs,03,0s) separately.

m For Zi(x) we proceed as in the univariate case : MLE or Bayesian procedure for
B, then o and then 0; or full-bayesian estimation.

m For Zy(x) we need to estimate p and 3, together, indeed we can’t suppose p and
3 to be independant.

MLE or Bayesian procedure for (85, p), then o3 and then 5 or full-bayesian
estimation.

Le Gratiet, L. (2013), Bayesian analysis of hierarchical multifidelity codes, SIAM/ASA J. on Uncertain. Quantif.
MA, P. (2019), Objective Bayesian Analysis of a Cokriging Model for Hierarchical Multi delity Codes
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AR(1) model with s levels of code

The model is easily generalized to s levels

s sorted by increasing order of fidelity and
«, « € R We want to approximate

.....

-----

zs(x), the most accurate and costly code.

m AR(1) model for s levels : Z:(x) = p-1Zs-1(x) + 0:(x) t=2,...,s
where 6,(z) ~ GP (f{(x)B,,07 Ri(x, &)) is independent of Zi_1(x),..., Z1(x)
and 7, (x) ~ GP (£ ()8, 02 R (x, 7))
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AR(1) model with s levels of code

The model is easily generalized to s levels

m We have s levels of code (z:(x))+-1,

.....

s sorted by increasing order of fidelity and
«, « € R We want to approximate

-----

zs(x), the most accurate and costly code.

m AR(1) model for s levels : Z:(x) = p-1Zs-1(x) + 0:(x) t=2,...,s
where 6,(z) ~ GP (f{(x)B,,07 Ri(x, &)) is independent of Zi_1(x),..., Z1(x)
and Zi(x) ~ GP (£ (2)B,, 07 R (w, 7))

m Proceeding in the same way as for 2 levels, one may find that the conditioned
distribution [Zs(x)|Z1 = 21, ... Zs = z,] (with all parameters known) is Gaussian
with :

pz. (@) = h () + K. (2)V;' (z - H.p)
oy, (x) = 0%, - ki(2)V; k().

m We don't define the notations but we can see that the formulation is similar to the
one with 2 levels. For instance : V3! is a Y5, ny x 35, ny matrix , Hy is a
Y1 me x Yi_q pr matrix (p: the size of f{(x)), ...
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Recursive AR(1) model with 2 levels of code

Multi-fidelity co-kriging model : recursive formulation

m Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.
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Recursive AR(1) model with 2 levels of code

Multi-fidelity co-kriging model : recursive formulation

m Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

m The recursive AR(1) model is done by : Le Gratiet L. & Garnier J. (2014), Recursive co-kriging model

for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantif.

{ Za(w) = pa () + 6(x)
Zi(x) L 0¢(x) ’

As before 6(x) ~ GP (£5(x)Bs,Cs(x,&) = 05 Rs(x,2)) . But, differently than
before Z:(x) is a GP with distribution [Z1(z)|Z1 = 21, 8,071,601 ].
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Recursive AR(1) model with 2 levels of code

Multi-fidelity co-kriging model : recursive formulation

m Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

m The recursive AR(1) model is done by : Le Gratiet L. & Garnier J. (2014), Recursive co-kriging model

for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantif.

{ Za(w) = pa () + 6(x)
Zi(x) L 0¢(x) ’

As before 6(x) ~ GP (£5(x)Bs,Cs(x,&) = 05 Rs(x,2)) . But, differently than

before Z:(x) is a GP with distribution [Z1(z)|Z1 = 21, 8,071,601 ].

— We know its mean and its covariance (see GPR for univariate functions) :
pz, (x) = fi(x)B, + 71’ (2)Rilp, (z1 - £1(D1)B,

07, (@) =01 (1-r/(2)Rip,m1(2))
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Recursive AR(1) model with 2 levels of code

Multi-fidelity co-kriging model : recursive formulation

m Reminders : We have 2 levels of code output z1(x)) and (z2(x) modeled by
Gaussian processes Z1(x)) and (Z2(x). We want approximate z2(x), the most
accurate and costly code, using observations from both code outputs.

m The recursive AR(1) model is done by : Le Gratiet L. & Garnier J. (2014), Recursive co-kriging model

for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantif.

{ Za(w) = pa () + 6(x)
Zi(x) L 0¢(x) ’

As before 6(x) ~ GP (£5(x)Bs,Cs(x,&) = 05 Rs(x,2)) . But, differently than

before Z(x) is a GP with distribution (Z1(x)|Z1 = 21, B,,0%,01].

— We know its mean and its covariance (see GPR for univariate functions) :
pz, (x) = fi(x)B, + 71’ (2)Rilp, (z1 - £1(D1)B,

07, (@) =01 (1-r/(2)Rip,m1(2))

m We can now deduce the distribution [Z2(x)|Z1 = 21, Z2 = z2] (with mean and
covariance functions known)
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Recursive AR(1) model with 2 levels of code

Multi-fidelity co-kriging model : recursive formulation

m Once again we suppose that all means and covariances parameters (i.e. B, Bs, p.
o1, 0s, Ri1(+,-) and Rs(-,-) are known.

m The conditioned distribution [Z2(x)|Z1 = z1,Z2 = z2] is Gaussian with mean
1z, (x) and variance oz, (x) done by :

pzo (x) = ppz, () + ps (@)

0%, (@) = po, (x) + o5 (x)

where 15(2) and o3 () are the mean and the variance function of the conditioned
distribution [§(x)|Z2 = z2] :

ps(x) = f5(x)Bs + s’ (x)Rs b, (22 — pz1(D2) - £5(D2) B;)

a?(m) = a§(1 - ra'(m)RE}DJa(m))
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Recursive AR(1) model with 2 levels of code

Multi-fidelity co-kriging model : recursive formulation

m Once again we suppose that all means and covariances parameters (i.e. B, Bs, p.
o1, 0s, Ri1(+,-) and Rs(-,-) are known.

m The conditioned distribution [Z2(x)|Z1 = z1,Z2 = z2] is Gaussian with mean
1z, (x) and variance oz, (x) done by :

pzo (x) = ppz, () + ps (@)

0%, (@) = po, (x) + o5 (x)

where 15(2) and o3 () are the mean and the variance function of the conditioned
distribution [§(x)|Z2 = z2] :

ps(x) = f5(x)Bs + s’ (x)Rs b, (22 — pz1(D2) - £5(D2) B;)
o3 (x) = 05 (1 -5 (2) Ry p,rs(x))

m It can be shown that the original AR(1) model and its recursive formulation have
the same conditioned distribution [Z2(x)|Z1 = 2z1,Z2 = z2].
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Recursive AR(1) model with s levels of code

The recursive AR(1) is easily generalised
m Easily generalised, for t =2,...,s, the model become :

{ Zi() = pe-1(x) Ze1 (@) + 64 ()
Zt71($) 1 6t($)

where Z;_;(x) is a Gaussian process with distribution

(Zi-1(2)| 207D =207 8,1, iz, 0],

6:(x) ~ GP (f{(x)B,,0f Re(x,&)) is defined in the same way as before
D,cD;_; c---cD;j are nested designs

The conditioned distribution [Zs(2)|Z1 = 21, ... Zs = zs] (with all parameters
known) is Gaussian with :

iz, (®) = poipiz, , (®) + ps, ()

0%, (x) = pr-10y,  (x) + 03, ()
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Recursive AR(1) model with s levels of code

The recursive AR(1) is easily generalised

m Easily generalised, for t =2,...,s, the model become :

{ Zi() = pe-1(x) Ze1 (@) + 64 ()
Zt71($) 1 6t($)

where Z;_;(x) is a Gaussian process with distribution

(Zi-1(2)| 207D =207 8,1, iz, 0],

6:(x) ~ GP (f{(x)B,,0f Re(x,&)) is defined in the same way as before
D,cD;_; c---cD;j are nested designs

The conditioned distribution [Zs(2)|Z1 = 21, ... Zs = zs] (with all parameters
known) is Gaussian with :

pz (x) = pr-1ppz, o (x) + ps, ()
0%,(x) = pro1oy, , (x) + 05, (x)

m The model can also be generalised to the case where the scale parameter p
depends on x. Then it is assumed that pi_1(z) = gi_1(z)B

pt-1"
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AR(1) model with 2 levels of code

Advantages of the recursive AR{1) model

m It provides the surrogate models of all the responses {z (@) )i=1....5.
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AR(1) model with 2 levels of code

Advantages of the recursive AR{1) model
m It provides the surrogate models of all the responses {z (@) )i=1....5.

m Building a s-level co-kriging is eguivalent in terms of numerical complexity to build
s independent krigings
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AR(1) model with 2 levels of code

Advantages of the recursive AR{1) model
m It provides the surrogate models of all the responses {z (@) )i=1....5.
m Building a s-level co-kriging is eguivalent in terms of numerical complexity to build
s independent krigings
The computational cost is dominated by the inversion of the covariance matrices.

In the original approach, we have to invert one matrix of size (r) +n2) x {1 —na),
in the recursive approach, we have to invert s matrices of size {r; x vy )i-1 .

B .
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AR(1) model with 2 levels of code

Advantages of the recursive AR{1) model
m It provides the surrogate models of all the responses {z (@) )i=1....5.
m Building a s-level co-kriging is eguivalent in terms of numerical complexity to build
s independent krigings
The computational cost is dominated by the inversion of the covariance matrices.

In the original approach, we have to invert one matrix of size (r) +n2) x {1 —na),
in the recursive approach, we have to invert s matrices of size {r; x vy )i-1 .

m The model provides the contribution of the code level £ -1 to the total
conditioned variance at level ¢, £ =2,.. ., 5 — useful for active learning,.
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AR(1) model with 2 levels of code

Advantages of the recursive AR{1) model
m It provides the surrogate models of all the responses {z (@) )i=1....5.
m Building a s-level co-kriging is eguivalent in terms of numerical complexity to build
s independent krigings
The computational cost is dominated by the inversion of the covariance matrices.

In the original approach, we have to invert one matrix of size (r) +n2) x {1 —na),
in the recursive approach, we have to invert s matrices of size {r; x vy )i-1 .

m The model provides the contribution of the code level £ -1 to the total
conditioned variance at level ¢, £ =2,.. ., 5 — useful for active learning,.

m This formulation makes it possible to obtain Leave-One-Out formulas for the mean
and the variance without having to build many models (as in the univariate case).
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AR(1) model with 2 levels of code

About the nested design assumption

m The nested property of the design sets is not necessary to build the model, but
it allows for a simple estimation of the model parameters.

m Exemple of easy construction
See also : Forrester & al (2007), Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A

Qian & al (2009), Construction of nested space-filling designs, The Annals of Statistics, . . .
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AR(1) model with 2 levels of code

About the nested design assumption

m The nested property of the design sets is not necessary to build the model, but
it allows for a simple estimation of the model parameters.

m Exemple of easy construction
See also : Forrester & al (2007), Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A

Qian & al (2009), Construction of nested space-filling designs, The Annals of Statistics, . . .

First we build the experimental design set Then we build D1 the experimental design

Dy for the most accurate code z3(x). set from which we will build D;.

o) =)

o =7 N + + +
+ 4 +
@4 o @ | 4 + +
S S +
© ©
o o +
X' X
h < +
o o
o o
S S
o ° +
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AR(1) model with 2 levels of code

About the nested design assumption

m The nested property of the design sets is not necessary to build the model, but
it allows for a simple estimation of the model parameters.

m Exemple of easy construction
See also : Forrester & al (2007), Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A
Qian & al (2009), Construction of nested space-filling designs, The Annals of Statistics, . ..

D; is built by concatenating D2 and D,
without its removed points.

We find the points of D; the closest to
those of D2 and we remove them.

o 2

+ + + +
+ +O+ + + +@ ¥ +
@], © + wl|l, © +
o ¥ + . o + =) + + + N ® +
+ + +
© ©
S + o +
X' X
~ + 6 + < +
o o
+
g o s $
+ + + * +
o | +0t + o | +® +
e T T T T T T < T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Xy X4
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

-06 -04 -02
L L

z4(x)

-0.8
L

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling



AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

N. o
S 4 34
7 7
= 3
i S
<@ «©
=% ER
< —~
= =
N ® | N
g 2
°
< <
] 2
o
T e
T
-
A1 T T T T i
-0.6 0.4 -0.3 -0 A U T y T y
25(x) 0.0 0.2 0.4 06 08 10
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

-04  -02
L

z4(x)
2(x)
08 -06

1
-1.0

-1.2

-1.2

-1.4

Yes : p=1,
z1(x) is a realization of GP of mean zero and of covariance Matern 5/2
d(x) is a realization of GP of mean zero and of covariance Matern 5/2.
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

z4(x)
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

z4(x)
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

z4(x)

20 25

T T
3.0 35 40 45 © - y y y T T
25(x) 00 02 04 06 08 1.0

Yes : p=po+piz,
z1(x) is a realization of GP of mean [y + 12 and of covariance Matern 3/2
d(x) is a realization of GP of mean 7y + y12 and of covariance Matern 3/2.
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?
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Are the assumptions of the model verified ?

AR(1) model with 2 levels of code
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

2(x)

T T T T
20 25 3.0 y y y y y T
25(%) 00 02 04 06 08 1.0

Yes : p=0.5,
z1(x) is a realization of GP of mean [y + 12 and of covariance Matern 5/2
0(x) is a realization of GP of mean 7y + y12 and of covariance Matern 5/2.
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

z4(x)

T T
15 20 25 3.0
25(x)
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AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

= o
<~ 7 24
w o
a o
o °
2 s
Z 2
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o
o < |
2
w
i w
15 2.0 25 3 35 4.0 T T T T T T
25(x) 0.0 0.2 04 06 08 1.0

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling



AR(1) model with 2 levels of code

Are the assumptions of the model verified ?

35 4.0
L
35

3.0

z4(x)

T T T T
25 30 35 40 y y y y T T
25(x) 00 02 04 06 08 1.0

No : Za(z) =\/Z1(x) + (),
z1(x) is a realization of GP of mean [y + 12 and of covariance Matern 5/2
d(x) is a realization of GP of mean 7y + y12 and of covariance Matern 5/2.
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AR(1) model with 2 levels of code

Some remarks on AR(1) model

m Despite the assumption of linearity which may seem restrictive, the model is really
adapted to many multi-fidelity applications (different models of the same
phenomenon)

m However, there are cases where this assumption is not valid and where other
methods should be considered (non linear relationship)

m The recursive formulation has allowed it to become numerically lighter and has
made it quite popular in recent years.

m It is not designed to be used on a very large number of levels.
In this case we speak of tunable fidelity, and approaches based on PGR exist.

Picheny, V. and Ginsbourger, D. (2013), A nonstationary space-time Gaussian process model for partially converged
simulations, SIAM/ASA Journal on Uncertainty Quantification.

Tuo R. Wu C. F. J. and Yu, D (2014), Surrogate modeling of computer experiments with different mesh densities,

Technometrics.
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Outline

Gaussian process regression for multi-fidelity vectorial functions - nonlinear case
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