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Deep Multi-Fidelity Conclusion

The AR(1) model is one big model.

The linearity between codes reduce the application cases for the AR(1) model.

A Deep multi-fidelity is a combination of models one for each level.

The regression models for multi-fidelity is a combination of simple fidelity models.

Deep Multi-Fidelty
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Deep Multi-Fidelity Conclusion

The linear autoregressive model is :

fs(x) = ρsfs−1(x) + δs(x) (1)

We generalize the autoregressive multi-fidelity scheme :

fs(x) = ρs (fs−1(x), x) + δs(x) (2)

where ρs is an unknown function and δs a Gaussian process.
We replace the GP prior fs1

with the GP posterior from the previous level f̃s−1(x). The
independence between z and δ.

Non-linear Gaussian Process model
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Deep Multi-Fidelity Conclusion

You have loved deep learning with neural network, you will love deep learning with GP.
Deep Gaussian process is model where the output of a GP becomes the input of the next GP
level. For simplicity, consider a structure with only two hidden units. The generative process
takes the form :

yd,n = f
Y
d (zn) + ϵd,n d = 1,⋯, D (3)

zd,n = f
Z
d (xn) + ϵd,n d = 1,⋯, Q (4)

with fY
∼ GP (0, kY (Z, Z)) and fZ

∼ GP (0, kZ(X, X)). zn is the variable in the latent
space. D dimension of output. Q number of "neurons" or GP in the hidden layer.
The co-variance functions for the GP :

k(x, x) = σ
2

exp
⎛
⎝−

1

2

Q

∑
q=1

wq(xi,q − xj,q)2
⎞
⎠ . (5)

Different weight wq must be evaluated in order to compute the co-variance.

Deep Gaussian Process
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Deep Multi-Fidelity Conclusion

The law of total probabilities gives :

p(Y) =
x

Z,X

p(Y∣Z)p(Z∣X)p(X). (6)

The Bayesian training procedure requires optimizing :

log p(Y) = log
x

Z,X

p(Y∣Z)p(Z∣X)p(X). (7)

Even for the simple X ∼N (0, I), equation 7 is intractable. This is due to the non-linearity in
the GPs fY and fZ regarding Z and X.
To solve this issue for simple fidelity see Damianou and Lawrence in Deep Gaussian
Processes (AISTATS) 2013.

Let imagine now that we have access to the latent variable Z !
We have a lot of data X

1,⋯,NX and leas realization of Z : Z
1,⋯,NZ . This will help us in the

optimization. If we call X the low-fidelity variable and Z the high-fidelity one, we see the
multi-fidelity framework appears.

Bayesian Training for Deep Gaussian Process
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Deep Multi-Fidelity Conclusion

The equations of the interaction between codes became :

f1(x) = h0(x), (8)

f2(x) = h1(x, f1(x)) + δ(x), (9)

with h0,1 two GPs and δ a GP.
we replace the GP prior f1 with the GP posterior from the previous inference level f⋆1 (x).
Then, using the additive structure of equation (10), along with the independence
assumption between the GPs z t1 and t , we can summarize the autoregressive scheme of
equation (2.10) as

f2(x) = g2(x, f
⋆

1 (x)), (10)

where g2 ∼ GP (f2∣0, k2((x, f⋆1 (x)), (x, f⋆1 (x)), θ)). θ is the hyperparameters of the
Model proposed by Perdikaris and al. in Nonlinear information fusion algorithms for
data-efficient multi-fidelity modelling.

Multi-Fidelity Deep Gaussian Process
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Deep Multi-Fidelity Conclusion

We have noiseless data

The GP have a stationary kernel

Then we have the Markov property (as in Kennedy and O’Hagan ) :

We can learn nothing more about f2(x) from any model output h1(f1(x′)) with x ≠ x
′.

The Markov property
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Deep Multi-Fidelity Conclusion

We consider a covariance kernel that decomposes as :

k2 = kρ(x, x
′

, θρ)kf⋆
1

(f⋆1 (x), f
⋆

1 (x′), θf⋆
1

) + kδ(x, x
′

, θδ), (11)

with kρ, kf⋆
1

and kδ 3 covariance function and θ the hyperparameters.

kρ the covariance for ρ parameter.

kf⋆
1

the covariance for the low fidelity code.

kδ the covariance for δ Gaussian Process.

Covariance the key element

Baptiste Kerleguer 16 june 2021 10 / 25



Deep Multi-Fidelity Conclusion

In this framework the AR(1) model can be written with a covariance :

k2 = kρ(x, x
′

, θρ)A2

ρf
⋆

1 (x)T f
⋆

1 (x′) + kδ(x, x
′

, θδ), (12)

with A2

ρ the hyper parameters.
We want to add a linear part to the covariance in order to be close to the AR(1) model. The
covariance function became :

k2 = kρ(x, x
′

, θρ) [A2

ρf
⋆

1 (x)T f
⋆

1 (x′) + kf⋆
1

(f⋆1 (x), f
⋆

1 (x′), θf⋆
1

)] + kδ(x, x
′

, θδ). (13)

This model is easier to learn (see the practical session).

Covariance the key element
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Deep Multi-Fidelity Conclusion

For the low-fidelity model it is the same as GP regression. The hyper parameters are
evaluated separation of the high fidelity model.

The hyper-parameters of the high fidelity model must be evaluated. For the high-fidelity
code we need to integrate the following equation in order to get the posterior law :

p(f⋆2 (x)) = ∫ p(f2(x, f
⋆

1 (x))∣(x2, y2), x)p(f⋆1 (x))dx, (14)

with f⋆ denote the posterior distribution of the model, (x2, y2) are the high-fidelity data.

Prediction the posterior law
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Deep Multi-Fidelity Conclusion

We want to fit the model with the parameters (θ, σρ). And then we want to predict the
posterior law of the surrogate model.

Step 1 : We train the low-fidelity model with low fidelity data.

Step 2 : optimization of the hyper-parameters for the high-fidelity model.

Step 3 : Monte Carlo integration of the equation 14. Then we have the posterior low of
the high-fidelity model.

Computation of (θ, σρ)
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Deep Multi-Fidelity Conclusion

The MF-DGP model is similar to :
◻ AR(1) model with DeepGP in each level ◻ Linear regression in multi-fidelity ◻
AR(1) model with non-linear interaction between levels ◻ neural network

The model came at what cost ?
◻ No more cost ◻ the equation are intractable ◻ Computational cost increase ◻
Uncertainty increase

The covariance function is
◻ the key element ◻ never negative ◻ the same as in Universal Kriging ◻ is a
combination of at leas 3 covariance kernel

I will use this model
◻ never ◻ always ◻ when I don’t now the interaction between code ◻ When
AR(1) is not working

Quizz Multi-Fidelity Deep Gaussian Process
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Deep Multi-Fidelity Conclusion

The Neural network model model :

is Simple and works for most of the big data set.

has no quantification of uncertainty for now.

is expensive to train.

Neural network for multi-fidelity
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Deep Multi-Fidelity Conclusion

When to use this technique :

The interaction between codes is more complex

we have access to a lot of data.

We have no-ideas of the code output shape.

Neural networks
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Deep Multi-Fidelity Conclusion

The MF-NN model is similar to :
◻ AR(1) model with DeepGP in each level ◻ Linear regression in multi-fidelity ◻
AR(1) model with non-linear interaction between levels ◻ neural network

The model came at what cost
◻ No more cost ◻ Computation cost increase ◻ the uncertainty is not computed
◻ Uncertainty increase

The covariance function is
◻ null ◻ never negative ◻ do not exist ◻ not explicit

I will use this model
◻ never ◻ always ◻ after all the others
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Deep Multi-Fidelity Conclusion

Models :

Gaussian process regression

CoKriging

Autoregressive model for multi-fidelity

Deep Gaussian Process surrogate model

Neural network for multi-fidelity

Conclusion
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Merci pour votre attention.
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