Black-box optimization with hidden constraints

Delphine Sinoquet* and Sébastien Le Digabel** joint work with Morgane Menz* and Christophe Tribes**

* IFP Énergies Nouvelles** GERAD, Polytechnique Montréal

GERA

POLYTECHNIQUE Montréal

CONTEXT: ROBUST / RELIABLE CONCEPTION OF COMPLEX SYSTEMS

Applications in conception

- > Offshore wind turbines: reliability regarding environmental conditions (*e.g.* wind, wave)
- Electrical machines: robustness w.r.t. design parameter dispersions (manufactoring), variability of component characteristics (*e.g.* electromagnetic properties of magnets), ...

phD thesis of A. Reyes Reyes robust design of electrical engines

HIDDEN CONSTRAINTS IN OPTIMIZATION

Crashes or instabilities of the black-box simulator *e.g.* due to convergence issues
 Design domain ≠ validation domain of the simulator
 Often, simulation failures are computationally expensive
 And they make the optimization convergence tricky

Learn hidden constraint from a limited number of "costly" simulations
 Avoid non feasible areas

HIDDEN CONSTRAINTS IN OPTIMIZATION

Crashes or instabilities of the black-box simulator *e.g.* due to convergence issues
 Design domain ≠ validation domain of the simulator
 Often, simulation failures are computationally expensive
 And they make the optimization convergence tricky

→ Learn hidden constraint from a limited number of "costly" simulations

→ Use Gaussian Process Classifier and Archissur active learning procedure (previous talk)

→Avoid non feasible areas

→ Coupling GPC learning and optimization procedure

BIBLIOGRAPHY OVERVIEW

A few studies on **surrogate-based optimization** coupled with a classifier to learn hidden constraints

- Sacher et al, 2018, A classification approach to efficient global optimization in presence of noncomputable domains
- Müller and Day, 2019, Surrogate optimization of computationally expensive black-box problems with hidden constraints
- Bussemaker et al., 2024, Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints
 - Next talk by Nathalie Bartoli

A first study on **direct search method MADS**

• C. Audet et al., 2020, Binary unrelaxable and hidden constraints in blackbox optimization

→ Design strategies based on GPC/Archissur for various optimizers

REMINDER: GAUSSIAN PROCESS CLASSIFIER

The GPC model allows to predict the probability of non-failure of a simulation

 $p_n(x) = \mathbb{P}[Simulation(x) \neq NaN | \mathcal{X}_n, \mathcal{Y}_n]$

Blue : feasible simulated points Red : non-feasible simulated points

REMINDER: ACTIVE LEARNING BY ARCHISSUR

Blue : current feasible simulated points Red : current non-feasible simulated points Green : new point to be simulated (Archissur)

OUTLINE

• Strategies to handle hidden constraints in optimization

Coupling with various optimization methods

- Mesh Adaptive Direct Search (NOMAD)
- Trust Region Derivative Free optimization method (SQA)
- Bayesian Optimization

• Application to a calibration problem

Naïve approach

In case of a simulator crash: replace the NaN outputs by large « surrogate » values

• i.e. maximal value of the objective functions associated with closest points in order to avoid a further exploration of this "risky" area

Our first proposal

- Learn (and update) a GPC model from available simulations during the optimization iterations $\hat{p}_n(x)$: probability of simulation success at iteration n
- Prior constraint : do not simulate the point in case of a high probability of crash $\hat{p}_n(x) < \frac{1}{2}$
 - → save some simulations in risky regions predicted by the GPC classifier

Our second proposal

- Learn (and update) a GPC model from available simulations during the optimization iterations $\rightarrow \hat{p}_n(x)$: probability of simulation success at iteration n
- Additional constraint on $\hat{p}_n(x)$ (cheap constraint to evaluate) $\hat{p}_n(x) < \frac{1}{2}$
 - → additional constraint to avoid the *risky* regions

Our third proposal

- Learn (and update) a GPC model from available simulations during the optimization iterations
 - → $\hat{p}_n(x)$: probability of simulation success at iteration n
- Additional constraint on $\hat{p}_n(x)$ updated with GPC model improvement steps (Archissur points) when close to convergence and the current iterate is close to infeasible set (points of 2 classes around current iterate)
 - → additional constraint to avoid the *risky* regions
 - → additional simulations to improve the GPC classifier (model improvement steps)

OUTLINE

• Strategies to handle hidden constraints in optimization

Coupling with various optimization methods

- Mesh Adaptive Direct Search (NOMAD)
- Trust Region Derivative Free optimization method (SQA)
- Bayesian Optimization

• Application to a calibration problem

THE MADS ALGORITHM

4 © | 2021 IFPEN The MADS algorithm [Audet and Dennis, Jr., 2006] (unconstrained version)

MADS: ILLUSTRATION IN 2D

poll trial points={ t_1, t_2, t_3 } = { t_4, t_5, t_6 } = { t_7, t_8, t_9 }

NOMAD: GITHUB.COM/BBOPT/NOMAD

- C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]
- Standard C++. Runs on Linux, Mac OS X and Windows
- Parallel versions
- MATLAB versions; Multiple interfaces (Python, Julia, etc.)
- Open and free LGPL license
- Download at https://www.gerad.ca/nomad
- Support at nomad@gerad.ca

Related articles in TOMS [Le Digabel, 2011] and [Audet et al., 2022]

17 © | 2021 IFPEN

GPC IN MADS SEARCH

18 © | 20

GPC IN MADS SEARCH (WITH ARCHISSUR)

GPC IN MADS POLL

20 © | 2021 IFPEN

RESULTS: MADS WITH OR WITHOUT GPC (NO ARCHISSUR)

• Data profiles:

- 7 analytical problems
- 10 runs for each problem (different seeds)

OUTLINE

• Strategies to handle hidden constraints in optimization

Coupling with various optimization methods

- Mesh Adaptive Direct Search (NOMAD)
- Trust Region Derivative Free optimization method (SQA)
- Bayesian Optimization

• Application to a calibration problem

A DERIVATIVE FREE TRUST REGION OPTIMIZATION METHOD

SQA : Sequential Quadratic Approximation [Langouët, 2011]

= extension of NEWUOA [Powell, 2007] to constrained optimization

$$\min_{x} f(x)$$

s.t.
$$\begin{cases} l \le x \le u \\ C_{DB}(x) \le 0 \\ C_{DF}(x) \le 0 \end{cases}$$
 derivative based (cheap) constraints

• Constrained sub-problems in the trust region of size Δ_k

$$\min_{\|d\| \le \Delta_k} Q_k(d) \quad \text{s.t.} \begin{cases} C_{DB}(x_k + d) \le 0\\ Q_{C_{DF_k}}(d) \le 0 \end{cases}$$

Q_k and Q<sub>C_{DFk} are quadratic interpolation models of f and C_{DF} (black-box outputs)
 Subproblems solved by a SQP method
</sub>

SQA WITH HIDDEN CONSTRAINTS

- Prior constraint and NA replaced by maximal objective function value among simulations <u>inside the</u> <u>trust region</u>
- 2) Constraint $\hat{p}_n(x) \ge \frac{1}{2}$ is introduced as an <u>explicit constraint</u> (with derivatives) considered in the subproblems solved by SQP
- 3) Additional "Archissur" points

From the current GPC model learnt from the available simulations, add points that minimize the *future* uncertainty on the feasible set [Menz et al, 2023]

- when the trust region size becomes small (close to convergence)
- and when the current iterate is close to the infeasible region (points of 2 classes in the current trust region)

NUMERICAL TESTS

Local Minimum

Inspired from Sacher et al, 2018

Inspired from Sasena, 2002

TEST METHODOLOGY

Run 10 optimizations for each example

- 1) 10 initial points for SQA and 10 LHS design of experiments of size 6 for EGO
- 2) 10 LHS design of experiments of size 6 for both methods but SQA starts with the best point as its initial point

Red circles indicate the best feasible point used as initial point of SQA

COMPARISON OF THE VARIANTS OF SQA

Data profiles [More and Wild, 2009] for various accuracies on the objective function

SQA WITH ADDITIONAL CONSTRAINT ON GPC (SECOND EXAMPLE)

Feasibility probability 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

SQA WITH ADDITIONAL CONSTRAINT ON GPC + ARCHISSUR POINTS (SECOND EXAMPLE)

OUTLINE

• Strategies to handle hidden constraints in optimization

Coupling with various optimization methods

- Mesh Adaptive Direct Search (NOMAD)
- Trust Region Derivative Free optimization method (SQA)
- Bayesian Optimization

• Application to a calibration problem

A BAYESIAN OPTIMIZATION METHOD

EGO [Jones et al., 1998] DiceOptim [Roustant et al., 2012]

Optimization based on Gaussian Process (GP)

- Assumption: the (blackbox) objective function f is a realization of a GP $Z \sim \mathcal{N}(\mu(x), k(x, x))$
- Z_n is the GP conditionned to the available simulations

A BAYESIAN OPTIMIZATION METHOD

EGO [Jones et al., 1998] DiceOptim [Roustant et al., 2012]

Optimization based on Gaussian Process (GP)

At each iteration, a new simulation point x_{n+1} is chosen as $x_{n+1} = \arg \max_{x} (\mathbb{E}[I(x)])$

with the infill criterion

 $\mathbb{E}[I(x)] = \mathbb{E}[max(f_{min} - Z_n(x), 0)]$

 f_{min} is the current minimal simulated value of f

El criterion is a trade-off between exploration/exploitation

Source: R. Le Riche

EGO WITH HIDDEN CONSTRAINTS

1) Prior constraint and NA replaced by GP prediction: mean + 3σ

2) Constraint introduced in the infill criterion: $\hat{p}_n(x)EI(x)$

COMPARISON OF THE VARIANTS OF BAYESIAN OPTIMIZATION (EGO)

Data profiles [More and Wild, 2009] for various accuracies on the objective function

BAYESIAN OPTIMIZATION ON FIRST EXAMPLE

EGO WITH SURROGATE VALUES FOR NAN (SECOND EXAMPLE)

Initial DOE 10

Initial points

All iterates

EGO WITH ADDITIONAL CONSTRAINT ON GPC (SECOND EXAMPLE)

Initial DOE 10

COMPARISON OF EGO AND SQA (BEST VARIANTS)

Data profiles [More and Wild, 2009] for various accuracies on the objective function

OUTLINE

• Strategies to handle hidden constraints in optimization

Coupling with various optimization methods

- Mesh Adaptive Direct Search (NOMAD)
- Trust Region Derivative Free optimization method (SQA)
- Bayesian Optimization

• Application to a calibration problem

CALIBRATION OF THERMODYNAMIC MODELS

ENRTL* model calibration for a mixture of water and methanol with partial pressure experimental data with 4 parameters

• Numerical instabilities in the model produce NaN outputs

* ENRTL : Electrolyte Non-Random Two Liquid

CALIBRATION OF THERMODYNAMIC MODELS (4 PARAMETERS) Results with SQA (10 initial points)

Data profile - OF accuracy=0.01 for SQAthermoTer_W_HAC_KAC_5

simulations / nd

SQA - standard
 SQA No GPC Model - surrogate values
 SQA GPC - Prior constraint
 SQA GPC - additional constraint
 SQA GPC - additional constraint + Archissur

simulations / nd

- Active learning Archissur method has a good potential to learn disconnected feasible sets defined by hidden constraints [Menz et al, 2022, <u>hal-03848238</u>]
- The GPC model of hidden constraint is useful in the optimization context to help and speed-up convergence
- Coupling Archissur with optimization: use not only the GPC model but also the active learning strategy
 increased accuracy

Refine the heuristics for tuning the different learning strategies in the optimization process
 High dimensional problems

PERSPECTIVES

Refine the heuristics for tuning the different learning strategies in the optimization process
 High dimensional problems

• A challenging application in progress: robust design of a wind turbine

PERSPECTIVES

Refine the heuristics for tuning the different learning strategies in the optimization process
 High dimensional problems

• A challenging application in progress: robust design of a wind turbine

Tower design with minimal mass that satisfies a reliability constraint for various wind conditions $\min_{x} m(x) \quad \text{s.t. } \mathbb{P}(x) := \mathbb{P}_{U}[d(x, U) \le d_{max}] \ge 0.95$

Simulations success/ failure for two different designs x_c and a sample of U

 $\exists (x_c, u_c) / d(x_c, u_c) = NaN$

CODES AND PUBLICATION

• Publication on Archissur method : Menz et al, 2023, <u>hal-03848238</u>

Opensource codes

• GPC model is available in a R opensource package : <u>10.32614/CRAN.package.GPCsign</u>

• Package Archissur will also be published soon on CRAN website

Integration in opensource platform LAGUN is also planned

<u>https://gitlab.com/drti/lagun</u> Lagun is a R/Shiny platform providing a user-friendly interface to methods and algorithms dedicated to data exploration, optimization and uncertainty quantification

Partial funding by the french research agency anr[®] S^{MOURAI}

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

delphine.sinoquet@ifpen.fr

