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CONTEXT: ROBUST / RELIABLE CONCEPTION OF COMPLEX SYSTEMS

Uncertain variables
u

<

Complex and time

f(x,u) Quantities

g(x,u) ofinterest

minimize/maximize
constrain

consuming black-box
simulator

« Controllable » variables
e x mp
= design variables

Applications in conception
» Offshore wind turbines: reliability regarding environmental conditions (e.g. wind, wave)

» Electrical machines: robustness w.r.t. design parameter dispersions (manufactoring),
variability of component characteristics (e.g. electromagnetic properties of magnets), ...

phD thesis of R El Amri
hSCR depollution system

phD thesis of A. Reyes Reyes
phD thesis of A. Cousin, A. Hirvoas, C. Duhamel robust design of electrical engines ¥ v
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I HIDDEN CONSTRAINTS IN OPTIMIZATION

@ Crashes or instabilities of the black-box simulator e.g. due to convergence issues
@ Design domain # validation domain of the simulator

@ Often, simulation failures are computationally expensive

@ And they make the optimization convergence tricky

=>» Learn hidden constraint from a limited number of “costly” simulations

=» Avoid non feasible areas
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I HIDDEN CONSTRAINTS IN OPTIMIZATION

@ Crashes or instabilities of the black-box simulator e.g. due to convergence issues
@ Design domain # validation domain of the simulator

@ Often, simulation failures are computationally expensive

@ And they make the optimization convergence tricky

=>» Learn hidden constraint from a limited number of “costly” simulations
=>» Use Gaussian Process Classifier and Archissur active learning procedure (previous talk)

=» Avoid non feasible areas
=» Coupling GPC learning and optimization procedure
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I BIBLIOGRAPHY OVERVIEW

A few studies on surrogate-based optimization coupled with a classifier to learn hidden constraints

e Sacher et al, 2018, A classification approach to efficient global optimization in presence of non-
computable domains

 Miuller and Day, 2019, Surrogate optimization of computationally expensive black-box problems with
hidden constraints

* Bussemaker et al., 2024, Surrogate-Based Optimization of System Architectures Subject to Hidden
Constraints

» Next talk by Nathalie Bartoli

A first study on direct search method MADS
e C. Audet et al., 2020, Binary unrelaxable and hidden constraints in blackbox optimization

=>» Design strategies based on GPC/Archissur for various optimizers
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I REMINDER: GAUSSIAN PROCESS CLASSIFIER

~

The GPC model allows to predict the probability of non-failure of a simulation

p,(x) = P[Simulation(x) # NaN |X,,, Y,,]

1.0

08

08

04

Blue : feasible simulated points
Red : non-feasible simulated points

02

0.0 02 04 06 08 1.0
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REMINDER: ACTIVE LEARNING BY ARCHISSUR

Pn map - iteration 0 Pn map - iteration 15 Pn map - iteration 60 Pn map - iteration 80

= Real contour

Blue : current feasible simulated points
Red : current non-feasible simulated points
Green : new point to be simulated (Archissur)
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I OUTLINE
@ Strategies to handle hidden constraints in optimization

@ Coupling with various optimization methods
@ Mesh Adaptive Direct Search (NOMAD)
@ Trust Region Derivative Free optimization method (SQA)
@ Bayesian Optimization

@ Application to a calibration problem
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I OPTIMIZING WITH HIDDEN CONSTRAINTS

@ Naive approach
In case of a simulator crash: replace the NaN outputs by large « surrogate » values

@ j.e. maximal value of the objective functions associated with closest points
in order to avoid a further exploration of this “risky” area

Optimizer X" : BBox
min f(x) simulator

A

if f(x"*1) = NaN
flx™) =
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I OPTIMIZING WITH HIDDEN CONSTRAINTS

@ Our first proposal
@ Learn (and update) a GPC model from available simulations during the optimization iterations

=> p,,(x): probability of simulation success at iteration n

@ Prior constraint : do not simulate the point in case of a high probability of crash p,,(x) < %

=» save some simulations in risky regions predicted by the GPC classifier

Initial GPC: Py | Optimizer xH 5 > DN\ YES BBox
DoE min f (x) T simulator
NO f(xn+1)
xn+1 = Jsurrogate
fer [ surrosat Update GPC
Dn+1
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I OPTIMIZING WITH HIDDEN CONSTRAINTS

@ Our second proposal
@ Learn (and update) a GPC model from available simulations during the optimization iterations

- P, (x): probability of simulation success at iteration n

. : . . . 1
@ Additional constraint on p,,(x) (cheap constraint to evaluate) p,,(x) < E

=» additional constraint to avoid the risky regions

Initial | GPC: po Opti;r(\iier X" BBox
- min X .
DoE 5t () 2% simulator
]c(xn+1)
Update GPC
ﬁn+1
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I OPTIMIZING WITH HIDDEN CONSTRAINTS

@ Our third proposal

@ Learn (and update) a GPC model from available simulations during the optimization iterations
=> p,,(x): probability of simulation success at iteration n

@ Additional constraint on p,,(x) updated with GPC model improvement steps (Archissur points)
when close to convergence and the current iterate is close to infeasible set (points of 2 classes
around current iterate)

=» additional constraint to avoid the risky regions
=» additional simulations to improve the GPC classifier (model improvement steps)

. xta
Initial | GPC: Do Optimizer — BBox
DoE min f0) 1 |77 aqd 7T simulator
Pn+1(x) = 5 | ‘ :
. | Archissur” :— -
| _ points _ _archi f (xopeim)> f (Xirchi)

Update GPC
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I OUTLINE
@ Strategies to handle hidden constraints in optimization

@ Coupling with various optimization methods
@ Mesh Adaptive Direct Search (NOMAD)
@ Trust Region Derivative Free optimization method (SQA)
@ Bayesian Optimization

@ Application to a calibration problem
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I THE MADS ALGORITHM

[0] Initializations (x, 6°)
1] Iteration &

[1.1] Search (flexible part)

select a finite number of mesh points
evaluate candidates opportunistically

[1.2] Poll (if Search failed) (“rigid” part)

construct poll set P, = {x; +dé*d :d € D,}
sort(Py)

evaluate candidates opportunistically

[2] Updates

if success

X1 $— success point
increase §*

else
Xk+1 < Xk
decrease 6%

k < k + 1, stop or go to [1]

14 © | 2021 1Fpen The MADS algorithm [Audet and Dennis, Jr., 2006] (unconstrained version)



I MADS: ILLUSTRATION IN 2D

5k=Ak=1 5k+1:1/4 5k+2:1/16
AFTL = 1/2 AFT2 =1/4

./ 7 LEEN
ta
.t5
ot2
p0|| trial points:{tl, to, tg} = {t4, ts, t6} = {t7, ts, tg}
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I NOMAD: GITHUB.COM/BBOPT/NOMAD
C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]

Standard C++. Runs on Linux, Mac OS X and Windows
Parallel versions

MATLAB versions; Multiple interfaces (Python, Julia, etc.)
Open and free — LGPL license

Download at https://www.gerad.ca/nomad

vV v v v v v V¥

Support at nomad@gerad.ca

[ENEEENES N N NN

» Related articles in TOMS [Le Digabel, 2011] a
and [Audet et al., 2022] A

B R )
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GPC IN MADS
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GPC IN MADS SEARCH

Iteration &
e
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GPC IN MADS SEARCH (WITH ARCHISSUR)

Search
For each il
¥, In (M)
Fualm:
¥ ) Al
Iteration k | | Search | |y M; &= ¥y Tre " search
1 method M. " Archissur 4., 1 GFC | -&nuthu-:l.ﬁl
; ' dome
'Iru"r": .
r:r_r - Tris:
BB
Ptj'} Fulm-
AUCress
I'n=
T T
Increment & Update mesh | | Poll

and incumbent
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I GPC IN MADS POLL
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Fercentage of problems sobeed

1(u
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RESULTS: MADS WITH OR WITHOUT GPC (NO ARCHISSUR)
@ Data profiles:

@ 7 analytical problems

@ 10 runs for each problem (different seeds)

Data profile on 7 phs and 10 seeds with + = 10!

T
|

f
J

0 20 40 60 80 1000 13D

Number of {n + 1) evaluations

140

160

—— MOMAD: Mede With QPO
MOMAD: Meds witheui GFC
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Percentage of problems sobved

10ay

Data profile on T pbs and 10 seeds with + = 103

Data profile on 7 pbe and 10 seeds with ¢ = 10"

10ay
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I OUTLINE
@ Strategies to handle hidden constraints in optimization

@ Coupling with various optimization methods
@ Mesh Adaptive Direct Search (NOMAD)
@ Trust Region Derivative Free optimization method (SQA)
@ Bayesian Optimization

@ Application to a calibration problem
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I A DERIVATIVE FREE TRUST REGION OPTIMIZATION METHOD

SQA : Sequential Quadratic Approximation [Langouét, 2011]
= extension of NEWUOA [Powell, 2007] to constrained optimization

min f (x)
X
[<x<u
st. { Cpg(x) <0  derivative based (cheap) constraints
Cpr(x) < 0 black—box (derivative free) constraints

@ Constrained sub-problems in the trust region of size A

] CDB (Xk + d) < 0
||Crlr||1gAlk Quld) st QCDFk (d)=<0

@ (@ and QCDFk are quadratic interpolation models of f and Cpr (black-box outputs)

@ Subproblems solved by a SQP method
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SQAWITH HIDDEN CONSTRAINTS

1) Prior constraint and NA replaced by maximal objective function value among simulations inside the
trust region

2) Constraint p,,(x) > % is introduced as an explicit constraint (with derivatives)
considered in the subproblems solved by SQP

3) Additional “Archissur” points
From the current GPC model learnt from the available simulations, add points that minimize the future
uncertainty on the feasible set [Menz et al, 2023]

* when the trust region size becomes small (close to convergence)

 and when the current iterate is close to the infeasible region (points of 2 classes in the current trust region)
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NUMERICAL TESTS

Global Minimum

1)

Local Minimum

Inspired from Sacher et al, 2018 Inspired from Sasena, 2002
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I TEST METHODOLOGY

Run 10 optimizations for each example

1) 10 initial points for SQA and 10 LHS design of experiments of size 6 for EGO

2) 10 LHS design of experiments of size 6 for both methods but SQA starts with the best
point as its initial point

Red circles indicate the best feasible point
used as initial point of SQA
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Data profiles [More and Wild, 2009] for various accuracies on the objective function

COMPARISON OF THE VARIANTS OF SQA

T=10"2

=103

1.0

(]

1.0

]

40 G0 a0 100

# simulations / nd

—&— S04 Mo GPC Model - surrogate values
—— S04 GPC - Prior constraint
—*— 3504 GPC - additional constraint
S04 GPC - additional constraint + Archissur
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40 G0 a0 100

# simulations / nd

—&— S04 Mo GPC Model - surrogate values
—— 304 GPC - Prior constraint
—*— 30A GPC - additional constraint
S04 GPC - additional constraint + Archissur

40 G0 a0 100

# simulations / nd

—&— S04 Mo GPC Model - surrogate values
—— S0A GPC - Prior constraint
—*— 3S50A GPC - additional constraint
S0A GPC - additional constraint + Archissur




I SQAWITH ADDITIONAL CONSTRAINT ON GPC (SECOND EXAMPLE)

Feasibility probability Objective Function

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8
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I SQAWITH ADDITIONAL CONSTRAINT ON GPC + ARCHISSUR POINTS

(SECOND EXAMPLE)
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I OUTLINE
@ Strategies to handle hidden constraints in optimization

@ Coupling with various optimization methods
@ Mesh Adaptive Direct Search (NOMAD)
@ Trust Region Derivative Free optimization method (SQA)
@ Bayesian Optimization

@ Application to a calibration problem
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I A BAYESIAN OPTIMIZATION METHOD

EGO [Jones et al., 1998]
DiceOptim [Roustant et al., 2012]

Optimization based on Gaussian Process (GP)

* Assumption: the (blackbox) objective function f is a
realization of a GP Z~WN (u(x), k(x, x))

* Z, isthe GP conditionned to the available simulations

31 o | 2021 IFPEN
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A BAYESIAN OPTIMIZATION METHOD

EGO [Jones et al., 1998]
DiceOptim [Roustant et al., 2012]

Optimization based on Gaussian Process (GP)

At each iteration, a new simulation point x,,, 1 is chosen as
Xnty = argmax(E[1(x)])

with the infill criterion
E[1(x)] = Elmax(fipin — Z,(x),0)]

fmin is the current minimal simulated value of f

El criterion is a trade-off between exploration/exploitation

32 o© | 2021 IFPEN
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Iteration 1

Iteration 5

Source: R. Le Riche



I EGO WITH HIDDEN CONSTRAINTS

1) Prior constraint and NA replaced by GP prediction: mean + 30

2) Constraint introduced in the infill criterion: p,,(x)EI(x)
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COMPARISON OF THE VARIANTS OF BAYESIAN OPTIMIZATION (EGO)

Data profiles [More and Wild, 2009] for various accuracies on the objective function

T=10"2

=103

0z 04 0.6 0.8 1.0

0.0

02 04 0.6 0.8 1.0

0.0
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—&— EGO - surrogate values
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# simulations / nd

—&— EGO- surrogate values
—+— EGO - additional constraint

0 20 40 60 a0 100

# simulations / nd

—&— EGO - surrogate values
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I BAYESIAN OPTIMIZATION ON FIRST EXAMPLE

Obijective function Feasibility probablity Obijective function

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 100 0.2 04 06 0.8 1.0

with surrogate values for NaN Y
with additional constraint on GPC
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I EGO WITH SURROGATE VALUES FOR NAN (SECOND EXAMPLE)

Initial DOE 10

Initial points All iterates
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I EGO WITH ADDITIONAL CONSTRAINT ON GPC (SECOND EXAMPLE)

Initial DOE 10

Feasibility nrobablitv Obiective function

1.0

0.8

06

04

0.2

0.0

0.0 0.2 0.4 0.6
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COMPARISON OF EGO AND SQA (BEST VARIANTS)

Data profiles [More and Wild, 2009] for various accuracies on the objective function

T=10"2

=103

1.0

(]

1.0

0.8

0 20 40 60 a0 100

# simulations / nd

—&— S04 GPC - additional constraint + Archissur
—+— EGOQ - additional constraint
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—&— S04 GPC - additional constraint + Archissur
—+— EGOQ - additional constraint
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I OUTLINE
@ Strategies to handle hidden constraints in optimization

@ Coupling with various optimization methods
@ Mesh Adaptive Direct Search (NOMAD)
@ Trust Region Derivative Free optimization method (SQA)
@ Bayesian Optimization

@ Application to a calibration problem
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CALIBRATION OF THERMODYNAMIC MODELS

@ ENRTL* model calibration for a mixture of water and methanol with partial pressure
experimental data with 4 parameters

@ Numerical instabilities in the model produce NaN outputs

pari par2
0.58 - 0.66—

pard Status

0.57 -
0.56 - 0;94/_
0.55 -
0.54 -
0.53 -
0.52 -
05140

0.5

0.49

0.45 -

0.47

0.46 -

0.45

0.44 - 0.5~

* ENRTL : Electrolyte Non-Random Two Liquid
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CALIBRATION OF THERMODYNAMIC MODELS (4 PARAMETERS)
Results with SQA (10 initial points)

Data profile - OF accuracy=0.01

for SQAthermoTer W HAC KAC 5

1.0

Data profile - OF accuracy=1e-05
for SQAthermoTer W HAC KAC 5

20 30 40 50 G0
# simulations / nd
—&— S0A - standard
204 No GPC Model - surrogate values
—*— S0A GPC - Prior constraint
S04 GPC - additional constraint
—&— S0A GPC - additional constraint + Archissur

20 30 40 50 60

# simulations / nd

S04 - standard

204 No GPC Model - surrogate values

S04 GPC - Prior constraint

S04 GPC - additional constraint

S0A GPC - additional constraint + Archissur
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I CONCLUSIONS

@ Active learning Archissur method has a good potential to learn disconnected feasible sets
defined by hidden constraints [Menz et al, 2022, hal-03848238]

@ The GPC model of hidden constraint is useful in the optimization context to help and speed-up
convergence

@ Coupling Archissur with optimization: use not only the GPC model but also the active learning
strategy =@ increased accuracy
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https://hal.science/hal-03848238

I PERSPECTIVES

@ Refine the heuristics for tuning the different learning strategies in the optimization process

@ High dimensional problems

413 © | 2021 IFPEN
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PERSPECTIVES

@ Refine the heuristics for tuning the different learning strategies in the optimization process

@ High dimensional problems
@ A challenging application in progress: robust design of a wind turbine

ﬂ)wer design with minimal mass that satisfies a reliability constraint for various wind conditioﬁ

Environmental conditions: U
*  Mean wind speed (m/s)

¢ Turbulence intensity (%)
*  Nacelle-yaw angle (deg)

minm(x) s.t. P(x):=Pyld(x,U) < dpqe] = 0.95
X

Zr, tower axis

Xr{tip)

Tip-mass c.m.

Nominal wind direction

Typical section
Damage
T

Y1, side-side axis

X, fore-aft axis

Design variables: x
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PERSPECTIVES

@ Refine the heuristics for tuning the different learning strategies in the optimization process

@ High dimensional problems
@ A challenging application in progress: robust design of a wind turbine

ﬂ)wer design with minimal mass that satisfies a reliability constraint for various wind conditioN
minm(x) s.t. P(x):=Pyld(x,U) < dpqe] = 0.95
X

Simulations / failure for two different designs x. and a sample of U

Xc

3('X:Ci uc) / d(xC) uC) — NaN




I CODES AND PUBLICATION

@ Publication on Archissur method : Menz et al, 2023, hal-03848238

@ Opensource codes
@ GPC model is available in a R opensource package : 10.32614/CRAN.package.GPCsign
@ Package Archissur will also be published soon on CRAN website

@ Integration in opensource platform LAGUN is also planned
https://gitlab.com/drti/lagun
Lagun is a R/Shiny platform providing a user-friendly interface to methods and algorithms
dedicated to data exploration, optimization and uncertainty quantification

@ Partial funding by the french research agency anr- SQVIOURAI
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