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CONTEXT: ROBUST / RELIABLE CONCEPTION OF COMPLEX SYSTEMS

Complex and time 
consuming black-box 

simulator
𝑥

𝑢

𝑓 𝑥, 𝑢
𝑔 𝑥, 𝑢

Uncertain variables

Quantities
of interest

Applications in conception
➢Offshore wind turbines: reliability regarding environmental conditions (e.g. wind, wave)

➢Electrical machines: robustness w.r.t. design parameter dispersions (manufactoring), 
variability of component characteristics (e.g. electromagnetic properties of magnets), … 

phD thesis of A. Cousin, A. Hirvoas, C. Duhamel

phD thesis of A. Reyes Reyes
robust design of electrical engines

phD thesis of R El Amri
SCR depollution system

« Controllable » variables

= design variables
minimize/maximize

constrain
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HIDDEN CONSTRAINTS IN OPTIMIZATION

Crashes or instabilities of the black-box simulator e.g. due to convergence issues
Design domain ≠ validation domain of the simulator

Often, simulation failures are computationally expensive

And they make the optimization convergence tricky

➔Learn hidden constraint from a limited number of “costly” simulations

➔Avoid non feasible areas 
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HIDDEN CONSTRAINTS IN OPTIMIZATION

Crashes or instabilities of the black-box simulator e.g. due to convergence issues
Design domain ≠ validation domain of the simulator

Often, simulation failures are computationally expensive

And they make the optimization convergence tricky

➔Learn hidden constraint from a limited number of “costly” simulations
➔Use Gaussian Process Classifier and Archissur active learning procedure (previous talk)

➔Avoid non feasible areas 
➔Coupling GPC learning and optimization procedure
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BIBLIOGRAPHY OVERVIEW

A few studies on surrogate-based optimization coupled with a classifier to learn hidden constraints

• Sacher et al, 2018, A classification approach to efficient global optimization in presence of non-
computable domains

• Müller and Day, 2019, Surrogate optimization of computationally expensive black-box problems with 
hidden constraints

• Bussemaker et al., 2024, Surrogate-Based Optimization of System Architectures Subject to Hidden
Constraints
➢Next talk by Nathalie Bartoli

A first study on direct search method MADS 

• C. Audet et al., 2020, Binary unrelaxable and hidden constraints in blackbox optimization

➔Design strategies based on GPC/Archissur for various optimizers
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REMINDER: GAUSSIAN PROCESS CLASSIFIER

The GPC model allows to predict the probability of non-failure of a simulation

𝑝𝑛 𝑥 = ℙ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑥 ≠ 𝑁𝑎𝑁 |𝒳𝑛, 𝒴𝑛

Blue : feasible simulated points
Red : non-feasible simulated points
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REMINDER: ACTIVE LEARNING BY ARCHISSUR

Blue : current feasible simulated points
Red : current non-feasible simulated points
Green : new point to be simulated (Archissur)
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OUTLINE

Strategies to handle hidden constraints in optimization

Coupling with various optimization methods
Mesh Adaptive Direct Search (NOMAD)

Trust Region Derivative Free optimization method (SQA)

Bayesian Optimization

Application to a calibration problem
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OPTIMIZING WITH HIDDEN CONSTRAINTS

Naïve approach

In case of a simulator crash: replace the NaN outputs by large « surrogate » values

i.e. maximal value of the objective functions associated with closest points 

in order to avoid a further exploration of this “risky” area

𝑥𝑛+1
Optimizer

min 𝑓 𝑥

BBox 
simulator

𝑖𝑓 𝑓 𝑥𝑛+1 = 𝑁𝑎𝑁

𝑓 𝑥𝑛+1 =
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OPTIMIZING WITH HIDDEN CONSTRAINTS

Our first proposal

Learn (and update) a GPC model from available simulations during the optimization iterations 

➔ Ƹ𝑝𝑛 𝑥 : probability of simulation success at iteration 𝑛

Prior constraint : do not simulate the point in case of a high probability of crash Ƹ𝑝𝑛 𝑥 <
1

2

➔ save some simulations in risky regions predicted by the GPC classifier 

𝑥𝑛+1
Optimizer

min 𝑓 𝑥

BBox 
simulator

Initial 
DoE

GPC: Ƹ𝑝0

Update GPC
Ƹ𝑝𝑛+1

If Ƹ𝑝𝑛+1 ≥
1

2

𝑓 𝑥𝑛+1

YES

𝑓 𝑥𝑛+1 = 𝑓𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒

NO
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OPTIMIZING WITH HIDDEN CONSTRAINTS

Our second proposal

Learn (and update) a GPC model from available simulations during the optimization iterations 

→ Ƹ𝑝𝑛 𝑥 : probability of simulation success at iteration 𝑛

Additional constraint on ෝ𝒑𝒏 𝒙  (cheap constraint to evaluate) Ƹ𝑝𝑛 𝑥 <
1

2

➔ additional constraint to avoid the risky regions 

𝑥𝑛+1Optimizer
min 𝑓 𝑥

Ƹ𝑝𝑛+1(𝑥) ≥
1

2

BBox 
simulator

Initial 
DoE

GPC: Ƹ𝑝0

Update GPC
Ƹ𝑝𝑛+1

𝑓 𝑥𝑛+1
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OPTIMIZING WITH HIDDEN CONSTRAINTS

Our third proposal

Learn (and update) a GPC model from available simulations during the optimization iterations 

➔ Ƹ𝑝𝑛 𝑥 : probability of simulation success at iteration 𝑛

Additional constraint on ෝ𝒑𝒏 𝒙   updated with GPC model improvement steps (Archissur points)

when close to convergence and the current iterate is close to infeasible set (points of 2 classes 

around current iterate)

➔ additional constraint to avoid the risky regions 

➔ additional simulations to improve the GPC classifier (model improvement steps)

 
𝑥𝑜𝑝𝑡𝑖𝑚

𝑛+1

Optimizer
min 𝑓 𝑥

Ƹ𝑝𝑛+1(𝑥) ≥
1

2

BBox 
simulator

Initial 
DoE

GPC: Ƹ𝑝0

Update GPC
Ƹ𝑝𝑛+1

𝑓 𝑥𝑜𝑝𝑡𝑖𝑚
𝑛+1 , 𝑓 𝑥𝐴𝑟𝑐ℎ𝑖

𝑛+1

Add 
“Archissur” 

points 𝑥𝐴𝑟𝑐ℎ𝑖
𝑛+1
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OUTLINE

Strategies to handle hidden constraints in optimization

Coupling with various optimization methods
Mesh Adaptive Direct Search (NOMAD)

Trust Region Derivative Free optimization method (SQA)

Bayesian Optimization

Application to a calibration problem
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THE MADS ALGORITHM
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MADS: ILLUSTRATION IN 2D
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NOMAD: GITHUB.COM/BBOPT/NOMAD
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GPC IN MADS
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GPC IN MADS SEARCH
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GPC IN MADS SEARCH (WITH ARCHISSUR)
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GPC IN MADS POLL
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RESULTS:  MADS WITH OR WITHOUT GPC (NO ARCHISSUR)

Data profiles:
 7 analytical problems
10 runs for each problem (different seeds)
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OUTLINE

Strategies to handle hidden constraints in optimization

Coupling with various optimization methods
Mesh Adaptive Direct Search (NOMAD)

Trust Region Derivative Free optimization method (SQA)

Bayesian Optimization

Application to a calibration problem
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A DERIVATIVE FREE TRUST REGION OPTIMIZATION METHOD

SQA : Sequential Quadratic Approximation [Langouët, 2011]
  

= extension of NEWUOA [Powell, 2007] to constrained optimization

   

min
𝑥

𝑓(𝑥)

s.t. ቐ

𝑙 ≤ 𝑥 ≤ 𝑢
𝐶𝐷𝐵 𝑥 ≤ 0
𝐶𝐷𝐹(𝑥) ≤ 0

derivative based (cheap) constraints
black−box (derivative free) constraints

 Constrained sub-problems in the trust region of size Δ𝑘

min
𝑑 ≤Δ𝑘

𝑄𝑘 𝑑 s.t. ൝
𝐶𝐷𝐵 𝑥𝑘 + 𝑑 ≤ 0

𝑄𝐶𝐷𝐹𝑘
(𝑑) ≤ 0

 𝑄𝑘 and 𝑄𝐶𝐷𝐹𝑘
 are quadratic interpolation models of 𝑓 and 𝐶𝐷𝐹 (black-box outputs)

 Subproblems solved by a SQP method
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SQA WITH HIDDEN CONSTRAINTS

1) Prior constraint and NA replaced by maximal objective function value among simulations inside the 

trust region

2) Constraint ෝ𝒑𝒏 𝒙 ≥
𝟏

𝟐
  is introduced as an explicit constraint (with derivatives) 

considered in the subproblems solved by SQP

3) Additional “Archissur” points

From the current GPC model learnt from the available simulations, add points that minimize the future

uncertainty on the feasible set [Menz et al, 2023] 

• when the trust region size becomes small (close to convergence) 

• and when the current iterate is close to the infeasible region (points of 2 classes in the current trust region)
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NUMERICAL TESTS

Global Minimum

Local Minimum

Local Minimum

Global Minimum

Local Minimum

Inspired from Sacher et al, 2018 Inspired from Sasena, 2002

1) 2)
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TEST METHODOLOGY

Run 10 optimizations for each example

1) 10 initial points for SQA and 10 LHS design of experiments of size 6 for EGO 

2) 10 LHS design of experiments of size 6 for both methods but SQA starts with the best 
point as its initial point

Red circles indicate the best feasible point 
used as initial point of SQA
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COMPARISON OF THE VARIANTS OF SQA

Data profiles [More and Wild, 2009] for various accuracies on the objective function

𝝉 = 𝟏𝟎−𝟐 𝝉 = 𝟏𝟎−𝟑 𝝉 = 𝟏𝟎−𝟓



28 ©  |  2 0 2 1  I F P E N

SQA WITH ADDITIONAL CONSTRAINT ON GPC (SECOND EXAMPLE)

Feasibility probability Objective Function



29 ©  |  2 0 2 1  I F P E N

SQA WITH ADDITIONAL CONSTRAINT ON GPC + ARCHISSUR POINTS 
(SECOND EXAMPLE)

Feasibility probability Objective Function
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OUTLINE

Strategies to handle hidden constraints in optimization

Coupling with various optimization methods
Mesh Adaptive Direct Search (NOMAD)

Trust Region Derivative Free optimization method (SQA)

Bayesian Optimization

Application to a calibration problem
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A BAYESIAN OPTIMIZATION METHOD

EGO [Jones et al., 1998]
DiceOptim [Roustant et al., 2012]
  

Optimization based on Gaussian Process (GP) 

• Assumption: the (blackbox) objective function 𝑓 is a 
realization of a GP 𝑍~𝒩(𝜇(𝑥), 𝑘(𝑥, 𝑥))

• 𝑍𝑛 is the GP conditionned to the available simulations

The surrogate model is
መ𝑓 𝑥 = 𝜇(𝑥)

𝜇 𝑥 + 2𝜎(𝑥)

𝜇 𝑥 − 2𝜎(𝑥)

𝜎2 𝑥 = 𝑘(𝑥, 𝑥)
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A BAYESIAN OPTIMIZATION METHOD

EGO [Jones et al., 1998]
DiceOptim [Roustant et al., 2012]
  

Optimization based on Gaussian Process (GP) 

At each iteration, a new simulation point 𝑥𝑛+1 is chosen as

𝑥𝑛+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

𝔼 𝐼 𝑥

with the infill criterion

𝔼 𝐼 𝑥 = 𝔼 𝑚𝑎𝑥 𝑓𝑚𝑖𝑛 − 𝑍𝑛 𝑥 , 0

𝑓𝑚𝑖𝑛 is the current minimal simulated value of 𝑓

EI criterion is a trade-off between exploration/exploitation

Source: R. Le Riche

Iteration 0 Iteration 1

Iteration 2 Iteration 3

Iteration 4 Iteration 5

EI(𝑥)

𝜇(𝑥)

𝑓𝑚𝑖𝑛
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EGO WITH HIDDEN CONSTRAINTS

1) Prior constraint and NA replaced by GP prediction:   mean + 3𝜎

2) Constraint introduced in the infill criterion:  ෝ𝒑𝒏 𝒙 𝑬𝑰(𝒙)
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COMPARISON OF THE VARIANTS OF BAYESIAN OPTIMIZATION (EGO)

Data profiles [More and Wild, 2009] for various accuracies on the objective function

𝝉 = 𝟏𝟎−𝟐 𝝉 = 𝟏𝟎−𝟑 𝝉 = 𝟏𝟎−𝟓
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BAYESIAN OPTIMIZATION ON FIRST EXAMPLE

Feasibility probablity Objective functionObjective function

with additional constraint on GPC
with surrogate values for NaN
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EGO WITH SURROGATE VALUES FOR NAN (SECOND EXAMPLE)

Initial points All iterates

Initial DOE 10
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EGO WITH ADDITIONAL CONSTRAINT ON GPC (SECOND EXAMPLE)

Feasibility probablity Objective function

Initial DOE 10
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COMPARISON OF EGO AND SQA (BEST VARIANTS)

Data profiles [More and Wild, 2009] for various accuracies on the objective function

𝝉 = 𝟏𝟎−𝟐 𝝉 = 𝟏𝟎−𝟑 𝝉 = 𝟏𝟎−𝟓
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OUTLINE

Strategies to handle hidden constraints in optimization

Coupling with various optimization methods
Mesh Adaptive Direct Search (NOMAD)

Trust Region Derivative Free optimization method (SQA)

Bayesian Optimization

Application to a calibration problem



40 ©  |  2 0 2 1  I F P E N

CALIBRATION OF THERMODYNAMIC MODELS

ENRTL* model calibration for a mixture of water and methanol with partial pressure 
experimental data with 4 parameters

Numerical instabilities in the model produce NaN outputs

* ENRTL : Electrolyte Non-Random Two Liquid 
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CALIBRATION OF THERMODYNAMIC MODELS (4 PARAMETERS)

Results with SQA (10 initial points)
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CONCLUSIONS

Active learning Archissur method has a good potential to learn disconnected feasible sets 
defined by hidden constraints [Menz et al, 2022, hal-03848238]

The GPC model of hidden constraint is useful in the optimization context to help and speed-up 
convergence

Coupling Archissur with optimization: use not only the GPC model but also the active learning 
strategy ➔ increased accuracy

https://hal.science/hal-03848238
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PERSPECTIVES

Refine the heuristics for tuning the different learning strategies in the optimization process

High dimensional problems
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PERSPECTIVES

Refine the heuristics for tuning the different learning strategies in the optimization process

High dimensional problems

A challenging application in progress: robust design of a wind turbine

   Tower design with minimal mass that satisfies a reliability constraint for various wind conditions

Design variables: 𝒙 

e

D

min
𝑥

𝑚(𝑥) s.t. ℙ 𝑥 : = ℙ𝑈 𝑑 𝑥, 𝑈 ≤ 𝑑𝑚𝑎𝑥 ≥ 0.95
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PERSPECTIVES

Refine the heuristics for tuning the different learning strategies in the optimization process

High dimensional problems

A challenging application in progress: robust design of a wind turbine

   Tower design with minimal mass that satisfies a reliability constraint for various wind conditions

min
𝑥

𝑚(𝑥) s.t. ℙ 𝑥 : = ℙ𝑈 𝑑 𝑥, 𝑈 ≤ 𝑑𝑚𝑎𝑥 ≥ 0.95

∃ 𝑥𝑐 , 𝑢𝑐 / 𝑑 𝑥𝑐 , 𝑢𝑐 = 𝑁𝑎𝑁

Simulations success/ failure for two different designs 𝑥𝑐 and a sample of U
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Publication on Archissur method : Menz et al, 2023, hal-03848238

Opensource codes
GPC model is available in a R opensource package : 10.32614/CRAN.package.GPCsign

Package Archissur will also be published soon on CRAN website

Integration in opensource platform LAGUN is also planned
https://gitlab.com/drti/lagun
Lagun is a R/Shiny platform providing a user-friendly interface to methods and algorithms 
dedicated to data exploration, optimization and uncertainty quantification

Partial funding by the french research agency

CODES AND PUBLICATION

https://hal.science/hal-03848238
https://doi.org/10.32614/CRAN.package.GPCsign
https://gitlab.com/drti/lagun
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Find us on:

delphine.sinoquet@ifpen.fr
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