Weighted least-squares for randomised L2
approximation

Albert Cohen, Matthieu Dolbeault
Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université

March 10, 2022



Introduction Setting
et b
Expected L2 error

Setting

Let D C RY domain, F C L?(D, 1) set of functions on D

Approximate f € F based on point values at xq,...,x, € D
Sampling numbers
m
F,[?)= inf inf su Hf— f(x;)pi
gm( ’ ) X1, XmED p1,...,pmEL2 fe[F—2 ; ( 1)901 L2

v

Approximation numbers

i=1

1,--,Ln:H—C <,01,...,§0n€L2 feF

[2

\
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Bound in expected error Relaxed problems
Deterministic bound for a RKHS Expected L2 error

Point evaluations are not continuous in L2

Take V,, = Span(e1, ..., ®,) a subspace of L?
F={fel?d(f V,) <e}
Then a,(F, L?) = € but gu(F,L?) =
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Relaxed problems

o Compare gnm(F,L?) to a,(F, L*)
I. Limonova and V.N. Temlyakov, On sampling discretization in L?
(2020)
V. N. Temlyakov, On optimal recovery in L2, JoC (2020)
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Relaxed problems

o Compare gnm(F,L?) to a,(F, L*)
I. Limonova and V.N. Temlyakov, On sampling discretization in L?
(2020)
V. N. Temlyakov, On optimal recovery in L2, JoC (2020)

o Compare gn,(F,L?) to \/% > kon ak(F, L2)?
L. Kaemmerer, T. Ullrich, and T. Volkmer Worst case recovery
guarantees for least squares approximation using random samples,
CA (2019)
N. Nagel, M. Schéafer, and T. Ullrich, A new upper bound for
sampling numbers, FoCM (2020)
D. Krieg and M. Ullrich, Function values are enough for
L2-approximation, FoCM (2020) and JoC (2021)
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@ Compare the expected error g,

o Compare gnm(F,L?) to a,(F, L*)

I. Limonova and V.N. Temlyakov, On sampling discretization in L?
(2020)
V. N. Temlyakov, On optimal recovery in L2, JoC (2020)

Compare g,,(F, L?) to \/% > kon ak(F, L2)?

L. Kaemmerer, T. Ullrich, and T. Volkmer Worst case recovery
guarantees for least squares approximation using random samples,
CA (2019)

N. Nagel, M. Schéafer, and T. Ullrich, A new upper bound for
sampling numbers, FoCM (2020)

D. Krieg and M. Ullrich, Function values are enough for
L2-approximation, FoCM (2020) and JoC (2021)

ran
m

over random points to a,(F, L?)
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Expected [ error

Expected L? error

Randomized sampling numbers

2

f—o(xi, f(xi))

12

2 . .
(F ) =i it e [Bo e

If o; < p, f(x;) is almost surely well defined.

an(F, %) < gy (F, %) < gn(F, ?)

Theorem (M.D. and A. Cohen, Optimal pointwise sampling for L2

approximation, JoC 2022)

There exist universal constants C, K > 0 such that
g™ (F, %) < Kan(F, L?)

with m < Cn
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Kadison-Singer problem

Random sampling

Take (b1, ..., b,) an orthonormal basis of the optimal V,

Christoffel function

TORE IO
j=1

Sample x1, ..., Xy i.i.d according to the probability measure p du
Define weights w; = 1/4/p(x;), a discretisation N : f — (w;f(x;))i<m,
and

G = (Wibj(Xi))igm,jgn e cmxn

Weighted least-squares approximation

Af :=b-GTNf =b-(G*G) ' G*Nf
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Sketch of the proof

Denote P the [2-orthogonal projection onto V,, and f = f — Pf, then

assuming that

K1

1 _ _
167 Bo <=2 and —BNFI3 < Kol 7

gives

E|f — Af|2. = ||f — Pf|?. + E|Af — Pf|%.
= ||Fll7= + |AF]122
< 2 +E||GH|3.,INFIl3
K _
< a2+ —E||NFI3
m
< (14 K1K2)aﬁ
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Satisfying the two conditions

By choice of the weights and sampling measure
Leiniig = LS mwireor = [ Liepan= 17,
m m = D P

Moreover ||GT|13_,5 = Smin(G) ™2 = Amin(G*G) ™! and

E(G*G) =) Eyiyi=m </ 1bjbkpdu> = ml
i=1 DP ik
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Bound in expected error Concentration inequality

P A ot [
Matrix Chernoff bound

Theorem (R. Ahlswede and A. Winter, see J. Tropp, User-Friendly tail

bounds for sums of random matrices, FoOCM 2012)
Let

1 m
A= — Xy € Cnxn
—> yivi€

i=1

with (y;) i.i.d vectors, such that E(A) = and ||y;||3 < 6. Then

P(||A = I ||la2 > 1/2) < 2ne~™/109

Here A = L G*G so y; = w; (bj(x;)); satisfies the hypotheses

n=:9

lyil13 =

Consequence : for m > 10nlog(4n), the event £ = {A > £ 1} occurs with
probability at least é
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Kadison-Singer problem

Resampling
We resample xq, ..., xn until £ happens. In the end
G*G =mA > g !
and

£112
E(INAIZle) = - =)

Now the two conditions hold, with m = O(nlog n)

2 _ _
< ZE|NF|2 = 2||f]%.
p [Nfllz = 2[|f]L

A. Cohen and G. Migliorati, Optimal weighted least squares methods,
SMAI JCM (2017)

C. Haberstich, A. Nouy, and G. Perrin, Boosted optimal weighted
least-squares (2019)
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Kadison-Singer problem / Weaver's theorem

Theorem (A. Marcus, D. Spielman and N. Srivastava, Interlacing

families I, AoM 2015)

Let y1,...,¥m € C" such that ||y;||3 < § and >, y*y; = |. Then there
exists a partition S; LI S of {1,..., m} such that

j=1,2

9 9

2
> yvivi< @I

i€eS;

Corollary (S. Nitzan, A. Olevskii and A. Ulanovskii, Exponential frames

on unbounded sets, Proc. AMS, 2016)

Let y1,...,¥m € C" such that ||y;[|3 < d and al < 37, yiy; < B1, with
0 < § < a < B. Then there exists a partition S; L S, of {1,..., m} such
that
1-54//ca . 1+5/d/a )
faK;yim ————Bl, j=1,
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Application

12/23

Idea : Iteratively split the sample S into 51, 5,, and keep S; with
probability p; = |S;|/|S]
The previous lemma garantees to preserve

Moreover
A/f A/f Alf

<|5| ”Nf's)

=EBp,., }*”Nf”z 2||fllz: = Kallf|IZ2

ised 12 approxi
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Main result
Concentration inequality
Deterministic bound for a RKHS Reduction of the sample size

Reproducing Kernel Hilbert Spaces

Let H(K) C L?(D, u) be a separable RKHS with a kernel K of finite trace
/ K(x,x)du(x) < oo
D

There exists an L%-orthonormal family (b,)n>0 such that (a,b,)n>0 is
orthonormal in H and

K(xy) = 3 |an2Ba(x)aly)

n>=0

almost everywhere. We take

F={feH,]|flln<1}
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Previous results

@ D. Krieg and M. Ullrich; L. Kdimmerer, T. Ullrich, and T. Volkmer :

log n
G<C—= > &
k>|cn/ logn]
@ N. Nagel, M. Schafer, and T. Ullrich :

log n
g<C— > &
k> cn)

@ D. Krieg and M. Ullrich : Generalisation to arbitrary Banach classes
F, but with ||(ak)||e for p < 2

@ A. Hinrichs, D. Krieg, E. Novak and J. Vybiral : For any
non-negative and non-increasing sequence a € £2(N), there exists a
RKHS H such that (ax)ken = a and

1
2 § : 2
8n 2 8n ax
k>n

for infinitely many values of n
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Concentration inequality
Deterministic bound for a RKHS Reduction of the sample size

A new bound

There exist universal constants C,c > 0 such that for all n > 1

C
g < " Z a
k> en]

”
Corollary

If a, <n @ IogB n for o > % and § € R, then g, < n™¢ Iog’B n

~

If a, S n~/2log” nfor a = 1 and B < —1, then g, < n~1/2 log®*1/2 p

~

v
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Main result
Concentration inequality
Deterministic bound for a RKHS Reduction of the sample size

Rescaling to remove the density

Sampling density

Py 3 b (x)?
( Z|bk Dkn )

k<n

l\)\n—l

Change of variables

K(x,y) = dji = pndp

. f
H= ) ) 8llg = PnE|IH
{=renl. el lvaml

WLOG we can assume that p, =1
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Random sample

Draw i.i.d. random points xi, ..., xn € D according to u, and define

-1/2
N bk(X,') if k<n L 2 1 >
Vi = { aagb(x) ifk>n " a:={a+ E;ak
Then
lyills = Imk () +a® > lgr(xi)> < 2npa(x) = 2n
k<n k>n
and
1 0
E(yiy') = ' aza% =:A
0
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Concentration inequality for infinite matrices

Theorem (S. Mendelson and A. Pajor, see M. Moéller and T. Ullrich or

N. Nagel, M. Schafer and T. Ullrich)

Let y1,...,ym be iid. random sequences from (*(N) satisfying
lyill2 < 2n almost surely and E(y;y*) = A with ||A||a—2 < 1. Then

P Hli i *—/\H >t <23/ %mex _mt2
m — 252 = P\ " 220

For m > Cnlog n, there exists a sample x, ..., x;, such that

H—Zy,y, Asz 2
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Deterministic bound for a RKHS

Change of basis

Main result
Concentration inequality
Reduction of the sample size

19/23

Complete
V,, = Span{bo, ..., by-1}
into an L2-orthogonal basis (Bj)j<p = (bo, .., bp_1, by, ..., Bp_l) of
oo
Vp, =V, @ Span {Z(y,)kbk, i m}
k=0
Then
L (7 | k<n
oranun-( 2)(83)
so |
A=uUnur = (0 /‘\’) ;N 252 < 0242
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Main result
Concentration inequality
Deterministic bound for a RKHS Reduction of the sample size

Adding artificial rank-one matrices

Decompose
|—/\:( |—/\’) Zz,

and take

m m 5
5= g m = [l

with j(i) € {1,...,p — n} such that {y;, i=m+1,...,q} contains
exactly m; copies of each z;/mj. In this way

Iyill3 < mllzjpy|2my < 2n

and
— Z % Z*ZJZJ =1=A
i=m+1 =

SO

|25 1], <

m 2aYi 2552 2

i=1
M. D b 1 Weicl ]Il 4 q 5‘0!’ ] JL app
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Application of Kadison-Singer problem

Lemma (N. Nagel, M. Schifer and T. Ullrich)
Let y1,...,yq € CP such that ||y[|3 < ki2 and

q
kol <> yiyi <k
i=1
Then thereisa J C {1,...,q} such that [JN{1,...,n}| < c1n? and

62—| > iy < 63—|

ied

<

Idea : Each time we split the sum in two, keep the partition class that has
the fewest elements among {1,..., m}
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Proof of the theorem

22/23 M. Dolbeaul Weighted least-squares for |

Denote J' = JN{1,...,m}
L= (bk(xi))ies k<n and & = (cakbi(xi))ics k=n
Then || < clg < Cin

'L> P 1> Gnl and o0 < P 1< Gnl
q q

After classical computations

If = Afl[f2 < a3 + (L L) L[5 |07 @llam2 [|f — PF2

G\ _
<<1+C2>a ’<C > 4

kz=[n/2]

and A uses |J'| < Cin points, which concludes

ised 12 approxi
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Thank you for your attention !
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