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Setting

Let D ⊂ Rd domain, F ⊂ L2(D, µ) set of functions on D

Goal
Approximate f ∈ F based on point values at x1, . . . , xm ∈ D

Sampling numbers

gm(F , L2) = inf
x1,...,xm∈D

inf
ϕ1,...,ϕm∈L2

sup
f∈F

∥∥∥f − m∑
i=1

f (xi )ϕi

∥∥∥
L2

Approximation numbers

an(F , L2) = inf
L1,...,Ln:H→C

inf
ϕ1,...,ϕn∈L2

sup
f∈F

∥∥∥f − n∑
i=1

Li (f )ϕi

∥∥∥
L2

2/23 M. Dolbeault Weighted least-squares for randomised L2 approximation



Introduction
Bound in expected error

Deterministic bound for a RKHS

Setting
Relaxed problems
Expected L2 error

Point evaluations are not continuous in L2

Take Vn = Span(ϕ1, . . . , ϕn) a subspace of L2

F = {f ∈ L2, d(f ,Vn) 6 ε}
Then an(F , L2) = ε but gn(F , L2) =∞

3/23 M. Dolbeault Weighted least-squares for randomised L2 approximation



Introduction
Bound in expected error

Deterministic bound for a RKHS

Setting
Relaxed problems
Expected L2 error

Relaxed problems

Compare gm(F , L2) to an(F , L∞)
I. Limonova and V.N. Temlyakov, On sampling discretization in L2

(2020)
V. N. Temlyakov, On optimal recovery in L2, JoC (2020)

Compare gm(F , L2) to
√

1
n

∑
k>n ak(F , L2)2

L. Kaemmerer, T. Ullrich, and T. Volkmer Worst case recovery
guarantees for least squares approximation using random samples,
CA (2019)
N. Nagel, M. Schäfer, and T. Ullrich, A new upper bound for
sampling numbers, FoCM (2020)
D. Krieg and M. Ullrich, Function values are enough for
L2-approximation, FoCM (2020) and JoC (2021)
Compare the expected error g ran

m over random points to an(F , L2)
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Randomized sampling numbers

g ran
m (F , L2) = inf

σ
inf

ϕ:Dm×Cm→Vn

sup
f∈F

√
E(x1,...,xm)∼σ

∥∥∥f − ϕ(xi , f (xi ))
∥∥∥2

L2

If σi � µ, f (xi ) is almost surely well defined.

Framing

an(F , L2) 6 g ran
n (F , L2) 6 gn(F , L2)

Theorem (M.D. and A. Cohen, Optimal pointwise sampling for L2

approximation, JoC 2022)

There exist universal constants C ,K > 0 such that

g ran
m (F , L2) 6 Kan(F , L2)

with m 6 Cn
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Random sampling

Take (b1, . . . , bn) an orthonormal basis of the optimal Vn

Christoffel function

ρ(x) =
1
n

n∑
j=1

|bj(x)|2

Sample x1, . . . , xm i.i.d according to the probability measure ρ dµ
Define weights wi = 1/

√
ρ(xi ), a discretisation N : f 7→ (wi f (xi ))i6m,

and
G = (wibj(xi ))i6m,j6n ∈ Cm×n

Weighted least-squares approximation

Af := b · G+Nf = b · (G∗G )−1G∗Nf
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Sketch of the proof

Denote P the L2-orthogonal projection onto Vn, and f̄ = f − Pf , then
assuming that

‖G+‖22→2 6
K1

m
and

1
m
E‖Nf̄ ‖22 6 K2‖f̄ ‖2L2

gives

E‖f − Af ‖2L2 = ‖f − Pf ‖2L2 + E‖Af − Pf ‖2L2

= ‖f̄ ‖2L2 + ‖Af̄ ‖2L2

6 a2
n + E‖G+‖22→2‖Nf̄ ‖22

6 a2
n +

K1

m
E‖Nf̄ ‖22

6 (1 + K1K2)a2
n
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Satisfying the two conditions

By choice of the weights and sampling measure

1
m
E‖Nf̄ ‖22 =

1
m

m∑
i=1

Ew2
i |f̄ (xi )|2 =

∫
D

1
ρ
|f̄ |2ρ dµ = ‖f̄ ‖2L2

Moreover ‖G+‖22→2 = smin(G )−2 = λmin(G∗G )−1 and

E(G∗G ) =
m∑
i=1

Ey∗i yi = m

(∫
D

1
ρ
bjbkρ dµ

)
j,k

= mI
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Matrix Chernoff bound

Theorem (R. Ahlswede and A. Winter, see J. Tropp, User-Friendly tail
bounds for sums of random matrices, FoCM 2012)

Let

Λ =
1
m

m∑
i=1

y∗i yi ∈ Cn×n

with (yi ) i.i.d vectors, such that E(Λ) = I and ‖yi‖22 6 δ. Then

P(‖Λ− I ‖2→2 > 1/2) 6 2ne−m/10δ

Here Λ = 1
mG∗G so yi = wi (bj(xi ))j satisfies the hypotheses

‖yi‖22 =
1

ρ(xi )

n∑
j=1

|bj(xi )|2 = n =: δ

Consequence : for m > 10n log(4n), the event E = {Λ > 1
2 I} occurs with

probability at least 1
2
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Resampling

We resample x1, . . . , xm until E happens. In the end

G∗G = mΛ >
m

2
I

and
1
m
E(‖Nf̄ ‖22|E) =

1
m

E(‖Nf̄ ‖22)

P(E)
6

2
m
E‖Nf̄ ‖22 = 2‖f̄ ‖2L2 .

Now the two conditions hold, with m = O(n log n)

A. Cohen and G. Migliorati, Optimal weighted least squares methods,
SMAI JCM (2017)
C. Haberstich, A. Nouy, and G. Perrin, Boosted optimal weighted
least-squares (2019)
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Kadison-Singer problem / Weaver’s theorem

Theorem (A. Marcus, D. Spielman and N. Srivastava, Interlacing
families II, AoM 2015)

Let y1, . . . , ym ∈ Cn such that ‖yi‖22 6 δ and
∑m

i=1 y
∗
i yi = I. Then there

exists a partition S1 t S2 of {1, . . . ,m} such that

∑
i∈Sj

y∗i yi 6
(1 +

√
2δ)2

2
I, j = 1, 2

Corollary (S. Nitzan, A. Olevskii and A. Ulanovskii, Exponential frames
on unbounded sets, Proc. AMS, 2016)

Let y1, . . . , ym ∈ Cn such that ‖yi‖22 6 δ and α I 6
∑m

i=1 y
∗
i yi 6 β I, with

0 < δ 6 α < β. Then there exists a partition S1 t S2 of {1, . . . ,m} such
that

1− 5
√
δ/α

2
α I 6

∑
i∈Sj

y∗i yi 6
1 + 5

√
δ/α

2
β I, j = 1, 2
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Application

Idea : Iteratively split the sample S into S1,S2, and keep Sj with
probability pj = |Sj |/|S |
The previous lemma garantees to preserve

G∗G > K1m I

Moreover

E
(

1
|Sj |
‖Nf̄ ‖2Sj

)
= ES

(
p1

|S1|
‖Nf̄ ‖2S1

+
p2

|S2|
‖Nf̄ ‖2S2

)
= E

(
1
|S |
‖Nf̄ ‖2S

)
= . . .

= E{1,...,m}
1
m
‖Nf̄ ‖22 6 2‖f̄ ‖2L2 = K2‖f̄ ‖2L2
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Reproducing Kernel Hilbert Spaces

Let H(K ) ⊂ L2(D, µ) be a separable RKHS with a kernel K of finite trace∫
D

K (x , x)dµ(x) <∞

There exists an L2-orthonormal family (bn)n>0 such that (anbn)n>0 is
orthonormal in H and

K (x , y) =
∑
n>0

|an|2bn(x)bn(y)

almost everywhere. We take

F = {f ∈ H, ‖f ‖H 6 1}
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Previous results

D. Krieg and M. Ullrich ; L. Kämmerer, T. Ullrich, and T. Volkmer :

g2
n 6 C

log n
n

∑
k>bcn/ log nc

a2
k

N. Nagel, M. Schäfer, and T. Ullrich :

g2
n 6 C

log n
n

∑
k>bcnc

a2
k

D. Krieg and M. Ullrich : Generalisation to arbitrary Banach classes
F , but with ‖(ak)‖`p for p < 2
A. Hinrichs, D. Krieg, E. Novak and J. Vybiral : For any
non-negative and non-increasing sequence a ∈ `2(N), there exists a
RKHS H such that (ak)k∈N = a and

g2
n >

1
8n

∑
k>n

a2
k

for infinitely many values of n
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A new bound

Theorem
There exist universal constants C , c > 0 such that for all n > 1

g2
n 6

C

n

∑
k>bcnc

a2
k

Corollary

If an . n−α logβ n for α > 1
2 and β ∈ R, then gn . n−α logβ n

If an . n−1/2 logβ n for α = 1
2 and β < − 1

2 , then gn . n−1/2 logβ+1/2 n
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Rescaling to remove the density

Sampling density

ρn =
1
2

(
1
n

∑
k<n

|bk(x)|2 +

∑
k>n a

2
k |bk(x)|2∑

k>n a
2
k

)

Change of variables

K̃ (x , y) =
K (x , y)√

ρn(x)
√
ρn(y)

, d µ̃ = ρn dµ

H̃ =

{
f
√
ρn
, f ∈ H

}
, ‖g‖H̃ = ‖√ρng‖H

WLOG we can assume that ρn = 1
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Random sample

Draw i.i.d. random points x1, . . . , xm ∈ D according to µ, and define

(yi )k =

{
bk(xi ) if k < n

α akbk(xi ) if k > n
, α :=

a2
n +

1
m

∑
k>n

a2
k

−1/2

Then

‖yi‖22 =
∑
k<n

|ηk(xi )|2 + α2
∑
k>n

|gk(xi )|2 6 2nρn(xi ) = 2n

and

E(yiy
∗
i ) =


1 0

. . .
α2a2

n

0
. . .

 =: Λ
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Concentration inequality for infinite matrices

Theorem (S. Mendelson and A. Pajor, see M. Moëller and T. Ullrich or
N. Nagel, M. Schäfer and T. Ullrich)

Let y1, . . . , ym be i.i.d. random sequences from `2(N) satisfying
‖yi‖2 6 2n almost surely and E(yiy

∗
i ) = Λ with ‖Λ‖2→2 6 1. Then

P

(∥∥∥ 1
m

m∑
i=1

yiy
∗
i − Λ

∥∥∥
2→2

> t

)
6 23/4m exp

(
−mt2

42n

)
For m > Cn log n, there exists a sample x1, . . . , xm such that∥∥∥ 1

m

m∑
i=1

yiy
∗
i − Λ

∥∥∥
2→2
6

1
2
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Change of basis

Complete
Vn = Span{b0, . . . , bn−1}

into an L2-orthogonal basis (b̂j)j<p = (b0, . . . , bn−1, b̂n, . . . , b̂p−1) of

Vp := Vn ⊕ Span

{ ∞∑
k=0

(yi )kbk , 1 6 i 6 m

}

Then

b̂ = (b̂j)j<p = U b =

(
I 0
0 U ′

)(
(bk)k<n

(bk)k>n

)
so

Λ̂ = U ΛU∗ =

(
I 0
0 Λ̂′

)
, ‖Λ̂′‖2→2 6 α

2a2
n
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Adding artificial rank-one matrices

Decompose

I−Λ =

(
0 0
0 I−Λ′

)
=

p−n∑
j=1

zjz
∗
j

and take
yi =

√
m

mj(i)
zj(i), mj =

⌈m
2n
‖zj‖22

⌉
with j(i) ∈ {1, . . . , p − n} such that {yi , i = m + 1, . . . , q} contains
exactly mj copies of each zj/mj . In this way

‖yi‖22 6 m‖zj(i)‖2m−2
j(i) 6 2n

and
1
m

q∑
i=m+1

yiy
∗
i =

p−n∑
j=1

mj

nj
zjz
∗
j = I − Λ

so ∥∥∥ 1
m

q∑
i=1

yiy
∗
i − I

∥∥∥
2→2
6

1
2
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Application of Kadison-Singer problem

Lemma (N. Nagel, M. Schäfer and T. Ullrich)

Let y1, . . . , yq ∈ Cp such that ‖yi‖22 6 k1
p
q and

k2 I 6
q∑

i=1

yiy
∗
i 6 k3 I

Then there is a J ⊂ {1, . . . , q} such that |J ∩ {1, . . . , n}| 6 c1n
p
q and

c2
p

q
I 6

∑
i∈J

yiy
∗
i 6 c3

p

q
I

Idea : Each time we split the sum in two, keep the partition class that has
the fewest elements among {1, . . . ,m}
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Proof of the theorem

Denote J ′ = J ∩ {1, . . . ,m}

L = (bk(xi ))i∈J′,k<n and Φ = (αakbk(xi ))i∈J′,k>n

Then |J ′| 6 c1
p
q 6 C1n

L∗L > c2
p

q
I > C2n I and Φ∗Φ 6 c3

p

q
I 6 C3n I

After classical computations

‖f − Af ‖2L2 6 a2
n + ‖(L∗L)−1L∗‖22→2 ‖Φ∗Φ‖2→2 ‖f − Pf ‖2L2

6

(
1 +

C3

C2

)
α−2 6 C

∑
k>bn/2c

a2
k

and A uses |J ′| 6 C1n points, which concludes �
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Thank you for your attention !

23/23 M. Dolbeault Weighted least-squares for randomised L2 approximation


	Introduction
	Setting
	Relaxed problems
	Expected L2 error

	Bound in expected error
	Random sampling
	Concentration inequality
	Kadison-Singer problem

	Deterministic bound for a RKHS
	Main result
	Concentration inequality
	Reduction of the sample size


