Weighted least-squares for randomised L^{2} approximation

Albert Cohen, Matthieu Dolbeault

Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université

March 10, 2022

Introduction

Setting

Let $D \subset \mathbb{R}^{d}$ domain, $F \subset L^{2}(D, \mu)$ set of functions on D

Goal

Approximate $f \in F$ based on point values at $x_{1}, \ldots, x_{m} \in D$

Sampling numbers

$$
g_{m}\left(F, L^{2}\right)=\inf _{x_{1}, \ldots, x_{m} \in D} \inf _{\varphi_{1}, \ldots, \varphi_{m} \in L^{2}} \sup _{f \in F}\left\|f-\sum_{i=1}^{m} f\left(x_{i}\right) \varphi_{i}\right\|_{L^{2}}
$$

Approximation numbers

$$
a_{n}\left(F, L^{2}\right)=\inf _{L_{1}, \ldots, L_{n}: H \rightarrow \mathbb{C}} \inf _{\varphi_{1}, \ldots, \varphi_{n} \in L^{2}} \sup _{f \in F}\left\|f-\sum_{i=1}^{n} L_{i}(f) \varphi_{i}\right\|_{L^{2}}
$$

Point evaluations are not continuous in L^{2}

Take $V_{n}=\operatorname{Span}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ a subspace of L^{2}

$$
F=\left\{f \in L^{2}, d\left(f, V_{n}\right) \leqslant \varepsilon\right\}
$$

Then $a_{n}\left(F, L^{2}\right)=\varepsilon$ but $g_{n}\left(F, L^{2}\right)=\infty$

M. Dolbeault

Relaxed problems

- Compare $g_{m}\left(F, L^{2}\right)$ to $a_{n}\left(F, L^{\infty}\right)$
I. Limonova and V.N. Temlyakov, On sampling discretization in L^{2} (2020)
V. N. Temlyakov, On optimal recovery in L', JoC (2020)

Relaxed problems

- Compare $g_{m}\left(F, L^{2}\right)$ to $a_{n}\left(F, L^{\infty}\right)$
I. Limonova and V.N. Temlyakov, On sampling discretization in L2 (2020)
V. N. Temlyakov, On optimal recovery in L^{2}, JoC (2020)
- Compare $g_{m}\left(F, L^{2}\right)$ to $\sqrt{\frac{1}{n} \sum_{k>n} a_{k}\left(F, L^{2}\right)^{2}}$
L. Kaemmerer, T. Ullrich, and T. Volkmer Worst case recovery guarantees for least squares approximation using random samples, CA (2019)
N. Nagel, M. Schäfer, and T. Ullrich, A new upper bound for sampling numbers, FoCM (2020)
D. Krieg and M. Ullrich, Function values are enough for L^{2}-approximation, FoCM (2020) and JoC (2021)

Relaxed problems

- Compare $g_{m}\left(F, L^{2}\right)$ to $a_{n}\left(F, L^{\infty}\right)$
I. Limonova and V.N. Temlyakov, On sampling discretization in L^{2} (2020)
V. N. Temlyakov, On optimal recovery in L^{2}, JoC (2020)
- Compare $g_{m}\left(F, L^{2}\right)$ to $\sqrt{\frac{1}{n} \sum_{k>n} a_{k}\left(F, L^{2}\right)^{2}}$
L. Kaemmerer, T. Ullrich, and T. Volkmer Worst case recovery guarantees for least squares approximation using random samples, CA (2019)
N. Nagel, M. Schäfer, and T. Ullrich, A new upper bound for sampling numbers, FoCM (2020)
D. Krieg and M. Ullrich, Function values are enough for L^{2}-approximation, FoCM (2020) and JoC (2021)
- Compare the expected error $g_{m}^{\text {ran }}$ over random points to $a_{n}\left(F, L^{2}\right)$

Expected L^{2} error

Randomized sampling numbers

$$
g_{m}^{\mathrm{ran}}\left(F, L^{2}\right)=\inf _{\sigma} \inf _{\varphi: D^{m} \times \mathbb{C}^{m} \rightarrow V_{n}} \sup _{f \in F} \sqrt{\mathbb{E}_{\left(x_{1}, \ldots, x_{m}\right) \sim \sigma}\left\|f-\varphi\left(x_{i}, f\left(x_{i}\right)\right)\right\|_{L^{2}}^{2}}
$$

If $\sigma_{i} \ll \mu, f\left(x_{i}\right)$ is almost surely well defined.

Framing

$$
a_{n}\left(F, L^{2}\right) \leqslant g_{n}^{\mathrm{ran}}\left(F, L^{2}\right) \leqslant g_{n}\left(F, L^{2}\right)
$$

Theorem (M.D. and A. Cohen, Optimal pointwise sampling for L2 approximation, JoC 2022)
There exist universal constants $C, K>0$ such that

$$
g_{m}^{\mathrm{ran}}\left(F, L^{2}\right) \leqslant K a_{n}\left(F, L^{2}\right)
$$

with $m \leqslant C n$

Random sampling

Take $\left(b_{1}, \ldots, b_{n}\right)$ an orthonormal basis of the optimal V_{n}

Christoffel function

$$
\rho(x)=\frac{1}{n} \sum_{j=1}^{n}\left|b_{j}(x)\right|^{2}
$$

Sample x_{1}, \ldots, x_{m} i.i.d according to the probability measure $\rho d \mu$ Define weights $w_{i}=1 / \sqrt{\rho\left(x_{i}\right)}$, a discretisation $N: f \mapsto\left(w_{i} f\left(x_{i}\right)\right)_{i \leqslant m}$, and

$$
G=\left(w_{i} b_{j}\left(x_{i}\right)\right)_{i \leqslant m, j \leqslant n} \in \mathbb{C}^{m \times n}
$$

Weighted least-squares approximation

$$
A f:=b \cdot G^{+} N f=b \cdot\left(G^{*} G\right)^{-1} G^{*} N f
$$

Sketch of the proof

Denote P the L^{2}-orthogonal projection onto V_{n}, and $\bar{f}=f-P f$, then assuming that

$$
\left\|G^{+}\right\|_{2 \rightarrow 2}^{2} \leqslant \frac{K_{1}}{m} \quad \text { and } \quad \frac{1}{m} \mathbb{E}\|N \bar{f}\|_{2}^{2} \leqslant K_{2}\|\bar{f}\|_{L^{2}}^{2}
$$

gives

$$
\begin{aligned}
\mathbb{E}\|f-A f\|_{L^{2}}^{2} & =\|f-P f\|_{L^{2}}^{2}+\mathbb{E}\|A f-P f\|_{L^{2}}^{2} \\
& =\|\bar{f}\|_{L^{2}}^{2}+\|A \bar{f}\|_{L^{2}}^{2} \\
& \leqslant a_{n}^{2}+\mathbb{E}\left\|G^{+}\right\|_{2 \rightarrow 2}^{2}\|N \bar{f}\|_{2}^{2} \\
& \leqslant a_{n}^{2}+\frac{K_{1}}{m} \mathbb{E}\|N \bar{f}\|_{2}^{2} \\
& \leqslant\left(1+K_{1} K_{2}\right) a_{n}^{2}
\end{aligned}
$$

Satisfying the two conditions

By choice of the weights and sampling measure

$$
\frac{1}{m} \mathbb{E}\|N \bar{f}\|_{2}^{2}=\frac{1}{m} \sum_{i=1}^{m} \mathbb{E} w_{i}^{2}\left|\bar{f}\left(x_{i}\right)\right|^{2}=\int_{D} \frac{1}{\rho}|\bar{f}|^{2} \rho d \mu=\|\bar{f}\|_{L^{2}}^{2}
$$

Moreover $\left\|G^{+}\right\|_{2 \rightarrow 2}^{2}=s_{\min }(G)^{-2}=\lambda_{\min }\left(G^{*} G\right)^{-1}$ and

$$
\mathbb{E}\left(G^{*} G\right)=\sum_{i=1}^{m} \mathbb{E} y_{i}^{*} y_{i}=m\left(\int_{D} \frac{1}{\rho} b_{j} b_{k} \rho d \mu\right)_{j, k}=m \mathrm{I}
$$

Matrix Chernoff bound

Theorem (R. Ahlswede and A. Winter, see J. Tropp, User-Friendly tail bounds for sums of random matrices, FoCM 2012)

Let

$$
\Lambda=\frac{1}{m} \sum_{i=1}^{m} y_{i}^{*} y_{i} \in \mathbb{C}^{n \times n}
$$

with $\left(y_{i}\right)$ i.i.d vectors, such that $\mathbb{E}(\Lambda)=I$ and $\left\|y_{i}\right\|_{2}^{2} \leqslant \delta$. Then

$$
\mathbb{P}\left(\|\Lambda-I\|_{2 \rightarrow 2}>1 / 2\right) \leqslant 2 n e^{-m / 10 \delta}
$$

Here $\Lambda=\frac{1}{m} G^{*} G$ so $y_{i}=w_{i}\left(b_{j}\left(x_{i}\right)\right)_{j}$ satisfies the hypotheses

$$
\left\|y_{i}\right\|_{2}^{2}=\frac{1}{\rho\left(x_{i}\right)} \sum_{j=1}^{n}\left|b_{j}\left(x_{i}\right)\right|^{2}=n=: \delta
$$

Consequence : for $m \geqslant 10 n \log (4 n)$, the event $\mathcal{E}=\left\{\Lambda \geqslant \frac{1}{2} \mathrm{l}\right\}$ occurs with probability at least $\frac{1}{2}$

Resampling

We resample x_{1}, \ldots, x_{m} until \mathcal{E} happens. In the end

$$
G^{*} G=m \Lambda \geqslant \frac{m}{2} I
$$

and

$$
\frac{1}{m} \mathbb{E}\left(\|N \bar{f}\|_{2}^{2} \mid \mathcal{E}\right)=\frac{1}{m} \frac{\mathbb{E}\left(\|N \bar{f}\|_{2}^{2}\right)}{\mathbb{P}(\mathcal{E})} \leqslant \frac{2}{m} \mathbb{E}\|N \bar{f}\|_{2}^{2}=2\|\bar{f}\|_{L^{2}}^{2}
$$

Now the two conditions hold, with $m=\mathcal{O}(n \log n)$
A. Cohen and G. Migliorati, Optimal weighted least squares methods, SMAI JCM (2017)
C. Haberstich, A. Nouy, and G. Perrin, Boosted optimal weighted least-squares (2019)

Kadison-Singer problem / Weaver's theorem

Theorem (A. Marcus, D. Spielman and N. Srivastava, Interlacing families II, AoM 2015)
Let $y_{1}, \ldots, y_{m} \in \mathbb{C}^{n}$ such that $\left\|y_{i}\right\|_{2}^{2} \leqslant \delta$ and $\sum_{i=1}^{m} y_{i}^{*} y_{i}=\mathrm{I}$. Then there exists a partition $S_{1} \sqcup S_{2}$ of $\{1, \ldots, m\}$ such that

$$
\sum_{i \in S_{j}} y_{i}^{*} y_{i} \leqslant \frac{(1+\sqrt{2 \delta})^{2}}{2} \mathrm{I}, \quad j=1,2
$$

Corollary (S. Nitzan, A. Olevskii and A. Ulanovskii, Exponential frames on unbounded sets, Proc. AMS, 2016)
Let $y_{1}, \ldots, y_{m} \in \mathbb{C}^{n}$ such that $\left\|y_{i}\right\|_{2}^{2} \leqslant \delta$ and $\alpha \mathrm{I} \leqslant \sum_{i=1}^{m} y_{i}^{*} y_{i} \leqslant \beta$ I, with $0<\delta \leqslant \alpha<\beta$. Then there exists a partition $S_{1} \sqcup S_{2}$ of $\{1, \ldots, m\}$ such that

$$
\frac{1-5 \sqrt{\delta / \alpha}}{2} \alpha \mathrm{I} \leqslant \sum_{i \in S_{j}} y_{i}^{*} y_{i} \leqslant \frac{1+5 \sqrt{\delta / \alpha}}{2} \beta \mathrm{I}, \quad j=1,2
$$

Application

Idea : Iteratively split the sample S into S_{1}, S_{2}, and keep S_{j} with probability $p_{j}=\left|S_{j}\right| /|S|$
The previous lemma garantees to preserve

$$
G^{*} G \geqslant K_{1} m I
$$

Moreover

$$
\begin{aligned}
\mathbb{E}\left(\frac{1}{\left|S_{j}\right|}\|N \bar{f}\|_{S_{j}}^{2}\right) & =\mathbb{E}_{S}\left(\frac{p_{1}}{\left|S_{1}\right|}\|N \bar{f}\|_{S_{1}}^{2}+\frac{p_{2}}{\left|S_{2}\right|}\|N \bar{f}\|_{S_{2}}^{2}\right) \\
& =\mathbb{E}\left(\frac{1}{|S|}\|N \bar{f}\|_{S}^{2}\right) \\
& =\ldots \\
& =\mathbb{E}_{\{1, \ldots, m\}} \frac{1}{m}\|N \bar{f}\|_{2}^{2} \leqslant 2\|\bar{f}\|_{L^{2}}^{2}=K_{2}\|\bar{f}\|_{L^{2}}^{2}
\end{aligned}
$$

Reproducing Kernel Hilbert Spaces

Let $H(K) \subset L^{2}(D, \mu)$ be a separable RKHS with a kernel K of finite trace

$$
\int_{D} K(x, x) d \mu(x)<\infty
$$

There exists an L^{2}-orthonormal family $\left(b_{n}\right)_{n \geqslant 0}$ such that $\left(a_{n} b_{n}\right)_{n \geqslant 0}$ is orthonormal in H and

$$
K(x, y)=\sum_{n \geqslant 0}\left|a_{n}\right|^{2} \overline{b_{n}(x)} b_{n}(y)
$$

almost everywhere. We take

$$
F=\left\{f \in H,\|f\|_{H} \leqslant 1\right\}
$$

Previous results

- D. Krieg and M. Ullrich ; L. Kämmerer, T. Ullrich, and T. Volkmer :

$$
g_{n}^{2} \leqslant C \frac{\log n}{n} \sum_{k \geqslant\lfloor\text { (cn } / \log n\rfloor} a_{k}^{2}
$$

- N. Nagel, M. Schäfer, and T. Ullrich :

$$
g_{n}^{2} \leqslant C \frac{\log n}{n} \sum_{k \geqslant\lfloor c n\rfloor} a_{k}^{2}
$$

- D. Krieg and M. Ullrich : Generalisation to arbitrary Banach classes F, but with $\left\|\left(a_{k}\right)\right\|_{\ell^{\rho}}$ for $p<2$
- A. Hinrichs, D. Krieg, E. Novak and J. Vybiral : For any non-negative and non-increasing sequence $a \in \ell^{2}(\mathbb{N})$, there exists a RKHS H such that $\left(a_{k}\right)_{k \in \mathbb{N}}=a$ and

$$
g_{n}^{2} \geqslant \frac{1}{8 n} \sum_{k \geqslant n} a_{k}^{2}
$$

for infinitely many values of n

A new bound

Theorem

There exist universal constants $C, c>0$ such that for all $n \geqslant 1$

$$
g_{n}^{2} \leqslant \frac{C}{n} \sum_{k \geqslant\lfloor c n\rfloor} a_{k}^{2}
$$

Corollary

If $a_{n} \lesssim n^{-\alpha} \log ^{\beta} n$ for $\alpha>\frac{1}{2}$ and $\beta \in \mathbb{R}$, then $g_{n} \lesssim n^{-\alpha} \log ^{\beta} n$
If $a_{n} \lesssim n^{-1 / 2} \log ^{\beta} n$ for $\alpha=\frac{1}{2}$ and $\beta<-\frac{1}{2}$, then $g_{n} \lesssim n^{-1 / 2} \log ^{\beta+1 / 2} n$

Rescaling to remove the density

Sampling density

$$
\rho_{n}=\frac{1}{2}\left(\frac{1}{n} \sum_{k<n}\left|b_{k}(x)\right|^{2}+\frac{\sum_{k \geqslant n} a_{k}^{2}\left|b_{k}(x)\right|^{2}}{\sum_{k \geqslant n} a_{k}^{2}}\right)
$$

Change of variables

$$
\begin{aligned}
& \widetilde{K}(x, y)=\frac{K(x, y)}{\sqrt{\rho_{n}(x)} \sqrt{\rho_{n}(y)}}, \quad d \tilde{\mu}=\rho_{n} d \mu \\
& \widetilde{H}=\left\{\frac{f}{\sqrt{\rho_{n}}}, f \in H\right\}, \quad\|g\|_{\tilde{H}}=\left\|\sqrt{\rho_{n}} g\right\|_{H}
\end{aligned}
$$

WLOG we can assume that $\rho_{n}=1$

Random sample

Draw i.i.d. random points $x_{1}, \ldots, x_{m} \in D$ according to μ, and define

$$
\left(y_{i}\right)_{k}=\left\{\begin{array}{cc}
b_{k}\left(x_{i}\right) & \text { if } k<n \\
\alpha a_{k} b_{k}\left(x_{i}\right) & \text { if } k \geqslant n
\end{array}, \quad \alpha:=\left(a_{n}^{2}+\frac{1}{m} \sum_{k \geqslant n} a_{k}^{2}\right)^{-1 / 2}\right.
$$

Then

$$
\left\|y_{i}\right\|_{2}^{2}=\sum_{k<n}\left|\eta_{k}\left(x_{i}\right)\right|^{2}+\alpha^{2} \sum_{k \geqslant n}\left|g_{k}\left(x_{i}\right)\right|^{2} \leqslant 2 n \rho_{n}\left(x_{i}\right)=2 n
$$

and

$$
\mathbb{E}\left(y_{i} y_{i}^{*}\right)=\left(\begin{array}{cccc}
1 & & & 0 \\
& \ddots & & \\
& & \alpha^{2} a_{n}^{2} & \\
0 & & & \ddots
\end{array}\right)=: \Lambda
$$

Concentration inequality for infinite matrices

Theorem (S. Mendelson and A. Pajor, see M. Moëller and T. Ullrich or N. Nagel, M. Schäfer and T. Ullrich)

Let y_{1}, \ldots, y_{m} be i.i.d. random sequences from $\ell^{2}(\mathbb{N})$ satisfying $\left\|y_{i}\right\|_{2} \leqslant 2 n$ almost surely and $\mathbb{E}\left(y_{i} y_{i}^{*}\right)=\Lambda$ with $\|\Lambda\|_{2 \rightarrow 2} \leqslant 1$. Then

$$
\mathbb{P}\left(\left\|\frac{1}{m} \sum_{i=1}^{m} y_{i} y_{i}^{*}-\Lambda\right\|_{2 \rightarrow 2}>t\right) \leqslant 2^{3 / 4} m \exp \left(-\frac{m t^{2}}{42 n}\right)
$$

For $m \geqslant C n \log n$, there exists a sample x_{1}, \ldots, x_{m} such that

$$
\left\|\frac{1}{m} \sum_{i=1}^{m} y_{i} y_{i}^{*}-\Lambda\right\|_{2 \rightarrow 2} \leqslant \frac{1}{2}
$$

Change of basis

Complete

$$
V_{n}=\operatorname{Span}\left\{b_{0}, \ldots, b_{n-1}\right\}
$$

into an L^{2}-orthogonal basis $\left(\hat{b}_{j}\right)_{j<p}=\left(b_{0}, \ldots, b_{n-1}, \hat{b}_{n}, \ldots, \hat{b}_{p-1}\right)$ of

$$
V_{p}:=V_{n} \oplus \operatorname{Span}\left\{\sum_{k=0}^{\infty}\left(y_{i}\right)_{k} b_{k}, 1 \leqslant i \leqslant m\right\}
$$

Then

$$
\hat{b}=\left(\hat{b}_{j}\right)_{j<p}=U b=\left(\begin{array}{cc}
1 & 0 \\
0 & U^{\prime}
\end{array}\right)\binom{\left(b_{k}\right)_{k<n}}{\left(b_{k}\right)_{k \geqslant n}}
$$

so

$$
\hat{\Lambda}=U \Lambda U^{*}=\left(\begin{array}{cc}
1 & 0 \\
0 & \hat{\Lambda}^{\prime}
\end{array}\right), \quad\left\|\hat{\Lambda}^{\prime}\right\|_{2 \rightarrow 2} \leqslant \alpha^{2} a_{n}^{2}
$$

Adding artificial rank-one matrices

Decompose

$$
\mathrm{I}-\Lambda=\left(\begin{array}{cc}
0 & 0 \\
0 & \mathrm{I}-\Lambda^{\prime}
\end{array}\right)=\sum_{j=1}^{p-n} z_{j} z_{j}^{*}
$$

and take

$$
y_{i}=\sqrt{\frac{m}{m_{j(i)}}} z_{j(i)}, \quad m_{j}=\left\lceil\frac{m}{2 n}\left\|z_{j}\right\|_{2}^{2}\right\rceil
$$

with $j(i) \in\{1, \ldots, p-n\}$ such that $\left\{y_{i}, i=m+1, \ldots, q\right\}$ contains exactly m_{j} copies of each z_{j} / m_{j}. In this way

$$
\left\|y_{i}\right\|_{2}^{2} \leqslant m\left\|z_{j(i)}\right\|^{2} m_{j(i)}^{-2} \leqslant 2 n
$$

and

$$
\frac{1}{m} \sum_{i=m+1}^{q} y_{i} y_{i}^{*}=\sum_{j=1}^{p-n} \frac{m_{j}}{n_{j}} z_{j} z_{j}^{*}=I-\Lambda
$$

SO

$$
\left\|\frac{1}{m} \sum_{i=1}^{q} y_{i} y_{i}^{*}-1\right\|_{2 \rightarrow 2} \leqslant \frac{1}{2}
$$

Application of Kadison-Singer problem

Lemma (N. Nagel, M. Schäfer and T. Ullrich)

Let $y_{1}, \ldots, y_{q} \in \mathbb{C}^{p}$ such that $\left\|y_{i}\right\|_{2}^{2} \leqslant k_{1} \frac{p}{q}$ and

$$
k_{2}\left|\leqslant \sum_{i=1}^{q} y_{i} y_{i}^{*} \leqslant k_{3}\right|
$$

Then there is a $J \subset\{1, \ldots, q\}$ such that $|J \cap\{1, \ldots, n\}| \leqslant c_{1} n \frac{p}{q}$ and

$$
c_{2} \frac{p}{q} I \leqslant \sum_{i \in J} y_{i} y_{i}^{*} \leqslant c_{3} \frac{p}{q} I
$$

Idea : Each time we split the sum in two, keep the partition class that has the fewest elements among $\{1, \ldots, m\}$

Proof of the theorem

Denote $J^{\prime}=J \cap\{1, \ldots, m\}$

$$
L=\left(b_{k}\left(x_{i}\right)\right)_{i \in J^{\prime}, k<n} \quad \text { and } \quad \Phi=\left(\alpha a_{k} b_{k}\left(x_{i}\right)\right)_{i \in J^{\prime}, k \geqslant n}
$$

Then $\left|J^{\prime}\right| \leqslant c_{1} \frac{p}{q} \leqslant C_{1} n$

$$
L^{*} L \geqslant c_{2} \frac{p}{q}\left|\geqslant C_{2} n\right| \quad \text { and } \quad \Phi^{*} \Phi \leqslant c_{3} \frac{p}{q}\left|\leqslant C_{3} n\right|
$$

After classical computations

$$
\begin{aligned}
\|f-A f\|_{L^{2}}^{2} & \leqslant a_{n}^{2}+\left\|\left(L^{*} L\right)^{-1} L^{*}\right\|_{2 \rightarrow 2}^{2}\left\|\Phi^{*} \Phi\right\|_{2 \rightarrow 2}\|f-P f\|_{L^{2}}^{2} \\
& \leqslant\left(1+\frac{C_{3}}{C_{2}}\right) \alpha^{-2} \leqslant C \sum_{k \geqslant\lfloor n / 2\rfloor} a_{k}^{2}
\end{aligned}
$$

and A uses $\left|J^{\prime}\right| \leqslant C_{1} n$ points, which concludes

Thank you for your attention!

