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Requirements:

python 2.6 or 2.7
use Anaconda if not already installed:
https://www.continuum.io/downloads)

note: python 3.x not yet supported

matplotlib >2.0
in principle via ‘pip install matplotlib
otherwise, see http://matplotlib.org/users/installing.html



Objectives of the exercise:

O Get acquainted with the COCO platform
at least with its postprocessing and visualization

® Gain insights into data
of some of the 150+ algorithm data sets of COCO
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{» Code Issues 134 Pull requests 1

Step 1:
download COCO

Numerical Black-Box Optimization Benchmarking
Add topics
£ 31 releases

D 16,007 commits ¥ 11 branches

Branch: master = New pull request Create new file

"} brockho committed on GitHub Merge pull request #1352 from numbbo/development

B code-experiments A little more verbose error message when suite regression test fails

M code-postprocessing Hashes are back on the plots.

B code-preprocessing Fixed preprocessing to work correctly with the extended biobjective s...

ilm howtos Update create-a-suite-howto.md

=) .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s...

E) hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s...

E) AUTHORS small correction in AUTHORS

@ Unwatch~ = 15

RandOpt & CMAP & Inria GitLab ) RER B from lab

W Unstar 24

A& 15 contributors

le Clone or download =

Latest commit 4b1497a on 20 Apr

Upload files =~ Fing

a month ago
a month ago
3 months ago
4 months ago
2 years ago

2 years ago

a year ago
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{» Code [ssues 134 Pull requests 1

Numerical Black-Box Optimization Benchmarking down Ioad COCO

Add topics

D 16,007 commits ¥ 11 branches > 31 releases 2L 15 contributors

Branch: master = New pull request Create new file = Upload files = Find file Clone or download -

"} brockho committed on GitHub Merge pull request #1352 from numbbo/development - Clone with HTTPS 3 Use 55H

) . ) . _ Use Git or checkout with SWN using the web URL,
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git &-
M code-postprocessing Hashes are back on the plots.

o I Eiw ¥ i e A ALTRIT + it 7 T 3
B code-preprocessing ixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
B howtos Update create-a-suite-howto.md 4 months ago
Z) .clang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago

E) .hgignaore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

E) AUTHORS small correction in AUTHORS a year ago
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2.In a system shell, cd into the coco or coco-<version» folder (framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

python do.py run-c
python do.py run-java
python do.py run-matlab
python do.py run-octave
python do.py run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> ( <language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be pg

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on,
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

vary, see the respective read-me’s and/or example experiment files:

® ¢ read me and example experiment

® Java read me and example experiment




http://coco.gforge.inria.fr/doku.php?id=algorithms

Step 3:
downloading data

[[algorithms]] COMPARING CONTINUOUS OPTIMISERS: COCO

[@, show pagesource [=] Old revisions Recent changes @, sitemap g Login

Search
The following table lists all algorithms related to the BBOB workshops and special sessions in the years 2009 ftill 2015 together with links to

their data. In order to sort the table according to some columns, please click on the corresponding table header. If available, the source ey

codes of the algorithms can be downloaded by clicking on the link with the corresponding algorithm name in the second column. ® Home
= @ Documentation
Data Noiseless Data Nois ® download latest old code
No Algorithm Year Author(s) s related PDFs and Remarks
(Raw) (Raw) = @ new code homepage
1 ALPS 2009 Hornby @ noiselessData @ noisyData @ PDF = @ download new code directly
= @BBOB 2016
2 |AMALGAM 2009 Bosman et al. @ noiselessData @ noisyData | @ PDFnoiseless @ PDFnoisy ® BBOB 2015 @ GECCO
3 | BAYEDA 2009 Gallagher @ noiselessData @ noisyData @ PDFnoiseless @ PDFNgj 4 '
4 BFGS 2009 Ros @ noiselessData @ noisyData @ PDFnoiseless @ PDA
5 |BIPOP-CMA-ES 2009 Hansen @ noiselessData @ noisyData | @ PDFnoiseless @ PDA for the moment L
u
5] Cauchy-EDA 2009 Posdik @ noiselessData n/a @ POF
Auger and . . .
7 CMA-ESPLUSSEL 2009 d @ noiselessData | @noisyData @ PDFnoiseless @ POF I F O F -CMA- ES
ansen

Korosec and — h 6
8 DASA 2009 | . isel Dat isyDat. PDFnoisel PDH
gl @ noiselessData @ noisyData @ noiseless @ a I ‘ rlt l I l 5

Garcia-Nieto

9 DE-PSO 2009 tal @ noiselessData @ noisyData @ PDFnoiseless @ POFNS
et al.
= Downloads
_ @eor o ® BBOB 2012
10 DIRECT 2009 Posik @ noiselessData nfa algorithm is deterministic and thus, only run on each m Algorithms
instance once ® Results
11 EDA-PSO 2009 EIAPD and g icelessDat @ noisyData | @ PDF = Downloads
Kamel noiselessData noisyData w BEOR 2010
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Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder by typing

python -m cocopp [-o OUTPUT_FOLDERNAME] VOURDATAFOLDER [MORE_DATAFOLDERS]
ELEEEEETE ] postprocess

Any subfolder in the folder arguments will be searched for logged data. That is, experiments
different folders collected under a single "root” YOURDATAFOLDER folder. We can also compare more than one algorithm by

python -m cocopp IPOP-CMA-ES ros noiseless.tar.gz

A summary pdf can be produced via LaTeX. The corresponding templates can be found in the code-postprocessing/latex-
templates folder. Basic html output is also available in the result folder of the postprocessing (file
templateBBOBarticle.html ).

7. Once your algerithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example experiment.py foran example). Each batch must write in a different target folder (this should happen
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Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder by typing

python -m cocopp [-o OUTPUT FOLDERMAME] YOURDATAFOLDER [MORE DATAFOLDERS]
postprocess

Any subfolder in the folder arguments will be searched for logged data. That is, experiments TTOM o patt De
different folders collected under a single "root” YOURDATAFOLDER folder. We can also compare more than one algorithm by

python -m cocopp IPOP-CMA-ES ros noiseless.tar.gz

Alternative within (I)python:

> import cocopp
> cocopp.main ("IPOP-CMA-ES ros noiseless.tar.gz")

w-__________________________________________________________________________________________________



Reminder:
Measuring Performance Empirically



convergence graphs is all we have to start with...
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ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]



A Convergence Graph
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First Hitting Time is Monotonous
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15 Runs £ 15 Runtime Data Points
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Empirical Cumulative Distribution
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Empirical Cumulative Distribution
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Aggregation
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Fixed-target: Simulated Restarts

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1__, slow convergence




ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:
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EXxercise

Objective:
iInvestigate the performance of algorithms, available at

56
D
22
4
14
25

IPOP-CMA-ES: CMA-ES with restarts and increasing popsize
BIPOP-CMA-ES: two different popsize regimes

Nelder-Mead simplex (use better "NelderDoerr" version here)
BFGS: quasi-Newton

Genetic Algorithm: discretization of cont. variables ("GA")
ONEFIFTH: (1+1)-ES with 1/5 rule

postprocess (now) and investigate the data (after a few more slides)

tip: use --omit-single option to save time


http://coco.gforge.inria.fr/doku.php?id=algorithms

The single-objective BBOB functions



The bbob Testbed

« 24 functions in 5 groups:

1 Separable Functions

f1
f2
f3
f4
f5

@ Sphere Function

@ Ellipscidal Function

@) Rastrigin Function

@) Bliche-Rastrigin Function
@ Linear Slope

2 Functions with low or moderate conditioning

fo
f7
fa
fa

) Attractive Sector Function

@ Step Ellipsoidal Function

@ Rosenbrock Function, original
& Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 |@Ellipsoidal Function

f11 @ Discus Function

f12 @ Bent Cigar Function

f12 @ 5sharp Ridge Function

f14 @ Different Powers Function

6 dimensions: 2, 3, 5,

4 Multi-modal functions with adequate global structure
f15 @ Rastrigin Function

f16 @ Weierstrass Function

f17 @ Schaffers F7 Function

f18 |@ 5chaffers F7 Functions, moderately ill-conditioned
f19 @@ Composite Griewank-Rosenbrock Function FEBF2
5 Multi-modal functions with weak global structure
f20 @ Schwefel Function

f21 @ Gallagher's Gaussian 101-me Peaks Function

f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @Katsuura Function

f24 @ Lunacek bi-Rastrigin Function

10, 20, (40 optional)



Notion of Instances

 All COCO problems come in form of instances

* .9. as translated/rotated versions of the same
function

 Prescribed instances typically change from year to
year

» avoid overfitting
* 5 instances are always kept the same

Plus:

» the bbob functions are locally perturbed by non-
linear transformations



Notion of Instances
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The single-objective noisy
BBOB functions



bbob-noisy Testbed

» 30 functions with various kinds of noise types and
strengths
3 noise types: Gaussian, uniform, and seldom Cauchy
« Functions with moderate noise
* Functions with severe noise
 Highly multi-modal functions with severe noise

« bbob functions included: Sphere, Rosenbrock, Step
ellipsoid, Ellipsoid, Different Powers, Schaffers' F7,
Composite Griewank-Rosenbrock

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)



COCO extended to
multiobjective optimization



bbob-biobj Testbed

55 functions by combining 2 bbob functions

1 Separable Functions

f1
f2
f3
f4
f5

@ Sphere Function v
@Ellipsoidal Function v/
) Rastrigin Function

@ Biiche-Rastrigin Function
@Linear Slope

2 Functions with low or moderate conditioning

fo
f7
fa
fa

@ Attractive Sector Function

@ Step Ellipsoidal Function
@~Rosenbrock Function, original
@ Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 @Ellipsoidal Function

f11 @Discus Function

f12 @ Bent Cigar Function

f13 @s5harp Ridge Functiony”

f14 @pDifferent Powers Functiony/

4 Multi-modal functions with adequate global structure
f15 @Rastrigin Function /

f16 @ Weierstrass Function

f17 @ Schaffers F7 Function /

fig8 @ Schaffers F7 Functions, moderately ill-conditioned
f19 @@ Composite Griewank-Rosenbrock Function FEBF2
5 Multi-modal functions with weak global structure
f20 | @sSchwefel Function ./

f21 @ Gallagher's Gaussian 101-me Peaks Funu:ticm\/
f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @HKatsuura Function

f24 @ Lunacek bi-Rastrigin Function



bbob-biobj Testbed

55 functions by combining 2 bbob functions

1 Separable Functions 4 Multi-modal functions with adequate global structure
fi | @sSphere Function f15 @ Rastrigin Function v

f2 @Ellipsoidal Function v f16 @ Weierstrass Function

f2 |@Rastrigin Function f17 @5Schaffers F7 Function o/

f4_|@Buche Rastrigin Function hi fa fo fs fiza fuu fis fuu fo fa
f5 | @Linear Slope fi i P B M4 f5 f6 7 B8 0 f0
2 Functions with low or moderate conditionir

f6 | @Attractive Sector Function v/ fa fil f12 f13 f14 f15 fle f17 f18 f19
7 @Step Ellipsoidal Function fe f20 f21 f22 23 f24 125 f26 {27
fa | @Rosenbrock Function, original v/ fE f28 f29 30 31 32 f33 f34
fo |@Rosenbrock Function, rotated f13 f35 f36 f37 38 f39 f40
3 Functions with high conditioning and unime [14 f41 f42 f43 {44 {145
f10 @Ellipsoidal Function f1s fae f47 f48 f49
f11 @Discus Function fi7 fso fs51 f52
f12 @ Bent Cigar Function fi’ﬂ f53 f54
f13 @ Sharp Ridge Functiony” f?l f55

f14 @pDifferent Powers Functiony/




bbob-biobj Testbed

« 55 functions by combining 2 bbob functions

15 function groups with 3-4 functions each

* separable — separable, separable — moderate, separable -
Ill-conditioned, ...

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

e instances derived from bbob instances:

* more or less 2i+1 for 1st objective and 2i+2 for 2nd
objective

 exceptions: instances 1 and 2 and when optima are too
close

* no normalization (algo has to cope with different
orders of magnitude)

» for performance assessment: ideal/nadir points
Known



bbob-biobj Testbed (cont'd)

 Pareto set and Pareto front unknown

 but we have a good idea of where they are by running
quite some algorithms and keeping track of all non-
dominated points found so far

» Various types of shapes



bbob-biobj Testbed (cont'd)

Example: sphere with sphere

6 projection of decision space for bbob-biobj f, (5-D, instance 1)

e
i
21
« reference set (697 of 2773576 point
0 — cuts through single optima
cut through both optima
two random directions
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-100
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bbob-biobj f, along linear search space directions (5-D, instance 1)

0 random directions
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first objective
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bbob-biobj Testbed (cont'd)

Example: sharp ridge with sharp ridge

projection of decision space for bbob-biobj fi; (5-D, instance 1)

reference set (1230 of 1722826 points)
cuts through single optima

cut through both optima

two random directions

H bbob-biobj f;5 along linear search space directions (5-D, instance 1)

3500

3000
]
>
2
(9]
@ 2500
o
o
©
c
O 2000
(9]
. . 0.0.7971 ‘ . . 3
-4 -2 0 2 4
T 1500

1000

cuts through single optima
cut through both optima
two random directions

Q.U‘

1
500

| 1 |
1000 1500 2000 2500

first objective



bbob-biobj Testbed (cont'd)

Example: sphere with Gallagher 101 peaks

projection of decision space for bbob-biobj f,, (5-D, instance 1)

6
4
5| bbob-biobj f,, along linear search space directions (5-D, instance 1)
—— cuts through single optima
100} — cut through both optima ]
or two random directions
80|
2k g
= 60}
« reference set (1095 of 1378108 point _5
—al — cuts through single optima -8 a0l
——— cut through both optima i
two random directions o]
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—6 I ! ! L L @
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_20 L

1 1 1 1 1 1 |
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first objective



bbob-biobj Testbed (cont'd)

Example: Schaffer F7, cond. 10 with Gallagher 101
P;Q@tt&% decisior‘1 space for‘bbob—biob!' fs2 (5-D, ipstance 1)

bbob-biobj fs5, along linear search space directions (5-D, instance 1)

80 — cuts through single optima
—— cut through both optima

- two random directions
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=

.0

» reference set (585 of 444135 point @

-4l |=——=cuts-through single optima -8
—— cut through both optima °

two random directions o]

0.0.7971 H U

—6 I L L L L @
-6 —4 -2 0 2 4 n

I

first objective



EXxercise

Objective:

Investigate the data you just postprocessed:
a) which algorithms are the best ones?
b) does this depend on the dimension?

c) look at single graphs: can we say something about the
algorithms' invariances, e.g. wrt. rotations of the search space?

d) what's the impact of covariance-matrix-adaptation?

e) what do you think: are the displayed algorithms well-suited for
problems with larger dimension?



Paper Discussion:
"Dynamic Search in Fireworks Algorithm"


http://eprints.cs.univie.ac.at/4082/1/PID3181839.pdf

Objectives of the exercise:

O Learn how to read an optimization paper critically
In order to be able to do high-quality reviews

but also to get the most information from it for practical
purposes

® Understand the reasoning behind the COCQO concepts
by looking at how others benchmark optimization algorithms



