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I Introduction

We are going to test the convergence of several algorithms on some test functions, in particular on the

so-called sphere function
n

fsphcrc (X) = Z Xlz
=1

and the ellipsoid function
n

foi(x) = (10077 x;)?

i=1

1. What is the condition number associated to the Hessian matrix of the functions above? Are the
functions ill-conditioned?

2. Implement the above functions fpshere and felli in python. They should both take a search
point € R™ as input and return f(x). Most likely, you want to consider using numpy arrays as
inputs. Python commands like sum and arange might be handy here.

1T Adaptive step-size algorithms

The (1 4 1)-ES algorithm is one of the simplest stochastic search methods for numerical optimization.
We will start by implementing a (1 + 1)-ES with constant step-size. The pseudo-code of the algorithm is
given by

Initializex € R" and o >0
while not terminate

x' =x+0oN(0,I)

if f(x) < f(x)

x=x
where A (0, I) denotes a Gaussian vector with mean 0 and covariance matrix equal to the identity.

1. Implement the algorithm in python. To this end, you should define a function that takes as input
a function to be optimized (like the two implemented previously), an initial search point x € R™,
an initial step-size ¢ € R~ and a maximum number of function evaluations as stopping criterion
and that returns a numpy array in which you have written at each iteration the best-so-far objective
function value.



10.

. Use the algorithm to minimize the sphere function in dimension n = 5. We will take as initial

search point x° = (1,...,1) [x=numpy.ones((1,n))], as initial step-size ¢ = 10~% and as stopping
criterion a maximum number of function evaluations equal to 2 - 10%.

Plot the evolution of the function value of the best solution versus the number of iterations (or
function evaluations). We will use a log scale for the y-axis. The easiest will be to use the semilogy
functionality of matplotlib:

from matplotlib import pyplot as plt
plt.semilogy (X, Y)
plt.show()

Explain the three phases observed in the figure.

To accelerate the convergence, we will implement a step-size adaptive algorithm, i.e. the step-size o
is not fixed once for all. The method to adapt the step-size, we investigate here, is called one-fifth
success rule. The pseudo-code of the (1 + 1)-ES with one-fifth success rule is given by:

Initialize * € R" and 0 > 0
while not terminate

' =x+oN(0,I)

if f(z') < f(=)

z=ux

oc=150
else

o= (15"

. Implement the (14+1)-ES with one-fifth success rule and run the algorithm on the sphere function

fsphere(®) in dimension 5 (n = 5) using x° = (1,...,1), 0o = 1073, and as stopping criterion a
maximum number of function evaluations equal to 6 - 10.

To visualize the optimization, plot the evolution of the square root of the best function value at
each iteration versus the number of iterations. Use a logarithmic scale for the y-axis. Compare to
the plot obtained in Question 3. Plot also on the same graph the evolution of the step-size.

Use the algorithm to minimize the function fe; in dimension n = 5. Plot the evolution of the
objective function value of the best solution versus the number of iterations. Why is the (1 +1)-ES
with one-fifth success much slower on fen; than on fiphere?

Repeat the same experiment of item 5 and 6 again on the function

n—1

fRosenbrock(m) = 2(100(963 - $i+1)2 + (l‘z — 1)2)

i=1

where you start from z° = (0.5,...,0.5).

We now consider the functions, g( fsphere) and g(fen;) where g : R — R,y + y/4. First of all, write

the function g that can do the transformation on its own and that can be combined with the above
fsphere and felli.

Modify your implementation of the (1+1)-ES in Questions 5-7 so as to save at each iteration the
distance between x and the optimum. Plot the evolution of the distance to the optimum versus the
number of function evaluations on the functions fephere and g(fsphere) as well as on the functions
feni and g(feni). What do you observe? Explain.



IIT Running and Understanding CMA-ES

Download and install the python module of the CMA-ES algorithm from the webpage of Nikolaus Hansen
(the main author of the algorithm):

http://www.lri.fr/ hansen/cmaes_inmatlab.html

The easiest is to type python -m pip -U install cma within your terminal in case you have already
pip installed. Note that if you work on the provided desktops, the command python is linked with a
Python 3 installation and that you must use a Python 3 jupyter notebook in this case.

1. Run the CMA-ES algorithm in dimension 10 to minimize the following functions

n i1
o feni(x) = Y1, ((10%)7=1x;)?
® frablet (X) = 106X% + Z?:z Xzz

The main entry point for us to CMA-ES here will be cma.fmin which takes an objective function
to be optimized, an initial starting solution, and the initial step size as mandatory arguments (type
cma.fmin? to get more detailed help). The above functions are as well already available with the
cma module via cma.fcts.elli and cma.fcts.tablet respectively. Typing

cma.plot()
cma.show()

will display all kinds of (graphical) information from the algorithm run and in particular the evolu-
tion of the mean vector, the step-size and the covariance matrix adapted in the CMA-ES algorithm.

2. Explain the different plots that appear on the screen.
3. Identify and explain the two main (convergence) phases observed.

4. What is the relationship between the eigenvalues of the covariance matrix in the end and the
eigenvalues of the Hessian matrix of the functions?

5. Connect the asymptotic convergence rate on the convex quadratic function that corresponds to the
slope of the last part of the convergence graph with the convergence rate on the sphere function.
Explain.

6. The function fenirot(x) is defined by fenivot(X) = feni(Px) where P is a rotation matrix (sam-
pled uniformly among the rotation matrices). Run the CMA-ES algorithm on fepiror and on fep;.
Remember, that several functions are already provided with the cma module, in particular also
cma.fcts.ellirot. Understand and explain the differences observed in the graphical output.

7. Compare now the convergence rate of CMA-ES and of the (1 4 1)-ES with one-fifth success rule
on fonia(x) = Y1 ((10%)n=1x;)? for n = 10. For this you can for instance report the number
of function evaluations that both algorithms need to reach 107° for 6 different runs. Explain the
differences observed.

8. We consider now the function

n
frastrigin (X) = 10n + Z(XZQ — 10 cos(27x;))
i=1
Show that the function is multimodal. We remind that a function to be minimized is multimodal
if it has more than one local optimum.

9. The default population size (the parameter \) in CMA-ES equals 4+ | (3log(n))]. Run 5 times the
CMA-ES algorithm with its default population size to minimize the Rastrigin function in dimension
10 starting with a point sampled uniformly at random within [0, 1]™ and with initial step-size equal
to 10. Measure the success probability of the algorithm reaching a function value of 10~% or smaller.
Realize the same experiment by multiplying the default population size by 2,4,8,16,32. What do
you observe? Explain.



