

BASICS OF OPTIMISATION METHODS

Jean-Yves LUCAS Jean-yves.lucas@edf.fr

CEA-EDF-INRIA Summer school Design and optimization under uncertainty of large-scale numerical models

July 3rd, 2017

SUMMARY

- **1.** INTRODUCTION
 - CONSTRAINT SATISFACTION PROBLEMS
 - MINIMIZATION PROBLEMS
 - CONSTRAINED OPTIMIZATION PROBLEMS
- **2.** COMPLEXITY ISSUES
 - POLYNOMIAL
 - EXPONENTIAL
 - NP-COMPLETE
- **3.** DIFFERENT METHOD CLASSIFICATION
 - ENUMERATIVE METHODS, ITERATIVE METHODS, CONSTRUCTIVE METHODS
 - SINGLE SOLUTION METHODS / POPULATION BASED METHODS
 - EXACT / APPROXIMATE METHODS
- 4. HEURISTICS AND METAHEURISTICS
- 5. AN IMPORTANT METHOD : THE SIMPLEX ALGORITHM
- 6. OPTIMIZATION UNDER UNCERTAINTY
- 7. BLACK-BOX OPTIMIZATION

INTRODUCTION

- Combinatorial problem
 - Involves only discrete variables

Constraint Satisfaction Problems

- Typically defined by
 - A set of discrete variables $V_1, \, ..., \, V_n$
 - A domain Di of possible values for each variable V_i
 - A set of constraints K₁, ..., K_p
- Example :
 - Let the variables a, b, c, d
 - let $a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - let $b \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - let $c \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - let $d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Subject to: a + b + c + d = 2017 (1000 a + 100 b + 10 c + d)
- But in practice some (or all) variables may take real values
 - Mixed-integer Problems
 - Continuous Problems

OVERVIEW

Optimization problem

- We are looking for a point in the domain of a function so that the function value is minimal (resp. maximal) at that point.
- fonction $X^2 X + 2Y^2 2$ Typically : "quadratique.data". • variables V₁, ..., V_n are continuous and bounded Example : 350 300 250 200 150 let the variables x, y 100 • let $x \in [-10, 10]$ 50 0 • let $y \in [-10, 10]$ -50 -10
- If possible we take advantage of continuity and derivability properties of the function
 - In simple cases (convex), we look for a point at which the 1st order partial derivatives equal 0
 - Use of Newton method or variations (quasi-Newton, truncated-Newton...)

OVERVIEW

- Optimization problem
 Harder cases...
 - Example :
 - Let variables x, y
 - let $x \in [-10, 10]$
 - let $y \in [-10, 10]$

- We may reach local minima
- If possible we break the domain down into sub-domains on which the function is convex (resp. concave)
 - □ We also pay attention to 2nd order partial derivatives...

OVERVIEW

Constrained optimization problem

- □ Both an optimization problem...
- And Constraint Satisfaction Problem (CSP)
- Moreover if some variables are discrete and the others are continuous :
 - Mixed-Integer Constained Satisfaction Problem
- Typically :
 - variables $V_1, \, \ldots, \, V_n$ are either continuous or discrete
 - Feasible solutions are defined through a set of constraints (including bound constraints)
 - · Some variables shall take integer values
- Example :
 - A power plant whose production is computed on a set of successive time-steps
 - At each time-step, the plant is operating or not
 - If the plant produces electricity, then the produced power ranges between Pmin and Pmax
 - When producing, the plant must be in operations for at least 3 consecutive time-steps

Complexity (in time)

- Number of elementary instructions that are necessary to perform in order to carry the algorithm out, as a function of data size
- Optimization : two notions :
 - Existence problems: Is there a solution that fulfills all constraints ?
 - Decision problems (optimization problems) : what is the problem's best solution ?
 - These problems are equivalent : Is there a solution so that any other solution has a greater cost (minimization case) ?

Polynomial problems

- The number of elementary instructions performed is bounded by a multivariate polynomial (data size)
- Example: shortest path (Dijktra) : O((a+n)*Log(n)) for a graph with a edges and n vertices

Exponential problems

- The number of elementary instructions performed is bounded by a power function of the data size
- □ The proved exponential problems are scarce...
 - We have to build an exponential number of solutions – For instance : the subsets of a set of cardinality n
 - Others...

- What lies between polynomial problems and exponential problems ?
 - □ Problems that have not been proven to be exponential...
 - □ But for which we do not know any polynomial algorithm.

- NP problems : non-deterministic polynomial
 - There exists a polynomial procedure to build a possible solution and to insure it is actually a solution
 - We will have to run this procedure an undetermined number of times so as to finally get a solution. This number of times is not known in advance, but is bounded by an exponential function of the data size
 - Example :
 - let $a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - let $b \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - let $c \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - let $d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Subject to a + b + c + d = 2017 (1000 a + 100 b + 10 c + d)
 - choose a possible value for a, b, c and d,
 - compute a+b+c+d,
 - compute 2017 (1000 a + 100 b + 10 c + d)
 - Check for equality

 \rightarrow polynomial procedure, but should be run an undetermined number of times (here at most 10⁴ i.e. NbValues^{NbVariables}) until one (resp. the best resp. no) solution is found

10⁴ is an upper bound, some (polynomial) methods may be used in order to reduce (with no guarantee) the search space

NP-complete problems:

- □ NP problems : there exists a polynomial algorithm to check a solution
- Any NP-problem reduces to a NP-complete problem through a polynomial reduction : a polynomial procedure that transforms the NP problem into an instance of a NPcomplete problem,
 - i.e. finding a solution to the NP-problem, comes to finding a given solution (with respect to the reduction) to the NP-complete problem

the NP-complete problem is « at least as hard as » the NP-problem

- □ The NP-complete problems are in NP, thus they are all reducible to each other.
- They are all « equivalent »: if there exists a polynomial algorithm solving one NPcomplete problem, then all NP-complete problems are polynomial.

NP-hard problems:

- A problem Prob is NP-hard if any NP-problem (including NP-complete ones) is reducible to Prob thanks to a polynomial reduction.
 - Thus they are « at least as difficult as » NP- problems

- A first taxonomy
 - Enumerative methods
 - Have a look (at least implicitly) at the whole search space
 - Scan a search tree
 - E.g. Branch and Bound, Constraint Programming, Dynamic Programming
 - Iterative methods
 - Build an initial solution
 - Repeat the process of changing some variables assignment so as to get a new solution in the neighborhood of the previous one
 - Until a satisfactory or the best solution is found
 - E.g. hill-climbing methods, simplex, tabu search, genetic algorithm

- Constructive methods
 - · Repeat the process of
 - Choose a variable among those not having been yet assigned thanks to a specific criterion Cvar
 - Choose a possible value for this variable according to a specific criterion Cval
 - · Until a solution is found or a constraint is violated
 - No backtrack
 - E.g. greedy algorithm

- An other taxonomy
- For difficult problems (non-polynomial),
 - We may distinguish two classes of methods:
 - If we absolutely want to get a solution or prove there's no solution, we need to backtrack
 - · Repeat the process of
 - assigning a value to each problem's variable
 - Check the constraints
 - until a solution is discovered or the whole search space has been scanned
 - 1st : exact methods (Branch and Bound, CP) :
 - build a search tree,
 - Avoid to scan irrelevant sub-trees

- Guarantee to find out one (the best) solution
- No guarantee on the running time

- For difficult problems (non-polynomial),
 - We may distinguish two classes of methods:
 - 2nd : approximate methods (heuristics and metaheuristics) :
 - build one solution (possibly repeat that process with randomness)
 - only scan a reduced part of the search space

- These methods are polynomial

Heuristics et métaheuristics

- Trade-off : swap from a guarantee on finding solutions to a guarantee on bounding the execution time
- □ Choosing these methods depend on the problem at hand :
 - Is it easy to find solutions, but hard to find the best ones ?
 - Is finding the best solution mandatory ?
 - Is it enough to get good solutions ?
- heuristics :
 - Only build one solution according to appropriate criteria,
 - possibly repeat the process with some randomness

metaheuristics :

- Exhibit a set of solutions according a general scheme, which is adapted to the problem to solve
- This scheme rely on analogy with physics (simulated annealing), biology (genetic algorithms) or social animals behaviour (ant colony algorithms, particle swarm optimization)

SOME METAHEURISTICS

Simulated annealing

- Analogy with metallurgy
 - While cooling down, metallic atoms position themselves according to a given structure (e.g. body-centered cubic, face-cubic centered, ...)
 - A too fast cooling process lead to non-homogeneous structure
 - ➡ weaknesses
 - The energy level is not minimum
 - Hence successive annealing
 - To lower and lower temperatures
 - bring enough energy for a better atoms positionning
- □ same principle :
 - Gradient method
 - Start from temperature T0
 - From time to time we accept a worse solution than the former one (« annealing »)
 - According to a probability depending on the « temperature » : let Sⁿ⁺¹ a possible successor solution to Sⁿ
 - $P(S^{n+1}) = 1$ if $f(S^{n+1}) < f(S^n)$
 - $P(S^{n+1}) = e^{-(\Delta f/T)}$ otherwise
 - Decrease temperature to 0.

SOME METAHEURISTICS

tabu

Gradient method with list management

- Store the last n solutions we found
- As long as a neighbour solution improves the objective function, choose it
- If none, then choose one which deteriorate the cost BUT...
- ...not among those being in the tabu list
- Update tabu list
- Avoid infinite loops of size less or equal to n
- But the choice of an appropriate n is crucial

Example with n = 5

Continuous problems

- A widely used algorithm: simplex
- Linear program
 - $A \times X \le B$ with $X \in I \mathbb{R}^n$
 - A m×n matrix
 - X 1×n vector
 - X 1×n vector
 - B m×1 right-hand side vector
- Objective function max $(\delta_1 x_1 + ... + \delta_n x_n)$
- Standard form: $\max (\delta_1 x_1 + \ldots + \delta_n x_n)$ $A' \times X' = B$ $A m \times (n+m) \text{ matrix}$ $X 1 \times (n+m) \text{ vector}$ $B m \times 1 \text{ right-hand side vector}$ $\forall i \in [1, n+m] x_i \ge 0$

by adding m slack variables

Linear programs properties

• Example :

-Question : what is the value z^* , minimum of 7 $x_1 + x_2 + 5 x_3$ -Remark : 7 $x_1 + x_2 + 5 x_3 > (x_1 + x_2 + 3 x_3) + (5 x_1 + 2 x_2 - x_3) > 16$

Linear programs properties

- The « game » consists in finding positive multiplicators for constraints so that the coefficient associated with each variable in the sum of constraints left-hand side be less but as close as possible to the coefficient associated to the same variable in the objective function.
- The sum of right-hand sides is a lower bound of z^*

Linear programs properties

 $7 \, x_1 + x_2 + 5 \, x_3 \, \geq \, 6.5 \, x_1 \, + 0.5 \, x_2 \, + \, 3.5 \, x_3 \, \geq \, 21$

Linear programs properties

• Let 2 coefficients y_1 et $y_2 \ge 0$ Minimize 7 $x_1 + x_2 + 5 x_3$ $y_1 (x_1 - x_2 + 3 x_3) \ge 10 y_1$ $y_2 (5 x_1 + 2 x_2 - x_3) \ge 6 y_2$

 $\label{eq:maximize} \begin{array}{c} \text{Maximize 10 } y_1 + 6 \; y_2 \\ y_1 + 5 \; y_2 \leq 7 \\ - \; y_1 + 2 \; y_2 \leq 1 \\ 3 \; y_1 - \; y_2 \leq 5 \end{array}$

Linear programs properties

$x_1 - x_2 + 3 x_3 \ge 10$	Maximize 10 y_1 + 6 y_2
$5 x_1 + 2 x_2 - x_3 \ge 6$	$y_1 + 5 \ y_2 \leq 7$
Minimize $7 x_1 + x_2 + 5 x_3$	- $y_1 + 2 y_2 \le 1$
	$3 y_1 - y_2 \le 5$

Solution (7/4, 0, 11/4)

Solution (2,1)

Geometrical insight

Basics of Optimisation | 2017/07 | 24

Simplex algorithm

- start from an initial point on a vertex of the polytope
- Move toward a neighbour vertex following an edge, so that the value of the objective function is improved

Basics of Optimisation | 2017/07 | 25

Optimizing a function in the presence of randomness in the optimization process

- The uncertainty may lie
 - in the objective function
 - in the constraints
- The randomness affects the data
 - the coefficients associated to decision variables
 - » In the constraints
 - » In the objective function
 - » both

Optimizing a function in the presence of randomness in the optimization process

- Different approaches
 - chance constrained optimization
 - stochastic optimization

chance constrained optimization

- in the presence of random data some constraints are not mandatorily fulfilled
 - Let f be a left-hand side of a constraint
 - Let x be the set of decision variables
 - Let ω be set of random data (e.g. scenarios)
 - a chance constraint:
 - » $Prob(f_i(x, \omega) \le 0) \ge \eta$ (η is the level of confidence)
 - Percentile optimization
 - » minimize γ
 - $\ \ \, \text{Prob}(f_i(x,\,\omega)\leq\gamma)\geq\eta$
 - able to cope with probability laws
 - may be non-linear, non-convex...
 - usually results in difficult optimization problems

stochastic optimization

- Usually randomness leads to scenarios
 - From historical data
 - From Monte-Carlo simulations
 - decisions have to be made over time periods
 - a prominent division:
 - » single-stage stochastic optimization
 - » multi-stage stochastic optimization

stochastic optimization

- single-stage problems
 - decision is implemented with no subsequent recourse
 - X set of all possible decisions
 - $-\xi$ random information only available after decision is made
 - $F(X, \xi)$ cost function
 - we do not directly optimize $F(X, \xi)$
 - instead we minimize $\mathbb{E}[F(X, \xi)]$
 - the general single-stage optimization problem becomes:
 - $\zeta^* = \min_{x \in X} \{f(x) = \mathbb{E} [F(X, \xi)] \}$
 - assume that X is convex and $F(X, \xi)$ is convex in X for any realisation ξ
 - otherwise subdivise the domain into pieces where convexity is met

stochastic optimization

- multi-stage optimization
 - aims at finding a sequence of decisions at successive steps t ∈ [0, T]
 may correspond to temporal or decisional chronology
 - ξ random information available after partial decisions are made
 - $F(X, \xi)$ cost function
 - we do not directly optimize $F(X, \xi)$
 - the general multi-stage optimization problem is:
 - $\zeta^* = \min_{x_0 \in X_0} \operatorname{E} [\inf_{x_1 \in X_1} F(X_1, \xi_1) + \operatorname{E} [\dots + \operatorname{E} [\inf_{x_T \in X_T} F(X_T, \xi_T)]]] \}$
 - $-X_i$: decisions made at stage i
 - an important application : 2-stage optimization with recourse
 - » 1st stage : structural, « here and now » variables
 - » 2nd stage : recourse, « wait and see » variables
 - » Here and now variables have the same assignment in any scenario
 - » Wait and see variables may have different assignments in each scenario

stochastic optimization

- Robustness
 - optimizing in average or expectation may lead to desastrous situation for some « unlucky » scenarios.
 - hence the notion of robustness

» either you add terms in the objective function (the variance)

- Min $c^T x + \sum_{k=1}^{K} p_k z_k + K[\sum_{k=1}^{K} p_k z_k^2 - (\sum_{k=1}^{K} p_k z_k)^2)]$

- » or you add terms in the constraints
 - « you cannot be so unlucky as all misfortunes occur at the same time »
 - let p₁ and p₂ two random parameters
 - add quadratic contraints such as $\frac{P_1^2}{a^2} + \frac{P_2^2}{b^2} = r$
 - this yield difficult (non-linear) problems

optimization methods

- Stochastic dual dynamic programming
- MIPs
- Decomposition methods
 - decompose the problem according to the scenarios
 - » that relax the coupling constraints (non-anticipativity constraints stating that for instance in a 2-stage problem, the 1st-stage variables should take the same value in each scenario)
 - » make sure that at the end of the solving process, the non-anticipativity constraints are fulfilled
 - -Cutting-plane methods
 - -Augmented-lagrangian methods
 - and so on...
- Monte-Carlo simulations
- Metaheuristics
- ...

BLACK-BOX OPTIMIZATION

- In some cases the objective function is not known analytically
 - Or the function is rather complex (e.g. physical and chemical conditions inside a boiler in operation)
- Need to run a black-box software to evaluate solutions
- Any evaluation may be cheap (favourable case) or costly (try a surrogate model ?)
- □ A block-box function is not always a nasty one (continuous, smooth, convex...)
- Need to distinguish the process of generating candidate solutions and assessing their relevance (correctness, evaluation...)
 - Methods :
 - Genetic algorithm
 - Particle swarm
 - Descent/gradient
 - Local search
 - Variable neighbourhood search
 - DIRECT (Dividing RECTangles)
 - Somehow constuct a response surface
 - Balance between intensification and diversification

Thank you

