©fed

BASICS OF OPTIMISATION METHODS

Jean-Yves LUCAS
Jean-yves.lucas@edf.fr

CEA-EDF-INRIA Summer school
Design and optimization under uncertainty of large-scale numerical models

July 3rd, 2017

SUMMARY

1. Introduction

- CONSTRAINT SATISFACTION PROBLEMS
- MINIMIZATION PROBLEMS
- CONSTRAINED OPTIMIZATION PROBLEMS

2. COMPLEXITY ISSUES

- POLYNOMIAL
- EXPONENTIAL
- NP-COMPLETE

3. DIFFERENT METHOD CLASSIFICATION

- ENUMERATIVE METHODS, ITERATIVE METHODS, CONSTRUCTIVE METHODS
- SINGLE SOLUTION METHODS / POPULATION BASED METHODS
- EXACT / APPROXIMATE METHODS

4. HEURISTICS AND METAHEURISTICS
5. AN IMPORTANT METHOD : THE SIMPLEX ALGORITHM
6. OPTIMIZATION UNDER UNCERTAINTY
7. BLACK-BOX OPTIMIZATION

INTRODUCTION

- Combinatorial problem
- Involves only discrete variables
- Constraint Satisfaction Problems
- Typically defined by
- A set of discrete variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
- A domain Di of possible values for each variable V_{i}
- A set of constraints $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{p}}$
- Example :
- Let the variables a, b, c, d
- let $a \in\{0,1,2,3,4,5,6,7,8,9\}$
- let $b \in\{0,1,2,3,4,5,6,7,8,9\}$
- let $c \in\{0,1,2,3,4,5,6,7,8,9\}$
- let $d \in\{0,1,2,3,4,5,6,7,8,9\}$
- Subject to: $a+b+c+d=2017-(1000 a+100 b+10 c+d)$
- But in practice some (or all) variables may take real values
- Mixed-integer Problems
- Continuous Problems

OVERVIEW

- Optimization problem
- We are looking for a point in the domain of a function so that the function value is minimal (resp. maximal) at that point.
- Typically :

```
fonction }\mp@subsup{X}{}{2}-X+2\mp@subsup{Y}{}{2}-
```

- variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ are continuous and bounded

> "quadratique.data"

- Example :
- let the variables x, y
- let $x \in[-10,10]$
- let $y \in[-10,10]$

- If possible we take advantage of continuity and derivability properties of the function
- In simple cases (convex), we look for a point at which the 1 st order partial derivatives equal 0
- Use of Newton method or variations (quasi-Newton, truncated-Newton...)

OVERVIEW

- Optimization problem
- Harder cases...
"Fonction.data"
- Example :
- Let variables x, y
- let $x \in[-10,10]$
- let $y \in[-10,10]$

- We may reach local minima
- If possible we break the domain down into sub-domains on which the function is convex (resp. concave)
- We also pay attention to $2^{\text {nd }}$ order partial derivatives...

OVERVIEW

- Constrained optimization problem
- Both an optimization problem...
- And Constraint Satisfaction Problem (CSP)
- Moreover if some variables are discrete and the others are continuous :
- Mixed-Integer Constained Satisfaction Problem
- Typically :
- variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ are either continuous or discrete
- Feasible solutions are defined through a set of constraints (including bound constraints)
- Some variables shall take integer values
- Example :
- A power plant whose production is computed on a set of successive time-steps
- At each time-step, the plant is operating or not
- If the plant produces electricity, then the produced power ranges between Pmin and Pmax
- When producing, the plant must be in operations for at least 3 consecutive time-steps

COMPLEXITY

- Complexity (in time)
- Number of elementary instructions that are necessary to perform in order to carry the algorithm out, as a function of data size
- Optimization : two notions :
- Existence problems: Is there a solution that fulfills all constraints?
- Decision problems (optimization problems) : what is the problem's best solution ?
- These problems are equivalent : Is there a solution so that any other solution has a greater cost (minimization case) ?
- Polynomial problems
- The number of elementary instructions performed is bounded by a multivariate polynomial (data size)
- Example: shortest path (Dijktra) : O((a+n)*Log(n)) for a graph with a edges and n vertices

COMPLEXITY

- Exponential problems
- The number of elementary instructions performed is bounded by a power function of the data size
- The proved exponential problems are scarce...
- We have to build an exponential number of solutions
- For instance : the subsets of a set of cardinality n
- Others...
- What lies between polynomial problems and exponential problems?
- Problems that have not been proven to be exponential...
- But for which we do not know any polynomial algorithm.

COMPLEXITY

- NP problems : non-deterministic polynomial
- There exists a polynomial procedure to build a possible solution and to insure it is actually a solution
- We will have to run this procedure an undetermined number of times so as to finally get a solution. This number of times is not known in advance, but is bounded by an exponential function of the data size
- Example :
- let $\mathrm{a} \in\{0,1,2,3,4,5,6,7,8,9\}$
- let $b \in\{0,1,2,3,4,5,6,7,8,9\}$
- let $c \in\{0,1,2,3,4,5,6,7,8,9\}$
- let $d \in\{0,1,2,3,4,5,6,7,8,9\}$
- Subject to $a+b+c+d=2017-(1000 a+100 b+10 c+d)$
- choose a possible value for a, b, c and d,
- compute $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$,
- compute 2017-(1000 a + $100 \mathrm{~b}+10 \mathrm{c}+\mathrm{d})$
- Check for equality
\longrightarrow polynomial procedure, but should be run an undetermined number of times (here at most 10^{4} i.e. $\mathrm{NbValues}{ }^{\mathrm{NbVariables}}$) until one (resp. the best resp. no) solution is found

[^0]
COMPLEXITY

- NP-complete problems:
- NP problems : there exists a polynomial algorithm to check a solution
- Any NP-problem reduces to a NP-complete problem through a polynomial reduction : a polynomial procedure that transforms the NP problem into an instance of a NPcomplete problem,
- i.e. finding a solution to the NP-problem, comes to finding a given solution (with respect to the reduction) to the NP-complete problem
\Rightarrow the NP-complete problem is « at least as hard as » the NP-problem
- The NP-complete problems are in NP, thus they are all reducible to each other.
- They are all « equivalent »: if there exists a polynomial algorithm solving one NPcomplete problem, then all NP-complete problems are polynomial.
- NP-hard problems:
- A problem Prob is NP-hard if any NP-problem (including NP-complete ones) is reducible to Prob thanks to a polynomial reduction.
- Thus they are « at least as difficult as » NP- problems

COMPLEXITY

METHOD CLASSIFICATION

- A first taxonomy
- Enumerative methods
- Have a look (at least implicitly) at the whole search space
- Scan a search tree

- E.g. Branch and Bound, Constraint Programming, Dynamic Programming
- Iterative methods
- Build an initial solution
- Repeat the process of changing some variables assignment so as to get a new solution in the neighborhood of the previous one
- Until a satisfactory or the best solution is found
- E.g. hill-climbing methods, simplex, tabu search, genetic algorithm

- Constructive methods
- Repeat the process of
- Choose a variable among those not having been yet assigned thanks to a specific criterion Cvar
- Choose a possible value for this variable according to a specific criterion Cval
- Until a solution is found or a constraint is violated
- No backtrack
- E.g. greedy algorithm

METHOD CLASSIFICATION

- An other taxonomy
- For difficult problems (non-polynomial),
- We may distinguish two classes of methods:
- If we absolutely want to get a solution or prove there's no solution, we need to backtrack
- Repeat the process of
- assigning a value to each problem's variable
- Check the constraints
- until a solution is discovered or the whole search space has been scanned
- 1st : exact methods (Branch and Bound, CP) :
- build a search tree,
- Avoid to scan irrelevant sub-trees

- Guarantee to find out one (the best) solution
- No guarantee on the running time

METHOD CLASSIFICATION

- For difficult problems (non-polynomial),
- We may distinguish two classes of methods:
- 2nd : approximate methods (heuristics and metaheuristics) :
- build one solution (possibly repeat that process with randomness)
- only scan a reduced part of the search space

- These methods are polynomial

METHOD CLASSIFICATION

- Heuristics et métaheuristics
- Trade-off : swap from a guarantee on finding solutions to a guarantee on bounding the execution time
- Choosing these methods depend on the problem at hand:
- Is it easy to find solutions, but hard to find the best ones ?
- Is finding the best solution mandatory ?
- Is it enough to get good solutions?
- heuristics:
- Only build one solution according to appropriate criteria,
- possibly repeat the process with some randomness
- metaheuristics :
- Exhibit a set of solutions according a general scheme, which is adapted to the problem to solve
- This scheme rely on analogy with physics (simulated annealing), biology (genetic algorithms) or social animals behaviour (ant colony algorithms, particle swarm optimization)

SOME METAHEURISTICS

- Simulated annealing

- Analogy with metallurgy
- While cooling down, metallic atoms position themselves according to a given structure (e.g. body-centered cubic, face-cubic centered, ...)
- A too fast cooling process lead to non-homogeneous structure
\longrightarrow weaknesses
- The energy level is not minimum
- Hence successive annealing
- To lower and lower temperatures
- bring enough energy for a better atoms positionning

- same principle :
- Gradient method
- Start from temperature T0
- From time to time we accept a worse solution than the former one (« annealing »)
- According to a probability depending on the «temperature» : let S^{n+1} a possible successor solution to S^{n}
$-P\left(S^{n+1}\right)=1$ if $f\left(S^{n+1}\right)<f\left(S^{n}\right)$
$-P\left(S^{n+1}\right)=e^{-(\Delta f T)}$ otherwise
- Decrease temperature to 0 .

SOME METAHEURISTICS

- tabu
- Gradient method with list management
- Store the last n solutions we found
- As long as a neighbour solution improves the objective function, choose it
- If none, then choose one which deteriorate the cost BUT...
- ...not among those being in the tabu list
- Update tabu list
- Avoid infinite loops of size less or equal to n
- But the choice of an appropriate n is crucial

Example with $\mathrm{n}=5$

SIMPLEX ALGORITHM

■Continuous problems

- A widely used algorithm: simplex
- Linear program
$A \times X \leq B$
with $X \in \mathbb{R}^{n}$
A $m \times n$ matrix
X $1 \times n$ vector
B $m \times 1$ right-hand side vector
- Objective function

$$
\max \left(\delta_{1} x_{1}+\ldots+\delta_{n} x_{n}\right)
$$

- Standard form:

$$
\begin{aligned}
& \max \left(\delta_{1} \mathrm{X}_{1}+\ldots+\delta_{\mathrm{n}} \mathrm{X}_{\mathrm{n})}\right. \\
& \mathrm{A}^{\prime} \times \mathrm{X}^{\prime}=\mathrm{B} \\
& \text { A } \mathrm{m} \times(\mathrm{n}+\mathrm{m}) \text { matrix } \\
& \mathrm{X} 1 \times(\mathrm{n}+\mathrm{m}) \text { vector } \\
& \text { B } \mathrm{m} \times 1 \text { right-hand side vector } \\
& \forall \mathrm{i} \in[1, \mathrm{n}+\mathrm{m}] \mathrm{x}_{\mathrm{i}} \geq 0
\end{aligned}
$$

by adding m slack variables

SIMPLEX ALGORITHM

- Linear programs properties
- Example :
-Minimize $7 x_{1}+x_{2}+5 x_{3}$
-Subject to constraints

$x 1-x 2+3 \times 3$	≥ 10
$5 \times 1+2 \times 2-x 3$	≥ 6
$x 1, x 2, \times 3 \geq 0$	

-Question : what is the value z^{*}, minimum of $7 x_{1}+x_{2}+5 x_{3}$
-Remark:

$$
7 x_{1}+x_{2}+5 x_{3} \geq\left(x_{1}-x_{2}+3 x_{3}\right)+\left(5 x_{1}+2 x_{2}-x_{3}\right) \geq 16
$$

SIMPLEX ALGORITHM

-Linear programs properties

- The « game » consists in finding positive multiplicators for constraints so that the coeffficient associated with each variable in the sum of constraints left-hand side be less but as close as possible to the coefficient associated to the same variable in the objective function.
- The sum of right-hand sides is a lower bound of z^{*}

$$
\begin{array}{r}
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
\text { Minimize } 7 x_{1}+x_{2}+5 x_{3}
\end{array}
$$

SIMPLEX ALGORITHM

- Linear programs properties

$$
\begin{gathered}
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
\text { Minimize } 7 x_{1}+x_{2}+5 x_{3} \\
1.5\left(\begin{array}{c}
\left.x_{1}-x_{2}+3 x_{3}\right) \geq 15 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6
\end{array}\right. \\
7 x_{1}+x_{2}+5 x_{3} \geq 6.5 x_{1}+0.5 x_{2}+3.5 x_{3} \geq 21
\end{gathered}
$$

SIMPLEX ALGORITHM

- Linear programs properties
- Let 2 coefficients y_{1} et $y_{2} \geq 0$

Minimize $7 x_{1}+x_{2}+5 x_{3}$

$$
\begin{aligned}
& y_{1}\left(x_{1}-x_{2}+3 x_{3}\right) \geq 10 y_{1} \\
& y_{2}\left(5 x_{1}+2 x_{2}-x_{3}\right) \geq 6 y_{2}
\end{aligned}
$$

$$
\left.\begin{array}{r}
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
\text { Minimize } 7 x_{1}+x_{2}+5 x_{3}
\end{array}\right\} \begin{aligned}
& \text { Maximize } 10 y_{1} \\
& y_{1}+5 y_{2} \leq 7 \\
& -y_{1}+2 y_{2} \leq 1 \\
& 3 y_{1}-y_{2} \leq 5
\end{aligned}
$$

SIMPLEX ALGORITHM

- Linear programs properties

$$
\left.\begin{array}{r}
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-\quad x_{3} \geq 6 \\
\text { Minimize } 7 x_{1}+x_{2}+5 x_{3}
\end{array}\right\} \quad \begin{aligned}
& \text { Maximize } 10 y_{1}+6 y_{2} \\
& y_{1}+5 y_{2} \leq 7 \\
& -y_{1}+2 y_{2} \leq 1 \\
& 3 y_{1}-y_{2} \leq 5
\end{aligned}
$$

Solution (7/4, 0, 11/4)
Solution (2,1)

Basics of Optimisation | 2017/07

SIMPLEX ALGORITHM

Geometrical insight

SIMPLEX ALGORITHM

Simplex algorithm

- start from an initial point on a vertex of the polytope
- Move toward a neighbour vertex following an edge, so that the value of the objective function is improved

maximize $\left(10 y_{1}+6 y_{2}\right)$

OPTIMIZATION UNDER UNCERTAINTY

-Optimizing a function in the presence of randomness in the optimization process

- The uncertainty may lie
- in the objective function
- in the constraints
- The randomness affects the data
- the coefficients associated to decision variables
" In the constraints
" In the objective function
" both

OPTIMIZATION UNDER UNCERTAINTY

\square Optimizing a function in the presence of randomness in the optimization process

- Different approaches
- chance constrained optimization
- stochastic optimization

OPTIMIZATION UNDER UNCERTAINTY

- chance constrained optimization
- in the presence of random data some constraints are not mandatorily fulfilled
- Let f be a left-hand side of a constraint
- Let x be the set of decision variables
- Let ω be set of random data (e.g. scenarios)
- a chance constraint:
$» \operatorname{Prob}\left(f_{i}(x, \omega) \leq 0\right) \geq \eta \quad(\eta$ is the level of confidence)
- Percentile optimization
» minimize γ
$>\operatorname{Prob}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x}, \omega) \leq \gamma\right) \geq \eta$
- able to cope with probability laws
- may be non-linear, non-convex...
- usually results in difficult optimization problems

OPTIMIZATION UNDER UNCERTAINTY

- Stochastic optimization
- Usually randomness leads to scenarios
- From historical data
- From Monte-Carlo simulations
- decisions have to be made over time periods
- a prominent division:
" single-stage stochastic optimization
" multi-stage stochastic optimization

OPTIMIZATION UNDER UNCERTAINTY

- stochastic optimization
- single-stage problems
- decision is implemented with no subsequent recourse
- X set of all possible decisions
$-\xi$ random information only available after decision is made
- $F(X, \xi)$ cost function
- we do not directly optimize $F(X, \xi)$
- instead we minimize $\mathbb{E}[F(X, \xi)]$
- the general single-stage optimization problem becomes:
$-\zeta^{*}=\min _{x \in x}\{f(x)=\mathbb{E}[F(X, \xi)]\}$
- assume that X is convex and $F(X, \xi)$ is convex in X for any realisation ξ
- otherwise subdivise the domain into pieces where convexity is met

OPTIMIZATION UNDER UNCERTAINTY

- stochastic optimization
- multi-stage optimization
- aims at finding a sequence of decisions at successive steps $t \in[0, T]$
" may correspond to temporal or decisional chronology
$-\xi$ random information available after partial decisions are made
- $F(X, \xi)$ cost function
- we do not directly optimize $F(X, \xi)$
- the general multi-stage optimization problem is:
$\left.-\zeta^{*}=\min _{x_{0} \in X_{0}} \mathbb{E}\left[\inf _{x_{1} \in X 1} F\left(X_{1}, \xi_{1}\right)+\mathbb{E}\left[\ldots+\mathbb{E}\left[\inf _{x_{T} \in X_{T}} F\left(X_{T}, \xi_{T}\right)\right]\right]\right]\right\}$
$-X_{i}$: decisions made at stage i
- an important application : 2-stage optimization with recourse
" 1st stage : structural, « here and now » variables
" $2^{\text {nd }}$ stage : recourse, « wait and see » variables
" Here and now variables have the same assignment in any scenario
" Wait and see variables may have different assignments in each scenario

OPTIMIZATION UNDER UNCERTAINTY

- Stochastic optimization
- Robustness
- optimizing in average or expectation may lead to desastrous situation for some «unlucky» scenarios.
- hence the notion of robustness
" either you add terms in the objective function (the variance)
- Min $\left.\mathrm{c}^{\top} \mathrm{x}+\sum_{k=1}^{K} p_{k} z_{k}+\mathrm{K}\left[\sum_{k=1}^{K} p_{k} z_{k}{ }^{2}-\left(\sum_{k=1}^{K} p_{k} z_{k}\right)^{2}\right)\right]$
" or you add terms in the constraints
- « you cannot be so unlucky as all misfortunes occur at the same time »
- let p_{1} and p_{2} two random parameters
- add quadratic contraints such as $\frac{P_{1}{ }^{2}}{a^{2}}+\frac{P_{2}{ }^{2}}{b^{2}}=r$
- this yield difficult (non-linear) problems

OPTIMIZATION UNDER UNCERTAINTY

- optimization methods
- Stochastic dual dynamic programming
- MIPs
- Decomposition methods
- decompose the problem according to the scenarios
» that relax the coupling constraints (non-anticipativity constraints stating that for instance in a 2 -stage problem, the 1st-stage variables should take the same value in each scenario)
" make sure that at the end of the solving process, the non-anticipativity constraints are fulfilled
- Cutting-plane methods
- Augmented-lagrangian methods
- and so on...
- Monte-Carlo simulations
- Metaheuristics
- ...

BLACK-BOX OPTIMIZATION

- In some cases the objective function is not known analytically
- Or the function is rather complex (e.g. physical and chemical conditions inside a boiler in operation)
- Need to run a black-box software to evaluate solutions
- Any evaluation may be cheap (favourable case) or costly (try a surrogate model ?)
- A block-box function is not always a nasty one (continuous, smooth, convex...)
- Need to distinguish the process of generating candidate solutions and assessing their relevance (correctness, evaluation...)
- Methods :
- Genetic algorithm
- Particle swarm
- Descent/gradient
- Local search
- Variable neighbourhood search
- DIRECT (Dividing RECTangles)
- Somehow constuct a response surface
- Balance between intensification and diversification

Thank you

¢์ㄹㄹㅏ

[^0]: 10^{4} is an upper bound, some (polynomial) methods may be used in order to reduce (with no guarantee) the search space

