@
& SeDF

BASICS OF
OPTIMISATION
METHODS

Jean-Yves LUCAS
Jean-yves.lucas@edf.fr

CEA-EDF-INRIA Summer school
Design and optimization under uncertainty of
large-scale numerical models

July 3rd, 2017

H

gn!
1 e
s&"'“’% L

FEEF"
Y
o g | W
R i

SUMMARY

1. INTRODUCTION
« CONSTRAINT SATISFACTION PROBLEMS
+ MINIMIZATION PROBLEMS
+ CONSTRAINED OPTIMIZATION PROBLEMS

2. COMPLEXITY ISSUES
- POLYNOMIAL
- EXPONENTIAL
- NP-COMPLETE

3. DIFFERENT METHOD CLASSIFICATION
- ENUMERATIVE METHODS, ITERATIVE METHODS, CONSTRUCTIVE METHODS
- SINGLE SOLUTION METHODS / POPULATION BASED METHODS
- EXACT / APPROXIMATE METHODS

HEURISTICS AND METAHEURISTICS
AN IMPORTANT METHOD : THE SIMPLEX ALGORITHM

OPTIMIZATION UNDER UNCERTAINTY

N o o &

BLACK-BOX OPTIMIZATION

\J
“'QEDF Basics of Optimisation | 2017/07 | 2

INTRODUCTION

= Combinatorial problem
o Involves only discrete variables

= Constraint Satisfaction Problems
o Typically defined by

» Aset of discrete variables V4, ..., V,
« A domain Di of possible values for each variable V,
* Asetof constraints Ky, ..., K,

o Example :

» Letthe variables a, b, c, d

* letae{0,1,2,3,4,5,6,7,8,9}

e letb €{0,1,2,3,4,5,6,7,8,9}

» letc €{0,1,2,3,4,5,6,7,8,9}

e letd € {0,1,2,3,4,5,6,7,8,9}

e Subjectto:a+b+c+d=2017-(1000a+100b + 10c +d)

= But in practice some (or all) variables may take real values
o Mixed-integer Problems
o Continuous Problems

\J
“'QEDF Basics of Optimisation | 2017/07 | 3

OVERVIEW

= Optimization problem

o We are looking for a point in the domain of a function so that the function value is minimal
(resp. maximal) at that point.

O Typlca”y : fonction X2-X+2Y2-2
[i "quadratique.data”
« variables V,, ..., V, are continuous and bounded quadratiaue data
o Example : 350 [

300 [~

%
K55
200 IS S P
- 150 |- N .&zg%%iiz%%%%
) SN [P 74es IIIrI 2~ 4
* let the variables x, y I [e
100 ==
50 |-
. letx e [-10, 10] o
50
. lety e [-10, 10]
-10 m i 0 10

» |f possible we take advantage of continuity and derivability properties of the function

o In simple cases (convex), we look for a point at which the 1st order partial derivatives
equal 0

o Use of Newton method or variations (quasi-Newton, truncated-Newton...)

4
* ~ €DF Basics of Optimisation | 2017/07 | 4

OVERVIEW

= Optimization problem
o Harder cases...

"Fonction.data"

o Example :
. 150000
» Letvariables x, y 100000
50000 | /[AAE7
* letx € [-10,10] o _,-:,-;:-:_.—:,.5,-:_.:.;
| P
« lety e[-10, 10] 50000 17777 10

-100000
-150000

= We may reach local minima

= |f possible we break the domain down into sub-domains on which the function is
convex (resp. concave)

o We also pay attention to 2" order partial derivatives...

4
* ~ €DF Basics of Optimisation | 2017/07 | 5

OVERVIEW

= Constrained optimization problem
o Both an optimization problem...
o And Constraint Satisfaction Problem (CSP)

o Moreover if some variables are discrete and the others are continuous :
» Mixed-Integer Constained Satisfaction Problem

o Typically :
 variables V4, ..., V, are either continuous or discrete
» Feasible solutions are defined through a set of constraints (including bound constraints)
» Some variables shall take integer values

o Example :
» A power plant whose production is computed on a set of successive time-steps
» At each time-step, the plant is operating or not
« If the plant produces electricity, then the produced power ranges between Pmin and Pmax
« When producing, the plant must be in operations for at least 3 consecutive time-steps

\J
‘;QEDF Basics of Optimisation | 2017/07 | 6

COMPLEXITY

= Complexity (in time)
o Number of elementary instructions that are necessary to perform in order to carry the
algorithm out, as a function of data size

o Optimization : two notions :
» Existence problems: Is there a solution that fulfills all constraints ?
 Decision problems (optimization problems) : what is the problem’s best solution ?

» These problems are equivalent : Is there a solution so that any other solution has a greater cost
(minimization case) ?

= Polynomial problems

o The number of elementary instructions performed is bounded by a multivariate
polynomial (data size)

o Example: shortest path (Dijktra) : O((a+n)*Log(n)) for a graph with a edges and n
vertices

\J
“'QEDF Basics of Optimisation | 2017/07 | 7

COMPLEXITY

= Exponential problems

o The number of elementary instructions performed is bounded by a power function of
the data size

o The proved exponential problems are scarce...

» We have to build an exponential number of solutions
— For instance : the subsets of a set of cardinality n

» Others...

= What lies between polynomial problems and exponential problems ?
o Problems that have not been proven to be exponential...
o But for which we do not know any polynomial algorithm.

\J
“’:EDF Basics of Optimisation | 2017/07 | 8

COMPLEXITY

= NP problems : hon-deterministic polynomial

o There exists a polynomial procedure to build a possible solution and to insure it is
actually a solution

o We will have to run this procedure an undetermined number of times so as to finally
get a solution. This number of times is not known in advance, but is bounded by an
exponential function of the data size

o Example :

* leta € {0,1,2,3,4,5,6,7,8,9}

letb < {0,1,2,3,4,5,6,7,8,9)

let c € {0,1,2,3,4,5,6,7,8,9}

letd < {0,1,2,3,4,5,6,7,8,9)

Subjecttoa+b+c+d=2017-(1000a + 100 b + 10 c + d)

— choose a possible value for a, b, c and d,

— compute a+b+c+d,

— compute 2017 - (1000a + 100 b + 10 ¢ + d)
— Check for equality

polynomial procedure, but should be run an undetermined number of times (here at most 104 i.e.
NbValuesNeVariables) yntil one (resp. the best resp. no) solution is found

10%is an upper bound, some (polynomial) methods may be used in order to reduce (with no guarantee)
the search space

\J
‘;QEDF Basics of Optimisation | 2017/07 | 9

COMPLEXITY

= NP-complete problems:
o NP problems : there exists a polynomial algorithm to check a solution

o Any NP-problem reduces to a NP-complete problem through a polynomial reduction :
a polynomial procedure that transforms the NP problem into an instance of a NP-
complete problem,

* i.e. finding a solution to the NP-problem, comes to finding a given solution (with respect to the
reduction) to the NP-complete problem

=) the NP-complete problem is « at least as hard as » the NP-problem
o The NP-complete problems are in NP, thus they are all reducible to each other.

o They are all « equivalent »: if there exists a polynomial algorithm solving one NP-
complete problem, then all NP-complete problems are polynomial.

= NP-hard problems:

o A problem Prob is NP-hard if any NP-problem (including NP-complete ones) is
reducible to Prob thanks to a polynomial reduction.
» Thus they are « at least as difficult as » NP- problems

4
* ~ €DF Basics of Optimisation | 2017/07 | 10

COMPLEXITY

Exponential

NP-Complete

<~ €DF Basics of Optimisation | 2017/07 | 11

METHOD CLASSIFICATION

(

Vi=2 Vi=5

. ~a Ve

= A first taxonomy ./ \.

) Va=1 V2=3 V2z1 V2=3
o Enumerative methods N\
» Have a look (at least implicitly) at the whole search space ' ‘ ' ’
- Scan a search tree S

» E.g. Branch and Bound, Constraint Programming, Dynamic Programming

o lterative methods
 Build an initial solution
» Repeat the process of changing some variables assignment so as to get a new solution in the

neighborhood of the previous one
 Until a satisfactory or the best solution is found
 E.g. hill-climbing methods, simplex, tabu search, genetic algorithm

g Vi=2 V2=1 V3=3 V4=5
Vi=2 V2=1 V3=3 V4=4
Vi=2 V2=2 V3=3 V4=4
Vi=1 V2=2 V3=3 V4=4
V1 I=2 V2|=1 V’31=3 V4|=4

NHN

o Constructive methods

» Repeat the process of
— Choose a variable among those not having been yet assigned thanks to a specific criterion Cvar
— Choose a possible value for this variable according to a specific criterion Cval

» Until a solution is found or a constraint is violated Vise—
* No backtrack
» E.g. greedy algorithm

Vv2-3
—

4
* ~ €DF Basics of Optimisation | 2017/07 | 12

METHOD CLASSIFICATION

= An other taxonomy

= For difficult problems (non-polynomial),
o We may distinguish two classes of methods:

If we absolutely want to get a solution or prove there’s no solution, we need to backtrack
» Repeat the process of

— assigning a value to each problem’s variable
— Check the constraints

until a solution is discovered or the whole search space has been scanned

1st : exact methods (Branch and Bound, CP) :
— build a search tree,

— Avoid to scan irrelevant sub-trees

/ S / \

/ \ / / \

’ \ ’ 7 \
/ \, / / \
/ \ / / \

><

— Guarantee to find out one (the best) solution
— No guarantee on the running time

4
* ~ €DF Basics of Optimisation | 2017/07 | 13

METHOD CLASSIFICATION

= For difficult problems (non-polynomial),
o We may distinguish two classes of methods:

» 2nd : approximate methods (heuristics and metaheuristics) :

* build one solution (possibly repeat that process with randomness)
» only scan a reduced part of the search space

Search Space

— These methods are polynomial

L J
& TeDF

Basics of Optimisation | 2017/07 | 14

METHOD CLASSIFICATION

= Heuristics et métaheuristics

o Trade-off : swap from a guarantee on finding solutions to a guarantee on bounding
the execution time

o Choosing these methods depend on the problem at hand :
* Is it easy to find solutions, but hard to find the best ones ?
« Is finding the best solution mandatory ?
* Is it enough to get good solutions ?

o heuristics :

— Only build one solution according to appropriate criteria,
— possibly repeat the process with some randomness

o metaheuristics :

— Exhibit a set of solutions according a general scheme, which is adapted to the problem to solve

— This scheme rely on analogy with physics (simulated annealing), biology (genetic algorithms) or social
animals behaviour (ant colony algorithms, particle swarm optimization)

4
* ~ €DF Basics of Optimisation | 2017/07 | 15

SOME METAHEURISTICS

= Simulated annealing

o Analogy with metallurgy

» While cooling down, metallic atoms position themselves according to a given structure (e.qg.
body-centered cubic, face-cubic centered, ...)

» Atoo fast cooling process lead to non-homogeneous structure
=) Weaknesses
» The energy level is not minimum

* Hence successive annealing
— To lower and lower temperatures
— bring enough energy for a better atoms positionning

o same principle :
« Gradient method
 Start from temperature TO
» From time to time we accept a worse solution than the former one (« annealing »)

» According to a probability depending on the « temperature » 1 let S™1 a possible successor
solution to S"
— P(S™1) = 1 if f(S"™1) < f(SN)
— P(S™1) = e A7) otherwise

 Decrease temperature to 0.

4
* ~ €DF Basics of Optimisation | 2017/07 | 16

SOME METAHEURISTICS

= tabu
o Gradient method with list management

» Store the last n solutions we found

» As long as a neighbour solution improves the objective function, choose it
* If none, then choose one which deteriorate the cost BUT...

» ...not among those being in the tabu list

» Update tabu list

 Avoid infinite loops of size less or equal to n
» But the choice of an appropriate n is crucial

Example with n =5

“"QEDF Basics of Optimisation | 2017/07 | 17

SIMPLEX ALGORITHM

o Continuous problems

* A widely used algorithm: simplex
* Linear program

AxX<B

with X e [R"

A mxn matrix

X 1xn vector

B mx1 right-hand side vector

 Objective function
max (81 X4 + ... + 9, X,)

« Standard form:
max (61 X1 + ..+ Sn Xn)
AxX =B
A mx(n+m) matrix
X 1x(n+m) vector

B mx1 right-hand side vector
Vie[l,n+m] x>0

by adding m slack variables
<'~epF

Basics of Optimisation | 2017/07 | 18

SIMPLEX ALGORITHM

oLinear programs properties

« Example :

—Minimize 7 X4 + Xo + 5 X3
—Subject to constraints

x1 - x2 +3x3 >10
5x1 +2x2 - x3 >6
x1, x2,x3>0

—Question : what is the value z*, minimum of 7 Xy + X + 5 X3

—Remark :

7X1+Xo+5X3> (X1-X2+3X3)+(O5X1+2X%X2—X3)>16

[J
4o =
-~ EDF

Basics of Optimisation | 2017/07 | 19

SIMPLEX ALGORITHM

oLinear programs properties

* The « game » consists in finding positive multiplicators for
constraints so that the coeftficient associated with each
variable in the sum of constraints left-hand side be less but as
close as possible to the coefficient associated to the same
variable in the objective function.

* The sum of right-hand sides is a lower bound of z*
Xy - Xo +3x3 =210

5X1 +2X2 - X3 > 6
Minimize 7 X1 + Xo + 5 X3

4
* ~ €DF Basics of Optimisation | 2017/07 | 20

SIMPLEX ALGORITHM

oLinear programs properties

Xy - Xo +3x3 =210
5X1 +2X2 - X3 > 6
Minimize 7 X1 + X2 + 5 X3

15(X1 - Xo +3x3) > 15
5X1+2X2- X3 > 6

7X1+Xo+5%X3 2 65%x1y +05x, + 3.5x3 > 21

[
* ~ €DF

Basics of Optimisation | 2017/07 | 21

SIMPLEX ALGORITHM

oLinear programs properties

 Let 2 coefficients y1 et y> >0
Minimize 7 X1 + X> + 5 X3
yi(X1 - Xo +3x3) 210 ;
YQ(5X1+2X2- X3)26y2

Xy - Xo +3x3 =210 Maximize 10 y; + 6 yo

5Xy +2X%Xo - X3 26 Y1i+9OYy2<7

Minimize 7 X1 + X2 + 5 X3 - Y1 +2Yy2<1
3y1— VY255

4
* ~ €DF Basics of Optimisation | 2017/07 | 22

SIMPLEX ALGORITHM

oLinear programs properties

X1 - Xo +3x3 =210 Maximize 10 y; + 6 yo
5X1 +2Xo - X3 26 Yi+9OYy2<7
Minimize 7 X1 + X2 + 5 X3 - yi+2Yy2<1
3y1— Yo <5

Solution (7/4, 0, 11/4) Solution (2,1)

7 X1+ X2+ 5 X3 7 X1 + Xo + 5 X3
In R In Z U
—— /2" =26 :>Z*=?

10 y1 + 6y 1Oy1+6y2m

P Basics of Optimisation | 2017/07
& SeDF |23

SIMPLEX ALGORITHM

Geometrical insight

Y1 .
1 Y1+ YQS7
AT\ Vi 42y <1
3Y1— Y2 <5

A3

[J
4o =
-~ EDF

v

y2

yi=-5y,+7 (A1)
yi=-2ys -1 (A2)
yi= 1/3y,+5/3 (A3)

maximize (10 y4 + 6 y»)

let: 10y +6y2 =
= maximize o
Y1 6/10 y2 + /10 (Am)

Basics of Optimisation | 2017/07 | 24

SIMPLEX ALGORITHM

Simplex algorithm

start from an initial point on a vertex of the polytope

Move toward a neighbour vertex following an edge, so that the value of the objective function is
improved

Y1
Al

v

maximize (10 y; + 6 y»)

4
* ~ €DF Basics of Optimisation | 2017/07 | 25

OPTIMIZATION UNDER UNCERTAINTY

o Optimizing a function in the presence of randomness
in the optimization process

* The uncertainty may lie
— in the objective function
— in the constraints

 The randomness affects the data
— the coefficients associated to decision variables
» In the constraints

» In the objective function
» both

4
* ~ €DF Basics of Optimisation | 2017/07 | 26

OPTIMIZATION UNDER UNCERTAINTY

o Optimizing a function in the presence of randomness
in the optimization process

« Different approaches

— chance constrained optimization

— stochastic optimization

[J
“":EDF Basics of Optimisation | 2017/07 | 27

OPTIMIZATION UNDER UNCERTAINTY

o chance constrained optimization

* in the presence of random data some constraints are not
mandatorily fulfilled

— Let f be a left-hand side of a constraint
— Let x be the set of decision variables
— Let o be set of random data (e.g. scenarios)
— a chance constraint:
» Prob(f,(Xx,) <0) >n (n is the level of confidence)
— Percentile optimization
» minimize y
» Prob(fi(x,) <y) >n
— able to cope with probability laws
— may be non-linear, non-convex...
— usually results in difficult optimization problems

* ~ €DF Basics of Optimisation | 2017/07 | 28

OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

» Usually randomness leads to scenarios

— From historical data
— From Monte-Carlo simulations
— decisions have to be made over time periods

— a prominent division:

» single-stage stochastic optimization
» multi-stage stochastic optimization

4
* ~ €DF Basics of Optimisation | 2017/07 | 29

OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

* single-stage problems
— decision is implemented with no subsequent recourse
— X set of all possible decisions
— & random information only available after decision is made
— F(X, &) cost function
— we do not directly optimize F(X, &)
— instead we minimize [E[F(X, &)]

— the general single-stage optimization problem becomes:
— &' =min, x {f(x) =E[F(X, §)] }

— assume that X is convex and F(X, &) is convex in X for any realisation &
— otherwise subdivise the domain into pieces where convexity is met

* ~ €DF Basics of Optimisation | 2017/07 | 30

OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

» multi-stage optimization
— aims at finding a sequence of decisions at successive stepst € [0, T]
» may correspond to temporal or decisional chronology
— & random information available after partial decisions are made
— F(X, &) cost function
— we do not directly optimize F(X, &)

— the general multi-stage optimization problem is:

— " =min .y E[Inf, xs F(Xy, &) +EL.. + E[inf, cx; F(X, &) 1111}
—X; : decisions made at stage |
— an important application : 2-stage optimization with recourse

» 1st stage : structural, « here and now » variables

» 2nd stage : recourse, « wait and see » variables

» Here and now variables have the same assignment in any scenario

» Wait and see variables may have different assignments in each scenario

* ~ €DF Basics of Optimisation | 2017/07 | 31

OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

* Robustness
— optimizing in average or expectation may lead to desastrous situation for
some « unlucky » scenarios.
— hence the notion of robustness

» either you add terms in the objective function (the variance)
- Min ¢™ + X5, PrZy + KX k=1 PrZi” - (Zk=1 PiZi)?)]

» Or you add terms in the constraints
- « you cannot be so unlucky as all misfortunes occur at the same time »
- let p; and p, two random parameters
2

- add quadratic contraints such as a— + B, Pis

R o
N |] P

- this yield difficult (non-linear) problems

v

4
* ~ €DF Basics of Optimisation | 2017/07 | 32

OPTIMIZATION UNDER UNCERTAINTY

o optimization methods

 Stochastic dual dynamic programming

* MIPs

» Decomposition methods
— decompose the problem according to the scenarios
» that relax the coupling constraints (non-anticipativity constraints stating that for instance
in a 2-stage problem, the 1st-stage variables should take the same value in each

scenario)
» make sure that at the end of the solving process, the non-anticipativity constraints are

fulfilled
— Cutting-plane methods
— Augmented-lagrangian methods
— and so on...

» Monte-Carlo simulations
 Metaheuristics

4
* ~ €DF Basics of Optimisation | 2017/07 | 33

BLACK-BOX OPTIMIZATION

o In some cases the objective function is not known analytically

» Or the function is rather complex (e.g. physical and chemical conditions
inside a boiler in operation)

o Need to run a black-box software to evaluate solutions

o Any evaluation may be cheap (favourable case) or costly (try a surrogate
model ?)

o A block-box function is not always a nasty one (continuous, smooth, convex...)

o Need to distinguish the process of generating candidate solutions and
assessing their relevance (correctness, evaluation...)

* Methods :
— Genetic algorithm
— Particle swarm
— Descent/gradient
— Local search
— Variable neighbourhood search
— DIRECT (Dividing RECTangles)

+ Somehow constuct a response surface
* Balance between intensification and diversification

4
* ~ €DF Basics of Optimisation | 2017/07 | 34

Thank you

