
BASICS OF

OPTIMISATION

METHODS

CEA-EDF-INRIA Summer school
Design and optimization under uncertainty of

large-scale numerical models

July 3rd, 2017

Jean-Yves LUCAS
Jean-yves.lucas@edf.fr

| 2

SUMMARY

Basics of Optimisation | 2017/07

1. INTRODUCTION
• CONSTRAINT SATISFACTION PROBLEMS

• MINIMIZATION PROBLEMS

• CONSTRAINED OPTIMIZATION PROBLEMS

2. COMPLEXITY ISSUES
- POLYNOMIAL

- EXPONENTIAL

- NP-COMPLETE

3. DIFFERENT METHOD CLASSIFICATION
- ENUMERATIVE METHODS, ITERATIVE METHODS, CONSTRUCTIVE METHODS

- SINGLE SOLUTION METHODS / POPULATION BASED METHODS

- EXACT / APPROXIMATE METHODS

4. HEURISTICS AND METAHEURISTICS

5. AN IMPORTANT METHOD : THE SIMPLEX ALGORITHM

6. OPTIMIZATION UNDER UNCERTAINTY

7. BLACK-BOX OPTIMIZATION

| 3

INTRODUCTION

 Combinatorial problem

 Involves only discrete variables

 Constraint Satisfaction Problems

 Typically defined by

• A set of discrete variables V1, …, Vn

• A domain Di of possible values for each variable Vi

• A set of constraints K1, …, Kp

 Example :

• Let the variables a, b, c, d

• let a  {0,1,2,3,4,5,6,7,8,9}

• let b  {0,1,2,3,4,5,6,7,8,9}

• let c  {0,1,2,3,4,5,6,7,8,9}

• let d  {0,1,2,3,4,5,6,7,8,9}

• Subject to: a + b + c + d = 2017 - (1000 a + 100 b + 10 c + d)

 But in practice some (or all) variables may take real values

 Mixed-integer Problems

 Continuous Problems

Basics of Optimisation | 2017/07

| 4

OVERVIEW

 Optimization problem

 We are looking for a point in the domain of a function so that the function value is minimal

(resp. maximal) at that point.

 Typically :

• variables V1, …, Vn are continuous and bounded

 Example :

• let the variables x, y

• let x  [-10, 10]

• let y  [-10, 10]

 If possible we take advantage of continuity and derivability properties of the function

 In simple cases (convex), we look for a point at which the 1st order partial derivatives

equal 0

 Use of Newton method or variations (quasi-Newton, truncated-Newton…)

Basics of Optimisation | 2017/07

| 5

OVERVIEW

 Optimization problem

 Harder cases…

 Example :

• Let variables x, y

• let x  [-10, 10]

• let y  [-10, 10]

 We may reach local minima

 If possible we break the domain down into sub-domains on which the function is
convex (resp. concave)

 We also pay attention to 2nd order partial derivatives…

Basics of Optimisation | 2017/07

| 6

OVERVIEW

 Constrained optimization problem

 Both an optimization problem…
 And Constraint Satisfaction Problem (CSP)

 Moreover if some variables are discrete and the others are continuous :

• Mixed-Integer Constained Satisfaction Problem

 Typically :

• variables V1, …, Vn are either continuous or discrete

• Feasible solutions are defined through a set of constraints (including bound constraints)

• Some variables shall take integer values

 Example :

• A power plant whose production is computed on a set of successive time-steps

• At each time-step, the plant is operating or not

• If the plant produces electricity, then the produced power ranges between Pmin and Pmax

• When producing, the plant must be in operations for at least 3 consecutive time-steps

Basics of Optimisation | 2017/07

| 7

COMPLEXITY

Basics of Optimisation | 2017/07

 Complexity (in time)

 Number of elementary instructions that are necessary to perform in order to carry the

algorithm out, as a function of data size

 Optimization : two notions :

• Existence problems: Is there a solution that fulfills all constraints ?

• Decision problems (optimization problems) : what is the problem’s best solution ?

• These problems are equivalent : Is there a solution so that any other solution has a greater cost
(minimization case) ?

 Polynomial problems

 The number of elementary instructions performed is bounded by a multivariate

polynomial (data size)

 Example: shortest path (Dijktra) : O((a+n)*Log(n)) for a graph with a edges and n

vertices

| 8

COMPLEXITY

Basics of Optimisation | 2017/07

 Exponential problems

 The number of elementary instructions performed is bounded by a power function of

the data size

 The proved exponential problems are scarce…
• We have to build an exponential number of solutions

– For instance : the subsets of a set of cardinality n

• Others…

 What lies between polynomial problems and exponential problems ?

 Problems that have not been proven to be exponential…
 But for which we do not know any polynomial algorithm.

| 9

COMPLEXITY

Basics of Optimisation | 2017/07

 NP problems : non-deterministic polynomial

 There exists a polynomial procedure to build a possible solution and to insure it is

actually a solution

 We will have to run this procedure an undetermined number of times so as to finally

get a solution. This number of times is not known in advance, but is bounded by an

exponential function of the data size

 Example :

• let a  {0,1,2,3,4,5,6,7,8,9}

• let b  {0,1,2,3,4,5,6,7,8,9}

• let c  {0,1,2,3,4,5,6,7,8,9}

• let d  {0,1,2,3,4,5,6,7,8,9}

• Subject to a + b + c + d = 2017 - (1000 a + 100 b + 10 c + d)

– choose a possible value for a, b, c and d,

– compute a+b+c+d,

– compute 2017 - (1000 a + 100 b + 10 c + d)

– Check for equality

polynomial procedure, but should be run an undetermined number of times (here at most 104 i.e.

NbValuesNbVariables) until one (resp. the best resp. no) solution is found

104 is an upper bound, some (polynomial) methods may be used in order to reduce (with no guarantee)

the search space

| 10

COMPLEXITY

Basics of Optimisation | 2017/07

 NP-complete problems:

 NP problems : there exists a polynomial algorithm to check a solution

 Any NP-problem reduces to a NP-complete problem through a polynomial reduction :

a polynomial procedure that transforms the NP problem into an instance of a NP-

complete problem,

• i.e. finding a solution to the NP-problem, comes to finding a given solution (with respect to the
reduction) to the NP-complete problem

the NP-complete problem is « at least as hard as » the NP-problem

 The NP-complete problems are in NP, thus they are all reducible to each other.

 They are all « equivalent »: if there exists a polynomial algorithm solving one NP-

complete problem, then all NP-complete problems are polynomial.

 NP-hard problems:

 A problem Prob is NP-hard if any NP-problem (including NP-complete ones) is

reducible to Prob thanks to a polynomial reduction.

• Thus they are « at least as difficult as » NP- problems

| 11

COMPLEXITY

Basics of Optimisation | 2017/07

Exponential

NP-Hard

NP

P

NP-Complete

| 12

METHOD CLASSIFICATION

Basics of Optimisation | 2017/07

 A first taxonomy

 Enumerative methods

• Have a look (at least implicitly) at the whole search space

• Scan a search tree

• E.g. Branch and Bound, Constraint Programming, Dynamic Programming

V1=2 V1=5

V2=1 V2=3 V2=1 V2=3

 Iterative methods

• Build an initial solution

• Repeat the process of changing some variables assignment so as to get a new solution in the
neighborhood of the previous one

• Until a satisfactory or the best solution is found

• E.g. hill-climbing methods, simplex, tabu search, genetic algorithm

 Constructive methods

• Repeat the process of
– Choose a variable among those not having been yet assigned thanks to a specific criterion Cvar

– Choose a possible value for this variable according to a specific criterion Cval

• Until a solution is found or a constraint is violated

• No backtrack

• E.g. greedy algorithm

V1=2 V4=5V2=1 V3=3

V1=2 V4=4V2=1 V3=3

V1=2 V4=4V2=2 V3=3

V1=2 V4=4V2=1 V3=3

V1=1 V4=4V2=2 V3=3

V1=2

V2=3

| 13

METHOD CLASSIFICATION

Basics of Optimisation | 2017/07

 An other taxonomy

 For difficult problems (non-polynomial),

 We may distinguish two classes of methods:

• If we absolutely want to get a solution or prove there’s no solution, we need to backtrack

• Repeat the process of
– assigning a value to each problem’s variable

– Check the constraints

• until a solution is discovered or the whole search space has been scanned

• 1st : exact methods (Branch and Bound, CP) :
– build a search tree,

– Avoid to scan irrelevant sub-trees

– Guarantee to find out one (the best) solution

– No guarantee on the running time

V1=2
V1=5

V2=1 V2=3 V2=1

| 14

METHOD CLASSIFICATION

Basics of Optimisation | 2017/07

 For difficult problems (non-polynomial),

 We may distinguish two classes of methods:

• 2nd : approximate methods (heuristics and metaheuristics) :

• build one solution (possibly repeat that process with randomness)

• only scan a reduced part of the search space

– These methods are polynomial

Search Space

| 15

METHOD CLASSIFICATION

Basics of Optimisation | 2017/07

 Heuristics et métaheuristics

 Trade-off : swap from a guarantee on finding solutions to a guarantee on bounding

the execution time

 Choosing these methods depend on the problem at hand :

• Is it easy to find solutions, but hard to find the best ones ?

• Is finding the best solution mandatory ?

• Is it enough to get good solutions ?

 heuristics :

– Only build one solution according to appropriate criteria,

– possibly repeat the process with some randomness

 metaheuristics :

– Exhibit a set of solutions according a general scheme, which is adapted to the problem to solve

– This scheme rely on analogy with physics (simulated annealing), biology (genetic algorithms) or social

animals behaviour (ant colony algorithms, particle swarm optimization)

| 16

SOME METAHEURISTICS

Basics of Optimisation | 2017/07

 Simulated annealing

 Analogy with metallurgy

• While cooling down, metallic atoms position themselves according to a given structure (e.g.
body-centered cubic, face-cubic centered, …)

• A too fast cooling process lead to non-homogeneous structure

weaknesses

• The energy level is not minimum

• Hence successive annealing
– To lower and lower temperatures

– bring enough energy for a better atoms positionning

 same principle :

• Gradient method

• Start from temperature T0

• From time to time we accept a worse solution than the former one (« annealing »)

• According to a probability depending on the « temperature » : let Sn+1 a possible successor
solution to Sn

– P(Sn+1) = 1 if f(Sn+1) < f(Sn)

– P(Sn+1) = e –(Df/T) otherwise

• Decrease temperature to 0.

| 17

SOME METAHEURISTICS

Basics of Optimisation | 2017/07

 tabu

 Gradient method with list management

• Store the last n solutions we found

• As long as a neighbour solution improves the objective function, choose it

• If none, then choose one which deteriorate the cost BUT…
• …not among those being in the tabu list

• Update tabu list

• Avoid infinite loops of size less or equal to n

• But the choice of an appropriate n is crucial

Example with n = 5

| 18

SIMPLEX ALGORITHM

 Continuous problems
• A widely used algorithm: simplex

• Linear program
A  X  B
with X  IRn

A mn matrix
X 1n vector
B m1 right-hand side vector

• Objective function
max (d1 x1 + … + dn xn)

• Standard form:
max (d1 x1 + … + dn xn)

A’  X’  B
A m(n+m) matrix
X 1(n+m) vector
B m1 right-hand side vector
i  [1, n+m] xi  0

by adding m slack variables

Basics of Optimisation | 2017/07

| 19

SIMPLEX ALGORITHM

 Linear programs properties

• Example :

–Minimize 7 x1 + x2 + 5 x3

–Subject to constraints
x1 - x2 + 3 x3  10

5 x1 + 2 x2 - x3  6

x1, x2, x3  0

–Question : what is the value z*, minimum of 7 x1 + x2 + 5 x3

–Remark :
7 x1 + x2 + 5 x3  (x1 - x2 + 3 x3) + (5 x1 + 2 x2 – x3)  16

Basics of Optimisation | 2017/07

| 20

SIMPLEX ALGORITHM

 Linear programs properties

• The « game » consists in finding positive multiplicators for
constraints so that the coeffficient associated with each
variable in the sum of constraints left-hand side be less but as
close as possible to the coefficient associated to the same
variable in the objective function.

• The sum of right-hand sides is a lower bound of z*

x1 - x2 + 3 x3  10

5 x1 + 2 x2 - x3  6

Minimize 7 x1 + x2 + 5 x3

Basics of Optimisation | 2017/07

| 21

SIMPLEX ALGORITHM

 Linear programs properties

x1 - x2 + 3 x3  10

5 x1 + 2 x2 - x3  6

Minimize 7 x1 + x2 + 5 x3

1.5 (x1 - x2 + 3 x3)  15

5 x1 + 2 x2 - x3  6

7 x1 + x2 + 5 x3  6.5 x1 + 0.5 x2 + 3.5 x3  21

Basics of Optimisation | 2017/07

| 22

SIMPLEX ALGORITHM

 Linear programs properties

• Let 2 coefficients y1 et y2  0

Minimize 7 x1 + x2 + 5 x3

y1 (x1 - x2 + 3 x3)  10 y1

y2 (5 x1 + 2 x2 - x3)  6 y2

x1 - x2 + 3 x3  10 Maximize 10 y1 + 6 y2

5 x1 + 2 x2 - x3  6 y1 + 5 y2  7

Minimize 7 x1 + x2 + 5 x3 - y1 + 2 y2  1

3 y1 – y2  5

Basics of Optimisation | 2017/07

| 23

SIMPLEX ALGORITHM

 Linear programs properties

Solution (7/4, 0, 11/4) Solution (2,1)

Basics of Optimisation | 2017/07

x1 - x2 + 3 x3  10 Maximize 10 y1 + 6 y2

5 x1 + 2 x2 - x3  6 y1 + 5 y2  7

Minimize 7 x1 + x2 + 5 x3 - y1 + 2 y2  1

3 y1 – y2  5

7 x1 + x2 + 5 x3

10 y1 + 6 y2

Z* = ?
In ZZ

7 x1 + x2 + 5 x3

10 y1 + 6 y2

Z* = 26
In R

| 24

SIMPLEX ALGORITHM

Geometrical insight

y1 + 5 y2  7

- y1 + 2 y2  1

3 y1 – y2  5

y1 = - 5 y2 + 7 (D1)

y1 = - 2 y2 - 1 (D2)

y1 = 1/3 y2 + 5/3 (D3)

maximize (10 y1 + 6 y2)

let: 10 y1 + 6 y2 = a
 maximize a
y1 = - 6/10 y2 + a/10 (Dm)

y1

D2

D3

y2

D1

a/10 2.6

Dm

Basics of Optimisation | 2017/07

| 25

SIMPLEX ALGORITHM

Simplex algorithm
• start from an initial point on a vertex of the polytope

• Move toward a neighbour vertex following an edge, so that the value of the objective function is
improved

maximize (10 y1 + 6 y2)

y1

D2

D3

y2

D1

a/10 2.6

Dm

Basics of Optimisation | 2017/07

D4

D5

| 26

OPTIMIZATION UNDER UNCERTAINTY

 Optimizing a function in the presence of randomness

in the optimization process

• The uncertainty may lie
– in the objective function

– in the constraints

• The randomness affects the data
– the coefficients associated to decision variables

» In the constraints
» In the objective function
» both

Basics of Optimisation | 2017/07

| 27

OPTIMIZATION UNDER UNCERTAINTY

 Optimizing a function in the presence of randomness

in the optimization process

• Different approaches

– chance constrained optimization

– stochastic optimization

Basics of Optimisation | 2017/07

| 28

OPTIMIZATION UNDER UNCERTAINTY

 chance constrained optimization

• in the presence of random data some constraints are not
mandatorily fulfilled

– Let f be a left-hand side of a constraint

– Let x be the set of decision variables

– Let  be set of random data (e.g. scenarios)

– a chance constraint:
» Prob(fi(x, )  0)   ( is the level of confidence)

– Percentile optimization
» minimize 
» Prob(fi(x, )  )  

– able to cope with probability laws

– may be non-linear, non-convex…
– usually results in difficult optimization problems

Basics of Optimisation | 2017/07

| 29

OPTIMIZATION UNDER UNCERTAINTY

 stochastic optimization

• Usually randomness leads to scenarios

– From historical data

– From Monte-Carlo simulations

– decisions have to be made over time periods

– a prominent division:

» single-stage stochastic optimization
» multi-stage stochastic optimization

Basics of Optimisation | 2017/07

| 30

OPTIMIZATION UNDER UNCERTAINTY

 stochastic optimization

• single-stage problems
– decision is implemented with no subsequent recourse

– X set of all possible decisions

–  random information only available after decision is made

– F(X, ) cost function

– we do not directly optimize F(X, )

– instead we minimize [F(X, )]

– the general single-stage optimization problem becomes:

– * = min x X {f(x) = [F(X, )] }

– assume that X is convex and F(X, ) is convex in X for any realisation 
– otherwise subdivise the domain into pieces where convexity is met

Basics of Optimisation | 2017/07

EE

EE

| 31

OPTIMIZATION UNDER UNCERTAINTY

 stochastic optimization

• multi-stage optimization
– aims at finding a sequence of decisions at successive steps t  [0, T]

» may correspond to temporal or decisional chronology

–  random information available after partial decisions are made

– F(X, ) cost function

– we do not directly optimize F(X, )

– the general multi-stage optimization problem is:

– * = min x0X0 [inf x1X1 F(X1, 1) + [… + [inf xTXT
F(XT, T)]]] }

– Xi : decisions made at stage i

– an important application : 2-stage optimization with recourse
» 1st stage : structural, « here and now » variables
» 2nd stage : recourse, « wait and see » variables
» Here and now variables have the same assignment in any scenario
» Wait and see variables may have different assignments in each scenario

Basics of Optimisation | 2017/07

EE EE EE

| 32

OPTIMIZATION UNDER UNCERTAINTY

 stochastic optimization

• Robustness
– optimizing in average or expectation may lead to desastrous situation for

some « unlucky » scenarios.

– hence the notion of robustness

» either you add terms in the objective function (the variance)
- Min cTx + 𝑘=1𝐾 𝑝𝑘𝑧𝑘 + K[𝑘=1𝐾 𝑝𝑘𝑧𝑘2 - (𝑘=1𝐾 𝑝𝑘𝑧𝑘)2)]

» or you add terms in the constraints
- « you cannot be so unlucky as all misfortunes occur at the same time »
- let p1 and p2 two random parameters

- add quadratic contraints such as
𝑃12𝑎2 +

𝑃22𝑏2 = r

- this yield difficult (non-linear) problems

Basics of Optimisation | 2017/07

p1

p2

| 33

OPTIMIZATION UNDER UNCERTAINTY

 optimization methods

• Stochastic dual dynamic programming

• MIPs

• Decomposition methods
– decompose the problem according to the scenarios

» that relax the coupling constraints (non-anticipativity constraints stating that for instance

in a 2-stage problem, the 1st-stage variables should take the same value in each

scenario)

» make sure that at the end of the solving process, the non-anticipativity constraints are

fulfilled

– Cutting-plane methods

– Augmented-lagrangian methods

– and so on…
• Monte-Carlo simulations

• Metaheuristics

• …

Basics of Optimisation | 2017/07

| 34

BLACK-BOX OPTIMIZATION

 In some cases the objective function is not known analytically

• Or the function is rather complex (e.g. physical and chemical conditions

inside a boiler in operation)

 Need to run a black-box software to evaluate solutions

 Any evaluation may be cheap (favourable case) or costly (try a surrogate

model ?)

 A block-box function is not always a nasty one (continuous, smooth, convex…)
 Need to distinguish the process of generating candidate solutions and

assessing their relevance (correctness, evaluation…)
• Methods :

– Genetic algorithm

– Particle swarm

– Descent/gradient

– Local search

– Variable neighbourhood search

– DIRECT (Dividing RECTangles)

• Somehow constuct a response surface

• Balance between intensification and diversification

Basics of Optimisation | 2017/07

Thank you

