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INTRODUCTION

= Combinatorial problem
o Involves only discrete variables

= Constraint Satisfaction Problems
o Typically defined by

» Aset of discrete variables V4, ..., V,
« A domain Di of possible values for each variable V,
* Asetof constraints Ky, ..., K,

o Example :

» Letthe variables a, b, c, d

* letae{0,1,2,3,4,5,6,7,8,9}

e letb €{0,1,2,3,4,5,6,7,8,9}

» letc €{0,1,2,3,4,5,6,7,8,9}

e letd € {0,1,2,3,4,5,6,7,8,9}

e Subjectto:a+b+c+d=2017-(1000a+100b + 10c +d)

= But in practice some (or all) variables may take real values
o Mixed-integer Problems
o Continuous Problems
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OVERVIEW

= Optimization problem

o We are looking for a point in the domain of a function so that the function value is minimal
(resp. maximal) at that point.

O Typlca”y : fonction X2-X+2Y2-2
[ i "quadratique.data”
« variables V,, ..., V, are continuous and bounded quadratiaue data
o Example : 350 [

300 [~

%
K55
200 IS S P
- 150 |- N .&zg%%iiz%%%%
) SN [P 74es IIIrI 2~ 4
* let the variables x, y I [ e
100 ==
50 |-
. letx e [-10, 10] o
50
. lety e [-10, 10]
-10 m i 0 10

» |f possible we take advantage of continuity and derivability properties of the function

o In simple cases (convex), we look for a point at which the 1st order partial derivatives
equal 0

o Use of Newton method or variations (quasi-Newton, truncated-Newton...)
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OVERVIEW

= Optimization problem
o Harder cases...

"Fonction.data"

o Example :
. 150000
» Letvariables x, y 100000
50000 | /[AAE7
* letx € [-10,10] o _,-:,-;:-:_.—:,.5,-:_.:.;
| P
« lety e[-10, 10] 50000 17777 10

-100000
-150000

= We may reach local minima

= |f possible we break the domain down into sub-domains on which the function is
convex (resp. concave)

o We also pay attention to 2" order partial derivatives...
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OVERVIEW

= Constrained optimization problem
o Both an optimization problem...
o And Constraint Satisfaction Problem (CSP)

o Moreover if some variables are discrete and the others are continuous :
» Mixed-Integer Constained Satisfaction Problem

o Typically :
 variables V4, ..., V, are either continuous or discrete
» Feasible solutions are defined through a set of constraints (including bound constraints)
» Some variables shall take integer values

o Example :
» A power plant whose production is computed on a set of successive time-steps
» At each time-step, the plant is operating or not
« If the plant produces electricity, then the produced power ranges between Pmin and Pmax
« When producing, the plant must be in operations for at least 3 consecutive time-steps
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COMPLEXITY

= Complexity (in time)
o Number of elementary instructions that are necessary to perform in order to carry the
algorithm out, as a function of data size

o Optimization : two notions :
» Existence problems: Is there a solution that fulfills all constraints ?
 Decision problems (optimization problems) : what is the problem’s best solution ?

» These problems are equivalent : Is there a solution so that any other solution has a greater cost
(minimization case) ?

= Polynomial problems

o The number of elementary instructions performed is bounded by a multivariate
polynomial (data size)

o Example: shortest path (Dijktra) : O((a+n)*Log(n)) for a graph with a edges and n
vertices
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COMPLEXITY

= Exponential problems

o The number of elementary instructions performed is bounded by a power function of
the data size

o The proved exponential problems are scarce...

» We have to build an exponential number of solutions
— For instance : the subsets of a set of cardinality n

» Others...

= What lies between polynomial problems and exponential problems ?
o Problems that have not been proven to be exponential...
o But for which we do not know any polynomial algorithm.
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COMPLEXITY

= NP problems : hon-deterministic polynomial

o There exists a polynomial procedure to build a possible solution and to insure it is
actually a solution

o We will have to run this procedure an undetermined number of times so as to finally
get a solution. This number of times is not known in advance, but is bounded by an
exponential function of the data size

o Example :

* leta € {0,1,2,3,4,5,6,7,8,9}

letb < {0,1,2,3,4,5,6,7,8,9)

let c € {0,1,2,3,4,5,6,7,8,9}

letd < {0,1,2,3,4,5,6,7,8,9)

Subjecttoa+b+c+d=2017-(1000a + 100 b + 10 c + d)

— choose a possible value for a, b, c and d,

— compute a+b+c+d,

— compute 2017 - (1000a + 100 b + 10 ¢ + d)
— Check for equality

polynomial procedure, but should be run an undetermined number of times ( here at most 104 i.e.
NbValuesNeVariables ) yntil one (resp. the best resp. no) solution is found

# 10%is an upper bound, some (polynomial) methods may be used in order to reduce (with no guarantee)
the search space
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COMPLEXITY

= NP-complete problems:
o NP problems : there exists a polynomial algorithm to check a solution

o Any NP-problem reduces to a NP-complete problem through a polynomial reduction :
a polynomial procedure that transforms the NP problem into an instance of a NP-
complete problem,

* i.e. finding a solution to the NP-problem, comes to finding a given solution (with respect to the
reduction) to the NP-complete problem

=) the NP-complete problem is « at least as hard as » the NP-problem
o The NP-complete problems are in NP, thus they are all reducible to each other.

o They are all « equivalent »: if there exists a polynomial algorithm solving one NP-
complete problem, then all NP-complete problems are polynomial.

= NP-hard problems:

o A problem Prob is NP-hard if any NP-problem (including NP-complete ones) is
reducible to Prob thanks to a polynomial reduction.
» Thus they are « at least as difficult as » NP- problems
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COMPLEXITY

Exponential

NP-Complete
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METHOD CLASSIFICATION

(

Vi=2 Vi=5

. ~a Ve

= A first taxonomy ./ \.

) Va=1 V2=3 V2z1 V2=3
o Enumerative methods N\
» Have a look (at least implicitly) at the whole search space ' ‘ ' ’
- Scan a search tree S

» E.g. Branch and Bound, Constraint Programming, Dynamic Programming

o lterative methods
 Build an initial solution
» Repeat the process of changing some variables assignment so as to get a new solution in the

neighborhood of the previous one
 Until a satisfactory or the best solution is found
 E.g. hill-climbing methods, simplex, tabu search, genetic algorithm

g Vi=2 V2=1 V3=3 V4=5
Vi=2 V2=1 V3=3 V4=4
Vi=2 V2=2 V3=3 V4=4
Vi=1 V2=2 V3=3 V4=4
V1 I=2 V2|=1 V’31=3 V4|=4

NHN

o Constructive methods

» Repeat the process of
— Choose a variable among those not having been yet assigned thanks to a specific criterion Cvar
— Choose a possible value for this variable according to a specific criterion Cval

» Until a solution is found or a constraint is violated Vise—
* No backtrack
» E.g. greedy algorithm

Vv2-3
—
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METHOD CLASSIFICATION

= An other taxonomy

= For difficult problems (non-polynomial),
o We may distinguish two classes of methods:

If we absolutely want to get a solution or prove there’s no solution, we need to backtrack
» Repeat the process of

— assigning a value to each problem’s variable
— Check the constraints

until a solution is discovered or the whole search space has been scanned

1st : exact methods (Branch and Bound, CP) :
— build a search tree,

— Avoid to scan irrelevant sub-trees

/ S / \

/ \ / / \

’ \ ’ 7 \
/ \, / / \
/ \ / / \

><

— Guarantee to find out one (the best) solution
— No guarantee on the running time
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METHOD CLASSIFICATION

= For difficult problems (non-polynomial),
o We may distinguish two classes of methods:

» 2nd : approximate methods (heuristics and metaheuristics) :

* build one solution (possibly repeat that process with randomness)
» only scan a reduced part of the search space

Search Space

— These methods are polynomial

L J
& TeDF
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METHOD CLASSIFICATION

= Heuristics et métaheuristics

o Trade-off : swap from a guarantee on finding solutions to a guarantee on bounding
the execution time

o Choosing these methods depend on the problem at hand :
* Is it easy to find solutions, but hard to find the best ones ?
« Is finding the best solution mandatory ?
* Is it enough to get good solutions ?

o heuristics :

— Only build one solution according to appropriate criteria,
— possibly repeat the process with some randomness

o metaheuristics :

— Exhibit a set of solutions according a general scheme, which is adapted to the problem to solve

— This scheme rely on analogy with physics (simulated annealing), biology (genetic algorithms) or social
animals behaviour (ant colony algorithms, particle swarm optimization)
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SOME METAHEURISTICS

= Simulated annealing

o Analogy with metallurgy

» While cooling down, metallic atoms position themselves according to a given structure (e.qg.
body-centered cubic, face-cubic centered, ...)

» Atoo fast cooling process lead to non-homogeneous structure
=) Weaknesses
» The energy level is not minimum

* Hence successive annealing
— To lower and lower temperatures
— bring enough energy for a better atoms positionning

o same principle :
« Gradient method
 Start from temperature TO
» From time to time we accept a worse solution than the former one (« annealing »)

» According to a probability depending on the « temperature » 1 let S™1 a possible successor
solution to S"
— P(S™1) = 1 if f(S"™1) < f(SN)
— P(S™1) = e A7) otherwise

 Decrease temperature to 0.
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SOME METAHEURISTICS

= tabu
o Gradient method with list management

» Store the last n solutions we found

» As long as a neighbour solution improves the objective function, choose it
* If none, then choose one which deteriorate the cost BUT...

» ...not among those being in the tabu list

» Update tabu list

 Avoid infinite loops of size less or equal to n
» But the choice of an appropriate n is crucial

Example with n =5
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SIMPLEX ALGORITHM

o Continuous problems

* A widely used algorithm: simplex
* Linear program

AxX<B

with X e [R"

A mxn matrix

X 1xn vector

B mx1 right-hand side vector

 Objective function
max (81 X4 + ... + 9, X,)

« Standard form:
max (61 X1 + ..+ Sn Xn)
AxX =B
A mx(n+m) matrix
X 1x(n+m) vector

B mx1 right-hand side vector
Vie[l,n+m] x>0

by adding m slack variables
<'~epF
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SIMPLEX ALGORITHM

oLinear programs properties

« Example :

—Minimize 7 X4 + Xo + 5 X3
—Subject to constraints

x1 - x2 +3x3 >10
5x1 +2x2 - x3 >6
x1, x2,x3>0

—Question : what is the value z*, minimum of 7 Xy + X + 5 X3

—Remark :

7X1+Xo+5X3> (X1-X2+3X3)+(O5X1+2X%X2—X3)>16

[ J
4o =
-~ EDF

Basics of Optimisation | 2017/07 | 19



SIMPLEX ALGORITHM

oLinear programs properties

* The « game » consists in finding positive multiplicators for
constraints so that the coeftficient associated with each
variable in the sum of constraints left-hand side be less but as
close as possible to the coefficient associated to the same
variable in the objective function.

* The sum of right-hand sides is a lower bound of z*
Xy - Xo +3x3 =210

5X1 +2X2 - X3 > 6
Minimize 7 X1 + Xo + 5 X3
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SIMPLEX ALGORITHM

oLinear programs properties

Xy - Xo +3x3 =210
5X1 +2X2 - X3 > 6
Minimize 7 X1 + X2 + 5 X3

15( X1 - Xo +3x3) > 15
5X1+2X2- X3 > 6

7X1+Xo+5%X3 2 65%x1y +05x, + 3.5x3 > 21

[
* ~ €DF
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SIMPLEX ALGORITHM

oLinear programs properties

 Let 2 coefficients y1 et y> >0
Minimize 7 X1 + X> + 5 X3
yi( X1 - Xo +3x3) 210 ;
YQ(5X1+2X2- X3)26y2

Xy - Xo +3x3 =210 Maximize 10 y; + 6 yo

5Xy +2X%Xo - X3 26 Y1i+9OYy2<7

Minimize 7 X1 + X2 + 5 X3 - Y1 +2Yy2<1
3y1— VY255
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SIMPLEX ALGORITHM

oLinear programs properties

X1 - Xo +3x3 =210 Maximize 10 y; + 6 yo
5X1 +2Xo - X3 26 Yi+9OYy2<7
Minimize 7 X1 + X2 + 5 X3 - yi+2Yy2<1
3y1— Yo <5

Solution (7/4, 0, 11/4) Solution (2,1)

7 X1+ X2+ 5 X3 7 X1 + Xo + 5 X3
In R In Z U
—— /2" =26 :>Z*=?

10 y1 + 6y 1Oy1+6y2m

P Basics of Optimisation | 2017/07
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SIMPLEX ALGORITHM

Geometrical insight

Y1 .
1 Y1+ YQS7
AT\ Vi 42y <1
3Y1— Y2 <5

A3

[ J
4o =
-~ EDF

v

y2

yi=-5y,+7 (A1)
yi=-2ys -1 (A2)
yi= 1/3y,+5/3 (A3)

maximize (10 y4 + 6 y»)

let: 10y +6y2 =
= maximize o
Y1 6/10 y2 + /10 (Am)
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SIMPLEX ALGORITHM

Simplex algorithm

start from an initial point on a vertex of the polytope

Move toward a neighbour vertex following an edge, so that the value of the objective function is
improved

Y1
Al

v

maximize (10 y; + 6 y»)
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OPTIMIZATION UNDER UNCERTAINTY

o Optimizing a function in the presence of randomness
in the optimization process

* The uncertainty may lie
— in the objective function
— in the constraints

 The randomness affects the data
— the coefficients associated to decision variables
» In the constraints

» In the objective function
» both
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OPTIMIZATION UNDER UNCERTAINTY

o Optimizing a function in the presence of randomness
in the optimization process

« Different approaches

— chance constrained optimization

— stochastic optimization
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OPTIMIZATION UNDER UNCERTAINTY

o chance constrained optimization

* in the presence of random data some constraints are not
mandatorily fulfilled

— Let f be a left-hand side of a constraint
— Let x be the set of decision variables
— Let o be set of random data (e.g. scenarios)
— a chance constraint:
» Prob(f,(Xx, ) <0) >n (n is the level of confidence)
— Percentile optimization
» minimize y
» Prob(fi(x, ) <y) >n
— able to cope with probability laws
— may be non-linear, non-convex...
— usually results in difficult optimization problems
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OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

» Usually randomness leads to scenarios

— From historical data
— From Monte-Carlo simulations
— decisions have to be made over time periods

— a prominent division:

» single-stage stochastic optimization
» multi-stage stochastic optimization
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OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

* single-stage problems
— decision is implemented with no subsequent recourse
— X set of all possible decisions
— & random information only available after decision is made
— F(X, &) cost function
— we do not directly optimize F(X, &)
— instead we minimize [E[F(X, &)]

— the general single-stage optimization problem becomes:
— &' =min, x {f(x) =E[F(X, §)] }

— assume that X is convex and F(X, &) is convex in X for any realisation &
— otherwise subdivise the domain into pieces where convexity is met
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OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

» multi-stage optimization
— aims at finding a sequence of decisions at successive stepst € [0, T]
» may correspond to temporal or decisional chronology
— & random information available after partial decisions are made
— F(X, &) cost function
— we do not directly optimize F(X, &)

— the general multi-stage optimization problem is:

— " =min .y E[Inf, xs F(Xy, &) +EL.. + E[inf, cx; F(X, &) 1111}
—X; : decisions made at stage |
— an important application : 2-stage optimization with recourse

» 1st stage : structural, « here and now » variables

» 2nd stage : recourse, « wait and see » variables

» Here and now variables have the same assignment in any scenario

» Wait and see variables may have different assignments in each scenario
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OPTIMIZATION UNDER UNCERTAINTY

o stochastic optimization

* Robustness
— optimizing in average or expectation may lead to desastrous situation for
some « unlucky » scenarios.
— hence the notion of robustness

» either you add terms in the objective function (the variance)
- Min ¢™ + X5, PrZy + KX k=1 PrZi” - (Zk=1 PiZi)?)]

» Or you add terms in the constraints
- « you cannot be so unlucky as all misfortunes occur at the same time »
- let p; and p, two random parameters
2

- add quadratic contraints such as a— + B, Pis

R o
N | ] P

- this yield difficult (non-linear) problems

v
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OPTIMIZATION UNDER UNCERTAINTY

o optimization methods

 Stochastic dual dynamic programming

* MIPs

» Decomposition methods
— decompose the problem according to the scenarios
» that relax the coupling constraints (non-anticipativity constraints stating that for instance
in a 2-stage problem, the 1st-stage variables should take the same value in each

scenario)
» make sure that at the end of the solving process, the non-anticipativity constraints are

fulfilled
— Cutting-plane methods
— Augmented-lagrangian methods
— and so on...

» Monte-Carlo simulations
 Metaheuristics

4
* ~ €DF Basics of Optimisation | 2017/07 | 33



BLACK-BOX OPTIMIZATION

o In some cases the objective function is not known analytically

» Or the function is rather complex (e.g. physical and chemical conditions
inside a boiler in operation)

o Need to run a black-box software to evaluate solutions

o Any evaluation may be cheap (favourable case) or costly (try a surrogate
model ?)

o A block-box function is not always a nasty one (continuous, smooth, convex...)

o Need to distinguish the process of generating candidate solutions and
assessing their relevance (correctness, evaluation...)

* Methods :
— Genetic algorithm
— Particle swarm
— Descent/gradient
— Local search
— Variable neighbourhood search
— DIRECT (Dividing RECTangles)

+ Somehow constuct a response surface
* Balance between intensification and diversification
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