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An increasing role for simulation in our society

Taking advantage of always increasing computational resources, the
importance of simulation keeps increasing.

It is now completely integrated in most of the decision making
processes of our society.

Thus, simulation has not only to be descriptive, but needs to be
predictive.

This implies that simulation is able to take into account the different
existing sources of uncertainty.
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Simulation as a help for decision making

Once uncertainties are considered, the information provided by simulation
is richer. Instead of a unique deterministic value, simulation can :

provide confidence on the prediction of quantities of interest,

associate a probability of occurrence to different scenarii.

Examples

confidence on weather forecasts,

chance of success for a given medical operation,

probability of failure for a structure...
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The role of VV-UQ

In that context, VV-UQ approaches must be seen as efficient tools to
construct such a confidence for the simulation results, in order to maximize
the information provided to the decision maker, by:

giving methods to integrate at best the available information (expert
judgements / experimental measurements) to model the sources of
uncertainty,

proposing a (well-posed) probabilistic formulation of classical problems
while taking into account uncertainties,

providing methods to efficiently solve the probabilistic problem given
models for the uncertainties.
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A first example : looping design
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Which parameters would you retain for the design of the looping?

Neglecting the friction loss and the aerodynamic forces, it is possible
to compute (by conservation of energy) a minimal initial height,
H⋆ = 5R/2, for the wagon to complete the looping. Comment and
discuss.
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Notations

Let S be a (physical, mechanical, economical,...) system of interest,
whose behaviour is controlled by a vector of input parameters x ∈ X

(dimensions, material properties, boundary conditions,...).

Let y(x) ∈ Y be the output quantity of interest (QoI) that is used to
monitor the system behaviour (one can think to a maximal
acceleration of a maximal stress for instance).

Application x 7→ y(x) is a priori non-linear.

x and y can refer to scalars, vectors, functions...

Sets X and Y are most of the time subsets of Rd and R.
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Notations

Different versions of reality leading to different sources of uncertainty.
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Output uncertainties

Let yreal and ymes be the real and the measured values of y.

Let ymod(·;β) and ysim(·;β, δ) be a parametric mathematical
representation of y and its numerical approximation (from a
discretization for instance).

Several sources of output uncertainty

Controlling the measurement error, εmes := ymes − yreal, is the
objective of metrology (see the Guide to the expression of
Uncertainty in Measurement (GUM) for more details).

Choosing δ to control the numerical error,
εnum := ymod(·;β)− ysim(·;β, δ), is the objective of verification.

Choosing the value of β is the objective of calibration.

Controlling the simulation error, εsim := yreal − ysim(·;β, δ), is the
objective of validation.
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Verification and Validation

Verification

Definition : the process of determining that a computational model
accurately represents the underlying mathematical model and its
solution ↔ "solving the equations right".

It refers to numerical analysis, and it is generally based on the use of
reference solutions and the study of algorithms.

Validation

Definition: the process of determining the degree to which a model is
an accurate representation of reality from the perspective of the
intended uses of the model ↔ "solving the right equations".

It is supposed to be based on the confrontation to experimental
results and statistical tests (χ2 test...):

ymes(x) = ysim(x;β, δ) + εmes(x) + εsim(x).
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Validation of complex systems

If simulation is used to analyse high risk events when no/very few
global experiments are available (train derailment, nuclear incident,
car crashes...), validation is more complex.

Classical validations are generally carried out on sub-systems, for
which measurements are available, and the idea is then to accumulate
evidence systematically to compute a credibility for the full-system
simulation.

To this end, several guides (mostly in the USA) have been proposed :

CSAU (Code Scaling, Applicability and Uncertainty) is used by the US
Nuclear Regulatory Commission,
CAS (Credibility Assessment Scale) is developed by NASA
PMI (Predictive Maturity Index) is developed at Los Alamos.
PCMM (Predictive Capability Maturity Model) is developed at Sandia
National Lab.
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Input uncertainties

The value of x can also be uncertain. Two sources of uncertainty for x are
generally distinguished:

the epistemic uncertainty (reducible) : some deterministic
components of x are not perfectly known,

the aleatory uncertainty (irreducible) : some components of x are
random by nature (manufacture dispersion, wind, natural
radioactivity...).

The probability theory is generally considered to model both input and
output uncertainties.

This leads us to a hierarchical model for ysim(x;β, δ), as :

x is random,

ysim(x;β, δ)|x is also random.
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A second example

How simulation can help us to identify the landing area of a parachuted
package?
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A second example

Outputs

yreal is the true landing abscissa,

With β = g, the modelled landing abscissa, ymod(·;β), can be the
horizontal abscissa of x(t) when 〈x(t),ez〉 = 0, where :{

mẍ = mg −A(ẋ− sw) ‖ẋ− sw‖ ,

ẋ(t = 0) = sp, x(t = 0) = (x0, za).

With δ = dt, the simulated landing abscissa, ysim(·;β, δ), can be the
horizontal abscissa of x̂(t) when 〈x̂(t),ez〉 = 0, with:





x̂(t+ dt) = x̂(t) + ˙̂x(t)dt,

˙̂x(t+ dt) = ˙̂x(t) +

(
g −

1

m
A( ˙̂x(t)− sw(t))

∥∥∥ ˙̂x(t)− sw(t)
∥∥∥
)
dt,

˙̂x(t = 0) = sp, x̂(t = 0) = (x0, za).
Summer school CEA-EDF-INRIA | July, 3rd 2017 | PAGE 14/43



A second example

Inputs : x = (x0, za, sp, sw, m,A)

(x0, za), the dropping position (epistemic).

sp, the plane speed at t = 0 (epistemic).

sw, the wind speed, which can depend on time (aleatory).

m, the mass of the package (epistemic).

A, the matrix that characterizes the aerodynamic forces of the
package (epistemic).

Verification ↔ does the proposed numerical scheme allow
ysim(x;β, δ) to converge to ymod(x;β) when dt tends to 0 / how to
choose dt?

Validation ↔ is it necessary to consider numerical or model errors for
yreal to belong to Iα, such that P(ysim(x;β, δ) ∈ Iα) = 1− α ? /
which structure can we propose for the model error?
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General scheme
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Step A : problem definition

1 What is the question?

2 What are the quantities of interest (QoI)?

3 Which models can be used to compute these QoI and to answer this
question?

4 What are the inputs and the outputs of these models?

5 Which parameters have to be calibrated for these models to be run?

6 What is missing in the proposed models?

7 Do we have information about the structure of the model errors that
could affect the prediction of the QoI?

8 Which method is used to solve these models?

9 On which numerical parameters are these solvers based?

10 Can we evaluate the numerical error associated with these solvers?
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Step B : uncertainty quantification

1 What are the different sources of (input and output) uncertainty?

2 What is the available information about these uncertainties?

expert judgements (positive constraints, physical bounds,...),
direct and/or indirect experimental measurements?

3 What is the "most adapted" model to characterize these uncertainties,
including their dependence structure (statistical inference)?

parametric models (Gaussian, uniform, Beta, ...),
non parametric models (kernel representations),
indirect representations (Polynomial Chaos expansion,...),
alternative theories (fuzzy sets, P-box, credibility functions,...).
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Step C : uncertainty propagation

1 Do we have access to the equations on which the model is based?

→ yes : intrusive and non-intrusive methods can be considered,
→ no : only non-intrusive methods can be considered. In that case, the

model is generally referred as a "black box".

2 Is the model linear (or slightly non-linear)? If yes, methods based on
Taylor approximations can be used.

3 Is the model monotone?

4 Do we have information about the regularity of the model?

⇒ Sampling techniques (such as Monte Carlo / Markov Chain Monte
Carlo approaches) are generally used to propagate the uncertainties.

⇒ The less regular is the model, and the more code evaluations are
generally needed to achieve a given precision on the results.
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Step C : uncertainty propagation - two families of problems

x
ր
ց

β, δ
↓

CODE

MEASURE

→

→

θ

↓
ysim(x;β, δ) + εsim(x;θ)

ymes(x) + εmes(x)

ց
ր

yreal(x)

Direct problems

Given information on x,β, δ,θ, we would like to evaluate some statistical
quantities of yreal, such as:

its mean and variance (prediction),

probabilities of exceeding thresholds (certification),

its full density (to be integrated in other models for instance...).
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Step C : uncertainty propagation - two families of problems

x
ր
ց

β, δ
↓

CODE

MEASURE

→

→

θ

↓
ysim(x;β, δ) + εsim(x;θ)

ymes(x) + εmes(x)

ց
ր

yreal(x)

Inverse problems

Given information on x and y, we are interested in:

the calibration of parameters β, δ,θ (verification and validation),

classify the influence of each input (or group of inputs) on the
variability of y (sensitivity analysis),

find the best value of x with respect to given criteria on y
(optimization, conception).
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A third example : GPS positionning1

1 Based on location information given by 5 satellites (including
uncertainty), how to compute the mean position of a GPS receiver R?

2 What would be the radius of the sphere Ω centred on the mean
position of R such that P(R ∈ Ω) = 90%?

1
1Inspired from the Mathematical Competitive Game 2014-2015 of the French
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A third example : GPS positionning

Step A : definition of the problem

We have 5 satellites, and each satellite Sk sends a signal, which is
analysed by a receiver R.

The clocks of the satellites are supposed to be perfect and
synchronized (this is the "absolute time").

The clock of the receiver may differ from the absolute time by a value
τ , which is refered as "time shift" in the following.

From the signal sent by each satellite, the receiver deduces the time
tk = τ + ‖Sk −R‖ /c, or, equivalently, the distance
Dk = cτ + ‖Sk −R‖, where c is the speed of light (c is supposed to
perfectly known).

Remark: for this example, as it will be shown later, we don’t need any
numerical models.
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A third example : GPS positionning

Step B: sources of uncertainty

The time shift, τ , may be positive or negative, and is unknown. It is
supposed to be uniformly distributed on an interval T.

We assume that each satellite returns a law of probability for Dk,
fD = fD1

× · · · × fD5
. In practice, such a law is usually given in a

discrete form and is defined on an compact subset D ⊂ R
5.

The positions of the satellites are also uncertain: the positions of the
satellites Sk are supposed to be independent and distributed in spheres
Sk, whose centres and radii are known. Let fSk

be the PDF of Sk.

Remark: all these uncertainties are epistemic, there is no randomness here,
but only lack of information...
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A third example : GPS positionning

Step C: propagation of the uncertainty

By construction:

E [R] =
∫
R3 rfR(r)dr,

P(R ∈ Ω) =
∫
Ω fR(r)dr.

⇒ The key step is the computation of fR.
⇒ In that prospect, it is interesting to notice that for each value of r:

fR(r) =

∫

T×S1×···S5

fR,τ,S1,...,S5
(r, t, s1, . . . , s5)dtds1 . . . ds5,

=

∫

T×S1×···S5

fD(ct+ ‖r − s1‖ , . . . , ct+ ‖r − s5‖)dtds1 . . . ds5,

= E

[
fD(cτ + ‖r − S1‖ , . . . , cτ + ‖r − S5‖)

fτ (τ)fS1
(S1) . . . fS5

(S5)

]
.
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A third example : GPS positionning

Step C: propagation of the uncertainty - practical solving

The support of the PDFs of Sk, τ and D being compact, the support
of fR is also compact.

Sampling techniques can therefore be used to compute this PDF on a
discretized subspace of R3.

Such a PDF can then be used to compute E [R] and find Ω.

Numerical application

The uncertainty on τ is generally ±10−9s, the radii of the spheres for
the satellite positions are commonly chosen equal to 2m, whereas the
uncertainty for the distance between the receiver and the satellite is
often given by ±10m (these distances being more than 20000km).

Given these uncertainties, we find that the radius of sphere Ω, such
that P(R ∈ Ω) = 90%, is around 2m.
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VV-UQ and optimization

Deterministic case

From a very general point of view, optimization refers to the solving of :

x⋆ = argmin
x∈X

y(x), where:

X is a given subset of Rd, which can include different kinds of (input
and/or output) constraints,

QoI y is a deterministic cost function that is adapted to the problem.

Stochastic case

When uncertainties are considered, y(x) becomes random.

Instead of searching its minimum, we generally focus on some
statistical quantities of y (its mean for instance).

The choice of the new QoI has to be adapted to the application.
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VV-UQ and optimization

Example 1: uncertainty on the input only

x⋆ = arg min
x∈[−20,20]

E [y(x+ δ)] , δ ∼ N (0, σ2)
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VV-UQ and optimization

Example 2: uncertainty on the output only

x⋆ = arg min
x∈[−20,20]

q [y(x);α] ,
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VV-UQ and optimization

Example 3: optimization of a paper helicopter

Parameters:

Dimensions Rr, Rw,
Tl, Bl, Tw.

Masses of the
helicopter and of the
paper clip.

Starting from a standard A4 paper, how to maximize the fall time of a
paper helicopter dropped from a 5 meters height, which carries a paper
clip?
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VV-UQ and optimization

Example 3: optimization of a paper helicopter

Some difficulties for the optimization:

There are testing uncertainties due to differences in the way the
helicopters are dropped, small variations in the height from which they
are dropped, and inaccuracies in measuring the fall time ⇒ each
helicopter can be dropped several times / cameras can be used to
videotape the fall and remove outliers.

There are construction uncertainty, in that each constructed
helicopter is different from other nominally identical helicopter ⇒ for
each choice of the dimensions, several helicopters can be built /
electrical drawing tools and printers can be used to minimize these
uncertainties.

Summer school CEA-EDF-INRIA | July, 3rd 2017 | PAGE 33/43



VV-UQ and optimization

Example 3: optimization of a paper helicopter

Some difficulties for the optimization:

The two masses are difficult to measure as they are very small ⇒ it
can be more efficient to assess the average paper mass per unit area
and average mass of a clip by weighting multiple sheets of paper and
a group of clips.

A mechanical model based on a drag force that assumes quadratic
dependence on the velocity can be used to predict the fall time ⇒ the
drag coefficient has to be calibrated for this model to help the
conception.
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Difficulties and works in progress

(1/4) Computational costs

Most of the propagation methods are based on a huge number of code
evaluations (∼ 104 − 106).

When the computational cost associated with one evaluation is very
high (for instance, some applications at CEA require around 100h on
100 computer cores in parallel for one evaluation), surrogate models
are generally coupled to these approaches.

Replacing the computer code by a surrogate introduces an other
uncertainty, which also needs to be carefully controlled.
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Difficulties and works in progress

(2/4) Input / output characterization

The uncertainty propagation completely depends on the uncertainty
characterization.

In most of the industrial applications, these uncertainties are relatively
difficult to characterize. This is particularly true when very little
information is available and/or when the input and output dimensions
are high (high-dimensional random vectors, random fields...).

This additional uncertainty can be taken into account by introducing
uncertainties on the input distribution.

g(x) = cos(x1) + cos(x2)
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Difficulties and works in progress

(3/4) Stochastic codes

All the previous slides have been presented in the case when the
computer code is deterministic, in the sense that running it twice
leads to the exact two same values.

This is not always the case (let us think to Monte Carlo solvers for
instance), which can pose some additional difficulties.

(4/4) Data aggregation

In VV-UQ procedures, an other important difficulty comes from the
aggregation of information coming from different experiments, from
different experts, from different numerical models, which may be very
different, and sometimes incoherent.
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A last example : the SANDIA containment vessel benchmark

There exists many storage tanks in the world, holding "Mystery
Liquid" under pressure.

No tank has actually failed, ever, but during standard safety testing,
one tank’s measurements exceeded a safety specification.

⇒ Are the tanks at risk of failure? Do we have to quickly remove all
these tanks to prevent an accident?

⇒ How can evidence from experiments and simulations be integrated and
used to support the final decision?
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A last example : the SANDIA containment vessel benchmark

Numerical model

Four finite-element mesh
resolutions were available, based

on the same geometry.

Experimental data

Manufacture dispersions were also
provided.

⇒ There is no "right" answer.

⇒ The method demonstration is sometimes more interesting than the
final result.
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Conclusions

The formalism and the notations of VV-UQ based on the probability
theory have been presented and illustrated on a series of examples.

There exist alternative theories to assess prediction credibility.

VV-UQ often provides more questions and discussions than clear-cut
answers, and has to be seen as a tool that can help us to make a
decision.

VV-UQ approaches are not there to replace the physical / mechanical
/ economical models, but to optimize the information that can be
extracted from them.

Well characterizing the uncertainties does not necessarily mean that
we reduce them.
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Conclusions

Thank you for your attention.

Any questions?
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