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Introduction to (Evolutionary) Multiobjective Optimization (now)

 difference to single-objective optimization, the basics

 algorithms and their design principles; MO-CMA-ES

Benchmarking Optimization Algorithms (this morning)

 performance assessment

 automated benchmarking with the COCO platform

Exercise around COCO (this afternoon)

 interpreting available COCO data

 if time allows: looking critically at published results

Exercise on Anne's part (tomorrow afternoon)

 The (1+1)-ES, running CMA-ES and interpreting its output, ...

Overview of the Remaining Lectures & Exercises



(Evolutionary)
Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization
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Multiobjective Optimization

Multiple objectives that have to be optimized simultaneously
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A Brief Introduction to Multiobjective Optimization
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Observations:  there is no single optimal solution, but

 some solutions (   ) are better than others (   )

max

min

incomparable



6Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 6

A Brief Introduction to Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization
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Show the equivalence between𝑢 <𝑝𝑎𝑟 𝑣: 𝑢 ≤𝑝𝑎𝑟 𝑣 ∧ 𝑣 ≰𝑝𝑎𝑟 𝑢
and ∀1 ≤ 𝑖 ≤ 𝑘: 𝑓𝑖 𝑢 ≤ 𝑓𝑖 𝑣 and ∃1 ≤ 𝑗 ≤ 𝑘: 𝑓𝑖 𝑢 < 𝑓𝑖 𝑣

Exercise 1
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Given the following solutions, tell which ones dominate each other 

and which don't for the double sphere problem𝑓doublesphere: 𝑥 ↦ ( 𝑖=1𝑛 𝑥𝑖2 ,  𝑖=1𝑛 (𝑥𝑖−1)2 ).
 𝑎 = (0, 0, 0)
 𝑏 = (1, 1, 1)
 𝑐 = (2, 2, 2)
 𝑑 = (2, 2, 0)
 𝑒 = 0, 2, 2
 𝑓 = 12 , 12 , 12

Exercise 2: Understanding Pareto Dominance
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We can simplify the visualization of the (weak) Pareto dominance 

relation by transitive reduction:

The weak Pareto dominance is a preorder, i.e. a relation that is

 reflexive and transitive

 minimal elements = Pareto-optimal solutions

If no indifferent solutions 𝑥 ≠ 𝑦 with 𝑓(𝑥) = 𝑓(𝑦) exist, we have

antisymmetry and a partial order ("poset")---visualizable as Hasse

diagram.

! The Pareto dominance itself is not reflexive and thus, never a poset!

Visualizing Dominance Relations as Graphs

𝑎
𝑏

𝑐𝑑, 𝑒𝑓
𝑐 𝑒𝑑

𝑎 𝑏 𝑓



14Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 14

A Brief Introduction to Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization
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true Pareto front
(Pareto efficient 

frontier)

Vilfredo Pareto 
(1848 –1923)

wikipedia

Pareto set: set of all non-dominated solutions (decision space)

Pareto front: its image in the objective space

max

min

currently non-
dominated front
(approximation)

vs.



16Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 16

A Brief Introduction to Multiobjective Optimization

f2

f1

x3

x1

decision space objective space 

solution of Pareto-optimal set

non-optimal decision vector

vector of Pareto-optimal front

non-optimal objective vector

x2
max

min
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What is the Pareto set/front of the double sphere problem 𝑓doublesphere: 𝑥 ↦ ( 𝑖=1𝑛 𝑥𝑖2 ,  𝑖=1𝑛 (𝑥𝑖−1)2 )?
a) what is the Pareto set?

b) what is the associated Pareto front?

Tips for a) 

 display some solutions in the search space (let's say in 2-D)

 investigate where dominating solutions lie

 investigate where dominated solutions lie

 finally, show graphically that what you think is the Pareto set is 

actually the Pareto set (take a point anywhere within your 

guessed set and show in which direction you can improve and 

where you cannot improve anymore)

Exercise 3: Pareto Front of Double Sphere
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Ideal and Nadir Point

f2

f1

f2

f1

nadir point

ideal pointShape Range

min

min

min

min

ideal point: best values
nadir point: worst values

obtained for Pareto-optimal points
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Optimization vs. Decision Making

decision making

optimization

finding the good

solutions

selecting a

solution

max

min

Multiobjective Optimization

combination of optimization of a set and a decision for a solution
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Selecting a Solution: Examples

Possible
Approaches:

 ranking: performance more important than cost

max

min
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too expensive

500 1000 1500 2000 2500 3000 3500

cost
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Selecting a Solution: Examples

Possible
Approaches:

 ranking: performance more important than cost

 constraints: cost must not exceed 2400

max

min
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Before Optimization:

rank objectives,
define constraints,…

search for one 
(good) solution

When to Make the Decision
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Before Optimization:

rank objectives,
define constraints,…

search for one 
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After Optimization:

search for a set of       
(good) solutions

select one solution
considering
constraints, etc.

When to Make the Decision

Before Optimization:

rank objectives,
define constraints,…

search for one 
(good) solution
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After Optimization:

search for a set of       
(good) solutions

select one solution
considering
constraints, etc.

When to Make the Decision

Before Optimization:

rank objectives,
define constraints,…

search for one 
(good) solution

Focus: learning about a problem

 trade-off surface

 interactions among criteria

 structural information

 also: interactive optimization
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 established field

(beginning in 1950s/1960s)

 bi-annual conferences since 

1975

 background in economics, 

math, management and 

social sciences

 focus on optimization and 

decision making

Two Communities...

 quite young field

(first papers in mid 1980s)

 bi-annual conference since 

2001

 background in computer 

science, applied math and 

engineering

 focus on optimization 

algorithms
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 MCDM track at EMO conference since 2009

 special sessions on EMO at the MCDM conference since 2008

 joint Dagstuhl seminars since 2004

...Slowly Merge Into One
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Blackbox optimization

EMO therefore well-suited for real-world engineering problems

One of the Main Differences

objectives

non-differentiable
expensive

(integrated simulations, 

real experiments)

non-linear

problem

uncertain huge

search

spaces

many constraints

noisy many objectives

only mild assumptions



29Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 29

Evolutionary Multiobjective Optimization

 set-based algorithms

 therefore possible to approximate the Pareto front in one run

The Other Main Difference

performance

cost

Pareto front

approximation

x2

x1

f

environmental

selection

evaluation
variation

mating

selection

max

min
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Some problems are easier to solve in a multiobjective scenario

example: TSP 

[Knowles et al. 2001]

Multiobjectivization

by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design 

[Greiner et al. 2007], VRP [Watanabe and Sakakibara 2007], ...

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and 

Wegener 2006], protein structure prediction [Handl et al. 2008a], ... 

also backed up by theory e.g. [Brockhoff  et al. 2009, Handl et al. 2008b]

related to constrained and multimodal single-objective optimization

see also this recent overview: [Segura et al. 2013]

Multiobjectivization
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Often innovative design principles among solutions are found

Example:

Cantilever beam 

topology optimization

[Bandaru and Deb 2015]

Innovization

min

min
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Often innovative design principles among solutions are found

Example:

Clutch brake design

[Deb and Srinivasan 2006]

Innovization

min. mass +
stopping time

©
 A

C
M

, 
2
0
0
6

min

min
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Often innovative design principles among solutions are found

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and innovative 

design principles among solution sets

= learning from/about a multiobjective optimization problem

Other examples:

 Self-Organizing Maps for supersonic wing design [Obayashi and 

Sasaki 2003]

 Biclustering for processor design and knapsack [Ulrich et al. 2007]

 Successful case studies in engineering 

(noise barrier design, polymer extrusion, friction stir welding) 
[Deb et al. 2014]

Innovization
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Introduction to (Evolutionary) Multiobjective Optimization (now)

 difference to single-objective optimization, the basics

 algorithms and their design principles; MO-CMA-ES

Benchmarking Optimization Algorithms (this morning)

 performance assessment

 automated benchmarking with the COCO platform

Exercise around COCO (this afternoon)

 interpreting available COCO data

 if time allows: looking critically at published results

Exercise on Anne's part (tomorrow afternoon)

 The (1+1)-ES, running CMA-ES and interpreting its output, ...

Overview of the Remaining Lectures & Exercises
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Approaches to Multiobjective Optimization

y1

y2

y1

y2y2

y1

aggregation-based criterion-based dominance-based

solution-oriented

scaling-dependent

set-oriented

less scaling-independent

problem decomposition
(multiple single-objective 
optimization problems)

changing

goals

max

max

max

max

max

max

VEGA SPEA2, NSGA-II
“modern” EMOA
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Solution-Oriented Problem Transformations

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

A scalarizing function   is a function                   that maps each

objective vector                                     to a real value
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Solution-Oriented Problem Transformations

f2

f1

Example 1: weighted sum approach

y = w1y1 + … + wkyk

(w1, w2, …, wk)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

max

max
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Which weights are optimal for the 
following three points?𝑎 = 0,4 𝑏 = 1,2 𝑐 = 5,1
Helper questions:

 what are the lines of equal 
weighted sum for a given weight?

 what happens if you optimize wrt. 
a given weighted sum?

Exercise 4: Weighted Sum

𝑓1

𝑓2

1
1

2 4 5 63
23
45 𝑎

𝑐𝑏
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Solution-Oriented Problem Transformations

f2

f1

Example 1: weighted sum approach

Disadvantage: not all Pareto-
optimal solutions can be found if  
the front is not concave (for 
maximization)

y = w1y1 + … + wkyk

(w1, w2, …, wk)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

max

max
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Solution-Oriented Problem Transformations

f2

f1

Example 1: weighted sum approach

Disadvantage: not all Pareto-
optimal solutions can be found if  
the front is not convex (for 
minimization)

y = w1y1 + … + wkyk

(w1, w2, …, wk)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

min

min
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Solution-Oriented Problem Transformations

f2

f1

Example 2: weighted p-norm

𝑝 = 1: weighted sum𝑝 = ∞: weighted Tchebycheff

𝑦 = 𝑝 (𝑤1𝑦1)𝑝 + … + (𝑤𝑘𝑦𝑘)𝑝
(𝑤1, 𝑤2, … , 𝑤𝑘)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

min

min
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Solution-Oriented Problem Transformations

f2

f1

Example 2: weighted p-norm

𝑝 = 1: weighted sum𝑝 = ∞: weighted Tchebycheff

𝑦 = 𝑝  𝑖=1𝑘 (|𝑤1 𝑦1− 𝑧𝑖 |)𝑝
(𝑤1, 𝑤2, … , 𝑤𝑘)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

max

max

𝑧
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Solution-Oriented Problem Transformations

f2

f1

Example 2: weighted Tchebycheff

Several other scalarizing functions

are known, see e.g. [Miettinen 1999]

y = max | λi(ui – zi)|

(λ1, λ2, …, λk)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

i

𝑧

max

max
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Solution-Oriented Problem Transformations

f2

f1

Example 2: weighted Tchebycheff

Several other scalarizing functions

are known, see e.g. [Miettinen 1999]

y = max | λi(ui – zi)|

(λ1, λ2, …, λk)

transformation

parameters

s(x)(f1(x), f2(x), …, fk(x))

multiple
objectives

single
objective

i

𝑧

max

max



Code Walk: a Weighted Sum with CMA-ES

+ the Ask&Tell Interface to Optimization



46Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 46

Simple Implementation of a Weighted Sum Approach:

 N scalarizing functions, optimized by CMA-ES with restarts

 Python: use CMA-ES after pip install cma (more details 

here: https://pypi.python.org/pypi/cma)

 Assume COCO interface to objective function (later today)

 use ask and tell interface (next slide)

 CMA-ES parameters as default (with 𝜎𝑖𝑛𝑖𝑡 ≈ 30% of initial 

search range)

 would need to be improved in practice:

 how to normalize the objectives and estimate 𝑧?
 in which order do we optimize the N scalarizing functions?

 how to smartly distribute the budget?

 intertwine restarts

 ...

Code Walk
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example from the CMA-ES web page:

>>> import cma
>>> es = cma.CMAEvolutionStrategy(12 * [0], 0.5)
>>> while not es.stop(): 
...    solutions = es.ask() 
...    es.tell(solutions, 

[cma.fcts.rosen(x) for x in solutions]) 
...    es.logger.add() # write data to disc 

to be plotted
...    es.disp() 
<output omitted> 
>>> es.result_pretty() 
<output omitted> 
>>> cma.plot() # shortcut for es.logger.plot() 

The Idea of the Ask&Tell Interface to Optimization
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Ask&Tell with CMA-ES (Visually)

algorithm

loop

(CMA-ES's)

probability

distribution

objective

function

 ask for (𝜆) solution(s)

 retrieve those solutions

 evaluate solution(s)

 tell (𝜇) solutions and their

objective function values
for updating the prob. distr.

 update parameters

internally
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from __future__ import division

import cma

def weighted_sum_search(fun, budget):

"""Simplest weighted sum of N weights, optimized

with CMA-ES.

"""

N = 50 # number of different weights

maxrunlength = (budget//N + 1) * fun.dimension

curr_weight = 1

while curr_weight >= 0:

runCMAESWithWeightedSum(fun, curr_weight, 

maxrunlength)

curr_weight -= 1/(N-1)

if curr_weight < 0 and curr_weight > -1e-15:

curr_weight = 0

Code Walk: Weighted Sum
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def runCMAESWithWeightedSum(fun, weight, budget):

""" Restarted CMA-ES on weighted sum of fun"""

while budget > 0:

es = cma.CMAEvolutionStrategy(fun.dimension

* [5] - 10*np.random.rand(fun.dimension), 3)

while not es.stop() and budget > 0:
solutions = es.ask()

budget -= len(solutions)

# evaluation:

obj_vectors = np.array(

[fun(s) for s in solutions])
# computation of weigted sum:

F = (weight * obj_vectors[:,0] + 

(1-weight) * obj_vectors[:,1])

# update of strategy parameters

es.tell(solutions, F)

Code Walk: Optimizing Weighted Sum w/ CMA-ES
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Approaches to Multiobjective Optimization

y1

y2

y1

y2y2

y1

aggregation-based criterion-based dominance-based

solution-oriented

scaling-dependent

set-oriented

less scaling-independent

problem decomposition
(multiple single-objective 
optimization problems)

changing

goals

max

max

max

max

max

max

VEGA SPEA2, NSGA-II
“modern” EMOA



Set-Oriented Approaches
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General Scheme of Most Set-Oriented EMO

(archiv)population offspring

environmental selection (greedy heuristic)

mating selection (stochastic)
fitness assignment

partitioning into

dominance classes

rank refinement within
dominance classes

+
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... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

 dominance rank: by how

many individuals is an

individual dominated?

MOGA, NPGA

 dominance count: how many

individuals does an individual

dominate?

SPEA, SPEA2

 dominance depth: at which

front is an individual located?

NSGA, NSGA-II, most of the

recently proposed algorithms

Ranking of the Population Using Dominance

f2

f1

dominance
count

dominance

rank

max

max
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Exercise: Dominance-Based Partitioning

f2

f1

dominance depthf2

f1

dominance rank

min

min

min

min
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Goal: rank incomparable solutions within a dominance class

 Diversity information

 (Contribution to a) quality indicator

Refinement of Dominance Rankings

f
f

f

Kernel method

diversity =

function of the 

distances

k-th nearest neighbor

diversity =

function of distance

to k-th nearest neighbor

Histogram method

diversity =

number of elements

within box(es)
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Crowding Distance (CD)

 sort solutions with regard to 
each objective

 assign CD maximum value to 
extremal objective vectors

 compute CD based on the 
distance to the neighbors in 

each objective

Example: NSGA-II Diversity Preservation

f2

f1

i-1

i+1

i
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Selection in SPEA2 and NSGA-II can result in

deteriorative cycles

non-dominated

solutions already

found can be lost

SPEA2 and NSGA-II: Deteriorative Cycles
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Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, …)
use hypervolume indicator to guide the search: refines dominance

Main idea

Delete solutions with

the smallest

hypervolume contribution

d(s) = IH(P)-IH(P / {s})

iteratively

But: can also result in

cycles if reference

point is not constant [Judt et al. 2011]

and is expensive to compute exactly [Bringmann and Friedrich 2009]

Hypervolume-Based Selection
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 Concept can be generalized to any quality indicator

 for example: R2-indicator [Brockhoff et al. 2012], [Trautmann et al. 2013], 

[Díaz-Manríquez et al. 2013]

 Generalizable also to contribution to larger sets

HypE [Bader and Zitzler 2011]: Hypervolume sampling + contribution if 

more than 1 (random) solution deleted

Indicator-Based Selection

A (unary) quality indicator    is a function             

that assigns a Pareto set approximation a real value.

Multiobjective
Problem

Single-objective
Problem

Indicator
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MOEA/D: Multiobjective Evolutionary Algorithm Based on 

Decomposition [Zhang and Li 2007]

MO-CMA-ES: Multiobj. variant of the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) [Igel et al. 2007] [Voß et al. 2010]

RM-MEDA: Regularity Model-Based Multiobjective Estimation of 

Distribution Algorithm [Zhang et al. 2008]

For the first two: several variants and enhancements exist

Three Other Mentionable Algorithms
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MOEA/D: Multiobjective Evolutionary Algorithm Based on 

Decomposition [Zhang and Li 2007]

 optimizes N scalarizing functions in parallel

 uses best solutions of neighbor subproblems for mating

 keeps best for each scalarizing function and updates neighbors

MOEA/D
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MO-CMA-ES: Multiobj. variant of the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) [Igel et al. 2007] [Voß et al. 2010]

 each population member is a single-objective CMA-ES instance

 each CMA-ES instance generates points according to its 

multivariate Gaussian distribution

 multiobjective selection based on hypervolume loss

 probability distribution is adapted based on ranking within the 

selection

 most recent: recombination of covariance matrix [Krause et al. 2016]

MO-CMA-ES
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RM-MEDA: Regularity Model-Based Multiobjective Estimation of 

Distribution Algorithm [Zhang et al. 2008]

 builds a piecewise linear model of the Pareto set and samples 

from it:

 clustering the points in K clusters

 for each cluster, fit a linear (hyper-)plane of dimension n-1

 for sampling new points: 

 sample first uniformly at random a (hyper-)plane

 uniformly at random a point within the (hyper-)plane

 add a small random uniform vector as noise to it

RM-MEDA
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...and many more are proposed every day

The Main Practical Question Right Now:

which algorithm to use on my problem?

 needs benchmarking to recommend algorithms

the second step: how to improve the current best algos?

Many More Algorithms Exist...



69Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 69

Conclusions: EMO as Interactive Decision Support
p

ro
b

le
m

s
o

lu
tio

n

decision making

modeling

optimization

analysis

specification

visualization

preference
articulation

adjustment
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Links:

 EMO mailing list: https://lists.dei.uc.pt/mailman/listinfo/emo-list

 MCDM mailing list: http://lists.jyu.fi/mailman/listinfo/mcdm-discussion

 EMO bibliography: http://www.lania.mx/~ccoello/EMOO/

 EMO conference series: http://www.emo2017.org/

Books:
 Multi-Objective Optimization using Evolutionary Algorithms

Kalyanmoy Deb, Wiley, 2001

 Evolutionary Algorithms for Solving Multi Evolutionary Algorithms 
for Solving Multi-Objective Problems Objective Problems, Carlos A. 
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd

Ed. 2007

 Multiobjective Optimization—Interactive and Evolutionary 
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, 
volume 5252 of LNCS. Springer, 2008 [(still) many open questions!]

 and more…

The EMO Community
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Software

PISA
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Software

PISA

github.com/numbbo/coco/
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