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Overview of the Remaining Lectures & Exerc

Introduction to (Evolutionary) Multiobjective Optimization (now)
» difference to single-objective optimization, the basics
= algorithms and their design principles; MO-CMA-ES

Benchmarking Optimization Algorithms (this morning)
= performance assessment
= automated benchmarking with the COCO platform

Exercise around COCO (this afternoon)
» interpreting available COCO data
= if time allows: looking critically at published results

Exercise on Anne's part (tomorrow afternoon)
= The (1+1)-ES, running CMA-ES and interpreting its output, ...
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(Evolutionary)
Multiobjective Optimization



A Brief Introduction to Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization

Observations: O there is no single optimal solution, but
® some solutions (e) are better than others (o)
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A Brief Introduction to Multiobjective Optimization

u weakly Pareto dominates v (u <pr v): V1 <t <k: fi(u) < fi(v)
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A Brief Introduction to Multiobjective Optimization
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Exercise 1
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Exercise 2: Understanding Pareto Dom

Given the following solutions, tell which ones dominate each other

and which don't for the double sphere problem

fdoublesphere x - (i 1xl )

= a =(0,0,0)
= b =(1,1,1)
= ¢ =(2,22)
= d =(2,2,0)
= e =(0,22)

* f=G33)

?=1(xi_1)2 )
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Visualizing Dominance Relations as Grap

We can simplify the visualization of the (weak) Pareto dominance
relation by fransitive reduction: C

a b f

The weak Pareto dominance is a preorder, i.e. a relation that is
= reflexive and transitive
= minimal elements = Pareto-optimal solutions

If no indifferent solutions x # y with f(x) = f(y) exist, we have

antisymmetry and a partial order ("poset")---visualizable as Hasse
diagram.

| The Pareto dominance itself is not reflexive and thus, never a poset!

© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique Blackbox Optimization: EMO @ CEA/EDF/Inria summer



A Brief Introduction to Multiobjective Optimizatio
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A Brief Introduction to Multiobjective Optim

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space

performance true Pareto front
currently non (Pareto efficient
- VS. .
) frontier)
20 7 dominated front )) o
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15 — |
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A Brief Introduction to Multiobjective Opti

decision space objective space

» f1

solution of Pareto-optimal set ® vector of Pareto-optimal front
non-optimal decision vector @ non-optimal objective vector
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Exercise 3: Pareto Front of Double Sph

What is the Pareto set/front of the double sphere problem
fdoublesphere:x i (Z?=1 xlz ) ?=1(xi_1)2 )?

a) what is the Pareto set?

b) what is the associated Pareto front?

Tips for a)

= display some solutions in the search space (let's say in 2-D)
= investigate where dominating solutions lie

= investigate where dominated solutions lie

» finally, show graphically that what you think is the Pareto set is
actually the Pareto set (take a point anywhere within your
guessed set and show in which direction you can improve and
where you cannot improve anymore)
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Ideal and Nadir Point

Q

min |

ideal point: best values
nadir point: worst values

} obtained for Pareto-optimal points
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Optimization vs. Decision Making

Multiobjective Optimization

combination of optimization of a set and a decision for a solution

|
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches:

performance
A

20 L
15 — ®
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches: ® constraints: cost must not exceed 2400

performance
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When to Make the Decision

Before Optimization:
o |

u rank objectives,

A8

v

\ (good) solution

]

s
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When to Make the Decision

Before Optimization:

o]
u rank objectives,

Y

&

define constraints,...

I
R performance .
search for one 1 . o
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When to Make the Decision

Before Optimization: After Optimization:

' rank objectives,

l define constraints, ..

=

select one solution
considering

(good) solution constraints, etc.

\ search for one
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When to Make the Decision

Before Optimization:
.

' rank objectives,

#

After Optimization:

E |

\ search for a set of

(good) solutions

o]

m select one solution

| considering
l constraints, etc.

Focus: learning about a problem

trade-off surface

Interactions among criteria
structural information

also: interactive optimization )
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Two Communities...

International Society on
/ Multiple Criteria Decision Making

= established field = quite young field
(beginning in 1950s/1960s) (first papers in mid 1980s)

= Dbi-annual conferences since * Dbi-annual conference since
1975 2001

= background in economics, = background in computer
math, management and science, applied math and
social sciences engineering

= focus on optimization and = focus on optimization
decision making algorithms
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...Slowly Merge Into One

International Society on
M Multiple Criteria Decision Making

= MCDM track at EMO conference since 2009
= special sessions on EMO at the MCDM conference since 2008
= joint Dagstuhl seminars since 2004

© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, J



One of the Main Differences

Blackbox optimization

re X (S1(z), -, [r(x))

only mild assumptions

—> EMO therefore well-suited for real-world engineering problems

non-linear  Noisy many objectives
uncertain huge
objectives problem search
expensive spaces

non-differentiable (integrated simulations, many constraints
real experiments)

© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique Blackbox Optimization: EMO @ CEA/EDF/Inria summer sch



The Other Main Difference

Evolutionary Multiobjective Optimization
= set-based algorithms
= therefore possible to approximate the Pareto front in one run

J
performance Pareto front
: | Aniniaint o : 4 . :
environmental mating approximation
selection :
/ selection
¥l
£
* &% 0“'
‘3¢ :: ;’0‘:,“
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

WESR—>]C(7T) WESn—>(fl(ﬂ',a,b),fg(ﬂ',a,b))
Multiobjectivization

by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], VRP [Watanabe and Sakakibara 2007], ...

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a], ...

also backed up by theory e.g. [Brockhoff et al. 2009, Handl et al. 2008b]
related to constrained and multimodal single-objective optimization
see also this recent overview: [Segura et al. 2013]
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Innovization

Often innovative design principles among solutions are found

160 ;
Example:
140} Cantilever beam
Minimum Compliance Solution tOpOIOgy optlmlzatlon
[Bandaru and Deb 2015]
120
= Intermediate Solution
= 100}
=
80 - .—. . |
Compliance = 868.7 units Minimum Weight Solution
Weight = 69.5 units ﬁ_-r
e =
i i T
60 — .r’r,_i-';s.-.’ I
min l ’

40 1 1 1 1 1 1 )
0 €= 500 1000 1500 2000 2500 3000 3500

min Compliance
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Innovization

Often innovative design principles among solutions are found

12_ | T I | !
e 7=3 S
. / 11 % 7N
Example: / . NSGA-II °© S
: ] = 10 1obj * -
Clutch brake design | @ Cnek ©
o i 9 - NSGA-II (r i-80mm) *
[Deb and Srinivasan 2006] 4 & %Zﬂ!
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Innovization

Often innovative design principles among solutions are found

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and innovative
design principles among solution sets

= learning from/about a multiobjective optimization problem

Other examples:

» Self-Organizing Maps for supersonic wing design [Obayashi and
Sasaki 2003]

= Biclustering for processor design and knapsack [Ulrich et al. 2007]

= Successful case studies in engineering

(noise barrier design, polymer extrusion, friction stir welding)
[Deb et al. 2014]
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Overview of the Remaining Lectures & Exerci

Introduction to (Evolutionary) Multiobjective Optimization (now)
= difference to single-objective optimization, the basics
= algorithms and their design principles; MO-CMA-ES

Benchmarking Optimization Algorithms (this morning)
= performance assessment
= automated benchmarking with the COCO platform

Exercise around COCO (this afternoon)
» interpreting available COCO data
= if time allows: looking critically at published results

Exercise on Anne's part (tomorrow afternoon)
= The (1+1)-ES, running CMA-ES and interpreting its output, ...
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Approaches to Multiobjective Optimization

aggregation-based criterion-based @ dominance-based

problem decomposition VEGA SPEA2, NSGA-II
(multiple single-objective “‘modern” EMOA
optimization problems)
v e S
changing
/ /Q/ g goals g
Q / o o
Ll ...,
*e . ".‘
SR ,
Q Q /2' / Q Q \ Q
max T Q % max T Q % max T Q 3
— >V T >y T= > yi
max max max
solution-oriented Qreecccccccccccchy set-oriented
scaling-dependent less scaling-independent
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Solution-Oriented Problem Transformation

. parameters .
multiple single
objectives ! objective
(f1(x), fa(x), ..., f(X)) —>transformation —> s(x)

A scalarizing function sis a functions : Z — R that maps each

objective vector u = (uq, .

.., u,) € Z toarealvalues(u) € R
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

fo

M Example 1: weighted sum approach

(Wy, W, ..., W)
}

Y =Wy WY '

N

7\

5
AT DN
\\//\\//>\
0\/0/\\//‘\
N/
maXT x\/ \:.--»h

max
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Exercise 4: Weighted Sum

f2 4 Which weights are optimal for the
following three points?

a =04 b=(0Q2) c=(6G1)

Helper questions:

¢ 4 = what are the lines of equal
weighted sum for a given weight?

= what happens if you optimize wrt.
T @ a given weighted sum?

_N W N U
|
|
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

ff\ Example 1: weighted sum approach
\;;-/\....\\ (Wi, wzl..., W)
PPN -
7 \"Z N T Y =Wyt WY T
\\/ Ve \ /AN Disadvantage: not all Pareto-
Q / / , , . .
N2 SIY optimal solutions can be found if
max { \s\ VAN the front is not concave (for
= =" maximization)

max
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

ff\ Example 1: weighted sum approach
\\ (Wy, W, ..., W)

N \,/g /> |

? \/o/ N Y =Wyt WY T
STV

gl \\ /N Disadvantage: not all Pareto-
N // \. ' optimal solutions can be found if
min | N/ the front is not convex (for
AN A f1
-~ > minimization)

min
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

Example 2: weighted p-norm

(W, wy, ..., wy,)
9 !

>y = ?/(lel)p + .+ Wy —

p = 1: weighted sum
p = oo: weighted Tchebycheft
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Solution-Oriented Problem Transformation

. parameters _
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

Example 2: weighted p-norm

(W, wy, ..., wy,)

k
- y Z(|W1(3’1 — z;)|)P —
\1 i=1

p = 1: weighted sum
p = oo: weighted Tchebycheft

ap f1
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

f .
N Example 2: weighted Tchebycheff
Aty Mgy ooey A
° |
° . _. , — y=max|Au-2z)| —

: Several other scalarizing functions
iy 1 are known, see e.g. [Miettinen 1999]

max T
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), f2(x), ..., fi(X)) —{transformation —> s(x)

f .
N — Example 2: weighted Tchebycheff
I (M, Agy ooy A
¢ B l
° s~ y=max | Au-2z)| —

: Several other scalarizing functions
iy 1 are known, see e.g. [Miettinen 1999]

max T
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Code Walk: a Weighted Sum with CMA-ES

+ the Ask&Tell Interface to Optimization



Code Walk

Simple Implementation of a Weighted Sum Approach:
= N scalarizing functions, optimized by CMA-ES with restarts
= Python: use CMA-ES after pip install cma (more details
here: https://pypi.python.org/pypi/cma)
= Assume COCO interface to objective function (later today)
= use ask and tell interface (next slide)

= CMA-ES parameters as default (with g;,,;; = 30% of initial
search range)

= would need to be improved in practice:
= how to normalize the objectives and estimate z?
in which order do we optimize the N scalarizing functions?
how to smartly distribute the budget?
intertwine restarts
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The Idea of the Ask&Tell Interface to Optim

example from the CMA-ES web page:

>>> import cma
>>> es = cma.CMAEvolutionStrategy (12 * [0], 0.5)
>>> while not es.stop():
solutions = es.ask()
es.tell (solutions,
[cma.fcts.rosen(x) for x in solutions])
es.logger.add() # write data to disc

to be plotted
es.disp()

<output omitted>
>>> es.result pretty()
<output omitted>

>>> cma.plot() # shortcut for es.logger.plot()
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Ask&Tell with CMA-ES (Visually)

4 O O ask for (1) solution(s)
algorithm N p— - — - (CMA-E.S., S)
lo0p retrieve those solutions orobability
_ ) o tell (u) solutions and their distribution

objective function values
for updating the prob. distr.

© evaluate solution(s)

© update parameters
internally
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Code Walk: Weighted Sum

from future import division

import cma

def weighted sum search (fun, budget):
"rrnsimplest weighted sum of N weights, optimized

with CMA-ES.
N = 50 # number of different weilights
maxrunlength = (budget//N + 1) * fun.dimension

curr weight =1
while curr weight >= 0:
runCMAESWithWeightedSum (fun, curr weight,
maxrunlength)
curr weight -= 1/(N-1)
if curr weight < 0 and curr weight > -le-15:
curr weight = 0
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Code Walk: Optimizing Weighted Sum w/ CM#

def runCMAESWithWeightedSum (fun, weight, budget) :
" Restarted CMA-ES on weighted sum of fun'"""

while budget > O0:

cma.CMAEvolutionStrategy (fun.dimension

[5] - 10*np.random.rand(fun.dimension), 3)
while not es.stop () and budget > O:

solutions = es.ask()
budget -= len(solutions)
# evaluation:

obj vectors = np.array(

[fun(s) for s in solutions])
# computation of weligted sum:
F= (welght * obj vectors[:,0] +
(1-weight) * obj vectors[:,1])
# update of strategy parameters
es.tell (solutions, F)

© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique Blackbox Optimization: EMO @ CEA/EDF/Inria summer school, J



Approaches to Multiobjective Optimization

aggregation-based criterion-based @ dominance-based

problem decomposition VEGA SPEA2, NSGA-II
(multiple single-objective “‘modern” EMOA
optimization problems)
v e S
changing
/ /Q/ g goals g
Q / o o
Ll ...,
*e . ".‘
SR ,
Q Q /2' / Q Q \ Q
max T Q % max T Q % max T Q 3
— >V T >y T= > yi
max max max
solution-oriented Qreecccccccccccchy set-oriented
scaling-dependent less scaling-independent
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Set-Oriented Approaches



General Scheme of Most Set-Oriented EMO

mating selection (stochastic)
A

fitness assighment
partitioning into
dominance classes

. v
population (archiv) offspring

i rank refinement within
dominance classes

environmental selection (greedy heuristic)
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... Is based on pairwise comparisons of the individuals only.

= dominance rank: by how
many individuals is an
individual dominated?
MOGA, NPGA

= dominance count: how many
iIndividuals does an individual
dominate?
SPEA, SPEA2

= dominance depth: at which
front is an individual located?

NSGA, NSGA-II, most of the
recently proposed algorithms

max T

Q

dominance
count

—
max
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Exercise: Dominance-Based Partitioning

min |
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

O Diversity information

Kernel method k-th nearest neighbor Histogram method
diversity = diversity = diversity =
function of the function of distance number of elements
distances to k-th nearest neighbor within box(es)
Q Q
h
f 9 Q ol ©
o @ Q

® (Contribution to a) quality indicator
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Example: NSGA-II Diversity Preservation

Crowding Distance (CD)

= sort solutions with regard to
each objective

= assign CD maximum value to
extremal objective vectors

= compute CD based on the
distance to the neighbors in

each objective

CD(Z) . dl (7’) 4.4 dm(z)

fl,max - fl,min fm,max - fm,min

© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique Blackbox Optimization: EMO @ CEA/EDF/Inria summer school
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SPEA2 and NSGA-II: Deteriorative Cycles

Selection in SPEA2 and NSGA-Il can result in
deteriorative cycles N - ' ' e

Archive elements after t=5.000,000 <
Archive elements after t=10.000.000 o

e

]

=

(=]
T

> IR -
T B0y
S

non-dominated
solutions already
found can be lost
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

] ] N X reference
Main idea . pointT
Delete solutions with Hypervolume of A: :
r
the smallest Iy (A) = [a(Z)dZ

—

hypervolume contributio;n_‘
d(s) = I4(P)-14(P / {s}) ; |

iteratively RO wB)=1
'.‘|ﬂl_.1 _1. -1. E:‘
. minimize

a(z)=0 fitness of point: |
But: can also result in contribution to

. hypervolume
cycles if reference
point is not constant [Judt et al. 2011]
and is expensive to compute exactly [Bringmann and Friedrich 2009]
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Indicator-Based Selection

= (Concept can be generalized to any quality indicator

A (unary) quality indicator I is a function] : & = 2% —» R
that assigns a Pareto set approximation a real value.
)

Multiobjective Indicator _ Single-objective
Problem Problem

» for example: R2-indicator [Brockhoff et al. 2012], [Trautmann et al. 2013],
[Diaz-Manriquez et al. 2013]

= (Generalizable also to contribution to larger sets

HypE [Bader and Zitzler 2011]: Hypervolume sampling + contribution if
more than 1 (random) solution deleted
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Three Other Mentionable Algorithms

MOEA/D: Multiobjective Evolutionary Algorithm Based on
Decomposition [Zhang and Li 2007]

MO-CMA-ES: Multiobj. variant of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [lgel et al. 2007] [VoB et al. 2010]

RM-MEDA: Regularity Model-Based Multiobjective Estimation of
Distribution Algorithm [Zhang et al. 2008]

For the first two: several variants and enhancements exist
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MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on
Decomposition [Zhang and Li 2007]

= optimizes N scalarizing functions in parallel
= uses best solutions of neighbor subproblems for mating
= Kkeeps best for each scalarizing function and updates neighbors

© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique Blackbox Optimization: EMO @ CEA/EDF/Inria summer school



MO-CMA-ES

MO-CMA-ES: Multiobj. variant of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [lgel et al. 2007] [VoB et al. 2010]

= each population member is a single-objective CMA-ES instance

= each CMA-ES instance generates points according to its
multivariate Gaussian distribution

= multiobjective selection based on hypervolume loss

= probability distribution is adapted based on ranking within the
selection

= most recent: recombination of covariance matrix [Krause et al. 2016]
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RM-MEDA: Regularity Model-Based Multiobjective Estimation of
Distribution Algorithm [Zhang et al. 2008]

= builds a piecewise linear model of the Pareto set and samples
from it:

= clustering the points in K clusters

= for each cluster, fit a linear (hyper-)plane of dimension n-1
= for sampling new points:

= sample first uniformly at random a (hyper-)plane

= uniformly at random a point within the (hyper-)plane

= add a small random uniform vector as noise to it
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Many More Algorithms EXxist...

...and many more are proposed every day

The Main Practical Question Right Now:
which algorithm to use on my problem?
-> needs benchmarking to recommend algorithms

the second step: how to improve the current best algos?
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Conclusions: EMO as Interactive Decision Supp
A modeling

LA

Gl

adjustment

analysis

specification ss==leg Optimization

uol}n|os

visualization

preference
articulation

A

*s decision making
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The EMO Community

Links:

= EMO mailing list: https:/lists.dei.uc.pt/mailman/listinfo/emo-list

= MCDM mailing list: htto.//lists.jyu.fi/mailman/listinfo/mecdm-discussion
=  EMO bibliography: http.//www.lania.mx/~ccoello/EMOQO/

= EMO conference series: http://www.emo2017.org/

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [(still) many open questions!]

= and more...
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SYSTEMS OPTIMIZATION

“PISA

s Crucial Bugfix
28 principles and

: A severe bug in the

Boctmentation A Platform and Programming Language Independent Interface for Search Algorithms hypervolume calculation of
@& PISA for Beginners —~ — e the IBEA variator has been
& £ ples and Documentation [l ,'.;,‘.-l’.x__f?;»:"“%:.z‘; m _Downloads_ | found, please redownload the
“ Downloads (‘ The ﬁrthAstep.s in order to Do\ynload Selectors, module if your version is older

Performance

Assessment

Write and Submit a

Module

4§ Publications, Bugs,
Contact & License

jﬁMsz m GORITHMS | PROBLEMS m OUR TECHNIQUES ¥

Welcome to the jMetal Web Site

TiE

Computer Engineering and
Networks Laboratory

JMetal is ... Summary of features Download from Sourceforge

© 2009 Institut TIK, ETH 3
jMetal stands for Metaheuristic Algorith
in Java, and it is an object-orien
Java-based framework for multi-objec
optimization with metaheuristics.

You can use it to ... MOEA Framework

A Free and Open Source Java Framework for Multiobjective Oprimizartion

Home Examples Downloads Documentation Support Donate

The object-oriented architecture of |
framework and the included features allow y
to: experiment with the provided classic &

state-of-the-art techniques, develop your o Downloads
algorithms, solve your opfimization probler
integrate jMetal in other tools, efc. A Framework for |n novati oh Current Version: 2.4

Released: Jan 02, 2015
The MOEA Framework is a free and open source Java library for developing and experimenting with multiobjective
evolutionary algorithms (MOEAs) and other general-purpose multiobjective optimization algorithms. The MOEA i* DEMO APPLICATION

: urt Otlvatlon 1S ... Framework supports genetic algorithms, differential evolution, particle swarm optimization, genetic programming, .

. - . - . ¢ COMPILED BINARIES
— . . N grammatical evolution, and more. A number of algorithms are provided out-of-the-box, including NSGA-II, NSGA-III, *
The mntivatinn drivinn ns is tn nrovide

e-MOEA, GDE3 and MOEA/D. In addition, the MOEA Framework provides the tools necessary to rapidly design, 2+ SOURCE CODE
develop, execute and statistically test optimization algorithms

3* USER MANUAL
Key Features

Using Maven? Add our dependenc

Fast, reliable implementations of many state-of-the-art multiobjective evolutionary algorithms
Looking for a previous release?

Extensible with custom algorithms, problems and operators

Supports master-slave, island-model, and hybrid parallelization License

Modular design for constructing new optimization algorithms from existing components
Licensed under the GNU Lesser

Permissive open source license
Ceneral Public License

Fully documented source code
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O This repository

- numbbo / coco

{0 7,902 commits

Branch: master v MNew pull request

8 code-experiments
8 code-postprocessing

8 code-preprocessing/archive-update

] .clang-format

github.com/numbbo/coco/

1 Pull requests 1 w Pulse I Graphs {} Settings

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/ — Edit

P 12 branches Ty 25 releases

Create new file

L") brockho committed on GitHub Merge pull request #1075 from numbbo/development +=

Merge pull request #1071 from ttusar/debug
further clean up of postprocessing output,

Added empty last lines.

updated reference to biohjective perf-assessment paper on arXiv in ge...

Update documentation-howto.md

raising an error in bbob2009_logger.c when best_value is NULL. Plus s...

raising an error in bbob2009_logger.c when best_wvalue is NULL. Plus s...
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Added acknowledgements to external collaborators...

Key Features

® Fast, reliable implementations of many state-of-the-art multiobjective evolutionary algorithms

® Extensible with custom algerithms, problems and operators

® Supports master-slave, island-model, and hybrid parallelization

® Modular design for constructing new optimization algorithms from existing components

® Permissive open source license

® Fully documented source code

48 13 contributors

Latest commit @cbb7db on 10 lun

a month ago
a month ago
a month ago
2 months ago
4 months ago
a year ago

3 year ago

4 months ago

4 months ago

Using Maven? Add our dependenc

Looking for a previous release?

License

Licensed under the GNU Lesser

Ceneral Public License
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