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Overview of the Remaining Lectures & Exercises

Introduction to (Evolutionary) Multiobjective Optimization (now)

 difference to single-objective optimization, the basics

 algorithms and their design principles; MO-CMA-ES

Benchmarking Optimization Algorithms (this morning)

 performance assessment

 automated benchmarking with the COCO platform

Exercise around COCO (this afternoon)

 interpreting available COCO data

 if time allows: looking critically at published results

Exercise on Anne's part (tomorrow afternoon)

 The (1+1)-ES, running CMA-ES and interpreting its output, ...
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challenging optimization problems
appear in many

scientific, technological and industrial domains
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Numerical Blackbox Optimization

Minimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘g(𝑥) ∈ ℝ𝑚
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Given:

Not clear:

Which of the many algorithms should I use on my 
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘
Practical Blackbox Optimization

g(𝑥) ∈ ℝ𝑚
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Numerical Blackbox Optimizers

Deterministic Algorithms
 Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

 Simplex downhill [Nelder & Mead 1965] 

 Pattern search [Hooke and Jeeves 1961] 

 Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (Randomized) Search Methods
 Evolutionary Algorithms (continuous domain) 

 Differential Evolution [Storn & Price 1997] 

 Particle Swarm Optimization [Kennedy & Eberhart 1995] 

 Evolution Strategies, CMA-ES

[Rechenberg 1965, Hansen & Ostermeier 2001] 

 Estimation of Distribution Algorithms (EDAs) [Larrañaga & Lozano 2001] 

 Cross Entropy Method (same as EDA) [Rubinstein 1999] 

 Genetic Algorithms [Holland 1975, Goldberg 1989] 

 Simulated annealing [Kirkpatrick et al. 1983] 

 Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 
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Deterministic Algorithms
 Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

 Simplex downhill [Nelder & Mead 1965] 

 Pattern search [Hooke and Jeeves 1961] 

 Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (Randomized) Search Methods
 Evolutionary Algorithms (continuous domain) 

 Differential Evolution [Storn & Price 1997] 

 Particle Swarm Optimization [Kennedy & Eberhart 1995] 

 Evolution Strategies, CMA-ES

[Rechenberg 1965, Hansen & Ostermeier 2001] 

 Estimation of Distribution Algorithms (EDAs) [Larrañaga & Lozano 2001] 

 Cross Entropy Method (same as EDA) [Rubinstein 1999] 

 Genetic Algorithms [Holland 1975, Goldberg 1989] 

 Simulated annealing [Kirkpatrick et al. 1983] 

 Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers

best choice typically not immediately clear
although practitioners often have knowledge about which
difficulties a problem has (e.g. multi-modality or non-separability)
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Need: Benchmarking

 understanding of algorithms

 algorithm selection

 putting algorithms to a standardized test

 simplify judgement

 simplify comparison

 regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

 choosing (and implementing) problems, performance 
measures, visualization, stat. tests, ...

 running a set of algorithms
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that's where COCO comes into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco
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automatized benchmarking
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How to benchmark algorithms with 
COCO?
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco



14Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 14

https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco

requirements 
& download
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https://github.com/numbbo/coco

installation I: experiments
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https://github.com/numbbo/coco

installation II: postprocessing
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https://github.com/numbbo/coco

coupling algo + COCO
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while true
problem = cocoSuiteGetNextProblem(suite, observer);
dimension = cocoProblemGetDimension(problem);
i = -1; % count number of independent restarts
while (BUDGET_MULTIPLIER*dimension > (cocoProblemGetEvaluations(problem) + ...

cocoProblemGetEvaluationsConstraints(problem)))
i = i+1;
doneEvalsBefore = cocoProblemGetEvaluations(problem) + ...

cocoProblemGetEvaluationsConstraints(problem);
% start algorithm with remaining number of function evaluations:
my_optimizer(problem,...

cocoProblemGetSmallestValuesOfInterest(problem), ...
cocoProblemGetLargestValuesOfInterest(problem), ...
BUDGET_MULTIPLIER*dimension - doneEvalsBefore);

% check whether experiment is over:
doneEvalsAfter = cocoProblemGetEvaluations(problem) + ...

cocoProblemGetEvaluationsConstraints(problem);
if cocoProblemFinalTargetHit(problem) == 1 || ...

doneEvalsAfter >= BUDGET_MULTIPLIER * dimension
break;

end
if (i >= NUM_OF_INDEPENDENT_RESTARTS)

break;
end

end
doneEvalsTotal = doneEvalsTotal + doneEvalsAfter;

end

example_experiment.cexampleexperiment.m (slightly simplified)
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https://github.com/numbbo/coco

running the experiment
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https://github.com/numbbo/coco

postprocessing
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Result Folder
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Automatically Generated Results
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Automatically Generated Results
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Automatically Generated Results
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Automatically Generated Results
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doesn't look too complicated, does it?

[the devil is in the details ]
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so far:

data for about 170 algorithm variants

(some of which on noisy or multiobjective test functions)

145 workshop papers

by 93 authors from 25 countries

Available Data Sets
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On

real world problems

 expensive

 comparison typically limited to certain domains

 experts have limited interest to publish

"artificial" benchmark functions

 cheap

 controlled

 data acquisition is comparatively easy

 problem of representativeness

Measuring Performance
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 define the "scientific question"

the relevance can hardly be overestimated

 should represent "reality"

 are often too simple?

remind separability

 a number of testbeds are around

 account for invariance properties

prediction of performance is based on “similarity”, 
ideally equivalence classes of functions

Test Functions
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 bbob 24 noiseless fcts 140+ algo data sets

 bbob-noisy 30 noisy fcts 40+ algo data sets

 bbob-biobj 55 bi-objective fcts 16 algo data sets

Under development:

 an extended biobjective suite

 a large-scale version of the bbob suite

 a constrained test suite

Long-term goals:

 combining difficulties

 almost real-world problems

 real-world problems

Available Test Suites in COCO
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Meaningful quantitative measure

• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B"
is a meaningful statement

• assume a wide range of values 

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?
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runtime or first hitting time is the prime candidate
(we don't have many choices anyway)
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Two objectives:

 Find solution with small(est possible) function/indicator value

 With the least possible search costs (number of function 
evaluations)

For measuring performance: fix one and measure the other

How Do We Measure Performance?
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convergence graphs is all we have to start with...

Measuring Performance Empirically
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ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]
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A Convergence Graph
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First Hitting Time is Monotonous
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15 Runs
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15 Runs ≤ 15 Runtime Data Points

target



47Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 47

Empirical Cumulative Distribution Function (ECDF)

e.g. 60% of the runs need between 2000 and 4000 evaluations

e.g. 80% of the runs reached the target

the ECDF of run 

lengths to reach 

the target

● has for each 

data point a 

vertical step of 

constant size

● displays for 

each x-value 

(budget) the 

count of 

observations to 

the left (first 

hitting times)

1

0.8

0.6

0.4

0.2

0
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Reconstructing A Single Run
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50 equally
spaced targets

Reconstructing A Single Run
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Reconstructing A Single Run
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Reconstructing A Single Run
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the empirical 
CDF makes 
a step for 
each star, is 
monotonous 
and displays 

for each 
budget the 

fraction of 

targets 
achieved 

within the 
budget

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0
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the ECDF 
recovers the 
monotonous 
graph, 
discretised 
and flipped

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0
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Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0

the ECDF 
recovers the 
monotonous 
graph, 
discretised 
and flipped
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15 runs

Aggregation
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Aggregation

15 runs

50 targets



57Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 57

15 runs

50 targets

Aggregation
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Aggregation

15 runs

50 targets

ECDF with
750 steps
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Aggregation

50 targets from 
15 runs 

...integrated in a 
single graph
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Interpretation

50 targets from 
15 runs 

...integrated in a 
single graph

area over the 
ECDF curve

=
average log 

runtime
(or geometric avg. 
runtime) over all 
targets (difficult 

and easy) and all 
runs
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Fixed-target: Measuring Runtime
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• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨𝒓
ps(Algo Restart A) = 1

𝑹𝑻𝑩𝒓
ps(Algo Restart A) = 1

Fixed-target: Measuring Runtime of Restarted Algo
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• Expected running time of the restarted algorithm:𝐸 𝑅𝑇𝑟 = 1 − 𝑝𝑠𝑝𝑠 𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]
• Estimator average running time (aRT): 𝑝𝑠 = #successes#runs 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs𝑎𝑅𝑇 = total #evals#successes

Fixed-target: Measuring Runtime of Restarted Algo
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What we typically plot are ECDFs of the simulated 
restarted algorithms:

ECDFs with Simulated Restarts
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In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms

from BBOB-2009

till BBOB-2015

Worth to Note: ECDFs in COCO
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...might come back to it in detail later today

More Automated Plots...
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...might come back to it in detail later today

More Automated Plots...
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how to do benchmarking in the

multiobjective case?
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0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.75

3.25

3.5

3.75

4

4.25

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II

Once Upon a Time...
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Attainment function approach

 applies statistical tests directly

to the approximation set

 detailed information about how 
and where performance 
differences occur

Two Main Approaches for Empirical Studies

Quality indicator approach

 reduces each approximation set 
to a single quality value

 applies statistical tests to the 
quality values

see e.g. [Zitzler et al. 2003]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Attainment Plots in Practice

latest implementation online at 
http://eden.dei.uc.pt/~cmfonsec/software.html

R package: http://lopez-ibanez.eu/eaftools

see also [López-Ibáñez et al. 2010, Fonseca et al. 2011]

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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...display not only the success probabilities, but the average runtime 

to attain points in objective space:

[Brockhoff et al. 2017]

Average Runtime Attainment Plots

Alg_1 Alg_2
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A quality indicator

 maps a solution set to a real number

 can be used with standard performance assessment

 report median, variance, ...

 boxplots

 statistical tests

 should optimally refine the dominance relation on sets

Recommendation:

 use hypervolume (refinement, i.e. it does not contradict the 

dominance relation)

 or epsilon indicator or R2 indicator (are weak refinements)

Also important:

 interpretation of the results (by knowing theoretical properties of 

the used indicator)

Most Used Approach: Quality Indicators
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Idea:

 transfer multiobjective problem into a set problem

 define an objective function (“quality indicator”) on sets
 use the resulting total (pre-)order (on the quality values)

Question:

Can any total (pre-)order be used or are there any requirements

concerning the resulting preference relation?

 Underlying dominance relation

should be reflected!

Quality Indicator Approach
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 refines a preference relation iff

A    B  B A  A     B  B A            (better  better)

 fulfills requirement

 weakly refines a preference relation     iff

A    B  B A  A     B                 (better  weakly better)

 does not fulfill requirement, but does not contradict

! sought are total refinements…       [Zitzler et al. 2010]

Refinements and Weak Refinements
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Example: Refinements Using Indicators

I(A)
A

B

A

I(A) = volume of the

weakly dominated area

in objective space

I(A,B) = how much needs A to

be moved to weakly dominate B

A     B : I(A)  I(B) A     B : I(A,B)  I(B,A)

unary hypervolume indicator binary epsilon indicator

A’

max

max

max

max

refinement


refinement


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Example: Weak Refinement / No Refinement

R

A

I(A,R) = how much needs A to

be moved to weakly dominate R

A     B : I(A,R)  I(B,R)

unary epsilon indicator

A’

A

I(A) = variance of pairwise

distances

A     B : I(A)  I(B)

unary diversity indicator

weak refinement no refinement

 

max

max

max

max
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Comparison method C = quality measure(s) + Boolean function

reduction                 interpretation

Goal: compare two Pareto set approximations A and B

Quality Indicator Approach

B

A

R
n

quality

measure

Boolean
function

statementA, B

hypervolume 432.34 420.13

distance 0.3308 0.4532

diversity 0.3637 0.3463

spread 0.3622 0.3601

cardinality 6 5          

A B

“A better”
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Example: Box Plots

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2

DTLZ2

ZDT6

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3

0.2

0.4

0.6

0.8

1 2 3

0.1

0.2

0.3

0.4

1 2 3

0.02

0.04

0.06

0.08

1 2 3

0

0.002

0.004

0.006

0.008

1 2 3
0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

Knapsack

epsilon indicator     hypervolume R indicator
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Statistical Assessment (Kruskal Test)

ZDT6
Epsilon

DTLZ2
R

IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 ~0

SPEA2 1 1

Overall p-value = 6.22079e-17.

Null hypothesis rejected (alpha 0.05)

is better 

than
IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 1

SPEA2 1 ~0

Overall p-value = 7.86834e-17.

Null hypothesis rejected (alpha 0.05)

is better 

than

Knapsack/Hypervolume: H0 = No significance of any differences



87Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 87

so what do we do within COCO?
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algorithm quality = 

normalized* hypervolume (HV)

of all non-dominated solutions

if a point dominates nadir

closest normalized* negative

distance to region of interest [0,1]2

if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]

[Brockhoff et al. 2016]

Bi-objective Performance Assessment
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We measure runtimes to reach (HV indicator) targets:

 relative to a reference set, given as the best Pareto front 
approximation known (since exact Pareto set not known)

incl. all non-dominated points found by the 15 algos of BBOB-2016

 actual absolute hypervolume targets used are

HV(refset) – targetprecision

with 58 fixed targetprecisions between 1 and -10-4 (same
for all functions, dimensions, and instances) in the displays

Bi-objective Performance Assessment
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Exemplary BBOB-2016 Results

Data from 15 submitted algorithms
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Exemplary BBOB-2016 Results

Data from 15 submitted algorithms
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State-of-the-art numerical benchmarking

 fixed target view preferred over fixed budget view

 ECDF plot of collected runtimes most important plot

 allows for aggregation over targets, functions, and 
instances

 but should not aggregate over dimension

dimension is "input parameter" to the algorithm

 multiobjective case can be handled the same way by using a 
quality indicator such as the hypervolume indicator

Take Home Messages
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