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Overview of the Remaining Lectures & Exercises

Introduction to (Evolutionary) Multiobjective Optimization (now)

 difference to single-objective optimization, the basics

 algorithms and their design principles; MO-CMA-ES

Benchmarking Optimization Algorithms (this morning)

 performance assessment

 automated benchmarking with the COCO platform

Exercise around COCO (this afternoon)

 interpreting available COCO data

 if time allows: looking critically at published results

Exercise on Anne's part (tomorrow afternoon)

 The (1+1)-ES, running CMA-ES and interpreting its output, ...
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challenging optimization problems
appear in many

scientific, technological and industrial domains
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Numerical Blackbox Optimization

Minimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘g(𝑥) ∈ ℝ𝑚
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Given:

Not clear:

Which of the many algorithms should I use on my 
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘
Practical Blackbox Optimization

g(𝑥) ∈ ℝ𝑚
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Numerical Blackbox Optimizers

Deterministic Algorithms
 Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

 Simplex downhill [Nelder & Mead 1965] 

 Pattern search [Hooke and Jeeves 1961] 

 Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (Randomized) Search Methods
 Evolutionary Algorithms (continuous domain) 

 Differential Evolution [Storn & Price 1997] 

 Particle Swarm Optimization [Kennedy & Eberhart 1995] 

 Evolution Strategies, CMA-ES

[Rechenberg 1965, Hansen & Ostermeier 2001] 

 Estimation of Distribution Algorithms (EDAs) [Larrañaga & Lozano 2001] 

 Cross Entropy Method (same as EDA) [Rubinstein 1999] 

 Genetic Algorithms [Holland 1975, Goldberg 1989] 

 Simulated annealing [Kirkpatrick et al. 1983] 

 Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 
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Deterministic Algorithms
 Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

 Simplex downhill [Nelder & Mead 1965] 

 Pattern search [Hooke and Jeeves 1961] 

 Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (Randomized) Search Methods
 Evolutionary Algorithms (continuous domain) 

 Differential Evolution [Storn & Price 1997] 

 Particle Swarm Optimization [Kennedy & Eberhart 1995] 

 Evolution Strategies, CMA-ES

[Rechenberg 1965, Hansen & Ostermeier 2001] 

 Estimation of Distribution Algorithms (EDAs) [Larrañaga & Lozano 2001] 

 Cross Entropy Method (same as EDA) [Rubinstein 1999] 

 Genetic Algorithms [Holland 1975, Goldberg 1989] 

 Simulated annealing [Kirkpatrick et al. 1983] 

 Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers

best choice typically not immediately clear
although practitioners often have knowledge about which
difficulties a problem has (e.g. multi-modality or non-separability)
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Need: Benchmarking

 understanding of algorithms

 algorithm selection

 putting algorithms to a standardized test

 simplify judgement

 simplify comparison

 regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

 choosing (and implementing) problems, performance 
measures, visualization, stat. tests, ...

 running a set of algorithms
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that's where COCO comes into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco
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automatized benchmarking
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How to benchmark algorithms with 
COCO?
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco
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https://github.com/numbbo/coco

requirements 
& download
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https://github.com/numbbo/coco

installation I: experiments
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https://github.com/numbbo/coco

installation II: postprocessing
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https://github.com/numbbo/coco

coupling algo + COCO
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while true
problem = cocoSuiteGetNextProblem(suite, observer);
dimension = cocoProblemGetDimension(problem);
i = -1; % count number of independent restarts
while (BUDGET_MULTIPLIER*dimension > (cocoProblemGetEvaluations(problem) + ...

cocoProblemGetEvaluationsConstraints(problem)))
i = i+1;
doneEvalsBefore = cocoProblemGetEvaluations(problem) + ...

cocoProblemGetEvaluationsConstraints(problem);
% start algorithm with remaining number of function evaluations:
my_optimizer(problem,...

cocoProblemGetSmallestValuesOfInterest(problem), ...
cocoProblemGetLargestValuesOfInterest(problem), ...
BUDGET_MULTIPLIER*dimension - doneEvalsBefore);

% check whether experiment is over:
doneEvalsAfter = cocoProblemGetEvaluations(problem) + ...

cocoProblemGetEvaluationsConstraints(problem);
if cocoProblemFinalTargetHit(problem) == 1 || ...

doneEvalsAfter >= BUDGET_MULTIPLIER * dimension
break;

end
if (i >= NUM_OF_INDEPENDENT_RESTARTS)

break;
end

end
doneEvalsTotal = doneEvalsTotal + doneEvalsAfter;

end

example_experiment.cexampleexperiment.m (slightly simplified)
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https://github.com/numbbo/coco

running the experiment



27Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 27

https://github.com/numbbo/coco

postprocessing
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Result Folder
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Automatically Generated Results
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Automatically Generated Results
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Automatically Generated Results
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Automatically Generated Results
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doesn't look too complicated, does it?

[the devil is in the details ]
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so far:

data for about 170 algorithm variants

(some of which on noisy or multiobjective test functions)

145 workshop papers

by 93 authors from 25 countries

Available Data Sets
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On

real world problems

 expensive

 comparison typically limited to certain domains

 experts have limited interest to publish

"artificial" benchmark functions

 cheap

 controlled

 data acquisition is comparatively easy

 problem of representativeness

Measuring Performance
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 define the "scientific question"

the relevance can hardly be overestimated

 should represent "reality"

 are often too simple?

remind separability

 a number of testbeds are around

 account for invariance properties

prediction of performance is based on “similarity”, 
ideally equivalence classes of functions

Test Functions
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 bbob 24 noiseless fcts 140+ algo data sets

 bbob-noisy 30 noisy fcts 40+ algo data sets

 bbob-biobj 55 bi-objective fcts 16 algo data sets

Under development:

 an extended biobjective suite

 a large-scale version of the bbob suite

 a constrained test suite

Long-term goals:

 combining difficulties

 almost real-world problems

 real-world problems

Available Test Suites in COCO
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Meaningful quantitative measure

• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B"
is a meaningful statement

• assume a wide range of values 

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?
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runtime or first hitting time is the prime candidate
(we don't have many choices anyway)
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Two objectives:

 Find solution with small(est possible) function/indicator value

 With the least possible search costs (number of function 
evaluations)

For measuring performance: fix one and measure the other

How Do We Measure Performance?
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convergence graphs is all we have to start with...

Measuring Performance Empirically
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ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]
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A Convergence Graph
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First Hitting Time is Monotonous
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15 Runs
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15 Runs ≤ 15 Runtime Data Points

target



47Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 47

Empirical Cumulative Distribution Function (ECDF)

e.g. 60% of the runs need between 2000 and 4000 evaluations

e.g. 80% of the runs reached the target

the ECDF of run 

lengths to reach 

the target

● has for each 

data point a 

vertical step of 

constant size

● displays for 

each x-value 

(budget) the 

count of 

observations to 

the left (first 

hitting times)

1

0.8

0.6

0.4

0.2

0
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Reconstructing A Single Run
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50 equally
spaced targets

Reconstructing A Single Run
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Reconstructing A Single Run
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Reconstructing A Single Run
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the empirical 
CDF makes 
a step for 
each star, is 
monotonous 
and displays 

for each 
budget the 

fraction of 

targets 
achieved 

within the 
budget

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0
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the ECDF 
recovers the 
monotonous 
graph, 
discretised 
and flipped

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0
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Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0

the ECDF 
recovers the 
monotonous 
graph, 
discretised 
and flipped
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15 runs

Aggregation
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Aggregation

15 runs

50 targets
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15 runs

50 targets

Aggregation
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Aggregation

15 runs

50 targets

ECDF with
750 steps
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Aggregation

50 targets from 
15 runs 

...integrated in a 
single graph
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Interpretation

50 targets from 
15 runs 

...integrated in a 
single graph

area over the 
ECDF curve

=
average log 

runtime
(or geometric avg. 
runtime) over all 
targets (difficult 

and easy) and all 
runs
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Fixed-target: Measuring Runtime



62Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 62

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨𝒓
ps(Algo Restart A) = 1

𝑹𝑻𝑩𝒓
ps(Algo Restart A) = 1

Fixed-target: Measuring Runtime of Restarted Algo
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• Expected running time of the restarted algorithm:𝐸 𝑅𝑇𝑟 = 1 − 𝑝𝑠𝑝𝑠 𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]
• Estimator average running time (aRT): 𝑝𝑠 = #successes#runs 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs𝑎𝑅𝑇 = total #evals#successes

Fixed-target: Measuring Runtime of Restarted Algo
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What we typically plot are ECDFs of the simulated 
restarted algorithms:

ECDFs with Simulated Restarts



65Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 65

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms

from BBOB-2009

till BBOB-2015

Worth to Note: ECDFs in COCO
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...might come back to it in detail later today

More Automated Plots...
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...might come back to it in detail later today

More Automated Plots...
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how to do benchmarking in the

multiobjective case?
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0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.75

3.25

3.5

3.75

4

4.25

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II

Once Upon a Time...
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Attainment function approach

 applies statistical tests directly

to the approximation set

 detailed information about how 
and where performance 
differences occur

Two Main Approaches for Empirical Studies

Quality indicator approach

 reduces each approximation set 
to a single quality value

 applies statistical tests to the 
quality values

see e.g. [Zitzler et al. 2003]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Empirical Attainment Functions: Idea

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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Attainment Plots in Practice

latest implementation online at 
http://eden.dei.uc.pt/~cmfonsec/software.html

R package: http://lopez-ibanez.eu/eaftools

see also [López-Ibáñez et al. 2010, Fonseca et al. 2011]

© Manuel López-Ibáñez

[López-Ibáñez et al. 2010]
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...display not only the success probabilities, but the average runtime 

to attain points in objective space:

[Brockhoff et al. 2017]

Average Runtime Attainment Plots

Alg_1 Alg_2
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A quality indicator

 maps a solution set to a real number

 can be used with standard performance assessment

 report median, variance, ...

 boxplots

 statistical tests

 should optimally refine the dominance relation on sets

Recommendation:

 use hypervolume (refinement, i.e. it does not contradict the 

dominance relation)

 or epsilon indicator or R2 indicator (are weak refinements)

Also important:

 interpretation of the results (by knowing theoretical properties of 

the used indicator)

Most Used Approach: Quality Indicators
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Idea:

 transfer multiobjective problem into a set problem

 define an objective function (“quality indicator”) on sets
 use the resulting total (pre-)order (on the quality values)

Question:

Can any total (pre-)order be used or are there any requirements

concerning the resulting preference relation?

 Underlying dominance relation

should be reflected!

Quality Indicator Approach
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 refines a preference relation iff

A    B  B A  A     B  B A            (better  better)

 fulfills requirement

 weakly refines a preference relation     iff

A    B  B A  A     B                 (better  weakly better)

 does not fulfill requirement, but does not contradict

! sought are total refinements…       [Zitzler et al. 2010]

Refinements and Weak Refinements
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Example: Refinements Using Indicators

I(A)
A

B

A

I(A) = volume of the

weakly dominated area

in objective space

I(A,B) = how much needs A to

be moved to weakly dominate B

A     B : I(A)  I(B) A     B : I(A,B)  I(B,A)

unary hypervolume indicator binary epsilon indicator

A’

max

max

max

max

refinement


refinement
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Example: Weak Refinement / No Refinement

R

A

I(A,R) = how much needs A to

be moved to weakly dominate R

A     B : I(A,R)  I(B,R)

unary epsilon indicator

A’

A

I(A) = variance of pairwise

distances

A     B : I(A)  I(B)

unary diversity indicator

weak refinement no refinement

 

max

max

max

max
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Comparison method C = quality measure(s) + Boolean function

reduction                 interpretation

Goal: compare two Pareto set approximations A and B

Quality Indicator Approach

B

A

R
n

quality

measure

Boolean
function

statementA, B

hypervolume 432.34 420.13

distance 0.3308 0.4532

diversity 0.3637 0.3463

spread 0.3622 0.3601

cardinality 6 5          

A B

“A better”
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Example: Box Plots

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2

DTLZ2

ZDT6

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3

0.2

0.4

0.6

0.8

1 2 3

0.1

0.2

0.3

0.4

1 2 3

0.02

0.04

0.06

0.08

1 2 3

0

0.002

0.004

0.006

0.008

1 2 3
0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

Knapsack

epsilon indicator     hypervolume R indicator
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Statistical Assessment (Kruskal Test)

ZDT6
Epsilon

DTLZ2
R

IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 ~0

SPEA2 1 1

Overall p-value = 6.22079e-17.

Null hypothesis rejected (alpha 0.05)

is better 

than
IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 1

SPEA2 1 ~0

Overall p-value = 7.86834e-17.

Null hypothesis rejected (alpha 0.05)

is better 

than

Knapsack/Hypervolume: H0 = No significance of any differences



87Blackbox Optimization: COCO @ CEA/EDF/Inria summer school, July 5, 2017© Anne Auger and Dimo Brockhoff, Inria & Ecole Polytechnique 87

so what do we do within COCO?
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algorithm quality = 

normalized* hypervolume (HV)

of all non-dominated solutions

if a point dominates nadir

closest normalized* negative

distance to region of interest [0,1]2

if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]

[Brockhoff et al. 2016]

Bi-objective Performance Assessment
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We measure runtimes to reach (HV indicator) targets:

 relative to a reference set, given as the best Pareto front 
approximation known (since exact Pareto set not known)

incl. all non-dominated points found by the 15 algos of BBOB-2016

 actual absolute hypervolume targets used are

HV(refset) – targetprecision

with 58 fixed targetprecisions between 1 and -10-4 (same
for all functions, dimensions, and instances) in the displays

Bi-objective Performance Assessment
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Exemplary BBOB-2016 Results

Data from 15 submitted algorithms
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Exemplary BBOB-2016 Results

Data from 15 submitted algorithms
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State-of-the-art numerical benchmarking

 fixed target view preferred over fixed budget view

 ECDF plot of collected runtimes most important plot

 allows for aggregation over targets, functions, and 
instances

 but should not aggregate over dimension

dimension is "input parameter" to the algorithm

 multiobjective case can be handled the same way by using a 
quality indicator such as the hypervolume indicator

Take Home Messages
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