Transport methods for Bayesian computation

Youssef Marzouk joint work with Daniele Bigoni, Matthew Parno, Alessio Spantini, & Olivier Zahm

> Department of Aeronautics and Astronautics Center for Computational Engineering Statistics and Data Science Center

Massachusetts Institute of Technology http://uqgroup.mit.edu

Support from AFOSR, DARPA, DOE

25-26 September 2019

Motivation: Bayesian inference in large-scale models

Observations \mathbf{y}

Parameters ${\bf x}$

$$\pi_{\text{pos}}(x) := \underbrace{\pi(x|y) \propto \pi(y|x)\pi_{\text{pr}}(x)}_{\text{Bayes' rule}}$$

- Characterize the posterior distribution (density π_{pos})
- This is a challenging task since:
 - $x \in \mathbb{R}^n$ is typically **high-dimensional** (e.g., a discretized function)
 - π_{pos} is non-Gaussian
 - evaluations of the likelihood (hence π_{pos}) may be **expensive**
- π_{pos} can be evaluated up to a normalizing constant

ETICS Research School

Motivation: Sequential Bayesian inference

- From batch to sequential approaches:
- State estimation (e.g., *filtering* and *smoothing*) in a Bayesian setting
 - Need recursive algorithms for characterizing the posterior

Part 1 (Wednesday)

- Introduction to transport methods for inference and stochastic modeling
- Sparsity and decomposability of transport maps
- Bayesian inference in state-space models
- Dimension reduction in Bayesian inverse problems
- Low-rank structure in transport maps; greedy approximations

Part 2 (Thursday)

- Preconditioning MCMC using transport
- Nonlinear ensemble filtering methods
- Structure learning in non-Gaussian graphical models

Extract information from the posterior (means, covariances, event probabilities, predictions) by evaluating posterior expectations:

$$\mathbb{E}_{\pi_{\text{pos}}}[h(x)] = \int h(x)\pi_{\text{pos}}(x)dx$$

• Key strategy for making this computationally tractable:

- Surrogates or approximations of the {forward model, likelihood function, posterior density}
- Efficient and structure-exploiting sampling schemes

Extract information from the posterior (means, covariances, event probabilities, predictions) by evaluating posterior expectations:

$$\mathbb{E}_{\pi_{\text{pos}}}[h(x)] = \int h(x)\pi_{\text{pos}}(x)dx$$

• Key strategy for making this computationally tractable:

- Surrogates or approximations of the {forward model, likelihood function, posterior density}
- Efficient and structure-exploiting sampling schemes

These lectures: relate to notions of coupling and transport...

- Choose a *reference distribution* η (e.g., standard Gaussian)
- Seek a transport map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $T_{\sharp}\eta = \pi$

- Choose a *reference distribution* η (e.g., standard Gaussian)
- Seek a transport map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $T_{\sharp}\eta = \pi$
- Equivalently, find $S = T^{-1}$ such that $S_{\sharp}\pi = \eta$

- Choose a *reference distribution* η (e.g., standard Gaussian)
- Seek a transport map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $T_{\sharp}\eta = \pi$
- Equivalently, find $S = T^{-1}$ such that $S_{\sharp}\pi = \eta$
- In principle, enables exact (independent, unweighted) sampling!

- Choose a *reference distribution* η (e.g., standard Gaussian)
- Seek a transport map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $T_{\sharp}\eta = \pi$
- Equivalently, find $S = T^{-1}$ such that $S_{\sharp}\pi = \eta$
- Satisfying these conditions only approximately can still be useful!

Choice of transport map

A useful building block is the Knothe–Rosenblatt rearrangement:

$$T(x) = \begin{bmatrix} T^{1}(x_{1}) \\ T^{2}(x_{1}, x_{2}) \\ \vdots \\ T^{n}(x_{1}, x_{2}, \dots, x_{n}) \end{bmatrix}$$

- ► Unique triangular and monotone map satisfying T_#η = π for absolutely continuous η, π on ℝⁿ
- Jacobian determinant easy to evaluate
- Monotonicity is essentially one-dimensional: $\partial_{x_k} T^k > 0$
- "Exposes" marginals, enables conditional sampling...

Choice of transport map

A useful building block is the Knothe–Rosenblatt rearrangement:

$$T(x) = \begin{bmatrix} T^{1}(x_{1}) \\ T^{2}(x_{1}, x_{2}) \\ \vdots \\ T^{n}(x_{1}, x_{2}, \dots, x_{n}) \end{bmatrix}$$

- ► Unique triangular and monotone map satisfying T_µη = π for absolutely continuous η, π on ℝⁿ
- Jacobian determinant easy to evaluate
- Monotonicity is essentially one-dimensional: $\partial_{x_k} T^k > 0$
- "Exposes" marginals, enables conditional sampling...
- ► Numerical approximations can employ a monotone parameterization guaranteeing ∂_{xk} T^k > 0. For example:

$$T^{k}(x_{1},\ldots,x_{k})=a_{k}(x_{1},\ldots,x_{k-1})+\int_{0}^{x_{k}}\exp(b_{k}(x_{1},\ldots,x_{k-1},w))\,dw$$

Construction #1: "maps from densities," i.e., *variational characterization* of the direct map T [Moselhy & M 2012]

Construction #1: "maps from densities," i.e., *variational characterization* of the direct map T [Moselhy & M 2012]

$$\min_{T \in \mathcal{T}^{h}_{\bigtriangleup}} \mathcal{D}_{\mathsf{KL}}(| \mathcal{T}_{\sharp} \eta || \pi) = \min_{T \in \mathcal{T}^{h}_{\bigtriangleup}} \mathcal{D}_{\mathsf{KL}}(\eta || | \mathcal{T}^{-1}_{\sharp} \pi)$$

- π is the "target" density on \mathbb{R}^n ; η is, e.g., $\mathcal{N}(0, \mathbf{I}_n)$
- \mathcal{T}^h_{Δ} is a set of monotone lower triangular maps
 - $\mathcal{T}^{h \to \infty}_{\wedge}$ contains the *Knothe–Rosenblatt* rearrangement
- Expectation is with respect to the *reference* measure η
 - ► Compute via, e.g., Monte Carlo, sparse quadrature
- Use unnormalized evaluations of π and its gradients
- No MCMC or importance sampling
- ▶ In general non-convex, unless π is log-concave

$$\min_{\mathcal{T}} \mathbb{E}_{\eta}[-\log \pi \circ \mathcal{T} - \sum_{k} \log \partial_{x_{k}} \mathcal{T}^{k}]$$

$$\blacktriangleright$$
 Parameterized map $T\in\mathcal{T}^h_{ riangle}\subset\mathcal{T}_{ riangle}$

- Optimize over coefficients of parameterization
- Use gradient-based optimization
- ► The posterior is in the tail of the reference

$$\min_{\mathcal{T}} \mathbb{E}_{\eta}[-\log \pi \circ \mathcal{T} - \sum_{k} \log \partial_{x_{k}} \mathcal{T}^{k}]$$

$$\blacktriangleright$$
 Parameterized map $T\in\mathcal{T}^h_{ riangle}\subset\mathcal{T}_{ riangle}$

- Optimize over coefficients of parameterization
- Use gradient-based optimization
- ► The posterior is in the tail of the reference

$$\min_{\mathcal{T}} \mathbb{E}_{\eta}[-\log \pi \circ \mathcal{T} - \sum_{k} \log \partial_{x_{k}} \mathcal{T}^{k}]$$

$$\blacktriangleright$$
 Parameterized map $T\in\mathcal{T}^h_{ riangle}\subset\mathcal{T}_{ riangle}$

- Optimize over coefficients of parameterization
- Use gradient-based optimization
- ► The posterior is in the tail of the reference

$$\min_{\mathcal{T}} \mathbb{E}_{\eta}[-\log \pi \circ \mathcal{T} - \sum_{k} \log \partial_{x_{k}} \mathcal{T}^{k}]$$

$$\blacktriangleright$$
 Parameterized map $T\in\mathcal{T}^h_{ riangle}\subset\mathcal{T}_{ riangle}$

- Optimize over coefficients of parameterization
- Use gradient-based optimization
- ► The posterior is in the tail of the reference

Useful features

- Move samples; don't just reweigh them
- Independent and cheap samples: $x_i \sim \eta \Rightarrow T(x_i)$
- Clear convergence criterion, even with unnormalized target density:

$$\mathcal{D}_{\mathsf{KL}}(\mathcal{T}_{\sharp}\eta || \pi) \approx \frac{1}{2} \operatorname{Var}_{\eta} \left[\log \frac{\eta}{\mathcal{T}_{\sharp}^{-1} \bar{\pi}} \right]$$

Useful features

- Move samples; don't just reweigh them
- Independent and cheap samples: $x_i \sim \eta \Rightarrow T(x_i)$
- Clear convergence criterion, even with unnormalized target density:

$$\mathcal{D}_{\mathsf{KL}}(\mathcal{T}_{\sharp}\eta \,||\, \pi\,) \approx \frac{1}{2} \, \mathbb{V} \mathrm{ar}_{\eta} \left[\log \frac{\eta}{\mathcal{T}_{\sharp}^{-1} \bar{\pi}} \right]$$

- Can either accept bias or reduce it by:
 - Increasing the complexity of the map $T \in \mathcal{T}^h_{\Delta}$
 - Sampling the pullback $T_{\sharp}^{-1}\pi$ using MCMC or importance sampling *(more on this later)*

Useful features

- Move samples; don't just reweigh them
- Independent and cheap samples: $x_i \sim \eta \Rightarrow T(x_i)$
- Clear convergence criterion, even with unnormalized target density:

$$\mathcal{D}_{\mathsf{KL}}(\mathcal{T}_{\sharp}\eta \,||\, \pi\,) \approx \frac{1}{2} \, \mathbb{V} \mathrm{ar}_{\eta} \left[\log \frac{\eta}{\mathcal{T}_{\sharp}^{-1} \bar{\pi}} \right]$$

- Can either accept bias or reduce it by:
 - Increasing the complexity of the map $T \in \mathcal{T}^h_{\Delta}$
 - Sampling the pullback $T_{\sharp}^{-1}\pi$ using MCMC or importance sampling *(more on this later)*
- Related transport constructions for inference and sampling: Stein variational gradient descent [Liu & Wang 2016, DeTommaso 2018], normalizing flows [Rezende & Mohamed 2015], SOS polynomial flow [Jaini *et al.* 2019], Gibbs flow [Heng *et al.* 2015], particle flow filter [Reich 2011], implicit sampling [Chorin *et al.* 2009–2015], etc.

ETICS Research School

Ubiquity of triangular maps

Many "flows" recently proposed in machine learning are special cases of triangular maps:

- ► NICE: Nonlinear independent component estimation [Dinh et al. 2015] $T^k(x_1, ..., x_k) = \mu_k(x_{1:k-1}) + x_k$
- Inverse autoregressive flow [Dinh et al. 2017] $T^{k}(x_{1}, ..., x_{k}) = (1 - \sigma_{k}(x_{1:k-1}))\mu_{k}(x_{1:k-1}) + x_{k}\sigma_{k}(x_{1:k-1})$
- ► Masked autogressive flow [Papamakarios et al. 2017] $T^{k}(x_{1}, ..., x_{k}) = \mu_{k}(x_{1:k-1}) + x_{k} \exp(\alpha_{k}(x_{1:k-1}))$
- ► Neural autoregressive flow [Huang et al. 2018 $T^{k}(x_{1}, ..., x_{k}) = \text{DNN}(x_{k}; w_{k}(x_{1:k-1}))$
- Sum-of-squares polynomial flow [Jaini et al. 2019]

How to construct triangular maps?

Construction #2: "maps from samples"

$$\min_{S \in \mathcal{S}^{h}_{\Delta}} \mathcal{D}_{\mathcal{KL}}(S_{\sharp}\pi || \eta) = \min_{S \in \mathcal{S}^{h}_{\Delta}} \mathcal{D}_{\mathcal{KL}}(\pi || S_{\sharp}^{-1}\eta)$$

- Suppose we have Monte Carlo samples $\{x_i\}_{i=1}^M \sim \pi$
- For standard Gaussian η , this problem is **convex** and **separable**
- ► This is *density estimation via transport!* (cf. Tabak & Turner 2013)

How to construct triangular maps?

Construction #2: "maps from samples"

$$\min_{S\in\mathcal{S}^{h}_{\bigtriangleup}}\mathcal{D}_{\mathsf{KL}}(S_{\sharp}\pi || \eta) = \min_{S\in\mathcal{S}^{h}_{\bigtriangleup}}\mathcal{D}_{\mathsf{KL}}(\pi || S_{\sharp}^{-1}\eta)$$

- ► Suppose we have Monte Carlo samples $\{x_i\}_{i=1}^M \sim \pi$
- For standard Gaussian η , this problem is **convex** and **separable**
- ► This is *density estimation via transport!* (cf. Tabak & Turner 2013)
- Equivalent to maximum likelihood estimation of S

$$\widehat{S} \in \arg \max_{S \in \mathcal{S}^{h}_{\Delta}} \frac{1}{M} \sum_{i=1}^{M} \log \underbrace{\mathcal{S}^{-1}_{\sharp}}_{\text{pullback}} \eta(x_{i}), \qquad \eta = \mathcal{N}(0, \mathbf{I}_{n}),$$

• Each component \hat{S}^k of \hat{S} can be computed *separately*, via smooth *convex optimization*

$$\widehat{S}^k \in \arg\min_{S^k \in \mathcal{S}^h_{\Delta,k}} \frac{1}{M} \sum_{i=1}^M \left(\frac{1}{2} S^k(x_i)^2 - \log \partial_k S^k(x_i) \right)$$

ETICS Research School

Underlying challenge: maps in high dimensions

- Major bottleneck: representation of the map, e.g., cardinality of the map basis
- How to make the construction/representation of high-dimensional transports tractable?

Underlying challenge: maps in high dimensions

- Major bottleneck: representation of the map, e.g., cardinality of the map basis
- How to make the construction/representation of high-dimensional transports tractable?

Main ideas:

- Exploit **Markov structure** of the target distribution
 - Leads to sparsity and/or decomposability of transport maps [Spantini, Bigoni, & M JMLR 2018]
- Exploit certain low rank structure
 - ▶ Near-identity or "lazy" maps [Bigoni et al. arXiv:1906.00031]

• Let Z_1, \ldots, Z_n be random variables with joint density $\pi > 0$

 $(i,j) \notin \mathcal{E}$ iff $Z_i \perp \perp Z_j \mid \mathbf{Z}_{\mathcal{V} \setminus \{i,j\}}$

G = (V, E) encodes conditional independence (an *I*-map for π)
Theorem [SBM 2018]: Define G s.t. (*i*, *j*) ∉ E iff ∂_{x_i,x_j} log π = 0. Then the resulting G is the unique minimal *I*-map for π.

- Focus on the *inverse* triangular map S, where $S_{\sharp}\pi = \eta$
- ► Theorem [SBM 2018]: S (a nonlinear function) inherits the same sparsity pattern as the Cholesky factor of the incidence matrix (properly scaled) of a graphical model for π, provided that η(x) = Π_i η(x_i)

$$S(\mathbf{x}) = \begin{bmatrix} S^{1}(x_{1}) \\ S^{2}(x_{1}, x_{2}) \\ S^{3}(x_{1}, x_{2}, x_{3}) \\ \vdots \\ S^{n}(x_{1}, x_{2}, \dots, x_{n}) \end{bmatrix} \Longrightarrow \begin{bmatrix} S^{1}(x_{1}) \\ S^{2}(x_{1}, x_{2}) \\ S^{3}(x_{2}, x_{3}) \\ \vdots \\ S^{n}(x_{1}, x_{2}, \dots, x_{n}) \end{bmatrix}$$

- Compute marginal graphs: Gⁱ⁻¹ is obtained from Gⁱ by removing node i and by turning its neighborhood into a clique (like variable elimination)
- Sparsity of inverse transport: the *i*-th component of S can depend, at most, on the variables in a neighborhood of node *i* in Gⁱ
- Sparsity depends on the ordering of the variables (similar heuristics as *sparse Cholesky*)

Decomposable transport maps

▶ **Definition:** a decomposable transport is a map $T = T_1 \circ \cdots \circ T_k$ that factorizes as the composition of finitely many maps of low effective dimension that are triangular (up to a permutation), e.g.,

$$T(\mathbf{x}) = \underbrace{\begin{bmatrix} A_1(x_1, x_2, x_3) \\ B_1(x_2, x_3) \\ C_1(x_3) \\ x_4 \\ x_5 \\ x_6 \\ \hline T_1 \end{bmatrix}}_{T_1} \circ \underbrace{\begin{bmatrix} x_1 \\ A_2(x_2, x_3, x_4, x_5) \\ B_2(x_3, x_4, x_5) \\ C_2(x_4, x_5) \\ D_2(x_5) \\ x_6 \\ \hline T_2 \\ \hline T_2 \\ \hline T_3 \\ \hline T_3 \\ \hline \end{bmatrix} \circ \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ A_3(x_4) \\ B_3(x_4, x_5, x_6) \\ C_3(x_4, x_5, x_6) \\ \hline \end{bmatrix}$$

▶ **Theorem** [SBM 2018]: Decomposable graphical models for π lead to decomposable direct maps T, provided that $\eta(\mathbf{x}) = \prod_i \eta(x_i)$

Decomposable transport maps

- Example graph decomposition $\mathcal{V} = (\mathcal{A}, \mathcal{S}, \mathcal{B})$
- Effective dimension of each component map is $|\mathcal{A} \cup \mathcal{S}|$

Graph decomposition

Definition

A triple (A, S, B) of disjoint nonempty subsets of the vertex set \mathcal{V} forms a **decomposition** of \mathcal{G} if the following hold

0 $<math> \mathcal{V} = A \cup S \cup B$

2 S separates A from B in \mathcal{G}

Step 1: build a local map

▶ For a given decomposition (*A*, *S*, *B*), consider $\mathfrak{M}_1 : \mathbb{R}^3 \to \mathbb{R}^3$ s.t.

• What can we say about the pullback density $T_1^{\sharp}\pi$?

Local graph sparsification

$$T = T_1$$

- **Figure:** Markov structure of the pullback of π through T
- Just remove any edge incident to any node in A
- T_1 is essentially a 3-D map
- ▶ Pulling back π through T_1 makes \mathbf{Z}_A independent of $\mathbf{Z}_{S \cup B}$!

$$T = T_1$$

- **Figure:** Markov structure of the pullback of π through T
- Recursion at step k
 - Consider a new decomposition (A, S, B)
 - 2 Compute transport T_k
 - 3 Pull back through T_k

Step k: new decomposition and local map

$$T = T_1$$

- **Figure:** Markov structure of the pullback of π through T
- Recursion at step k
 - Consider a new decomposition (A, S, B)
 - 2 Compute transport T_k
 - 3 Pull back through T_k
Step *k***: local graph sparsification**

$$T=T_1\circ T_2$$

- **Figure:** Markov structure of the pullback of π through T
- ► *T*₂ is essentially a 4-D map
- Each time we pull back by a new map we remove edges
- ▶ Intuition: Continue the recursion until no edges are left...

$$T = T_1 \circ T_2$$

- **Figure:** Markov structure of the pullback of π through T
- ► *T*₂ is essentially a 4-D map
- Each time we pullback by a new map we remove edges
- ▶ Intuition. Continue the recursion until no edges are left...

$$T = T_1 \circ T_2 \circ T_3$$

- **Figure:** Markov structure of the pullback of π through T
- Decomposability of $\mathcal{G} \Rightarrow$ existence of **decomposable** couplings
- Anisotropic triangular structure of (T_i) is essential
- Idea: inference decomposed into smaller steps (no need for marginals!)
- In fact, we can make this more general...

Theorem [Decomposition of transports]

Let \mathcal{G} be an I-map for π and let $\eta = \prod_j \eta_{X_j}$ be a reference density. If (A, S, B) is a decomposition of \mathcal{G} , then

1 \exists a transport map:

$$T = T_1 \circ T_2$$

- T_1 is a monotone triangular transport s.t. $\eta \stackrel{T_1}{\longrightarrow} \pi_{X_{A\cup S}} \cdot (\prod_{j \in B} \eta_{X_j})$
- ► T_1 is the identity map along components in B: $T_1^k(\mathbf{x}) = x_k$ for $k \in B$
- T_2 is **any** transport s.t. $\eta \xrightarrow{T_2} T_1^{\sharp} \pi$
- **2** \mathbf{X}_A is independent of $\mathbf{X}_{S\cup B}$ w.r.t. the pullback density $T_1^{\ddagger}\pi$
 - T_2 is the identity along components in A: $T_2^k(\mathbf{x}) = x_k$ for $k \in A$

▶ **Strategy**: recursively apply theorem to further decompose *T*₂

Graph decomposition (end result)

• (right) I-map for the pullback of π through T

$$T(\mathbf{x}) = \underbrace{\begin{bmatrix} A_1(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \\ B_1(\mathbf{x}_2, \mathbf{x}_3) \\ C_1(\mathbf{x}_3) \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \\ \hline T_1 \end{bmatrix}}_{T_1} \circ \underbrace{\begin{bmatrix} \mathbf{x}_1 \\ A_2(\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5) \\ B_2(\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5) \\ C_2(\mathbf{x}_4, \mathbf{x}_5) \\ D_2(\mathbf{x}_5) \\ \mathbf{x}_6 \\ \hline T_2 \\ \hline T_2 \\ \hline T_3 \\ \hline T_1 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_2 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_2 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_2 \\ \hline T_2 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_2 \\ \hline T_1 \\ \hline T_1 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_2 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline$$

Marzouk et al.

Key message

- Direct maps: enforce decomposable structure in the approximation space T_Δ, i.e., when solving min_{T∈T_Δ} D_{KL}(T_#η || π)
- Inverse maps: enforce sparsity in the approximation space S_△, i.e., in solving min_{S∈S_△} D_{KL}(π || S⁻¹_↓η)
 - ► Can also use for *structure learning* in non-Gaussian graphical models
- A general tool for modeling and computation with non-Gaussian Markov random fields

- In many situations, elements of the composition $T = T_1 \circ T_2 \circ \cdots \circ T_k$ can be constructed **sequentially**
- Yields new algorithms for smoothing and and joint state-parameter inference in state-space models [SBM 2018; Houssineau, Jasra, Singh 2018]

Application to state-space models (chain graph)

► Compute
$$\mathfrak{M}_0 : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$
 s.t.
$$\mathfrak{M}_0(\mathbf{x}_0, \mathbf{x}_1) = \begin{bmatrix} A_0(\mathbf{x}_0, \mathbf{x}_1) \\ B_0(\mathbf{x}_1) \end{bmatrix}$$
► Reference: $\eta_{\mathbf{X}_0}\eta_{\mathbf{X}_1}$

$$T_0(\mathbf{x}) = \begin{bmatrix} A_0(\mathbf{x}_0, \mathbf{x}_1) \\ B_0(\mathbf{x}_1) \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \vdots \\ \mathbf{x}_N \end{bmatrix}$$

Second step: compute another 2-D map

 $\mathcal{T}_{1}(\mathbf{x}) = \begin{bmatrix} \mathbf{x}_{0} \\ A_{1}(\mathbf{x}_{1}, \mathbf{x}_{2}) \\ B_{1}(\mathbf{x}_{2}) \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \vdots \\ \mathbf{x} \end{bmatrix}$ • Compute $\mathfrak{M}_1 : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ s.t. $\mathfrak{M}_1(\mathbf{x}_1, \mathbf{x}_2) = \left[\begin{array}{c} A_1(\mathbf{x}_1, \mathbf{x}_2) \\ B_1(\mathbf{x}_2) \end{array} \right]$ • Reference: $\eta_{X_1}\eta_{X_2}$ • Target: $\eta_{X_1} \pi_{Y_2|Z_2} \pi_{Z_2|Z_1}(\cdot | B_0(\cdot))$ • Uses only one component of \mathfrak{M}_0 XN

Proceed recursively forward in time

Гу

Compute
$$\mathfrak{M}_2 : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$
 s.t.
$$\mathfrak{M}_2(\mathbf{x}_2, \mathbf{x}_3) = \begin{bmatrix} A_2(\mathbf{x}_2, \mathbf{x}_3) \\ B_2(\mathbf{x}_3) \end{bmatrix}$$
Reference: $\eta_{\mathbf{X}_2}\eta_{\mathbf{X}_3}$

$$T_2(\mathbf{x}) = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ A_2(\mathbf{x}_2, \mathbf{x}_3) \\ B_2(\mathbf{x}_3) \end{bmatrix}$$
Target: $\eta_{\mathbf{X}_2}\pi_{\mathbf{Y}_3|\mathbf{Z}_3}\pi_{\mathbf{Z}_3|\mathbf{Z}_2}(\cdot | B_1(\cdot))$
Uses only one component of \mathfrak{M}_1

A decomposition theorem for chains

Theorem.

• $\mathfrak{T}_k = T_0 \circ T_1 \circ \cdots \circ T_k$ characterizes the joint dist $\pi_{\mathbf{Z}_{0:k+1}|\mathbf{Y}_{0:k+1}|}$

▶ Trivial to go from \mathfrak{T}_k to \mathfrak{T}_{k+1} : just append a new map T_{k+1}

- ▶ No need to recompute T_0, \ldots, T_k (nested transports)
- \mathfrak{T}_k is dense and high-dimensional but **decomposable**

• $\mathfrak{T}_k = T_0 \circ T_1 \circ \cdots \circ T_k$ characterizes the joint dist $\pi_{\mathbf{Z}_{0:k+1}|\mathbf{Y}_{0:k+1}|}$

▶ Trivial to go from \mathfrak{T}_k to \mathfrak{T}_{k+1} : just append a new map T_{k+1}

- ▶ No need to recompute T_0, \ldots, T_k (nested transports)
- \mathfrak{T}_k is dense and high-dimensional but **decomposable**

Each lag-one smoothing map implements a factorization:

$$\pi_{\mathsf{Z}_{k},\mathsf{Z}_{k-1}|\mathsf{y}_{0:k}} = \pi_{\mathsf{Z}_{k}|\mathsf{y}_{0:k}} \, \pi_{\mathsf{Z}_{k-1}|\mathsf{Z}_{k},\mathsf{y}_{0:k}} = \pi_{\mathsf{Z}_{k}|\mathsf{y}_{0:k}} \, \pi_{\mathsf{Z}_{k-1}|\mathsf{Z}_{k},\mathsf{y}_{0:k-1}}$$

► The composition of maps then implements the following factorization:

$$\pi_{\mathsf{Z}_{0:N}|\mathbf{y}_{0:N}} = \pi_{\mathsf{Z}_{N}|\mathbf{y}_{0:N}}\pi_{\mathsf{Z}_{N-1}|\mathsf{Z}_{N},\mathbf{y}_{0:N-1}}\pi_{\mathsf{Z}_{N-2}|\mathsf{Z}_{N-1},\mathbf{y}_{0:N-2}} \\ \cdots \pi_{\mathsf{Z}_{1}|\mathsf{Z}_{2},\mathbf{y}_{0:1}}\pi_{\mathsf{Z}_{0}|\mathsf{Z}_{1},\mathbf{y}_{0}}$$

Meta-algorithm:

- Ocompute the maps $\mathfrak{M}_0, \mathfrak{M}_1, \ldots$, each of dimension 2 × dim(\mathbb{Z}_0)
- ${f 2}$ Embed each ${{\mathfrak M}}_j$ into an identity map to form ${\cal T}_j$
- Solution Evaluate $T_0 \circ \cdots \circ T_k$ for the full Bayesian solution

Remarks:

- A single pass on the state-space model
- ► Non-Gaussian generalization of the Rauch-Tung-Striebel smoother
- Bias is *only* due to the numerical approximation of each map \mathfrak{M}_i
- Can either accept the bias or reduce it by:
 - Increasing the complexity of each map M_i, or
 - Computing weights given by the proposal density

$$(T_0 \circ T_1 \circ \cdots \circ T_k)_{\sharp} \eta_{\mathsf{X}_{0:k+1}}$$

Joint parameter/state estimation

Generalize to sequential joint parameter/state estimation

 $(T_0 \circ \cdots \circ T_k)_{\sharp} \eta_{\Theta} \eta_{\mathbf{X}_{0:k+1}} = \pi_{\Theta, \mathbf{Z}_{0:k+1}} |_{\mathbf{Y}_{0:k+1}}$ (full Bayesian solution)

• Now dim $(\mathfrak{M}_j) = 2 \times \dim(\mathbf{Z}_j) + \dim(\Theta)$

Remarks:

- No artificial dynamic for the static parameters
- No a priori fixed-lag smoothing approximation

 $\mathfrak{T}=\text{Id}$

- **Figure:** Markov structure for the pullback of π through \mathfrak{T}
- Start with the identity map

 $\mathfrak{T}=\text{Id}$

Figure: Markov structure for the pullback of π through \mathfrak{T}

• Find a good first decomposition of \mathcal{G}

Stochastic volatility model

Build the decomposition recursively

$$\mathfrak{T} = T_0$$

Figure: Markov structure for the pullback of π through \mathfrak{T}

- Compute an (essentially) 4-D T_0 and pull back π
- Underlying approximation of μ , ϕ , $\mathbf{Z}_1 | \mathbf{Y}_1$

Stochastic volatility model

Build the decomposition recursively

$$\mathfrak{T} = T_0$$

- **Figure:** Markov structure for the pullback of π through \mathfrak{T}
- Find a new decomposition
- Underlying approximation of μ , ϕ , $\mathbf{Z}_1 | \mathbf{Y}_1$

$$\mathfrak{T}=T_0\circ T_1$$

Figure: Markov structure for the pullback of π through \mathfrak{T}

- Compute an (essentially) 4-D T_1 and pull back π
- Underlying approximation of μ , ϕ , $\mathbf{Z}_{1:2}|\mathbf{Y}_{1:2}|$

$$\mathfrak{T}=T_0\circ T_1$$

Figure: Markov structure for the pullback of π through \mathfrak{T}

- Continue the recursion until no edges are left...
- Underlying approximation of μ , ϕ , $\mathbf{Z}_{1:2}|\mathbf{Y}_{1:2}|$

 $\mathfrak{T}=T_0\circ T_1\circ T_2$

- **Figure:** Markov structure for the pullback of π through \mathfrak{T}
- Continue the recursion until no edges are left...
- Underlying approximation of μ , ϕ , $\mathbf{Z}_{1:3}|\mathbf{Y}_{1:3}|$

$$\mathfrak{T} = T_0 \circ T_1 \circ T_2 \circ \cdots \circ T_{N-3}$$

Figure: Markov structure for the pullback of π through \mathfrak{T}

- Continue the recursion until no edges are left...
- Underlying approximation of μ , ϕ , $\mathbf{Z}_{1:N-1}|\mathbf{Y}_{1:N-1}|$

$$\mathfrak{T} = T_0 \circ T_1 \circ T_2 \circ \cdots \circ T_{N-3} \circ T_{N-2}$$

- **Figure:** Markov structure for the pullback of π through \mathfrak{T}
- Each map T_k is essentially 4-D regardless of N
- Underlying approximation of μ , ϕ , $\mathbf{Z}_{1:N}|\mathbf{Y}_{1:N}|$

Another decomposable map

(P₀ ◦ · · · ◦ P_k)_‡ η_Θ = π<sub>Θ|Y_{0:k+1} (parameter inference)
 If 𝔅_k = P₀ ◦ · · · ◦ P_k, then 𝔅_k can be computed recursively as
</sub>

$$\mathfrak{P}_k = \mathfrak{P}_{k-1} \circ P_k$$

 \implies cost of evaluating \mathfrak{P}_k does not grow with k

Example: stochastic volatility model

Stochastic volatility model: Latent log-volatilities take the form of an AR(1) process for t = 1, ..., N:

$$Z_{t+1} = \mu + \phi \left(Z_t - \mu
ight) + \eta_t, \quad \eta_t \sim \mathcal{N}(0,1), \quad Z_1 \sim \mathcal{N}(0,1/1-\phi^2)$$

Observe the mean return for holding an asset at time t

$$Y_t = \varepsilon_t \exp(0.5 Z_t), \quad \varepsilon_t \sim \mathcal{N}(0, 1), \quad t = 1, \dots, N$$

• Markov structure for $\pi \sim \mu$, ϕ , $\mathbf{Z}_{1:N} | \mathbf{Y}_{1:N}$ is given by:

- Infer log-volatility of the pound/dollar exchange rate, starting on 1 October 1981
- Filtering (blue) versus smoothing (red) marginals

ETICS Research School

Smoothing marginals

- Just re-evaluate the 4-D maps backwards in time
- Comparison with a "reference" MCMC solution with 10⁵ ESS (in red)

Static parameter ϕ

- Sequential parameter inference
- Comparison with a "reference" MCMC solution (batch algorithm)

Static parameter μ

- Slow accumulation of error over time (sequential algorithm)
- Acceptance rate 75% for Metropolis independence sampler with transport proposal

Long-time smoothing (25 years)

- Variance diagnostic Var_η[log(η/T⁻¹_μπ)] values, for a 947-dimensional target π (smoothing and parameter estimation for 945 days) :
 - Laplace map = 5.68; linear maps = 1.49; degree \leq 7 maps = 0.11
- Important open question: how does error in the approximation of the parameter posterior evolve over time?

- For certain graphs, sparsity/decomposability do not imply decoupling between the nominal dimension of the problem and the dimension of each transport T_i (or the sparsity of S)
 - Here, \mathcal{G} is an $n \times n$ grid graph
 - $T^{S \cup A}$ acts on 2n dimensions at each stage

Beyond the Markov properties of π

- ► Key idea: seek low-rank structure and *near-identity* maps
- Example: fix target π to be the posterior density of a Bayesian inference problem,

$$\pi(\mathbf{z}) := \pi_{\mathsf{pos}}(\mathbf{z}) \propto \pi_{\mathbf{Y}|\mathbf{Z}}(\mathbf{y} \,|\, \mathbf{z}) \, \pi_{\mathbf{Z}}(\mathbf{z})$$

• Let T_{pr} push forward the reference η to the prior π_{Z} (prior map)

$$\widehat{\pi}_{\mathsf{pos}}(\mathsf{z}) := \mathcal{T}_{\mathsf{pr}}^{\sharp} \, \pi_{\mathsf{pos}}(\mathsf{z}) \propto \pi_{\mathsf{Y}|\mathsf{Z}}(\mathsf{y} \,|\, \mathcal{T}_{\mathsf{pr}}(\mathsf{z}) \,) \, \eta(\mathsf{z})$$

Theorem [Graph decoupling]

If $\eta = \prod_i \eta_{X_i}$ and

rank $\mathbb{E}_{\eta} [\nabla \log R \otimes \nabla \log R] = k$, $R = \hat{\pi}_{pos} / \eta = \pi_{\mathbf{Y}|\mathbf{Z}} \circ T_{pr}$

then there exists a rotation Q such that:

$$Q^{\sharp} \widehat{\pi}_{\text{pos}}(\mathbf{z}) = g(z_1, ..., z_k) \prod_{i>k}^{''} \eta_{X_i}(z_i)$$

Changing the Markov structure...

• The pullback has a different Markov structure:

$$Q^{\sharp} \widehat{\pi}_{\mathsf{pos}}(\mathbf{z}) = g(z_1, ..., z_k) \prod_{i>k}^{''} \eta_{X_i}(z_i)$$

- ► **Corollary:** There exists a transport $T_{\sharp} \eta = Q^{\sharp} \hat{\pi}_{pos}$ of the form $T(\mathbf{x}) = [g(\mathbf{x}_{1:k}), x_{k+1}, ..., x_n]$, where $g : \mathbb{R}^k \to \mathbb{R}^k$.
- ▶ The composition $T_{pr} \circ Q \circ T$ pushes forward η to π_{pos}
- Why low rank structure? For example, few data-informed directions.

- ▶ 4096-D **GMRF prior**, $\mathbf{Z} \sim \mathcal{N}(\mu, \Gamma)$, Γ^{-1} specified through $\triangle + \kappa^2 \, \mathsf{Id}$
- ▶ 30 sparse observations at locations $i \in \mathcal{I}$, $\mathbf{Y}_i | \mathbf{Z}_i \sim \text{Pois}(\exp \mathbf{Z}_i)$
- Posterior density $\mathbf{Z}|\mathbf{Y} \sim \pi_{\text{pos}}$ is:

$$\pi_{\text{pos}}(\mathbf{z}) \propto \prod_{i \in \mathcal{I}} \exp[-\exp(z_i) + z_i \cdot y_i] \exp\left[-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})^\top \Gamma^{-1}(\mathbf{z} - \boldsymbol{\mu})\right]$$

What is an independence map G for π_{pos}?

ETICS Research School

- ▶ 4096-D **GMRF prior**, $\mathbf{Z} \sim \mathcal{N}(\mu, \Gamma)$, Γ^{-1} specified through $\triangle + \kappa^2 \operatorname{Id}$
- ▶ 30 sparse observations at locations $i \in \mathcal{I}$, $\mathbf{Y}_i | \mathbf{Z}_i \sim \text{Pois}(\exp \mathbf{Z}_i)$
- Posterior density $\mathbf{Z}|\mathbf{Y} \sim \pi_{\text{pos}}$ is:

$$\pi_{\text{pos}}(\mathbf{z}) \propto \prod_{i \in \mathcal{I}} \exp[-\exp(z_i) + z_i \cdot y_i] \exp\left[-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})^\top \Gamma^{-1}(\mathbf{z} - \boldsymbol{\mu})\right]$$

• What is an independence map \mathcal{G} for π_{pos} ? A 64 × 64 grid.

Fix π_{ref} ~ N(0, I) and let T_{pr} push forward π_{ref} to π_{pr} (prior map)
 Consider the pullback π̂_{pos} = T^d_{pr} π_{pos} and find that

rank $\mathbb{E}_{\pi_{\rm ref}} \left[\nabla \log R \otimes \nabla \log R \right] = 30 \ll n, \qquad R = \hat{\pi}_{\rm pos} / \pi_{\rm ref}$

- ► Deflate the problem and compute a transport map in 30 dimensions
 - Change from prior to posterior concentrated in a low-dimensional subspace

- ► (left) E[Z|y], (right) Var[Z|y]. (top) transport; (bottom) MCMC
- Excellent match with reference MCMC solution
- ► Can we understand this structure more generally?

ETICS Research School

In many situations, the data are informative only on a low-dimensional subspace

Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

 $\widetilde{\pi}_{\mathsf{pos}}(x) \propto \widetilde{\mathcal{L}}(P_r x) \, \pi_{\mathsf{pr}}(x)$

for some **positive function** $\widetilde{\mathcal{L}}$ and rank *r* **linear projector** $P_r \in \mathbb{R}^{d \times d}$

Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

 $\widetilde{\pi}_{pos}(x) \propto \widetilde{\mathcal{L}}(P_r x) \pi_{pr}(x)$

for some **positive function** $\widetilde{\mathcal{L}}$ and rank *r* **linear projector** $P_r \in \mathbb{R}^{d \times d}$

$$P_r \text{ induces a decomposition of the space}$$
$$x = x_r + x_\perp \qquad \begin{cases} x_r \in \operatorname{Im}(P_r) \\ x_\perp \in \operatorname{Ker}(P_r) \end{cases}$$

By construction, $x \mapsto \widetilde{\mathcal{L}}(P_r x) = \widetilde{\mathcal{L}}(x_r)$ is only a function of $x_r \in \operatorname{Im}(P_r) \equiv \mathbb{R}^r$.

Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

 $\widetilde{\pi}_{pos}(x) \propto \widetilde{\mathcal{L}}(P_r x) \pi_{pr}(x)$

for some **positive function** $\widetilde{\mathcal{L}}$ and rank *r* **linear projector** $P_r \in \mathbb{R}^{d \times d}$

 $P_r \text{ induces a decomposition of the space}$ $x = x_r + x_\perp \qquad \begin{cases} x_r \in \operatorname{Im}(P_r) \\ x_\perp \in \operatorname{Ker}(P_r) \end{cases}$

By construction, $x \to \widetilde{\mathcal{L}}(P_r x) = \widetilde{\mathcal{L}}(x_r)$ is only a function of $x_r \in \operatorname{Im}(P_r) \equiv \mathbb{R}^r$. If $r \ll d$:

- Design dimension-independent MCMC algorithms to sample from π_{pos}.

 [Cui, Law, M 2016]
- ▶ Build surrogates for the **low-dimensional** function $x_r \mapsto \widetilde{\mathcal{L}}(x_r)$ with a reasonable complexity

ETICS Research School

Many methods for constructing P_r and $\tilde{\mathcal{L}}$

P_r can be defined as a projector onto the **dominant eigenspace** of a matrix **H** ∈ ℝ^{d×d} which contains "relevant information"

Many methods for constructing P_r and $\hat{\mathcal{L}}$

- P_r can be defined as a projector onto the **dominant eigenspace** of a matrix **H** ∈ ℝ^{d×d} which contains "relevant information"
 - ► Likelihood-informed subspace (LIS)

 Elikelihood-informed subspace (LIS)

$$\mathbf{H}_{\mathrm{LIS}} = \int \left(\nabla G \right)^T \Gamma_{\mathrm{obs}}^{-1} (\nabla G) \, \mathrm{d}\pi_{\mathrm{pos}}$$

where \mathcal{L}_y follows from $y \sim \mathcal{N}(G(x), \Gamma_{obs})$

► Active subspace (AS)
For the subspace (AS)

$$\mathbf{H}_{\mathsf{AS}} = \int
abla \log \mathcal{L}_y \otimes
abla \log \mathcal{L}_y \,\, \mathsf{d} \pi_{\mathsf{pr}}$$

Many methods for constructing P_r and $\tilde{\mathcal{L}}$

- P_r can be defined as a projector onto the **dominant eigenspace** of a matrix **H** ∈ ℝ^{d×d} which contains "relevant information"
 - ► Likelihood-informed subspace (LIS)

 Electric et al 2014]

$$\mathbf{H}_{\text{LIS}} = \int \left(\nabla G \right)^T \Gamma_{\text{obs}}^{-1} \left(\nabla G \right) \, \mathrm{d}\pi_{\text{pos}}$$

where \mathcal{L}_y follows from $y \sim \mathcal{N}(G(x), \Gamma_{obs})$

► Active subspace (AS)
Element Constantine, Kent, Bui-Thanh 2015]

$$\mathbf{H}_{\mathsf{AS}} = \int
abla \log \mathcal{L}_y \otimes
abla \log \mathcal{L}_y \,\, \mathsf{d} \pi_{\mathsf{pr}}$$

- Different definitions of *L*:
 - Fix complementary parameters (LIS): $\tilde{\mathcal{L}}(P_r x) = \mathcal{L}_y(P_r x + (I P_r)m_0)$
 - Via the conditional expectation of the log-likelihood (AS)

$$\widetilde{\mathcal{L}}(P_r x) = \exp \mathbb{E}_{\pi_{\rm pr}}(\log \mathcal{L}_y | P_r x)$$

Build an approximation of π_{pos} of the form

$$\widetilde{\pi}_{pos}(x) \propto \widetilde{\mathcal{L}}(P_r x) \pi_{pr}(x)$$
 with $\begin{cases} \widetilde{\mathcal{L}} : \mathbb{R}^d \to \mathbb{R}^+ \\ P_r \in \mathbb{R}^{d \times d} \text{ rank-} r \text{ projector} \end{cases}$ such that

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}}||\widetilde{\pi}_{\mathsf{pos}}) \leq arepsilon$$

with $r = r(\varepsilon)$ much smaller than d.

A "Pythagorean" theorem

For any P_r and $\widetilde{\mathcal{L}}$ we have

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}}||\widetilde{\pi}_{\mathsf{pos}}) = \underbrace{D_{\mathsf{KL}}(\pi_{\mathsf{pos}}||\pi_{\mathsf{pos}}^{*})}_{=\mathsf{function}(P_{r})} + \underbrace{D_{\mathsf{KL}}(\pi_{\mathsf{pos}}^{*}||\widetilde{\pi}_{\mathsf{pos}})}_{=\mathsf{function}(P_{r},\widetilde{\mathcal{L}})}$$
$$\pi_{\mathsf{pos}}^{*}(x) \propto \mathbb{E}_{\pi_{\mathsf{pr}}}(\mathcal{L}_{y}|P_{r}x)\pi_{\mathsf{pr}}(x)$$

where

A "Pythagorean" theorem

For any P_r and $\widetilde{\mathcal{L}}$ we have

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}}||\widetilde{\pi}_{\mathsf{pos}}) = \underbrace{D_{\mathsf{KL}}(\pi_{\mathsf{pos}}||\pi_{\mathsf{pos}}^*)}_{=\mathsf{function}(P_r)} + \underbrace{D_{\mathsf{KL}}(\pi_{\mathsf{pos}}^*||\widetilde{\pi}_{\mathsf{pos}})}_{=\mathsf{function}(P_r,\widetilde{\mathcal{L}})}$$

$$\pi^*_{\mathsf{pos}}(x) \propto \mathbb{E}_{\pi_{\mathsf{pr}}}(\mathcal{L}_y | P_r x) \pi_{\mathsf{pr}}(x)$$

This allows decoupling the construction of $\widetilde{\mathcal{L}}$ and P_r .

• Given P_r , the function $\widetilde{\mathcal{L}}$ such that $\widetilde{\mathcal{L}}(P_r x) = \mathbb{E}_{\pi_{pr}}(\mathcal{L}_y | P_r x)$ yields $D_{\mathsf{KL}}(\pi_{\mathsf{pos}}^* | | \widetilde{\pi}_{\mathsf{pos}}) = 0$

▶ How to construct *P_r* such that

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}}||\pi^*_{\mathsf{pos}}) \leq \varepsilon$$

with a rank $r \ll d$?

where

Constructing the projector P_r

Assumption (on the prior distribution)

There exist functions V and Ψ such that

$$\pi_{\mathsf{pr}}(x) \propto \expig(-V(x) - \Psi(x)ig)$$
 with

for some SPD matrix $\Gamma \in \mathbb{R}^{d \times d}$ and some $\kappa \geq 1$.

Constructing the projector P_r

Assumption (on the prior distribution)

There exist functions V and Ψ such that

$$\pi_{\mathsf{pr}}(x) \propto \expig(-V(x) - \Psi(x)ig)$$
 with

$$\nabla^2 V \succeq \Gamma$$

exp(sup $\Psi - \inf \Psi) \le \kappa$

for some SPD matrix $\Gamma \in \mathbb{R}^{d \times d}$ and some $\kappa \geq 1$.

• Gaussian prior $\pi_{pr} = \mathcal{N}(\mu_{pr}, \Sigma_{pr})$ satisfies this assumption with $\Gamma = \Sigma_{pr}^{-1}$ and $\kappa = 1$

► Gaussian mixture $\pi_{\rm pr} \propto \sum_i \mathcal{N}(\mu_i, \Sigma_i)$ also satisfies this assumption

ETICS Research School

Based on this assumption, π_{pr} satisfies the **logarithmic Sobolev** inequality **[**[Ledoux 1997]

$$\int h^2 \log \frac{h^2}{\int h^2 \, \mathrm{d}\pi_{\mathrm{pr}}} \, \mathrm{d}\pi_{\mathrm{pr}} \leq 2\kappa \int \|\nabla h\|_{\Gamma^{-1}}^2 \mathrm{d}\pi_{\mathrm{pr}}$$

for any function h with sufficient regularity.

Based on this assumption, π_{pr} satisfies the logarithmic Sobolev inequality **[Ledoux 1997]**

$$\int h^2 \log \frac{h^2}{\int h^2 \, \mathrm{d}\pi_{\mathrm{pr}}} \, \mathrm{d}\pi_{\mathrm{pr}} \leq 2\kappa \int \|\nabla h\|_{\Gamma^{-1}}^2 \mathrm{d}\pi_{\mathrm{pr}}$$

for any function h with sufficient regularity.

Proposition (subspace logarithmic Sobolev inequality)

 $\pi_{\rm pr}$ also satisfies

$$\int h^2 \log \frac{h^2}{\mathbb{E}(h^2 | \boldsymbol{P}_r \boldsymbol{x})} \, \mathrm{d}\pi_{\mathrm{pr}} \leq 2\kappa \int \| (\boldsymbol{I}_d - \boldsymbol{P}_r^{\mathsf{T}}) \nabla h \|_{\mathrm{F}^{-1}}^2 \, \mathrm{d}\pi_{\mathrm{pr}}$$

for any function h with sufficient regularity and any projector P_r .

Constructing the projector P_r

Corollary

For any projector P_r we have

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}} || \pi^*_{\mathsf{pos}}) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathsf{pos}}}(\mathcal{P}_r)$$

where

$$\mathcal{R}_{\pi_{\text{pos}}}(\boldsymbol{P}_{r}) = \int \| (I_{d} - \boldsymbol{P}_{r}^{T}) \nabla \log \mathcal{L}_{y} \|_{\Gamma^{-1}}^{2} \, \mathrm{d}\pi_{\text{pos}}$$

Constructing the projector P_r

Corollary

For any projector P_r we have

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}} || \pi^*_{\mathsf{pos}}) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathsf{pos}}}(\mathcal{P}_r)$$

where

$$\mathcal{R}_{\pi_{\text{pos}}}(\boldsymbol{P}_{r}) = \int \|(\boldsymbol{I}_{d} - \boldsymbol{P}_{r}^{T})\nabla \log \mathcal{L}_{y}\|_{\boldsymbol{\Gamma}^{-1}}^{2} \, \mathrm{d}\pi_{\text{pos}}$$

Finding P_r that minimizes this bound corresponds to **PCA** of $\nabla \log \mathcal{L}_y(X)$.

For a fixed r, the minimizer P^{*}_r of the reconstruction error R_{πpos}(P_r) is the Γ-orthogonal projector onto the dominant generalized eigenspace of

$$\mathbf{H} = \int \nabla \log \mathcal{L}_y \otimes \nabla \log \mathcal{L}_y \,\,\mathrm{d}\pi_{\mathsf{pos}}$$

Furthermore we have $\mathcal{R}_{\pi_{\text{pos}}}(\mathcal{P}_r^*) = \sum_{i>r} \lambda_i$, where λ_i is the *i*-th generalized eigenvalue of (\mathbf{H}, Γ)

An idealized algorithm

1 Compute

$$\mathbf{H} = \int \nabla \log \mathcal{L}_y \otimes \nabla \log \mathcal{L}_y \,\, \mathrm{d} \pi_{\mathsf{pos}}$$

2 Define P_r as the projector on the dominant eigenspace of (\mathbf{H}, Γ)

3 Compute the conditional expectation

$$\widetilde{\mathcal{L}}(P_r x) = \mathbb{E}_{\mathrm{pr}}(\mathcal{L}_y | P_r x)$$

Then $\pi^*_{\text{pos}}(x) \propto \widetilde{\mathcal{L}}(P_r x) \pi_{\text{Spr}}(x)$ satisfies

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}} || \pi^*_{\mathsf{pos}}) \leq rac{\kappa}{2} \sum_{i>r} \lambda_i$$

• At step 2, we can choose the rank $r = r(\varepsilon)$ of P_r such that

$$D_{\mathsf{KL}}(\pi_{\mathsf{pos}} || \pi^*_{\mathsf{pos}}) \leq arepsilon$$

• A strong decay in λ_i implies $r(\varepsilon) \ll d$

An idealized algorithm

1 Compute

$$\mathbf{H} = \int \nabla \log \mathcal{L}_y \otimes \nabla \log \mathcal{L}_y \,\, \mathsf{d}\pi_{\mathsf{pos}}$$

- 2 Define P_r as the projector on the dominant eigenspace of (\mathbf{H}, Γ)
- 3 Compute the conditional expectation

$$\widetilde{\mathcal{L}}(P_r x) = \mathbb{E}_{\mathrm{pr}}(\mathcal{L}_y | P_r x)$$

Practical issues

- Evaluating H requires computing an integral over the posterior
- Computing the conditional expectation requires some effort

Sample approximations of H

Monte Carlo approximation of H:

$$\mathbf{H} \approx \widehat{\mathbf{H}}_{\mathcal{K}} \coloneqq \frac{1}{\mathcal{K}} \sum_{i=1}^{\mathcal{K}} \nabla \log \mathcal{L}_{\mathcal{Y}}(X_i) \otimes \nabla \log \mathcal{L}_{\mathcal{Y}}(X_i) \quad \text{with} \quad X_i \stackrel{\text{iid}}{\sim} \pi_{\text{pos}}$$

Proposition

Under some assumptions, ${\bf quasi-optimal\ projectors\ }$ are obtained with high probability $1-\delta$ if

$$\mathcal{K} \geq \mathcal{O}ig(\sqrt{\mathsf{rank}(\mathcal{H})} + \sqrt{\mathsf{log}(2\delta^{-1})}ig)^2$$

• Key assumption: $\nabla \log \mathcal{L}_y(X)$ is *sub-Gaussian*, for $X \sim \pi_{pos}$

Approximation of $\pi^*_{pos}(x) \propto \mathbb{E}_{pr}(\mathcal{L}_y|P_rx)\pi_{pr}(x)$

► The conditional expectation $\mathbb{E}_{pr}(\mathcal{L}_y|P_rx)$ can be expressed as $x \mapsto \int \mathcal{L}_y(P_rx + (I_d - P_r)z) \ \pi_{pr}(z|P_rx) dz$

where $\pi_{pr}(\cdot|P_rx)$ denotes the conditional prior, which depends on *x*.

Approximation of $\pi^*_{pos}(x) \propto \mathbb{E}_{pr}(\mathcal{L}_y|P_rx)\pi_{pr}(x)$

► The conditional expectation $\mathbb{E}_{pr}(\mathcal{L}_y|P_rx)$ can be expressed as $x \mapsto \int \mathcal{L}_y(P_rx + (I_d - P_r)z) \ \pi_{pr}(z|P_rx) dz$

where $\pi_{pr}(\cdot|P_rx)$ denotes the conditional prior, which depends on *x*.

Consider the following Monte Carlo estimate

$$\widetilde{\mathcal{L}}: x \mapsto rac{1}{M} \sum_{i=1}^{M} \mathcal{L}_{y}(P_{r}x + (I_{d} - P_{r})Z_{i})$$
 , $Z_{i} \stackrel{\text{iid}}{\sim} \pi_{\text{pr}}$

In general, $\widetilde{\mathcal{L}}(P_r x)$ is a biased estimator for $\mathbb{E}_{pr}(\mathcal{L}_y | P_r x)$.

Approximation of $\pi^*_{pos}(x) \propto \mathbb{E}_{pr}(\mathcal{L}_y|P_rx)\pi_{pr}(x)$

► The conditional expectation $\mathbb{E}_{pr}(\mathcal{L}_y|P_rx)$ can be expressed as $x \mapsto \int \mathcal{L}_y(P_rx + (I_d - P_r)z) \ \pi_{pr}(z|P_rx) dz$

where $\pi_{pr}(\cdot|P_rx)$ denotes the conditional prior, which depends on *x*.

Consider the following Monte Carlo estimate

$$\widetilde{\mathcal{L}}: x\mapsto rac{1}{M}\sum_{i=1}^M \mathcal{L}_y(P_rx+(I_d-P_r)Z_i)$$
 , $Z_i\stackrel{ ext{iid}}{\sim}\pi_{ ext{pr}}$

In general, $\widetilde{\mathcal{L}}(P_r x)$ is a biased estimator for $\mathbb{E}_{pr}(\mathcal{L}_y | P_r x)$.

Proposition

The random distribution
$$\widetilde{\pi}_{pos}(x) \propto \widetilde{\mathcal{L}}(P_r x) \pi_{pr}(x)$$
 is such that

$$\mathbb{E}\left(D_{\mathsf{KL}}(\pi^*_{\mathsf{pos}} || \widetilde{\pi}_{\mathsf{pos}})\right) \lesssim \left(C_1 + \frac{C_2}{M}\right) \, \mathcal{R}_{\pi_{\mathsf{pos}}}(P_r)$$

Approximating H using other distributions

Recall that

$$\mathcal{R}_{\pi_{\mathsf{pos}}}(P_r) = \int \|(I_d - P_r^{\mathsf{T}})\nabla \log \mathcal{L}_y\|_{\mathsf{F}^{-1}}^2 \, \mathrm{d}\pi_{\mathsf{pos}}$$

• Let ρ be a tractable density and consider

$$\mathcal{R}_{\rho}(P_r) = \int \|(I_d - P_r^{T})\nabla \log \mathcal{L}_y\|_{\Gamma^{-1}}^2 \, \mathrm{d}\rho$$

Approximating H using other distributions

Recall that

$$\mathcal{R}_{\pi_{\mathsf{pos}}}(P_r) = \int \|(I_d - P_r^{\mathsf{T}})\nabla \log \mathcal{L}_y\|_{\mathsf{F}^{-1}}^2 \, \mathrm{d}\pi_{\mathsf{pos}}$$

• Let ρ be a tractable density and consider

$$\mathcal{R}_{\rho}(P_r) = \int \|(I_d - P_r^{T})\nabla \log \mathcal{L}_y\|_{\Gamma^{-1}}^2 \,\mathrm{d}\rho$$

• The minimizer P_r^* of $P_r \mapsto \mathcal{R}_{\rho}(P_r)$ is such that

$$\mathcal{R}_{\pi_{\mathsf{pos}}}(P_r^*) \le \left(\sup \frac{\pi_{\mathsf{pos}}}{\rho}\right) \sum_{i>r} \lambda_i^{(\rho)}$$

where $\lambda_i^{(\rho)}$ is the *i*-th generalized eigenvalue of $\mathbf{H}^{(\rho)} = \int \nabla \log \mathcal{L}_y \otimes \nabla \log \mathcal{L}_y \, \mathrm{d}\rho$

A practical algorithm

1 Compute (e.g., with Monte Carlo)

$$\mathbf{H}^{(\boldsymbol{\rho})} = \int \nabla \log \mathcal{L}_{\boldsymbol{y}} \otimes \nabla \log \mathcal{L}_{\boldsymbol{y}} \, \mathrm{d}\boldsymbol{\rho}.$$

2 Compute the projector P_r based on $\mathbf{H}^{(\rho)}$

3 Draw one sample $Z \sim \pi_{pr}$ and let $\widetilde{\mathcal{L}} : x \mapsto \mathcal{L}_y(P_r x + (I_d - P_r)Z)$

Then $\widetilde{\pi}_{pos}(x) \propto \widetilde{\mathcal{L}}(P_r x) \pi_{pr}(x)$ is such that

$$\mathbb{E}\Big(D_{\mathsf{KL}}\big(\pi_{\mathsf{pos}}\big|\big|\widetilde{\pi}_{\mathsf{pos}}\big)\Big) \leq (cst)\Big(\sup\frac{\pi_{\mathsf{pos}}}{\rho}\Big)\sum_{i>r}\lambda_i^{(\rho)}$$

- Ideally, ho should be close to $\pi_{
 m pos}$
- The spectrum of (H^(ρ), Γ) is still an indicator for the low effective dimensionality of the problem!

GOMOS: atmospheric remote sensing (e.g., **[**Tamminen et al. 2004])

• Estimate gas densities $x = \rho^{gas}(z)$ from transmission spectra $y_{\omega}(z)$

Beer's law:

$$y_{\omega}(z) = \exp\left(-\int_{\text{light path}} \sum_{\text{gas}} \alpha_{\omega}^{\text{gas}}(z(\zeta)) \,\varrho^{\text{gas}}(z(\zeta)) \, \mathrm{d}\zeta\right) + \xi$$

- Gaussian prior $\mathcal{N}(\mu_{pr}, \Sigma_{pr})$ (hence $\Gamma = \Sigma_{pr}^{-1}$ and $\kappa = 1$)
- After discretization of the atmosphere, dim(x) = 200

ETICS Research School

An iterative algorithm

- 1: Draw *M* samples Y_1, \ldots, Y_M from π_{pr}
- 2: for $\ell = 0, ..., L$ do
- 3: if $\ell = 0$ then
- 4: Draw K samples $X_1^{(\ell)}, \ldots, X_K^{(\ell)}$ from π_{pr}
- 5: Compute $\nabla \log \mathcal{L}_{\mathcal{Y}}(X_k^{(\ell)})$ and set the weights $w_k^{(\ell)} = 1$
- 6: **else**

7: Draw K samples
$$X_1, \ldots, X_K$$
 from $\hat{\nu}_r^{(\ell)}$ (e.g., using MCMC)

8: Compute
$$\nabla \log \mathcal{L}_{y}(X_{k}^{(\ell)})$$
 and $w_{k}^{(\ell)} = \frac{\mathcal{L}_{y}(X_{k}^{(\ell)})}{\hat{F}_{r}^{(\ell)}(X_{k}^{(\ell)})}$

9: Assemble the matrix

$$\hat{H}^{(\ell)} = \frac{1}{\sum_{k=1}^{K} w_k^{(\ell)}} \sum_{k=1}^{K} w_k^{(\ell)} \big(\nabla \log \mathcal{L}_y(X_k^{(\ell)}) \big) \big(\nabla \log \mathcal{L}_y(X_k^{(\ell)}) \big)^\top$$

- 10: Compute a projector $P_r^{(\ell+1)}$ such that $\mathcal{R}_{\Gamma}(P_r^{(\ell+1)}, \hat{H}^{(\ell)}) \leq \varepsilon$
- 11: Define the approximate distribution $\hat{\nu}_r^{(\ell+1)}$ as

$$\frac{\mathrm{d}\hat{\nu}_r^{(\ell+1)}}{\mathrm{d}\pi_{\mathrm{pr}}} \propto \hat{F}_r^{(\ell+1)}, \quad \text{where} \quad \hat{F}_r^{(\ell+1)} = \frac{1}{M} \sum_{i=1}^M \mathcal{L}_y \Big(\mathcal{P}_r^{(\ell+1)} x + (I_d - \mathcal{P}_r^{(\ell+1)}) Y_i \Big)$$

Iterative algorithm: results

Marzouk et al.

ETICS Research School
Conclusions:

- Exploit the low effective dimensionality of Bayesian inverse problems
- Methodology:
 - Derive an upper bound on the error (KL-divergence)
 - Compute a minimizer of the upper bound using PCA on $\nabla \log \mathcal{L}_y$
- Better performance than existing gradient-based methods (e.g., likelihood-informed subspace or active subspace)

Conclusions:

- Exploit the low effective dimensionality of Bayesian inverse problems
- Methodology:
 - Derive an upper bound on the error (KL-divergence)
 - Compute a minimizer of the upper bound using PCA on $\nabla \log \mathcal{L}_y$
- Better performance than existing gradient-based methods (e.g., likelihood-informed subspace or active subspace)

Open questions:

- Does there exist an optimal projector, i.e., a minimizer of the KL divergence?
- ► What is the best computational strategy to approximate **H**?

▶ Let $U = [U_r \ U_\perp] \in \mathbb{R}^{n \times n}$ be a unitary matrix, with $U_r \in \mathbb{R}^{n \times r}$. A **lazy map** $T : \mathbb{R}^n \to \mathbb{R}^n$ takes the form:

$$T(z) = U_r \tau(z_1, \ldots, z_r) + U_{\perp} z_{\perp}$$

for some diffeomorphism $\tau : \mathbb{R}^r \to \mathbb{R}^r$.

- Map T ∈ T_r(U) departs from the identity only on an r-dimensional subspace
- ▶ **Proposition:** For any lazy map $T \in T_r(U)$, there exists a strictly positive function $f : \mathbb{R}^r \to \mathbb{R}_+$ such that

$$T_{\sharp}\eta(x) = f(U_r^{\top}x)\eta(x),$$

for all $x \in \mathbb{R}^n$ where $\eta = \mathcal{N}(0, \mathbf{I}_n)$. Conversely, any density of the form $f(U_r^\top x) \eta(x)$ for some $f : \mathbb{R}^r \to \mathbb{R}_+$ admits a lazy map representation.

Why would such structure (approximately) appear?

- Bayesian inverse problems: data only partially informative; posterior departs from the prior primarily on a low-dimensional subspace.
- ► Formalized by *likelihood-informed subspace* [Cui et al. 2014]; also, active subspace [Constantine et al. 2015], and recent refinements/connections [Zahm et al. 2018].

Error bound and subspace

How to find a good U_r ?

Define

$$H_{\pi} \coloneqq \int \left(\nabla \log \frac{\pi}{\eta} \right) \left(\nabla \log \frac{\pi}{\eta} \right)^{\top} d\pi$$

Let (λ_i, u_i) be the *i*th eigenpair of H_π and put U_r = [u₁ u₂ ··· u_r].
Theorem [Zahm et al. 2018]:

$$\mathcal{D}_{\mathcal{KL}}(\pi||\mathcal{T}_{\sharp}^{\star}\eta) \leq rac{1}{2}(\lambda_{r+1}+\ldots+\lambda_d).$$

where $T_{\sharp}^{\star}\eta = f^{\star}(U_r^{\top}x)\eta(x)$ and $f^{\star}(z_r) = \mathbb{E}_{X \sim \eta}\left[\frac{\pi(X)}{\eta(X)} | U_r^{\top}X = z_r\right].$

- Good approximation when the spectrum of H_{π} decays quickly
- Uses a *ridge approximation* of $d\pi/d\eta$ (e.g., the likelihood), with optimal profile function f^*

Layers of lazy maps

- What if (λ_i) do not decay quickly? What if we are limited to small r?
- Answer: layers of lazy maps, via a greedy construction
 - Given (π, η, r_1) : compute H_{π} and construct a first lazy map T_1
 - Pull back π by T_1 : $\pi_2 \coloneqq (T_1^{-1})_{\sharp} \pi$
 - Given (π_2, η, r_2) : compute H_{π_2} and construct a next lazy map $T_2 \dots$
 - **Generic iteration**: at stage ℓ , build a lazy map to the pullback $\pi_{\ell} := (T_1 \circ T_2 \circ \cdots \circ T_{\ell-1})^{-1}_{\sharp} \pi$
 - **Stop** when $\frac{1}{2} \operatorname{Tr}(H_{\pi_{\ell}}) < \epsilon$

ETICS Research School

Layers of lazy maps

Example: rotated "banana" target distribution, r = 1 maps

Example: log-Gaussian Cox process

Field $\pmb{\Lambda}^{\star}$ and observations \pmb{y}^{\star}

Realizations of $\mathbf{\Lambda} \sim \pi_{\mathbf{\Lambda}|\mathbf{y}^*}$

> Parameter dimension n = 4096, 30 observations; fixed ranks r

$$\begin{cases} \nabla \cdot (e^{\kappa(\mathbf{x})} \nabla u(\mathbf{x})) = 0, & \text{for } \mathbf{x} \in \mathcal{D} \coloneqq [0, 1]^2, \\ u(\mathbf{x}) = 0 & \text{for } x_1 = 0, & u(\mathbf{x}) = 1 & \text{for } x_1 = 1, & \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}} = 0 & \text{for } x_2 \in \{0, 1\} \end{cases}$$

Infer κ(x), discretized with n = 2601 parameters; 81 observations; lazy maps of r ≤ 4 and polynomial degree up to 2

- Central idea: characterize complex/intractable distributions by constructing deterministic *couplings*
- Many kinds of low-dimensional structure (non-exhaustive):
 - Sparse maps, decomposable maps
 - Low rank structure (lazy maps)
- Exploiting the **pullback** distribution
 - Compositions of approximate maps, constructed greedily
 - (Part 2) Use approximate maps to precondition other sampling or cubature schemes

Extensions and open questions:

- Using sparse grids or QMC for map construction
- Zoo of map parameterizations and their approximation properties
- Tail behavior of maps
- Additional varieties of low-dimensional structure: hierarchical, multiscale, tensor, ...
- Maps from samples:
 - We will explore this in Part 2

Extensions and open questions:

- Using sparse grids or QMC for map construction
- Zoo of map parameterizations and their approximation properties
- Tail behavior of maps
- Additional varieties of low-dimensional structure: hierarchical, multiscale, tensor, ...
- Maps from samples:
 - We will explore this in Part 2

Thanks for your attention!

References

- A. Spantini, R. Baptista, Y. Marzouk. "Coupling techniques for nonlinear ensemble filtering." arXiv:1907.00389.
- D. Bigoni, O. Zahm, A. Spantini, Y. Marzouk. "Greedy inference with layers of lazy maps." arXiv:1906.00031.
- O. Zahm, T. Cui, K. Law, A. Spantini, Y. Marzouk. "Certified dimension reduction in nonlinear Bayesian inverse problems." arXiv:1807.03712.
- A. Spantini, D. Bigoni, Y. Marzouk. "Inference via low-dimensional couplings." JMLR 19(66): 1–71, 2018.
- M. Parno, Y. Marzouk, "Transport map accelerated Markov chain Monte Carlo." SIAM JUQ 6: 645–682, 2018.
- G. Detomasso, T. Cui, A. Spantini, Y. Marzouk, R. Scheichl, "A Stein variational Newton method." NeurIPS 2018.
- R. Morrison, R. Baptista, Y. Marzouk. "Beyond normality: learning sparse probabilistic graphical models in the non-Gaussian setting." NeurIPS 2017.
- Y. Marzouk, T. Moselhy, M. Parno, A. Spantini, "An introduction to sampling via measure transport." *Handbook of Uncertainty Quantification*, R. Ghanem, D. Higdon, H. Owhadi, eds. Springer (2016). arXiv:1602.05023.
- General python code at http://transportmaps.mit.edu