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Motivation: Bayesian inference in large-scale models

Observations y Parameters x

Tpos(X) := (x|y) oc w(y|x)mpe(x)

Vv
Bayes’ rule

» Characterize the posterior distribution (density Tpos)
» This is a challenging task since:

» x € R" is typically high-dimensional (e.g., a discretized function)
> Tphos IS NON-Gaussian
» evaluations of the likelihood (hence m,0s) may be expensive

> Tpos Can be evaluated up to a normalizing constant
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Motivation: Sequential Bayesian inference
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» From batch to sequential approaches:
» State estimation (e.g., filtering and smoothing) in a Bayesian setting
» Need recursive algorithms for characterizing the posterior
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Plan for the lectures

Part 1 (Wednesday)

» Introduction to transport methods for inference and stochastic
modeling

» Sparsity and decomposability of transport maps

» Bayesian inference in state-space models

» Dimension reduction in Bayesian inverse problems
>

Low-rank structure in transport maps; greedy approximations

Part 2 (Thursday)
» Preconditioning MCMC using transport
» Nonlinear ensemble filtering methods

» Structure learning in non-Gaussian graphical models
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Computational challenges of Bayesian inference

» Extract information from the posterior (means, covariances, event
probabilities, predictions) by evaluating posterior expectations:

B [h(x)] = / B(x)Mpos(X)dx

» Key strategy for making this computationally tractable:

» Surrogates or approximations of the {forward model, likelihood
function, posterior density}

» Efficient and structure-exploiting sampling schemes
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Computational challenges of Bayesian inference

» Extract information from the posterior (means, covariances, event
probabilities, predictions) by evaluating posterior expectations:

B [h(x)] = / B(x)Mpos(X)dx

» Key strategy for making this computationally tractable:

» Surrogates or approximations of the {forward model, likelihood
function, posterior density}

» Efficient and structure-exploiting sampling schemes

» These lectures: relate to notions of coupling and transport. ..
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Deterministic couplings of probability measures

» Choose a reference distribution n (e.g., standard Gaussian)
> Seek a transport map T : R" — R"” such that Tyn ==
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Deterministic couplings of probability measures

» Choose a reference distribution n (e.g., standard Gaussian)
> Seek a transport map T : R" — R"” such that Tyn ==
» Equivalently, find S = T! such that Sym =1
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Deterministic couplings of probability measures

Choose a reference distribution n (e.g., standard Gaussian)
Seek a transport map T : R” — R" such that Tyn =
Equivalently, find S = T~ such that Sym =7

In principle, enables exact (independent, unweighted) sampling!

vV vV Vv VY
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Deterministic couplings of probability measures

Choose a reference distribution n (e.g., standard Gaussian)

Seek a transport map T : R" — R" such that Tyn ==
Equivalently, find S = T~ such that Spm=mn

Satisfying these conditions only approximately can still be useful!

vV vV VvV Vv
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Choice of transport map

A useful building block is the Knothe—Rosenblatt rearrangement:

T(x1)
T2(X1,X2)
Tx)=1|.

T'(x1,x2, ..., Xn)

» Unique triangular and monotone map satisfying Tyn = 7 for
absolutely continuous n, ™ on R”

» Jacobian determinant easy to evaluate
» Monotonicity is essentially one-dimensional: 8, Tk>0
» “Exposes’ marginals, enables conditional sampling. ..

Marzouk et al. ETICS Research School 7/71



Choice of transport map

A useful building block is the Knothe—Rosenblatt rearrangement:

T'(x1)
T(x)= .T2(X1'X2)

» Unique triangular and monotone map satisfying Tyn = 7 for
absolutely continuous 1, ™ on R”

» Jacobian determinant easy to evaluate

» Monotonicity is essentially one-dimensional: 8, Tk>0

» “Exposes’ marginals, enables conditional sampling. ..

» Numerical approximations can employ a monotone parameterization
guaranteeing Oy, Tk > 0. For example:

Xic
Tk(xl, coaxk) = ak(xa, - ,xk1)+/ exp(bx(x1, -, Xk—1, w)) dw
0
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How to construct triangular maps?

Construction #1: “maps from densities,” i.e., variational
characterization of the direct map T [Moselhy & M 2012]
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How to construct triangular maps?

Construction #1: “maps from densities,” i.e., variational
characterization of the direct map T [Moselhy & M 2012]

min Dy ( Tyn|l7) = min Dy (|| Tyt m)
TET) TeTL

A

v

7 is the “target” density on R"; nis, e.g., N(0, 1,)
TA” is a set of monotone lower triangular maps

v

» T}/ contains the Knothe—Rosenblatt rearrangement

v

Expectation is with respect to the reference measure n
» Compute via, e.g., Monte Carlo, sparse quadrature

v

Use unnormalized evaluations of 7 and its gradients

v

No MCMC or importance sampling

v

In general non-convex, unless 7 is log-concave
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Mlustrative example

18¢
15+ I
mTin[EZn[—Iog?ro T —Zlogakak] 12
P
. 9
» Parameterized map T € TE C Ta
» Optimize over coefficients of ol
parameterization
» Use gradient-based optimization 3t
» The posterior is in the tail of the reference
0
-3
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» The posterior is in the tail of the reference
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Useful features

» Move samples; don't just reweigh them

» Independent and cheap samples: x; ~n = T(x;)
» Clear convergence criterion, even with unnormalized target density:
log —1—

T 7

1
DKL( Tn'f]||7r)% EVarn
#
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Useful features

» Move samples; don't just reweigh them

» Independent and cheap samples: x; ~n = T(x;)
» Clear convergence criterion, even with unnormalized target density:
log —1—

T 7

1
Di( Tyml|m) = EVarn
#

» Can either accept bias or reduce it by:
> Increasing the complexity of the map T € TA”
» Sampling the pullback Tn_lflr using MCMC or importance sampling
(more on this later)
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Useful features

» Move samples; don't just reweigh them

» Independent and cheap samples: x; ~n = T(x;)
» Clear convergence criterion, even with unnormalized target density:
log —1—

T 7

1
Di( Tyml|m) = EVarn
#

v

Can either accept bias or reduce it by:
> Increasing the complexity of the map T € TA”
» Sampling the pullback Tu_lflr using MCMC or importance sampling
(more on this later)

v

Related transport constructions for inference and sampling: Stein variational
gradient descent [Liu & Wang 2016, DeTommaso 2018], normalizing flows
[Rezende & Mohamed 2015], SOS polynomial flow [Jaini et al. 2019], Gibbs
flow [Heng et al. 2015], particle flow filter [Reich 2011], implicit sampling
[Chorin et al. 2009-2015], etc.
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Ubiquity of triangular maps

Many “flows” recently proposed in machine learning are special cases of
triangular maps:

» NICE: Nonlinear independent component estimation [Dinh et al. 2015]
TH(xa, .o xk) = pk(Xak—1) + Xk

v

Inverse autoregressive flow [Dinh et al. 2017]

TR(xa, o oxk) = (1= ok (Xak—1)) ik (X1k—1) + X0k (X1:4-1)

v

Masked autogressive flow [Papamakarios et al. 2017]

LT Xk) = ik (X1:k—1) + Xk exp(ok(x1:k-1))

v

Neural autoregressive flow [Huang et al. 2018
Tk(Xl, . ,Xk) = DNN(Xk; Wk(Xl:k—l))

v

Sum-of-squares polynomial flow [Jaini et al. 2019]
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How to construct triangular maps?

Construction #2: “maps from samples”
min Dy (Sym|[m) = min DKL(WHS,;ln)
Sesh Sesh

» Suppose we have Monte Carlo samples {x,-},-’\i1 ~ T

» For standard Gaussian 7, this problem is convex and separable
» This is density estimation via transport! (cf. Tabak & Turner 2013)

Marzouk et al. ETICS Research School 11 /71



How to construct triangular maps?

Construction #2: “maps from samples”
min Dy (Sym|[m) = min DKL(7r||Su’177)
Sesh sesh

v

Suppose we have Monte Carlo samples {x;}M, ~

» For standard Gaussian 7, this problem is convex and separable
» This is density estimation via transport! (cf. Tabak & Turner 2013)
» Equivalent to maximum likelihood estimation of S
M
~ 1
S €arg max — Zlog Sﬁ’ln(x,-), n=N(0,1,),
SGSZ M ) ~——
o pullback
» Each component Sk of S can be computed separately, via smooth

convex optimization

M
~ . 1 1
Skearg min o ;1 (25"(x,-)2 — log akSk(x,-)>

Skesh
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Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions
» Major bottleneck: representation of the map, e.g., cardinality of the
map basis
» How to make the construction/representation of high-dimensional
transports tractable?
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Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions
» Major bottleneck: representation of the map, e.g., cardinality of the
map basis
» How to make the construction/representation of high-dimensional
transports tractable?

Main ideas:
© Exploit Markov structure of the target distribution
» Leads to sparsity and/or decomposability of transport maps [Spantini,
Bigoni, & M JMLR 2018]
© Exploit certain low rank structure
> Near-identity or "lazy” maps [Bigoni et al. arXiv:1906.00031]
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Markov random fields

» Let Z1,..., Z, be random variables with joint density m > 0

(lL))¢g & iff Zi 1L Zj| Zyqi jy

» G = (V,€) encodes conditional independence (an /-map for )

» Theorem [SBM 2018]: Define G s.t. (/,)) ¢ & iff Oy x logm = 0. Then
the resulting G is the unique minimal /-map for .
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Sparsity of transport maps

» Focus on the inverse triangular map S, where Sy =7
» Theorem [SBM 2018]: S (a nonlinear function) inherits the same

sparsity pattern as the Cholesky factor of the incidence matrix
(properly scaled) of a graphical model for 7, provided that

n(x) = I1; n(x)
[ S1() 1 T[S ‘
S?(x1, x2) S2(x1, x2)
S(x) = | S(a xe. x3) | S} xex3)
i S”(Xl,XQ ..... Xn) | | 5”( Xn—1,Xn) |
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How to compute the sparsity pattern

0‘:0990
T

» Compute marginal graphs: G'~1 is obtained from G’ by removing
node / and by turning its neighborhood into a clique
(like variable elimination)

» Sparsity of inverse transport: the /-th
component of S can depend, at most, on the
variables in a neighborhood of node j in G’

» Sparsity depends on the ordering of the variables
(similar heuristics as sparse Cholesky) Py = 0,,5"
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Decomposable transport maps

» Definition: a decomposable transportisamap 7 = Tyo0---0 Ty
that factorizes as the composition of finitely many maps of low
effective dimension that are triangular (up to a permutation), e.g.,

[ Ai(xoxe,x3) 1T [ xa 1 [ x T
Bi(x2, x3) Ax(x2, X3, Xa, X5) X2
_ | Gi(xs) B> (x3, xa, x5) X3
T(x) = X4 ° Co(xa, Xs5) ° As(xs)
X5 D> (xs) Bs(xa, xs)
L X6 ] | X6 ] L C3(X4,X5,X6) ]
T1 }; T3

» Theorem [SBM 2018]: Decomposable graphical models for 7 lead to
decomposable direct maps T, provided that n(x) = [, n(x)
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Decomposable transport maps

» Example graph decomposition V = (A, S, B)
» Effective dimension of each component map is | AU S|

A B
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Graph decomposition

A S B

A triple (A, S, B) of disjoint nonempty subsets of the vertex set V forms a
decomposition of G if the following hold

Q@ V=AUSUB
@ S separates A from B in G
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Step 1: build a local map

A S B

» For a given decomposition (A, S, B), consider M; : R3 — R3 s t.

A , .
Q Mi(xa xs) = [ 1(xs, Xa) ] pushes forward m3 to marginal mx,, ,

Bl(Xs)
A1(xs,Xxa)
@ Embed 9y in T1(xa,xs,x58) = | Bi(xs) , T;:R® —» RS
X8

» What can we say about the pullback density wa ?
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Local graph sparsification

O

A S B

Figure: Markov structure of the pullback of m through T
Just remove any edge incident to any node in A

T1 is essentially a 3-D map

vV vV v Vv

Pulling back 7 through T7 makes Z 4 independent of Zgg!
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Do it recursively!

O

A S B

» Figure: Markov structure of the pullback of w through T
» Recursion at step k

© Consider a new decomposition (A, S, B)
@ Compute transport Ty
© Pull back through Ty
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Step k: new decomposition and local map

A S B

» Figure: Markov structure of the pullback of w through T
» Recursion at step k

© Consider a new decomposition (A, S, B)
@ Compute transport Ty
© Pull back through Ty
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Step k: local graph sparsification

O
O

O
A S B

Figure: Markov structure of the pullback of m through T
T, is essentially a 4-D map
Each time we pull back by a new map we remove edges

Intuition: Continue the recursion until no edges are left. ..

Marzouk et al. ETICS Research School 17 /71



@)
@)

@)
A

Figure: Markov structure of the pullback of m through T
T, is essentially a 4-D map
Each time we pullback by a new map we remove edges

Intuition. Continue the recursion until no edges are left...
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Decomposable maps

© O
@) @)
© O

‘T: TlOTQOTg‘

Figure: Markov structure of the pullback of m through T
Decomposability of G = existence of decomposable couplings

Anisotropic triangular structure of (T;) is essential

vV vV v Vv

Idea: inference decomposed into smaller steps (no need for
marginals!)

» In fact, we can make this more general. ..
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Decomposition theorem

Theorem [Decomposition of transports]

Let G be an I-map for m and let n = ]_[J- Mx; be a reference density.
If (A, S, B) is a decomposition of G, then

© 1 a transport map:

» T is a monotone triangular transport s.t. n SN s - ([Les mx)
» T is the identity map along components in B: le(x) =xx for k e B

» T, is any transport s.t. 0 BEN Tf7r
@ X, is independent of Xs g w.r.t. the pullback density T{jw
» T, is the identity along components in A: Tx(x) = x for k € A

» Strategy: recursively apply theorem to further decompose T,
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Graph decomposition (end result)

© O
o @)
© O

» (right) I-map for the pullback of 7 through T

[ A1(x1.x2,x3) T [ x1 1 [ x i
Bi(x2, x3) Ao(x2, X3, X4, X5) X2
Ci(x3 B>(x3, X4, X5 X3
T(X) - X4 ( ) ° C2§X4, X5) ) ° A3(X4)
X5 Dy (xs) Bs(x4, x5)
| X6 J | X6 J L C3(X4,X5,X6) J
T T Ts
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Transport maps and graphical models

Key message

» Direct maps: enforce decomposable structure in the approximation
space Ta, i.e., when solving minter, D ( Tyn || 7)
» Inverse maps: enforce sparsity in the approximation space Sa, i.e.,
in solving minses, D (|| 511—1 M)
» Can also use for structure learning in non-Gaussian graphical models
» A general tool for modeling and computation with non-Gaussian
Markov random fields
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Transport maps and state-space models

Y,

» In many situations, elements of the composition
T =Ti0Ts0---0 T, can be constructed sequentially

» Yields new algorithms for smoothing and and joint state-parameter
inference in state-space models [SBM 2018; Houssineau, Jasra, Singh

2018]
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®» ® ® ©® ©

% ? ? ?---?
Y, Y, Y3 Yy

Yo

[ Ao(xg,x1) ]
» Compute My : R?" — R?2" s t. Bo(x1)
Ao(Xg, X X
Mo (o, x1) = [ o(xo0. x1) } )
Bo(Xl) T - X3
> Reference: nx,mMx, o(x) = X4
> Target: Tz, Tz,z, To|Zo TY1 |2y X5
> dim(mo) ~2 X dim(ZO)
L XN _
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®» ® ® ©® ©

? ? ? ?---?
Y, Y, Y3 Yy

Yo

" %o -

» Compute M : R?" — R?"7 s t. A1(x1,%2)
Aq(x1, x Bi(x

M (x1,%X2) = [ 11, %2) } 1(x2)

Bl(Xz) T X3

» Reference: nx,7x, 1) = | x,

> Target: nx, Ty,|z, Tz,1z,(*| Bo (*)) %5

» Uses only one component of 91

L XN i
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®» ® ® ©® ©

? ? ? ?---?
Y, Y, Y3 Yy

Yo

X0
» Compute M, : R?" — R?" s t. X1
Ao(x2, X3) } Ax(x2, X3)
Mo (X2, x3) = ’
2( 2 3) |: BZ(XS) . - B2(X3)
> Reference: nx,mx, 2(x) = X4
» Target: nx, TY3|Z3 7Tz3|22('| Bi()) %5
» Uses only one component of 91,
L XN J
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®» ® ® ©® ©

? ? ? ?---?
Y, Y, Y3 Yy

Yo

Theorem.
o (Bk)n MXer1 = TZiir | Yousr (filtering)
2] (mk)n'f?kar1 > Mz Zior | Yorsn (lag-1 smoothing)
© (T1o 0 Ty Mxosss = TZosrr| Youss (full Bayesian solution)
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A nested decomposable map

» Ty = Tgo T10---0 Ty characterizes the joint dist TZo 1] Yok

[ Ao(xo.x1) ] [ %o i
Bo(x1) A1(x1,%2)
X2 Bi(x2)
X3 X3

‘Ik (X) = X4 © X4 ©

X5 X5

| Xy 1 L xn i

To T1

» Trivial to go from Ty to Ty41: just append a new map Tk41
» No need to recompute Ty, ..., Tx (nested transports)
» T, is dense and high-dimensional but decomposable
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A nested decomposable map

» Ty = Tgo T10---0 Ty characterizes the joint dist TZo 1] Yok

[ Ao(xo.x1) ] [ %o 1 T %o i
Bo(x1) A1(x1,%2) X1
X2 Bi(x2) Ao (x2,X3)
X3 X3 B>(x3)
‘Ik+1(x) = X4 © X4 © X4 o
X5 X5 X5
| Xy 1 L xn 1L xn A
To T1 T2

» Trivial to go from Ty to Ty41: just append a new map Tk41
» No need to recompute Ty, ..., Tx (nested transports)

» T, is dense and high-dimensional but decomposable
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Some intuition for smoothing

» Each lag-one smoothing map implements a factorization:

Tz Zi1lyox = TZilyor TZi-11Zk.yok = T Zilyou T Zk—1|Zk.York-1

» The composition of maps then implements the following factorization:

TZonlyon — TZylyonTZy-1|Zn.yon-1TZn-2|Zn-1.y0.n-2
©MZ41Z5,¥01 T Z0|Z4,y0
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A single-pass algorithm on the model

» Meta-algorithm:

@ Compute the maps Mg, My, . .., each of dimension 2 x dim(Zy)
© Embed each M; into an identity map to form T;
© Evaluate Tgo---o T, for the full Bayesian solution

» Remarks:

v

A single pass on the state-space model

v

Non-Gaussian generalization of the Rauch-Tung-Striebel smoother

Bias is only due to the numerical approximation of each map 9,

v

v

Can either accept the bias or reduce it by:

> Increasing the complexity of each map 9;, or

» Computing weights given by the proposal density

(TO oTi0:--:0 Tk)ﬁ X041
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Joint parameter/state estimation

» Generalize to sequential joint parameter/state estimation

Yo

> (Too -0 Tk)yMe MxXouss = TO Zoxss| Yoy (fUll Bayesian solution)
» Now dim(9;) = 2 x dim(Z;) + dim(©)
» Remarks:

» No artificial dynamic for the static parameters

» No a priori fixed-lag smoothing approximation
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Example: stochastic volatility model

» Build the decomposition recursively
T=1IU

» Figure: Markov structure for the pullback of 7 through ¥
» Start with the identity map
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Stochastic volatility model

» Build the decomposition recursively
T=1IU

» Figure: Markov structure for the pullback of 7 through ¥
» Find a good first decomposition of G
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Stochastic volatility model

» Build the decomposition recursively

» Figure: Markov structure for the pullback of m through ¥
» Compute an (essentially) 4-D Tg and pull back 7
» Underlying approximation of u, ¢, Z1|Y1
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Stochastic volatility model

» Build the decomposition recursively

» Figure: Markov structure for the pullback of 7 through ¥
» Find a new decomposition

» Underlying approximation of u, ¢, Z1|Y1
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Stochastic volatility model

» Build the decomposition recursively
‘I = To o Tl

» Figure: Markov structure for the pullback of m through ¥
» Compute an (essentially) 4-D T3 and pull back 7
» Underlying approximation of wu, ¢, Z1.5|Y1.2
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Stochastic volatility model

» Build the decomposition recursively
‘I = To o Tl

» Figure: Markov structure for the pullback of 7 through ¥
» Continue the recursion until no edges are left. ..

» Underlying approximation of w, ¢, Z1.5|Y1.2
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Stochastic volatility model

» Build the decomposition recursively
‘I = TO (¢] Tl (¢] T2

A S B

» Figure: Markov structure for the pullback of 7 through ¥
» Continue the recursion until no edges are left. ..

» Underlying approximation of w, ¢, Z1.3|Y1.3
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Stochastic volatility model

» Build the decomposition recursively
T=TooTioTz0---0Tn_3

00
@@
A

» Figure: Markov structure for the pullback of m through ¥
» Continue the recursion until no edges are left. ..

» Underlying approximation of u, ¢, Z1.n_1|Y¥Y1.n-1
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Stochastic volatility model

» Build the decomposition recursively
T=TooTioTy0---0Ty30T TN

® @
®©@ @ ®@ & @®

» Figure: Markov structure for the pullback of 7 through ¥
» Each map T is essentially 4-D regardless of N
» Underlying approximation of wu, ¢, Z1.n|Y1.n
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Another decomposable map

[ Po(Xg) 1 [ Pl(Xg) 1 [ PZ(X@) 1
Ao(xg, X0, X1) Xo Xo
Bo(Xg, Xl) Al(Xg, X1,X2) X1
X2 Bi(xs.x2) Ao(xg, X2, X3)

Thr1(x) = X3 °l x3 °1 Ba(xg,x3) o

X4 X4 X4

L XN J L XN J L XN i

To T1 T>

> (Poo-0oPk)Ne = Te| Yo (parameter inference)

> If Py = Pyo---0 Py, then Py can be computed recursively as

PBr = Pr—10 P«

= cost of evaluating R, does not grow with k

ETICS Research School 30/ 71
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Example: stochastic volatility model

» Stochastic volatility model: Latent log-volatilities take the form of
an AR(1) process for t =1,...,N:

Zipi=p+0(Zt—p)+ne. me~N(0,1), Z1~N(0,1/1—¢%)
» Observe the mean return for holding an asset at time t
Y: =€+ exp(0.52;), e ~N(0,1), t=1,..., N

» Markov structure for m ~ w, ¢, Z1.n|Y1.n is given by:

Marzouk et al. ETICS Research School 31/ 71



Stochastic volatility example

time

» Infer log-volatility of the pound/dollar exchange rate, starting on 1
October 1981

» Filtering (blue) versus smoothing (red) marginals

tdarzouk at &l ETICS Re=zszrch School 3471



Smoothing marginals

» Just re-evaluate the 4-D maps backwards in time
» Comparison with a “reference” MCMC solution with 10° ESS (in red)

74

time
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Static parameter ¢

» Sequential parameter inference

» Comparison with a “reference” MCMC solution (batch algorithm)
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Static parameter

» Slow accumulation of error over time {sequential algorithm)

» Acceptance rate 75% for Metropolis independence sampler with
transport proposal
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Long-time smoothing (25 years)
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Stochastic volatility example

» Variance diagnostic Var,,[log(n/Tu_lir)] values, for a 947-dimensional
target 7 (smoothing and parameter estimation for 945 days) :

» Laplace map = 5.68; linear maps = 1.49; degree < 7 maps = 0.11

» Important open question: how does error in the approximation of
the parameter posterior evolve over time?
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Too many cycles. ..

» For certain graphs, sparsity/decomposability do not imply
decoupling between the nominal dimension of the problem and the
dimension of each transport T; (or the sparsity of S)

» Here, G is an n x n grid graph
» T>YA acts on 2n dimensions at each stage
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Beyond the Markov properties of 7

» Key idea: seek low-rank structure and near-identity maps

» Example: fix target m to be the posterior density of a Bayesian
inference problem,

m(z) 1= Tpos(2) o Ty |z(y | 2) T2(2)
» Let T, push forward the reference 7 to the prior 7z (prior map)
7?1305( ) = Tu ¢ Tpos(Z) ¢ 7rY|Z(Y|Tpr(Z))"7(Z)
Theorem [Graph decoupling]
If n =11, nx and
rank E, [Viog R ® Vlog R] = k, R = Tpos/M = Tyjz © Tpr

then there exists a rotation Q such that:

Q' Tpos(z) = 9( 21, ---.Zk)HTIX,-(Z/)
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Changing the Markov structure. ..

» The pullback has a different Markov structure'

Q' pos(z) = 921, ..., 2 an (z:)
i>k
© 0 O O
© 0 O O
© O © O
© © ©0 O
© 0 O O
g G Pullback

» Corollary: There exists a transport Tyn = Qt Tpos Of the form
T(x) = [9(X1:k), Xks1.--., Xn], where g : RK — R¥.
» The composition Tpr o Qo T pushes forward m to Tpes

» Why low rank structure? For example, few data-informed
directions.
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Log-Gaussian Cox process

» 4096-D GMRF prior, Z ~ N (1, '), T~ specified through A 4 k2 Id
» 30 sparse observations at locations j € Z, Y,|Z; ~ Pois(exp Z;)
» Posterior density Z|Y ~ Tpos Is:

1 1 e
Tpos(Z) X H exp[—exp(z;} + z - yi] exp {—5(2 —w)' Tz —w)
€T
» What is an independence map G for ®es?
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Log-Gaussian Cox process

g

» 4096-D GMREF prior, Z ~ N(u,T), T! specified through A 4 k2 1d
» 30 sparse observations at locations / € Z, Y;|Z; ~ Pois(exp Z;)
» Posterior density Z|Y ~ Tpos is:
Tpos(2) o H exp[—exp(z;) + zi - yi] exp —%(z —w)' T Y z—-p)
ieT
» What is an independence map G for myos? A 64 x 64 grid.

Marzouk et al. ETICS Research School 41 /71



Log-Gaussian Cox process

» Fix mes ~ N(O, 1) and let Ty push forward .. to mp (prior map)
» Consider the pullback ﬁpos = Tgr Tpos and find that

rank By [Viog R % ViogR] =30 < n, R = suelamier

» Deflate the problem and compute a transport map in 30 dimensions

» Change from prior to posterior concentrated in a low-dimensional
subspace

® b‘-’O'Q(’&' o |[Foec i - |
‘5. @ 5 9 1

i
a @ o i)
: %
& - D.‘ . o e L8] 4
s a A 4 L eE
| o oo o 000 0
posterior sample posterior mean
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Log-Gaussian Cox process

oooooqo o I
@ 91

i g
o o) 9

» (left) E[Z|y], (right) Var[Z|y]. {top) transport; (bottom) MCMC
» Excellent match with reference MCMC solution
» Can we understand this structure more generally?
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A conjecture

In many situations, the data are informative only on a low-dimensional
subspace

MTpos (»C)

~

—~— Nty
Tpos 7 Mpr Tpos == Mpr
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by
Tpos(X) 5 L{Px) Te(X)

for some positive function £ and rank r linear projector 7, € [R9%7
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by
Tpos(X) 5 L{Px) Te(X)

for some positive function £ and rank r linear projector 7, € [R9%7

induces a decomposition of the space

x € Im(F)

X=Xt { x1 € Ker(F)

By construction, x — £(7,x) — £(x) is only a function of x, € Im(P,) = R’.
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by
Tpos(X) 5 L{Px) Te(X)

for some positive function £ and rank r linear projector 7, € [R9%7

induces a decomposition of the space

x € Im(F)

X=Xt { x1 € Ker(F)

By construction, x — £(7,x) — £(x) is only a function of x, € Im(P,) = R’.
If red:

» Design dimension-independent MCMC algorithms to sample from mrpes.
2[Cui, Law, M 2016]

» Build surrogates for the low-dimensional function », — £(x, ) with a
reascnable complexity
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Many methods for constructing and

» . can be defined as a projector onto the dominant eigenspace of a
matrix H € R9*9 which contains “relevant information”
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Many methods for constructing and

» . can be defined as a projector onto the dominant eigenspace of a
matrix H € R9*9 which contains “relevant information”

» Likelihood-informed subspace (LIS) Z[Cui et al 2014]
Hus = f(VG)Tr;::Ls(VG) dTpos

where £, follows from y ~ A (G{x), [ops)

» Active subspace (AS) 2[Constantine, Kent, Bui-Thanh 2015]

Has — / Vlog ACy @ Vlog AC«y d?Tpr
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Many methods for constructing ~, and

» . can be defined as a projector onto the dominant eigenspace of a
matrix H € R9*9 which contains “relevant information”

» Likelihood-informed subspace (LIS) Z[Cui et al 2014]
T _ .
Hus = /(VG) Mope(VG) Ao

where £, follows from y ~ A (G{x), [ops)

» Active subspace (AS) 2[Constantine, Kent, Bui-Thanh 2015]
Has — / ViegL, @ Vlog L, dmy,

» Different definitions of £

» Fix complementary parameters (LIS): L(Pyx) = L£,(Prx (I — Prlimyg)
» Via the conditional expectation of the log-likelihood (AS)

L(Px) = expliy, (log £, Prx)

tdarzouk at &l ETICS Re=zszrch School 46 /71



Build an approximation of s of the form

[ RY - RT

~ P P‘ .
Mpos(X) o (77 x)pr(x) with { P, € R9%9 rank-r projector

such that

DKL(Wpos| |7~Tpos) <e

with r = r(g) much smaller than d.
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Decomposition of the error

A “Pythagorean” theorem

For any P, and L we have

Dxi (WPOS| {%POS) = PKL (WPOS‘ ‘TFDOS) + DL (WDOS‘ ‘%POS)J

~~

=function(Pr) =function(P;,,L)
where

W[;os(x) < Er,, (ﬁy‘PrX)Wpr(X)
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Decomposition of the error

A “Pythagorean” theorem

For any P, and L we have

Dxi (WPOS| {%POS) = PKL (WPOS‘ ‘TrDOS) + DL (TFDOS‘ ‘%POS)J

~~

=function(Pr) =function(P;,,L)
where
W[;os(x) < Er,, (ﬁy‘PrX)Wpr(X)
This allows decoupling the construction of £ and Pr.
» Given P,, the function £ such that £(P,x) = En,. (Ly|Prx) yields
DL (70| [TTpos) = 0
» How to construct P, such that
Dg1. (Wpos‘ ‘71—,)05) <e
witharank r< d ?

Marzouk et al. ETICS Research School 48 / 71



Constructing the projector P,

Assumption {on the prior distribution}

There exist functions V' and W such that
() cem(~ V(- v()) win | =
Melx) xexp (| — Vix) — Wix wit
> exp(sup W — inf W) < »

for some SPD matrix | € R?*? and some ~ > 1.
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Constructing the projector P,

Assumption {on the prior distribution}

There exist functions V' and W such that
() cem(~ V(- v()) win | =
Melx) xexp (| — Vix) — Wix wit
> exp(sup W — inf W) < »

for some SPD matrix | € R?*? and some ~ > 1.

NI
- —V-v

» Gaussian prior fpr = J'\a"(p,pr, L) satisfies this assumption with
Fr=xtandr=1
» Gaussian mixture wpr x Z,-,-'\*’(,u,-, ¥ ;) also satisfies this assumption
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Constructing the projector P,

Based on this assumption, 7y satisfies the logarithmic Sobolev
inequality E[Ledoux 1997]

2 h£ : 2
/h |Ogm d?Tpr < 2#‘»/ ||Vh||r -_d’}'(pr-

for any function h with sufficient regularity.
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Constructing the projector P,

Based on this assumption, 7y satisfies the logarithmic Sobolev
inequality E[Ledoux 1997]

2 h£ : 2
/h |Ogm d?Tpr < 2#‘»/ ||Vh||r -_d’}'(pr-

for any function h with sufficient regularity.

Proposition {(subspace logarithmic Sobolev inequality)

Ty also satisfies

h2
2 T 2
/ h |Og m d'ﬂ'pr < 2?{/ ||(1"d — JDl,. )VhHr—l d?l'pr

for any function f with sufficient regularity and any projector 7,

tdarzouk at &l ETICS Re=zszrch School u Sl



Constructing the projector P,

Corollary

For any projector /, we have

K

Dgi (7rpos||7rpos) < E’Rﬂ/rpos('Dl)

where
Rotpes (17 /II lg — PV 1og £,]|2-1 dpos
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Constructing the projector P,

Corollary

For any projector /, we have

K

Dgi (7rpos||7rpos) < ERWDOS(PI)

where
Rompes (7 /II lg — PV 1og £,]|2-1 dpos

Finding ~, that minimizes this bound corresponds to PCA of Vlog L, (X).

» For a fixed r, the minimizer /| of the reconstruction error R, (/) is the
[-orthogonal projector onto the dominant generalized eigenspace of

= /V log £, ® Vlog L, dmpes

» Furthermore we have Ry (7, ) = > s, A/, where ), is the i-th generalized
eigenvalue of (H,T)
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An idealized algorithm

1 Compute
H= /Vlog L, ®Vlog L, dmmpes

2 Define P, as the projector on the dominant eigenspace of (H,T)

3 Compute the conditional expectation

L(Prx) = En(Ly|Prx)

Then m5o5(x) o< L(Prx)Tspe(x) satisfies

Dt (oI 5s) < 5 D

i>r

> At step 2, we can choose the rank r = r(g) of P, such that
DKL(’"—pOSH’"—;OS) <¢€
» A strong decay in \; implies r(e) < d
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An idealized algorithm

1 Compute
H= /Vlog L, ®Vlog L, dmpes

2 Define P, as the projector on the dominant eigenspace of (H,T)

3 Compute the conditional expectation

L(Prx) = En(Ly|Prx)

Practical issues

» Evaluating H requires computing an integral over the posterior

» Computing the conditional expectation requires some effort
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Sample approximations of H

» Monte Carlo approximation of H:

K
. 1 _ .
H~ Hy = 0 ) Vlog £,(X)) ® Viog £,(X;)  with X, ' Toos
=1

Under some assumptions, quasi-optimal projectors are obtained with high
probability 1 — ¢ if

K > O(y/rank(H) + \/'09(2571))2

» Key assumption: Vlog L, (X) is sub-Gaussian, for X ~ Tpos
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Approximation of 77 (x) o

» The conditional expectation E, (L, |P,x) can be expressed as
X / Pex + (lg — Pr)z) mpe(z|Prx)dz

where 7 (-|Prx) denotes the conditional prior, which depends on x.
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(x) o

Approximation of 7

pos

» The conditional expectation E, (L, |P,x) can be expressed as
X / Pex + (lg — Pr)z) mpe(z|Prx)dz
where 7 (-|Prx) denotes the conditional prior, which depends on x.

» Consider the foIIowing Monte Carlo estimate

L: XH—Zﬁy(P,x—i—(/d—P)Z) L Z Sy,
=1

In general, £(P,x) is a biased estimator for Ep (L] Prx).
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Approximation of 7

pos

» The conditional expectation E, (L, |P,x) can be expressed as
X / Pex + (lg — Pr)z) mpe(z|Prx)dz
where 7 (-|Prx) denotes the conditional prior, which depends on x.

» Consider the foIIowing Monte Carlo estimate

L: XH—Zﬁy(P,x—i—(/d—P)Z) L Z Sy,

i=1
In general, £(P,x) is a biased estimator for Ep (L] Prx).

The random distribution Tpos(x) o< £(P,x) Ty (x) is such that

E(DKL(ﬂ-;os”%pos)) (Cl + 5\:4) Rﬂ'pos(P)
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Approximating H using other distributions

» Recall that
R (Py) = / I(ls = PT)V10g £y |2+ drro..

» Let p be a tractable density and consider

R.(P,) = / (s — PT)V log £, 2. dp
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Approximating H using other distributions

» Recall that
R (P) = [ 1= PTIV 109 £, drc
» Let p be a tractable density and consider

RoP) = [ s =PI log -1 do
» The minimizer P} of P, — R,(P;) is such that

R .(PF) < (Sup %) ngp)

i>r

(0)

where \}"7 is the /-th generalized eigenvalue of

H() = /Vlog£y®VIog£y dp
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A practical algorithm

1 Compute (e.g., with Monte Carlo)
H() = /v log £, ® Vlog L, dp.

2 Compute the projector P, based on H()
3 Draw one sample / ~ mp, and let

L:x— Ly(Px+(lqg—P)7)

Then Tpos(x) o< L(Pyx)mpr(x) is such that

]E(DKL (7TpOSH7~Tpos)) < (cst) (Sup ) ZA ()

i>r

> ldeally, p should be close to pos
» The spectrum of (H(”), ) is still an indicator for the low effective
dimensionality of the problem!
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GOMOS: atmospheric remote sensing {e.g.,B )

» Estimate gas densities x — 09**(z) from transmission spectra yq,(z)
» Bceer's law:

() = oxp (— [ ACORNCD) dc) +

Signals:
sabaiite gt '
h

|
#
£
i

» Gaussian prior A (tipr, Lpr) (hence T =X 1 and k = 1)
» After discretization of the atmosphere, dim(x) = 200
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D1 (Tpos||Tpos) = function(r)

104

102

10(]

1072

10-4 |
g | #eeerror bound &
10 7+‘ New, P :‘ﬂ'pos | |
10 20 30 40 50

H= /Vlog£y®VIog£y d7mos
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D1 (Tpos||Tpos) = function(r)

o

104

102

10(]

1072

1074

[ o p = Tpr
—— p = Laplace(mpos)
o | mrmmerror bound

10~

‘Newv P :‘ﬂ—pos ‘

H() :/Vlog£y®v|oggy dp
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Dir(pos| |7rpos) = function(r)

«-7.0 T T

104

-x- LIS, p = mpos
-8- LIS, p = Laplace(mpos)
LIS, p =
—A— P = Tpr
—— p = Laplace(mpos)
===sierror bound

106 ’—x—‘New, P = Tpos ‘
10 20 30 40 50
.
H) — /Vlog L, ®Vlog L, d HYL = / (VG) Tons(VG) dp

Marzouk et al. ETICS Research School 58 / 71



DKL(wpouspos) = functlon( ) dnell(Tpos, Tpos) = function(r)
P — T 100 —= =% 3
i S ]
104 i 9 ]
% " b

1071

1 111l

1072

| LIS, p = mpos
-8- LIS, p = Laplace(mpos)
LIS, p =

—a— P = Tpr

|- == LIS, p = Tpos

1 1073 8- LIS, p = Laplace(mpos)
LIS, p = mpe

——p = ﬂ'pr

| o p = Laplace(7pos)

—— p = Laplace(mpos)
===sierror bound

106 —+‘ New, p = Tpos ‘ ——New, p = Tpos |
10 20 30 10 50 1075 20 30 10 50
H(P) — /V |og ﬁy RV Iog ﬁy d,O (LT% - / (VG) Trobs(vG) d
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An iterative algorithm

1: Draw M samples Y7, ..., Yum from
2. for{=0,..., L do
3: if £ =20 then

4: Draw K samples Xl(e) ..... X}(f) from
5: Compute Vlog Ly(X,EZ)) and set the weights W,Ee) =1
6: else
7 Draw K samples Xi, ..., Xy from 1/() (e.g, using MCMC)
: ¢ £,(X")
8: Compute V log L’y(X,E )) and W,E ) = kaé”)
9: Assemble the matrix
K
AO = — = Zwe (Vleg L, ( ))(Vlog£ ( ))T
Zk 1 Wk k=1
10: Compute a projector P( 1) such that Rr(P ﬁ“l), /:I(‘Z)) <eg
11: Define the approximate distribution uﬁ”l) as
dt7£8+1) « EED Wwhere I_—£+1 _ f: ( peny = e+1))y)
d7rpr r ’ o i
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Iterative algorithm: results

fix error threshold = 1072 fix rank = 30
7 7
10 10
105 —e— error boii(z)d 105
3 —&— D (V|[r7), Yi=m 5
5 10 — 1072 5 10
= =
g 10! RPN
10 10
107! \ 10"
10 107
1 2 3 4 5 1 2 3 4 5
iteration k iteration k
40
=
=z 35 D
-
30
1 2 3 4 5

iteration k
(left) fixed threshold; (right) fixed rank
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Summary on dimension reduction

Conclusions:
» Exploit the low effective dimensionality of Bayesian inverse problems

» Methodology:

» Derive an upper bound on the error (KL-divergence)
» Compute a minimizer of the upper bound using PCA on Vlog L,

» Better performance than existing gradient-based methods (e.g.,
likelihood-informed subspace or active subspace)
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Summary on dimension reduction

Conclusions:
» Exploit the low effective dimensionality of Bayesian inverse problems

» Methodology:

» Derive an upper bound on the error (KL-divergence)
» Compute a minimizer of the upper bound using PCA on Vlog L,

» Better performance than existing gradient-based methods (e.g.,
likelihood-informed subspace or active subspace)

Open questions:

» Does there exist an optimal projector, i.e., a minimizer of the KL
divergence?

» What is the best computational strategy to approximate H?
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Back to transport: low rank structure

» Let U =[U, U;] € R™" be a unitary matrix, with U, € R"™*". A

lazy map 7 : R” — R”" takes the form:
T(z2)=UT(z1,....,27)+ Uz,
for some diffeomorphism 7 : R" — R".
» Map T € T;(U) departs from the identity only on an r-dimensional
subspace

» Proposition: For any lazy map T € 7;(U), there exists a strictly

positive function f : R” — R, such that
Tyn(x) = F(U]x) n(x),

for all x € R where n = N(0, 1,). Conversely, any density of the
form f(U," x) n(x) for some f : R — R, admits a lazy map
representation.
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Low-rank structure

Why would such structure (approximately) appear?
» Baycsian inverse problems: data only partially informative; posterior
departs from the prior primarily on a low-dimensional subspace.
» Formalized by likelihood-informed subspace [Cui et al. 2014]; also,

active subspace [Constantine et al. 2015], and recent
refinements/conncctions [Zahm et al. 2018].

Tpr (X) Tpos (&)
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Error bound and subspace

How to find a good U,?

T
T T

Hy = Viog— || Vlog— | dm
INCHINED

Let (N, u;j) be the jth eigenpair of Hy and put U, = [u1 - - - uy].
Theorem [Zahm et al. 2018]:

» Define

v

v

—

Da(ml[ Tgm) < 5(Ars1 + -+ Aq)-

where Ty = F(UTx)n(x) and £*(z;) = Exen| 269 U X = zr]

v

Good approximation when the spectrum of H; decays quickly

v

Uses a ridge approximation of dm/dn (e.g., the likelihood), with
optimal profile function f*
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Layers of lazy maps

» What if (A;} do not decay quickly? What if we are limited to small r?
» Answer: layers of lazy maps, via a greedy construction
» Given (m, %, r1): compute Hy and construct a first lazy map T
Pull back w by Ty wp = (T 'y
» Given (72,7, r2): compute Hy, and construct a next lazy map T2 ...
» Generic iteration: at stage ¢, build a lazy map to the pullback
Ty == (Tlo Too---0Ty 1)1_1‘?1'
Stop when £ Tr(Hy,) < €

¥

L
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Layers of lazy maps

Example: rotated "banana” target distribution, r = 1 maps

Target

8

Marzouk et al ETICS Res=zrch Schao
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Example: log-Gaussian Cox process

1w

B owm om o @ o

‘OOOOOE)OO‘

Field A" and observations y*

Realizations of A ~ ma .
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Example: log-Gaussian Cox process

» Parameter dimension 7 = 4096, 30 observations; fixed ranks r

1034 —a— Lazyrank: 1 103 —s— FEig(Hy)

—o— Lazyrank: 3 —a— Eig{H1)

, —s— Lazyrank: 5 —e— Eig({H2)

N 10- 4 10 1 —e— Eig(Hs)

;: —a— Eig{H4)
Fv1ot 10-1 { #5EH

107 1073
o 1 2 3 4 5 6 7 0 10 20 30
Lazy iteration { Eigenvalues
Convergence Spectrum of Hy,
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Example: elliptic PDE Bayesian inverse problem

{v . (EK'(X)VU(X)) == 0; forxe D= [0 1]2 .

u(x) =0 for xy =0, w(x) =1for xy =1, ag&x) =0 for xo €4{0, 1}

» Infer x(x), discretized with n = 2601 parameters; 81 observations;
lazy maps of r < 4 and polynomial degree up to 2

—a— 3TriHY
—— IVllogeiT

100 s
o o 2 4 & & 1o -3

Lazy iteration £ . . .
Posterior realizations

Convergence of k(x}

t(x) and observations
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Summary of Part 1

» Central idea: characterize complex/intractable distributions by
constructing deterministic couplings

» Many kinds of low-dimensional structure (non-exhaustive):

» Sparse maps, decomposable maps
» Low rank structure (lazy maps)

» Exploiting the pullback distribution

» Compositions of approximate maps, constructed greedily
> (Part 2) Use approximate maps to precondition other sampling or
cubature schemes
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Summary of Part 1

Extensions and open questions:
» Using sparse grids or QMC for map construction

» Zoo of map parameterizations and their approximation properties

v

Tail behavior of maps

v

Additional varieties of low-dimensional structure: hierarchical,
multiscale, tensor, ...

v

Maps from samples:
» We will explore this in Part 2
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Extensions and open questions:
» Using sparse grids or QMC for map construction

» Zoo of map parameterizations and their approximation properties

v

Tail behavior of maps

v

Additional varieties of low-dimensional structure: hierarchical,
multiscale, tensor, ...

v

Maps from samples:
» We will explore this in Part 2

Thanks for your attention!
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General python code at http://transportmaps.mit.edu
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