## Transport methods for Bayesian computation

Youssef Marzouk joint work with Daniele Bigoni, Matthew Parno, Alessio Spantini, \& Olivier Zahm<br>Department of Aeronautics and Astronautics<br>Center for Computational Engineering Statistics and Data Science Center<br>Massachusetts Institute of Technology http://uqgroup.mit.edu<br>Support from AFOSR, DARPA, DOE

25-26 September 2019

## Motivation: Bayesian inference in large-scale models

Observations y
Parameters x


$$
\pi_{\mathrm{pos}}(x):=\underbrace{\pi(x \mid y) \propto \pi(y \mid x) \pi_{\mathrm{pr}}(x)}_{\text {Bayes' rule }}
$$

- Characterize the posterior distribution (density $\pi_{\text {pos }}$ )
- This is a challenging task since:
- $x \in \mathbb{R}^{n}$ is typically high-dimensional (e.g., a discretized function)
- $\pi_{\text {pos }}$ is non-Gaussian
- evaluations of the likelihood (hence $\pi_{\text {pos }}$ ) may be expensive
- $\pi_{\text {pos }}$ can be evaluated up to a normalizing constant


## Motivation: Sequential Bayesian inference



- From batch to sequential approaches:
- State estimation (e.g., filtering and smoothing) in a Bayesian setting
- Need recursive algorithms for characterizing the posterior


## Plan for the lectures

## Part 1 (Wednesday)

- Introduction to transport methods for inference and stochastic modeling
- Sparsity and decomposability of transport maps
- Bayesian inference in state-space models
- Dimension reduction in Bayesian inverse problems
- Low-rank structure in transport maps; greedy approximations


## Part 2 (Thursday)

- Preconditioning MCMC using transport
- Nonlinear ensemble filtering methods
- Structure learning in non-Gaussian graphical models


## Computational challenges of Bayesian inference

- Extract information from the posterior (means, covariances, event probabilities, predictions) by evaluating posterior expectations:

$$
\mathbb{E}_{\pi_{\mathrm{pos}}}[h(x)]=\int h(x) \pi_{\mathrm{pos}}(x) d x
$$

- Key strategy for making this computationally tractable:
- Surrogates or approximations of the \{forward model, likelihood function, posterior density\}
- Efficient and structure-exploiting sampling schemes


## Computational challenges of Bayesian inference

- Extract information from the posterior (means, covariances, event probabilities, predictions) by evaluating posterior expectations:

$$
\mathbb{E}_{\pi_{\mathrm{pos}}}[h(x)]=\int h(x) \pi_{\mathrm{pos}}(x) d x
$$

- Key strategy for making this computationally tractable:
- Surrogates or approximations of the \{forward model, likelihood function, posterior density\}
- Efficient and structure-exploiting sampling schemes
- These lectures: relate to notions of coupling and transport...


## Deterministic couplings of probability measures



## Core idea

- Choose a reference distribution $\eta$ (e.g., standard Gaussian)
- Seek a transport map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{\sharp} \eta=\pi$


## Deterministic couplings of probability measures



## Core idea

- Choose a reference distribution $\eta$ (e.g., standard Gaussian)
- Seek a transport map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{\sharp} \eta=\pi$
- Equivalently, find $S=T^{-1}$ such that $S_{\sharp} \pi=\eta$


## Deterministic couplings of probability measures



## Core idea

- Choose a reference distribution $\eta$ (e.g., standard Gaussian)
- Seek a transport map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{\sharp} \eta=\pi$
- Equivalently, find $S=T^{-1}$ such that $S_{\sharp} \pi=\eta$
- In principle, enables exact (independent, unweighted) sampling!


## Deterministic couplings of probability measures



## Core idea

- Choose a reference distribution $\eta$ (e.g., standard Gaussian)
- Seek a transport map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{\sharp} \eta=\pi$
- Equivalently, find $S=T^{-1}$ such that $S_{\sharp} \pi=\eta$
- Satisfying these conditions only approximately can still be useful!

A useful building block is the Knothe-Rosenblatt rearrangement:

$$
T(x)=\left[\begin{array}{l}
T^{1}\left(x_{1}\right) \\
T^{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
T^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

- Unique triangular and monotone map satisfying $T_{\sharp} \eta=\pi$ for absolutely continuous $\eta, \pi$ on $\mathbb{R}^{n}$
- Jacobian determinant easy to evaluate
- Monotonicity is essentially one-dimensional: $\partial_{x_{k}} T^{k}>0$
- "Exposes" marginals, enables conditional sampling...

A useful building block is the Knothe-Rosenblatt rearrangement:

$$
T(x)=\left[\begin{array}{l}
T^{1}\left(x_{1}\right) \\
T^{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
T^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

- Unique triangular and monotone map satisfying $T_{\sharp} \eta=\pi$ for absolutely continuous $\eta, \pi$ on $\mathbb{R}^{n}$
- Jacobian determinant easy to evaluate
- Monotonicity is essentially one-dimensional: $\partial_{x_{k}} T^{k}>0$
- "Exposes" marginals, enables conditional sampling...
- Numerical approximations can employ a monotone parameterization guaranteeing $\partial_{x_{k}} T^{k}>0$. For example:

$$
T^{k}\left(x_{1}, \ldots, x_{k}\right)=a_{k}\left(x_{1}, \ldots, x_{k-1}\right)+\int_{0}^{x_{k}} \exp \left(b_{k}\left(x_{1}, \ldots, x_{k-1}, w\right)\right) d w
$$

## How to construct triangular maps?

Construction \#1: "maps from densities," i.e., variational characterization of the direct map T [Moselhy \& M 2012]

## How to construct triangular maps?

Construction \#1: "maps from densities," i.e., variational characterization of the direct map $T$ [Moselhy \& M 2012]

$$
\min _{T \in \mathcal{T}_{\Delta}^{h}} \mathcal{D}_{K L}\left(T_{\sharp} \eta \| \pi\right)=\min _{T \in \mathcal{T}_{\Delta}^{h}} \mathcal{D}_{K L}\left(\eta \| T_{\sharp}^{-1} \pi\right)
$$

- $\pi$ is the "target" density on $\mathbb{R}^{n} ; \eta$ is, e.g., $\mathcal{N}\left(0, \mathbf{I}_{n}\right)$
- $\mathcal{T}_{\Delta}^{h}$ is a set of monotone lower triangular maps
- $\mathcal{T}_{\Delta}^{h \rightarrow \infty}$ contains the Knothe-Rosenblatt rearrangement
- Expectation is with respect to the reference measure $\eta$
- Compute via, e.g., Monte Carlo, sparse quadrature
- Use unnormalized evaluations of $\pi$ and its gradients
- No MCMC or importance sampling
- In general non-convex, unless $\pi$ is log-concave


## Illustrative example

$$
\min _{T} \mathbb{E}_{\eta}\left[-\log \pi \circ T-\sum_{k} \log \partial_{x_{k}} T^{k}\right]
$$

- Parameterized map $T \in \mathcal{T}_{\triangle}^{h} \subset \mathcal{T}_{\triangle}$
- Optimize over coefficients of parameterization
- Use gradient-based optimization
- The posterior is in the tail of the reference



## Illustrative example

$$
\min _{T} \mathbb{E}_{\eta}\left[-\log \pi \circ T-\sum_{k} \log \partial_{x_{k}} T^{k}\right]
$$

- Parameterized map $T \in \mathcal{T}_{\triangle}^{h} \subset \mathcal{T}_{\triangle}$
- Optimize over coefficients of parameterization
- Use gradient-based optimization
- The posterior is in the tail of the reference



## Illustrative example

$$
\min _{T} \mathbb{E}_{\eta}\left[-\log \pi \circ T-\sum_{k} \log \partial_{x_{k}} T^{k}\right]
$$

- Parameterized map $T \in \mathcal{T}_{\triangle}^{h} \subset \mathcal{T}_{\triangle}$
- Optimize over coefficients of parameterization
- Use gradient-based optimization
- The posterior is in the tail of the reference



## Illustrative example

$$
\min _{T} \mathbb{E}_{\eta}\left[-\log \pi \circ T-\sum_{k} \log \partial_{x_{k}} T^{k}\right]
$$

- Parameterized map $T \in \mathcal{T}_{\triangle}^{h} \subset \mathcal{T}_{\triangle}$
- Optimize over coefficients of parameterization
- Use gradient-based optimization
- The posterior is in the tail of the reference



## Useful features

- Move samples; don't just reweigh them
- Independent and cheap samples: $x_{i} \sim \eta \Rightarrow T\left(x_{i}\right)$
- Clear convergence criterion, even with unnormalized target density:

$$
\mathcal{D}_{K L}\left(T_{\sharp} \eta \| \pi\right) \approx \frac{1}{2} \mathbb{V a r}_{\eta}\left[\log \frac{\eta}{T_{\sharp}^{-1} \bar{\pi}}\right]
$$

## Useful features

- Move samples; don't just reweigh them
- Independent and cheap samples: $x_{i} \sim \eta \Rightarrow T\left(x_{i}\right)$
- Clear convergence criterion, even with unnormalized target density:

$$
\mathcal{D}_{K L}\left(T_{\sharp} \eta \| \pi\right) \approx \frac{1}{2} \mathbb{V a r}_{\eta}\left[\log \frac{\eta}{T_{\sharp}^{-1} \bar{\pi}}\right]
$$

- Can either accept bias or reduce it by:
- Increasing the complexity of the map $T \in \mathcal{T}_{\Delta}^{h}$
- Sampling the pullback $T_{\sharp}^{-1} \pi$ using MCMC or importance sampling (more on this later)


## Useful features

- Move samples; don't just reweigh them
- Independent and cheap samples: $x_{i} \sim \eta \Rightarrow T\left(x_{i}\right)$
- Clear convergence criterion, even with unnormalized target density:

$$
\mathcal{D}_{K L}\left(T_{\sharp} \eta \| \pi\right) \approx \frac{1}{2} \mathbb{V a r}_{\eta}\left[\log \frac{\eta}{T_{\sharp}^{-1} \bar{\pi}}\right]
$$

- Can either accept bias or reduce it by:
- Increasing the complexity of the map $T \in \mathcal{T}_{\Delta}^{h}$
- Sampling the pullback $T_{\sharp}^{-1} \pi$ using MCMC or importance sampling (more on this later)
- Related transport constructions for inference and sampling: Stein variational gradient descent [Liu \& Wang 2016, DeTommaso 2018], normalizing flows [Rezende \& Mohamed 2015], SOS polynomial flow [Jaini et al. 2019], Gibbs flow [Heng et al. 2015], particle flow filter [Reich 2011], implicit sampling [Chorin et al. 2009-2015], etc.


## Ubiquity of triangular maps

Many "flows" recently proposed in machine learning are special cases of triangular maps:

- NICE: Nonlinear independent component estimation [Dinh et al. 2015]

$$
T^{k}\left(x_{1}, \ldots, x_{k}\right)=\mu_{k}\left(x_{1: k-1}\right)+x_{k}
$$

- Inverse autoregressive flow [Dinh et al. 2017]

$$
T^{k}\left(x_{1}, \ldots, x_{k}\right)=\left(1-\sigma_{k}\left(x_{1: k-1}\right)\right) \mu_{k}\left(x_{1: k-1}\right)+x_{k} \sigma_{k}\left(x_{1: k-1}\right)
$$

- Masked autogressive flow [Papamakarios et al. 2017]

$$
T^{k}\left(x_{1}, \ldots, x_{k}\right)=\mu_{k}\left(x_{1: k-1}\right)+x_{k} \exp \left(\alpha_{k}\left(x_{1: k-1}\right)\right)
$$

- Neural autoregressive flow [Huang et al. 2018

$$
T^{k}\left(x_{1}, \ldots, x_{k}\right)=\operatorname{DNN}\left(x_{k} ; w_{k}\left(x_{1: k-1}\right)\right)
$$

- Sum-of-squares polynomial flow [Jaini et al. 2019]


## How to construct triangular maps?

Construction \#2: "maps from samples"

$$
\min _{S \in \mathcal{S}_{\triangle}^{h}} \mathcal{D}_{K L}\left(S_{\sharp} \pi \| \eta\right)=\min _{S \in \mathcal{S}_{\Delta}^{\text {S }}} \mathcal{D}_{K L}\left(\pi \| S_{\sharp}^{-1} \eta\right)
$$

- Suppose we have Monte Carlo samples $\left\{x_{i}\right\}_{i=1}^{M} \sim \pi$
- For standard Gaussian $\eta$, this problem is convex and separable
- This is density estimation via transport! (cf. Tabak \& Turner 2013)


## How to construct triangular maps?

Construction \#2: "maps from samples"

$$
\min _{S \in \mathcal{S}_{\triangle}^{h}} \mathcal{D}_{K L}\left(S_{\sharp} \pi \| \eta\right)=\min _{S \in \mathcal{S}_{\Delta}^{h}} \mathcal{D}_{K L}\left(\pi \| S_{\sharp}^{-1} \eta\right)
$$

- Suppose we have Monte Carlo samples $\left\{x_{i}\right\}_{i=1}^{M} \sim \pi$
- For standard Gaussian $\eta$, this problem is convex and separable
- This is density estimation via transport! (cf. Tabak \& Turner 2013)
- Equivalent to maximum likelihood estimation of $S$

$$
\widehat{S} \in \arg \max _{S \in \mathcal{S}_{\triangle}^{h}} \frac{1}{M} \sum_{i=1}^{M} \log \underbrace{S_{\sharp}^{-1} \eta}_{\text {pullback }}\left(x_{i}\right), \quad \eta=\mathcal{N}\left(0, \mathbf{I}_{n}\right),
$$

- Each component $\widehat{S}^{k}$ of $\widehat{S}$ can be computed separately, via smooth convex optimization

$$
\widehat{S}^{k} \in \arg \min _{S^{k} \in \mathcal{S}_{\Delta, k}^{k}} \frac{1}{M} \sum_{i=1}^{M}\left(\frac{1}{2} S^{k}\left(x_{i}\right)^{2}-\log \partial_{k} S^{k}\left(x_{i}\right)\right)
$$

## Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions

- Major bottleneck: representation of the map, e.g., cardinality of the map basis
- How to make the construction/representation of high-dimensional transports tractable?


## Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions

- Major bottleneck: representation of the map, e.g., cardinality of the map basis
- How to make the construction/representation of high-dimensional transports tractable?


## Main ideas:

(1) Exploit Markov structure of the target distribution

- Leads to sparsity and/or decomposability of transport maps [Spantini, Bigoni, \& M JMLR 2018]
(2) Exploit certain low rank structure
- Near-identity or "lazy" maps [Bigoni et al. arXiv:1906.00031]


## Markov random fields

- Let $Z_{1}, \ldots, Z_{n}$ be random variables with joint density $\pi>0$


$$
(i, j) \notin \mathcal{E} \quad \text { iff } \quad Z_{i} \Perp Z_{j} \mid \mathbf{Z}_{\mathcal{V} \backslash\{i, j\}}
$$

- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ encodes conditional independence (an I-map for $\pi$ )
- Theorem [SBM 2018]: Define $\mathcal{G}$ s.t. $(i, j) \notin \mathcal{E}$ iff $\partial_{x_{i}, x_{j}} \log \pi=0$. Then the resulting $\mathcal{G}$ is the unique minimal I-map for $\pi$.


## Sparsity of transport maps

- Focus on the inverse triangular map $S$, where $S_{\sharp} \pi=\eta$
- Theorem [SBM 2018]: $S$ (a nonlinear function) inherits the same sparsity pattern as the Cholesky factor of the incidence matrix (properly scaled) of a graphical model for $\pi$, provided that $\eta(\mathbf{x})=\prod_{i} \eta\left(x_{i}\right)$

$$
S(\mathbf{x})=\left[\begin{array}{l}
S^{1}\left(x_{1}\right) \\
S^{2}\left(x_{1}, x_{2}\right) \\
S^{3}\left(x_{1}, x_{2}, x_{3}\right) \\
\vdots \\
S^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right] \Longrightarrow\left[\begin{array}{lll}
S^{1}\left(x_{1}\right) & \\
S^{2}\left(x_{1}, x_{2}\right) & \\
S^{3}\left(x_{2}, x_{3}\right) & \\
\vdots & & \\
S^{n}( & & \left.x_{n-1}, x_{n}\right)
\end{array}\right]
$$

## How to compute the sparsity pattern


$\mathcal{G}^{5}$

$\mathcal{G}^{4}$

$\mathcal{G}^{3}$

$\mathcal{G}^{2}$

- Compute marginal graphs: $\mathcal{G}^{i-1}$ is obtained from $\mathcal{G}^{i}$ by removing node $i$ and by turning its neighborhood into a clique (like variable elimination)
- Sparsity of inverse transport: the $i$-th component of $S$ can depend, at most, on the variables in a neighborhood of node $i$ in $\mathcal{G}^{i}$
- Sparsity depends on the ordering of the variables (similar heuristics as sparse Cholesky)
$\mathbf{P}_{k j}=\partial_{x_{j}} S^{k}$


## Decomposable transport maps

- Definition: a decomposable transport is a map $T=T_{1} \circ \cdots \circ T_{k}$ that factorizes as the composition of finitely many maps of low effective dimension that are triangular (up to a permutation), e.g.,

$$
T(\mathbf{x})=\underbrace{\left[\begin{array}{l}
A_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
B_{1}\left(x_{2}, x_{3}\right) \\
C_{1}\left(x_{3}\right) \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]}_{T_{1}} \circ \underbrace{\left[\begin{array}{l}
x_{1} \\
A_{2}\left(x_{2}, x_{3}, x_{4}, x_{5}\right) \\
B_{2}\left(x_{3}, x_{4}, x_{5}\right) \\
C_{2}\left(x_{4}, x_{5}\right) \\
D_{2}\left(x_{5}\right) \\
x_{6}
\end{array}\right]}_{T_{2}} \circ \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
A_{3}\left(x_{4}\right) \\
B_{3}\left(x_{4}, x_{5}\right) \\
C_{3}\left(x_{4}, x_{5}, x_{6}\right)
\end{array}\right]}_{T_{3}}
$$

- Theorem [SBM 2018]: Decomposable graphical models for $\pi$ lead to decomposable direct maps $T$, provided that $\eta(\mathbf{x})=\prod_{i} \eta\left(x_{i}\right)$


## Decomposable transport maps

- Example graph decomposition $\mathcal{V}=(\mathcal{A}, \mathcal{S}, \mathcal{B})$
- Effective dimension of each component map is $|\mathcal{A} \cup \mathcal{S}|$



## Graph decomposition



## Definition

A triple $(A, S, B)$ of disjoint nonempty subsets of the vertex set $\mathcal{V}$ forms a decomposition of $\mathcal{G}$ if the following hold
(1) $\mathcal{V}=A \cup S \cup B$
(2) $S$ separates $A$ from $B$ in $\mathcal{G}$

## Step 1: build a local map



- For a given decomposition $(A, S, B)$, consider $\mathfrak{M}_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t.
(1) $\mathfrak{M}_{1}\left(\mathbf{x}_{A}, \mathbf{x}_{S}\right)=\left[\begin{array}{l}A_{1}\left(\mathbf{x}_{S}, \mathbf{x}_{A}\right) \\ B_{1}\left(\mathbf{x}_{S}\right)\end{array}\right]$ pushes forward $\eta_{3}$ to marginal $\pi_{\mathbf{x}_{\text {SUA }}}$
(2) Embed $\mathfrak{M}_{1}$ in $T_{1}\left(\mathbf{x}_{A}, \mathbf{x}_{S}, \mathbf{x}_{B}\right)=\left[\begin{array}{l}A_{1}\left(\mathbf{x}_{S}, \mathbf{x}_{A}\right) \\ B_{1}\left(\mathbf{x}_{S}\right) \\ \mathbf{x}_{B}\end{array}\right], T_{1}: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$
- What can we say about the pullback density $T_{1}^{\sharp} \pi$ ?


## Local graph sparsification



$$
T=T_{1}
$$

- Figure: Markov structure of the pullback of $\pi$ through $T$
- Just remove any edge incident to any node in $A$
- $T_{1}$ is essentially a 3-D map
- Pulling back $\pi$ through $T_{1}$ makes $\mathbf{Z}_{A}$ independent of $\mathbf{Z}_{S \cup B}$ !


## Do it recursively!



- Figure: Markov structure of the pullback of $\pi$ through $T$
- Recursion at step $k$
(1) Consider a new decomposition $(A, S, B)$
(2) Compute transport $T_{k}$
(3) Pull back through $T_{k}$


## Step k: new decomposition and local map



$$
T=T_{1}
$$

- Figure: Markov structure of the pullback of $\pi$ through $T$
- Recursion at step $k$
(1) Consider a new decomposition $(A, S, B)$
(2) Compute transport $T_{k}$
(3) Pull back through $T_{k}$


## Step k: local graph sparsification



- Figure: Markov structure of the pullback of $\pi$ through $T$
- $T_{2}$ is essentially a 4-D map
- Each time we pull back by a new map we remove edges
- Intuition: Continue the recursion until no edges are left. . .


## And so on. . .



$$
T=T_{1} \circ T_{2}
$$

- Figure: Markov structure of the pullback of $\pi$ through $T$
- $T_{2}$ is essentially a 4-D map
- Each time we pullback by a new map we remove edges
- Intuition. Continue the recursion until no edges are left...


## Decomposable maps



- Figure: Markov structure of the pullback of $\pi$ through $T$
- Decomposability of $\mathcal{G} \Rightarrow$ existence of decomposable couplings
- Anisotropic triangular structure of $\left(T_{i}\right)$ is essential
- Idea: inference decomposed into smaller steps (no need for marginals!)
- In fact, we can make this more general...


## Decomposition theorem

## Theorem [Decomposition of transports]

Let $\mathcal{G}$ be an I-map for $\pi$ and let $\eta=\prod_{j} \eta_{X_{j}}$ be a reference density. If $(A, S, B)$ is a decomposition of $\mathcal{G}$, then
(1) $\exists$ a transport map:

$$
T=T_{1} \circ T_{2}
$$

- $T_{1}$ is a monotone triangular transport s.t. $\eta \xrightarrow{T_{1}} \pi_{X_{\text {AUS }}} \cdot\left(\prod_{j \in B} \eta_{X_{j}}\right)$
- $T_{1}$ is the identity map along components in $B: T_{1}^{k}(\mathbf{x})=x_{k}$ for $k \in B$
- $T_{2}$ is any transport s.t. $\eta \xrightarrow{T_{2}} T_{1}^{\sharp} \pi$
(2) $\mathbf{X}_{A}$ is independent of $\mathbf{X}_{S \cup B}$ w.r.t. the pullback density $T_{1}^{\sharp} \pi$
- $T_{2}$ is the identity along components in $A: T_{2}^{k}(\mathbf{x})=x_{k}$ for $k \in A$
- Strategy: recursively apply theorem to further decompose $T_{2}$


## Graph decomposition (end result)



- (right) I-map for the pullback of $\pi$ through $T$

$$
T(\mathbf{x})=\underbrace{\left[\begin{array}{l}
A_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
B_{1}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
C_{1}\left(\mathbf{x}_{3}\right) \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\mathbf{x}_{6}
\end{array}\right]}_{T_{1}} \circ \underbrace{\left[\begin{array}{l}
\mathbf{x}_{1} \\
A_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}\right) \\
B_{2}\left(\mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}\right) \\
C_{2}\left(\mathbf{x}_{4}, \mathbf{x}_{5}\right) \\
D_{2}\left(\mathbf{x}_{5}\right) \\
\mathbf{x}_{6}
\end{array}\right]}_{T_{2}} \circ \underbrace{\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\mathbf{x}_{3} \\
A_{3}\left(\mathbf{x}_{4}\right) \\
B_{3}\left(\mathbf{x}_{4}, \mathbf{x}_{5}\right) \\
C_{3}\left(\mathbf{x}_{4}, \mathbf{x}_{5}, \mathbf{x}_{6}\right)
\end{array}\right]}_{T_{3}}
$$

## Transport maps and graphical models

## Key message

- Direct maps: enforce decomposable structure in the approximation space $\mathcal{T}_{\triangle}$, i.e., when solving $\min _{T \in \mathcal{T}_{\Delta}} \mathcal{D}_{K L}\left(T_{\sharp} \eta \| \pi\right)$
- Inverse maps: enforce sparsity in the approximation space $\mathcal{S}_{\triangle}$, i.e., in solving $\min _{S \in \mathcal{S}_{\triangle}} \mathcal{D}_{K L}\left(\pi \| S_{\sharp}^{-1} \eta\right)$
- Can also use for structure learning in non-Gaussian graphical models
- A general tool for modeling and computation with non-Gaussian Markov random fields


## Transport maps and state-space models



- In many situations, elements of the composition $T=T_{1} \circ T_{2} \circ \cdots \circ T_{k}$ can be constructed sequentially
- Yields new algorithms for smoothing and and joint state-parameter inference in state-space models [SBM 2018; Houssineau, Jasra, Singh 2018]


## Application to state-space models (chain graph)

## ( $\quad \boldsymbol{X}_{0}$ (



- Compute $\mathfrak{M}_{0}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ s.t.

$$
\mathfrak{M}_{0}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)=\left[\begin{array}{l}
A_{0}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \\
B_{0}\left(\mathbf{x}_{1}\right)
\end{array}\right]
$$

- Reference: $\eta_{\mathrm{X}_{0}} \eta_{\mathrm{X}_{1}}$
- Target: $\pi_{\mathbf{Z}_{0}} \pi_{\mathbf{Z}_{1} \mid \mathbf{Z}_{0}} \pi_{\mathbf{Y}_{0} \mid \mathbf{Z}_{0}} \pi_{\mathbf{Y}_{1} \mid \mathbf{Z}_{1}}$
- $\operatorname{dim}\left(\mathfrak{M}_{0}\right) \simeq 2 \times \operatorname{dim}\left(\mathbf{Z}_{0}\right)$

$$
T_{0}(\mathbf{x})=\left[\begin{array}{l}
A_{0}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \\
B_{0}\left(\mathbf{x}_{1}\right) \\
\mathbf{x}_{2} \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]
$$

## Second step: compute another 2-D map



- Compute $\mathfrak{M}_{1}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ s.t.

$$
\mathfrak{M}_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left[\begin{array}{l}
A_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \\
B_{1}\left(\mathbf{x}_{2}\right)
\end{array}\right]
$$

$$
T_{1}(\mathbf{x})=\left[\begin{array}{l}
\mathbf{x}_{0} \\
A_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \\
B_{1}\left(\mathbf{x}_{2}\right) \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]
$$

## Proceed recursively forward in time



- Compute $\mathfrak{M}_{2}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ s.t.

$$
\mathfrak{M}_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)=\left[\begin{array}{l}
A_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
B_{2}\left(\mathbf{x}_{3}\right)
\end{array}\right]
$$

- Reference: $\eta_{\mathrm{X}_{2}} \eta_{\mathrm{X}_{3}}$
- Target: $\eta_{\mathbf{X}_{2}} \pi_{\mathbf{Y}_{3} \mid \mathbf{Z}_{3}} \pi_{\mathbf{Z}_{3} \mid \mathbf{Z}_{2}}\left(\cdot \mid B_{1}(\cdot)\right)$
- Uses only one component of $\mathfrak{M}_{1}$

$$
T_{2}(\mathbf{x})=\left[\begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{x}_{1} \\
A_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
B_{2}\left(\mathbf{x}_{3}\right) \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]
$$

## A decomposition theorem for chains



Theorem.
(1) $\left(B_{k}\right)_{\sharp} \eta_{\mathbf{X}_{k+1}}=\pi_{\mathbf{Z}_{k+1} \mid \mathbf{Y}_{0: k+1}}$
(filtering)
(2) $\left(\mathfrak{M}_{k}\right)_{\sharp} \eta_{\mathbf{X}_{k: k+1}} \simeq \pi_{\mathrm{Z}_{k}, \mathrm{Z}_{k+1} \mid \mathrm{Y}_{0: k+1}}$
(lag-1 smoothing)
(3) $\left(T_{1} \circ \cdots \circ T_{k}\right)_{\sharp} \eta_{\mathbf{x}_{0: k+1}}=\pi_{\mathbf{Z}_{0: k+1} \mid} \mid \mathbf{Y}_{0: k+1}$
(full Bayesian solution)

## A nested decomposable map

$-\mathfrak{T}_{k}=T_{0} \circ T_{1} \circ \cdots \circ T_{k}$ characterizes the joint dist $\pi_{\mathbf{Z}_{0: k+1} \mid \mathbf{Y}_{0: k+1}}$

$$
\mathfrak{T}_{k} \quad(\mathbf{x})=\underbrace{\left[\begin{array}{l}
A_{0}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \\
B_{0}\left(\mathbf{x}_{1}\right) \\
\mathbf{x}_{2} \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{0}} \circ \underbrace{\left[\begin{array}{l}
\mathbf{x}_{0} \\
A_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \\
B_{1}\left(\mathbf{x}_{2}\right) \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{1}} \circ
$$

- Trivial to go from $\mathfrak{T}_{k}$ to $\mathfrak{T}_{k+1}$ : just append a new map $T_{k+1}$
- No need to recompute $T_{0}, \ldots, T_{k}$ (nested transports)
- $\mathfrak{T}_{k}$ is dense and high-dimensional but decomposable


## A nested decomposable map

$-\mathfrak{T}_{k}=T_{0} \circ T_{1} \circ \cdots \circ T_{k}$ characterizes the joint dist $\pi_{\mathbf{Z}_{0: k+1} \mid \mathbf{Y}_{0: k+1}}$

$$
\mathfrak{T}_{k+1}(\mathbf{x})=\underbrace{\left[\begin{array}{l}
A_{0}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \\
B_{0}\left(\mathbf{x}_{1}\right) \\
\mathbf{x}_{2} \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{0}} \underbrace{\left[\begin{array}{l}
\mathbf{x}_{0} \\
A_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \\
B_{1}\left(\mathbf{x}_{2}\right) \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{1}} \circ \underbrace{\left[\begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{x}_{1} \\
A_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
B_{2}\left(\mathbf{x}_{3}\right) \\
\mathbf{x}_{4} \\
\mathbf{x}_{5} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{2}}
$$

- Trivial to go from $\mathfrak{T}_{k}$ to $\mathfrak{T}_{k+1}$ : just append a new map $T_{k+1}$
- No need to recompute $T_{0}, \ldots, T_{k}$ (nested transports)
- $\mathfrak{T}_{k}$ is dense and high-dimensional but decomposable


## Some intuition for smoothing

- Each lag-one smoothing map implements a factorization:

$$
\pi_{\mathbf{Z}_{k}, \mathbf{Z}_{k-1} \mid \mathbf{y}_{0: k}}=\pi_{\mathbf{Z}_{k} \mid \mathbf{y}_{0: k}} \pi_{\mathbf{Z}_{k-1} \mid \mathbf{Z}_{k}, \mathbf{y}_{0: k}}=\pi_{\mathbf{Z}_{k} \mid \mathbf{y}_{0: k}} \pi_{\mathbf{Z}_{k-1} \mid \mathbf{Z}_{k}, \mathbf{y}_{0: k-1}}
$$

- The composition of maps then implements the following factorization:

$$
\begin{aligned}
\pi_{\mathbf{Z}_{0: N} \mid \mathbf{y}_{0: N}}= & \pi_{\mathbf{Z}_{N} \mid \mathbf{y}_{0: N}} \pi_{\mathbf{Z}_{N-1} \mid \mathbf{Z}_{N,}, \mathbf{y}_{0: N-1}} \pi_{\mathbf{Z}_{N-2} \mid \mathbf{Z}_{N-1}, \mathbf{y}_{0: N-2}} \\
& \cdots \pi_{\mathbf{Z}_{1} \mid \mathbf{Z}_{2}, \mathbf{y}_{0: 1}} \pi_{\mathbf{Z}_{0} \mid \mathbf{Z}_{1}, \mathbf{y}_{0}}
\end{aligned}
$$

## A single-pass algorithm on the model

- Meta-algorithm:
(1) Compute the maps $\mathfrak{M}_{0}, \mathfrak{M}_{1}, \ldots$, each of dimension $2 \times \operatorname{dim}\left(\mathbf{Z}_{0}\right)$
(2) Embed each $\mathfrak{M}_{j}$ into an identity map to form $T_{j}$
(3) Evaluate $T_{0} \circ \cdots \circ T_{k}$ for the full Bayesian solution
- Remarks:
- A single pass on the state-space model
- Non-Gaussian generalization of the Rauch-Tung-Striebel smoother
- Bias is only due to the numerical approximation of each map $\mathfrak{M}_{i}$
- Can either accept the bias or reduce it by:
- Increasing the complexity of each map $\mathfrak{M}_{i}$, or
- Computing weights given by the proposal density

$$
\left(T_{0} \circ T_{1} \circ \cdots \circ T_{k}\right)_{\sharp} \eta_{\mathrm{x}_{0: k+1}}
$$

## Joint parameter/state estimation

- Generalize to sequential joint parameter/state estimation

$-\left(T_{0} \circ \cdots \circ T_{k}\right)_{\sharp} \eta_{\Theta} \eta_{\mathbf{X}_{0: k+1}}=\pi_{\Theta, \mathbf{Z}_{0: k+1} \mid \mathbf{Y}_{0: k+1} \quad \text { (full Bayesian solution) }}$
- Now $\operatorname{dim}\left(\mathfrak{M}_{j}\right)=2 \times \operatorname{dim}\left(\mathbf{Z}_{j}\right)+\operatorname{dim}(\Theta)$
- Remarks:
- No artificial dynamic for the static parameters
- No a priori fixed-lag smoothing approximation


## Example: stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=\mathbf{I d}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Start with the identity map


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=\mathbf{I d}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Find a good first decomposition of $\mathcal{G}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Compute an (essentially) 4-D $T_{0}$ and pull back $\pi$
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1} \mid \mathbf{Y}_{1}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Find a new decomposition
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1} \mid \mathbf{Y}_{1}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0} \circ T_{1}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Compute an (essentially) 4-D $T_{1}$ and pull back $\pi$
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1: 2} \mid \mathbf{Y}_{1: 2}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0} \circ T_{1}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Continue the recursion until no edges are left...
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1: 2} \mid \mathbf{Y}_{1: 2}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0} \circ T_{1} \circ T_{2}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Continue the recursion until no edges are left...
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1: 3} \mid \mathbf{Y}_{1: 3}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0} \circ T_{1} \circ T_{2} \circ \cdots \circ T_{N-3}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Continue the recursion until no edges are left...
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1: N-1} \mid \mathbf{Y}_{1: N-1}$


## Stochastic volatility model

- Build the decomposition recursively

$$
\mathfrak{T}=T_{0} \circ T_{1} \circ T_{2} \circ \cdots \circ T_{N-3} \circ T_{N-2}
$$



- Figure: Markov structure for the pullback of $\pi$ through $\mathfrak{T}$
- Each map $T_{k}$ is essentially 4-D regardless of $N$
- Underlying approximation of $\mu, \phi, \mathbf{Z}_{1: N} \mid \mathbf{Y}_{1: N}$


## Another decomposable map

$$
\mathfrak{T}_{k+1}(\mathbf{x})=\underbrace{\left[\begin{array}{l}
P_{0}\left(x_{\theta}\right) \\
A_{0}\left(\mathbf{x}_{\theta}, \mathbf{x}_{0}, \mathbf{x}_{1}\right) \\
B_{0}\left(\mathbf{x}_{\theta}, \mathbf{x}_{1}\right) \\
\mathbf{x}_{2} \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{0}} \underbrace{\left[\begin{array}{l}
P_{1}\left(x_{\theta}\right) \\
\mathbf{x}_{0} \\
A_{1}\left(\mathbf{x}_{\theta}, \mathbf{x}_{1}, \mathbf{x}_{2}\right) \\
B_{1}\left(\mathbf{x}_{\theta}, \mathbf{x}_{2}\right) \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{1}} \underbrace{\left[\begin{array}{l}
P_{2}\left(x_{\theta}\right) \\
\mathbf{x}_{0} \\
\mathbf{x}_{1} \\
A_{2}\left(\mathbf{x}_{\theta}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
B_{2}\left(\mathbf{x}_{\theta}, \mathbf{x}_{3}\right) \\
\mathbf{x}_{4} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]}_{T_{2}}
$$

- $\left(P_{0} \circ \cdots \circ P_{k}\right)_{\sharp} \eta_{\Theta}=\pi_{\Theta \mid Y_{0: k+1}}$
(parameter inference)
- If $\mathfrak{P}_{k}=P_{0} \circ \cdots \circ P_{k}$, then $\mathfrak{P}_{k}$ can be computed recursively as

$$
\mathfrak{P}_{k}=\mathfrak{P}_{k-1} \circ P_{k}
$$

$\Longrightarrow$ cost of evaluating $\mathfrak{P}_{k}$ does not grow with $k$

## Example: stochastic volatility model

- Stochastic volatility model: Latent log-volatilities take the form of an $\operatorname{AR}(1)$ process for $t=1, \ldots, N$ :

$$
Z_{t+1}=\mu+\phi\left(Z_{t}-\mu\right)+\eta_{t}, \quad \eta_{t} \sim \mathcal{N}(0,1), \quad Z_{1} \sim \mathcal{N}\left(0,1 / 1-\phi^{2}\right)
$$

- Observe the mean return for holding an asset at time $t$

$$
Y_{t}=\varepsilon_{t} \exp \left(0.5 Z_{t}\right), \quad \varepsilon_{t} \sim \mathcal{N}(0,1), \quad t=1, \ldots, N
$$

- Markov structure for $\pi \sim \mu, \phi, \mathbf{Z}_{1: N} \mid \mathbf{Y}_{1: N}$ is given by:



## Stochastic volatility example



- Infer log-volatility of the pound/dollar exchange rate, starting on 1 October 1981
- Filtering (blue) versus smoothing (red) marginals


## Smoothing marginals

- Just re-evaluate the 4-D maps backwards in time
- Comparison with a "reference" MCMC solution with $10^{5}$ ESS (in red)



## Static parameter $\phi$

- Sequential parameter inference
- Comparison with a "reference" MCMC solution (batch algorithm)

- Slow accumulation of error over time (sequential algorithm)
- Acceptance rate 75\% for Metropolis independence sampler with transport proposal



## Long-time smoothing ( 25 years)



## Stochastic volatility example

- Variance diagnostic $\operatorname{Var}_{\eta}\left[\log \left(\eta / T_{\sharp}^{-1} \bar{\pi}\right)\right]$ values, for a 947-dimensional target $\pi$ (smoothing and parameter estimation for 945 days) :
- Laplace map $=5.68$; linear maps $=1.49$; degree $\leq 7$ maps $=0.11$
- Important open question: how does error in the approximation of the parameter posterior evolve over time?


## Too many cycles. . .



- For certain graphs, sparsity/decomposability do not imply decoupling between the nominal dimension of the problem and the dimension of each transport $T_{i}$ (or the sparsity of $S$ )
- Here, $\mathcal{G}$ is an $n \times n$ grid graph
- $T^{S \cup A}$ acts on $2 n$ dimensions at each stage


## Beyond the Markov properties of $\pi$

- Key idea: seek low-rank structure and near-identity maps
- Example: fix target $\pi$ to be the posterior density of a Bayesian inference problem,

$$
\pi(\mathbf{z}):=\pi_{\mathrm{pos}}(\mathbf{z}) \propto \pi_{\mathrm{Y} \mid \mathrm{Z}}(\mathbf{y} \mid \mathbf{z}) \pi_{\mathrm{Z}}(\mathbf{z})
$$

- Let $T_{\mathrm{pr}}$ push forward the reference $\eta$ to the prior $\pi_{\mathbf{Z}}$ (prior map)

$$
\widehat{\pi}_{\mathrm{pos}}(\mathbf{z}):=T_{\mathrm{pr}}^{\sharp} \pi_{\mathrm{pos}}(\mathbf{z}) \propto \pi_{\mathrm{Y} \mid \mathrm{Z}}\left(\mathbf{y} \mid T_{\mathrm{pr}}(\mathbf{z})\right) \eta(\mathbf{z})
$$

## Theorem [Graph decoupling]

If $\eta=\prod_{i} \eta_{X_{i}}$ and

$$
\operatorname{rank} \mathbb{E}_{\eta}[\nabla \log R \otimes \nabla \log R]=k, \quad R=\widehat{\pi}_{\mathrm{pos}} / \eta=\pi_{\mathrm{Y} \mid \mathrm{Z}} \circ T_{\mathrm{pr}}
$$

then there exists a rotation $Q$ such that:

$$
Q^{\sharp} \widehat{\pi}_{\mathrm{pos}}(\mathbf{z})=g\left(z_{1}, \ldots, z_{k}\right) \prod_{i>k}^{n} \eta_{X_{i}}\left(z_{i}\right)
$$

## Changing the Markov structure. . .

- The pullback has a different Markov structure:

$$
Q^{\sharp} \widehat{\pi}_{\mathrm{pos}}(\mathbf{z})=g\left(z_{1}, \ldots, z_{k}\right) \prod_{i>k}^{n} \eta_{X_{i}}\left(z_{i}\right)
$$



G

$\mathcal{G}$ Pullback

- Corollary: There exists a transport $T_{\sharp} \eta=Q^{\sharp} \widehat{\pi}_{\text {pos }}$ of the form $T(\mathbf{x})=\left[g\left(\mathbf{x}_{1: k}\right), x_{k+1}, \ldots, x_{n}\right]$, where $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.
- The composition $T_{\mathrm{pr}} \circ Q \circ T$ pushes forward $\eta$ to $\pi_{\text {pos }}$
- Why low rank structure? For example, few data-informed directions.


## Log-Gaussian Cox process



- 4096-D GMRF prior, $\mathbf{Z} \sim \mathcal{N}(\mu, \Gamma), \Gamma^{-1}$ specified through $\triangle+\kappa^{2}$ Id
- 30 sparse observations at locations $i \in \mathcal{I}, \mathbf{Y}_{i} \mid \mathbf{Z}_{i} \sim \operatorname{Pois}\left(\exp \mathbf{Z}_{i}\right)$
- Posterior density $\mathbf{Z} \mid \mathbf{Y} \sim \pi_{\text {pos }}$ is:

$$
\pi_{\mathrm{pos}}(\mathbf{z}) \propto \prod_{i \in \mathcal{I}} \exp \left[-\exp \left(z_{i}\right)+z_{i} \cdot y_{i}\right] \exp \left[-\frac{1}{2}(\mathbf{z}-\mu)^{\prime} \Gamma^{-1}(\mathbf{z}-\mu)\right]
$$

- What is an independence map $\mathcal{G}$ for $\pi_{\text {pos }}$ ?


## Log-Gaussian Cox process



- 4096-D GMRF prior, $\mathbf{Z} \sim \mathcal{N}(\mu, \Gamma), \Gamma^{-1}$ specified through $\triangle+\kappa^{2} \mathrm{Id}$
- 30 sparse observations at locations $i \in \mathcal{I}, \mathbf{Y}_{i} \mid \mathbf{Z}_{i} \sim \operatorname{Pois}\left(\exp \mathbf{Z}_{i}\right)$
- Posterior density $\mathbf{Z} \mid \mathbf{Y} \sim \pi_{\text {pos }}$ is:

$$
\pi_{\mathrm{pos}}(\mathbf{z}) \propto \prod_{i \in \mathcal{I}} \exp \left[-\exp \left(z_{i}\right)+z_{i} \cdot y_{i}\right] \exp \left[-\frac{1}{2}(\mathbf{z}-\boldsymbol{\mu})^{\top} \Gamma^{-1}(\mathbf{z}-\boldsymbol{\mu})\right]
$$

- What is an independence map $\mathcal{G}$ for $\pi_{\text {pos }}$ ? A $64 \times 64$ grid.


## Log-Gaussian Cox process

- Fix $\pi_{\text {ref }} \sim \mathcal{N}(0, \mathrm{I})$ and let $T_{\mathrm{pr}}$ push forward $\pi_{\text {ref }}$ to $\pi_{\mathrm{pr}}$ (prior map)
- Consider the pullback $\widehat{\pi}_{\text {pos }}=T_{p r}^{\sharp} \pi_{\text {pos }}$ and find that

$$
\operatorname{rank} \mathbb{E}_{\pi_{\mathrm{rcc}}}[\nabla \log R \otimes \nabla \log R]=30 \ll n, \quad R=\widehat{\pi}_{\mathrm{pos}} / \pi_{\text {ref }}
$$

- Deflate the problem and compute a transport map in $\mathbf{3 0}$ dimensions
- Change from prior to posterior concentrated in a low-dimensional subspace

truth

posterior sample

posterior mean


## Log-Gaussian Cox process



- (left) $\mathbb{E}[\mathbf{Z} \mid \mathbf{y}]$, (right) $\operatorname{Var}[\mathbf{Z} \mid \mathbf{y}]$. (top) transport; (bottom) MCMC
- Excellent match with reference MCMC solution
- Can we understand this structure more generally?


## A conjecture

In many situations, the data are informative only on a low-dimensional subspace


$$
\mathbb{R}^{d}=\underbrace{X_{\mathrm{r}}}_{\pi_{\mathrm{pos}} \neq \pi_{\mathrm{pr}}}+\underbrace{X_{-}}_{\pi_{\mathrm{pos}} \approx \pi_{\mathrm{pr}}}
$$

## Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

$$
\widetilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}(P, x) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}$ and rank $r$ linear projector $P_{r} \in \mathbb{R}^{d \times d}$

## Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

$$
\tilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}(P, x) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}$ and rank $r$ linear projector $P_{r} \in \mathbb{R}^{d \times d}$
$P_{r}$ induces a decomposition of the space

$$
x=x_{r}+x_{\perp} \quad \begin{cases}x_{r} & \in \operatorname{Im}\left(P_{r}\right) \\ x_{\perp} & \in \operatorname{Ker}\left(P_{r}\right)\end{cases}
$$

By construction, $x \rightarrow \tilde{\mathcal{L}}\left(P_{r} x\right)=\widetilde{\mathcal{L}}\left(x_{r}\right)$ is only a function of $x_{r} \in \operatorname{Im}\left(P_{r}\right) \equiv \mathbb{R}^{r}$.

## Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

$$
\tilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}(P, x) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}$ and rank $r$ linear projector $P_{r} \in \mathbb{R}^{d \times d}$
$P_{r}$ induces a decomposition of the space

$$
x=x_{r}+x_{\perp} \quad \begin{cases}x_{r} & \in \operatorname{Im}\left(P_{r}\right) \\ x_{\perp} & \in \operatorname{Ker}\left(P_{r}\right)\end{cases}
$$

By construction, $x \rightarrow \widetilde{\mathcal{L}}\left(P_{r} x\right)=\widetilde{\mathcal{L}}\left(x_{r}\right)$ is only a function of $x_{r} \in \operatorname{lm}\left(P_{r}\right) \equiv \mathbb{R}^{r}$. If $r \ll d$ :

- Design dimension-independent MCMC algorithms to sample from $\pi_{\mathrm{pos}}$.苇[Cui, Law, M 2016]
- Build surrogates for the low-dimensional function $x_{r} \mapsto \tilde{\mathcal{L}}\left(x_{r}\right)$ with a reasonable complexity


## Many methods for constructing $P_{r}$ and $\widetilde{L}$

- $P_{r}$ can be defined as a projector onto the dominant eigenspace of a matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ which contains "relevant information"


## Many methods for constructing $P_{r}$ and $\widetilde{L}$

- $P_{r}$ can be defined as a projector onto the dominant eigenspace of a matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ which contains "relevant information"
- Likelihood-informed subspace (LIS)

$$
\mathbf{H}_{\text {LIS }}=\int(\nabla G)^{T} \Gamma_{\text {olss }}^{-1}(\nabla G) \mathrm{d} \pi_{\text {pos }}
$$

where $\mathcal{L}_{y}$ follows from $y \sim \mathcal{N}\left(G(x), \Gamma_{\text {obs }}\right)$

- Active subspace (AS)

$$
\mathbf{H}_{\mathrm{AS}}-\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pr}}
$$

## Many methods for constructing $P_{r}$ and $\widetilde{\mathcal{L}}$

- $P_{r}$ can be defined as a projector onto the dominant eigenspace of a matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ which contains "relevant information"
- Likelihood-informed subspace (LIS)

$$
\mathbf{H}_{\text {LIS }}=\int(\nabla G)^{T} \Gamma_{\text {olss }}^{-1}(\nabla G) \mathrm{d} \pi_{\text {pos }}
$$

where $\mathcal{L}_{y}$ follows from $y \sim \mathcal{N}\left(G(x), \Gamma_{\text {obs }}\right)$

- Active subspace (AS)

를[Constantine, Kent, Bui-Thanh 2015]

$$
\mathbf{H}_{\mathrm{AS}}-\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pr}}
$$

- Different definitions of $\widetilde{\mathcal{L}}$ :
- Fix complementary parameters (LIS): $\tilde{\mathcal{L}}\left(P_{r} x\right)=\mathcal{L}_{y}\left(P_{r} x+\left(l-P_{r}\right) m_{0}\right)$
- Via the conditional expectation of the log-likelihood (AS)

$$
\widetilde{\mathcal{L}}\left(P_{r} x\right)=\exp \mathbb{E}_{\pi_{r r}}\left(\log \mathcal{L}_{y} \mid P_{r} x\right)
$$

## Objective

Build an approximation of $\pi_{\text {pos }}$ of the form

$$
\tilde{\pi}_{\mathrm{pos}}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x) \quad \text { with }\left\{\begin{array}{l}
\widetilde{\mathcal{L}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+} \\
P_{r} \in \mathbb{R}^{d \times d} \text { rank- } r \text { projector }
\end{array}\right.
$$ such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \widetilde{\pi}_{\mathrm{pos}}\right) \leq \varepsilon
$$

with $r=r(\varepsilon)$ much smaller than $d$.

## Decomposition of the error

## A "Pythagorean" theorem

For any $P_{r}$ and $\widetilde{\mathcal{L}}$ we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \widetilde{\pi}_{\mathrm{pos}}\right)=\underbrace{D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right)}_{=\text {function }\left(P_{r}\right)}+\underbrace{D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*} \| \tilde{\pi}_{\mathrm{pos}}\right)}_{=\text {function }\left(P_{r}, \tilde{\mathcal{L}}\right)}
$$

where

$$
\pi_{\mathrm{pos}}^{*}(x) \propto \mathbb{E}_{\pi_{\mathrm{pr}}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

## Decomposition of the error

## A "Pythagorean" theorem

For any $P_{r}$ and $\widetilde{\mathcal{L}}$ we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \widetilde{\pi}_{\mathrm{pos}}\right)=\underbrace{D_{\mathrm{KL}}\left(\pi_{\text {pos }} \| \pi_{\text {pos }}^{*}\right)}_{=\text {function }\left(P_{r}\right)}+\underbrace{D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{*} \| \tilde{\pi}_{\text {pos }}\right)}_{=\text {function }\left(P_{r}, \widetilde{\mathcal{L}}\right)}
$$

where

$$
\pi_{\mathrm{pos}}^{*}(x) \propto \mathbb{E}_{\pi_{\mathrm{pr}}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)
$$

This allows decoupling the construction of $\widetilde{\mathcal{L}}$ and $P_{r}$.

- Given $P_{r}$, the function $\widetilde{\mathcal{L}}$ such that $\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathbb{E}_{\pi_{\text {pr }}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ yields

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*} \| \widetilde{\pi}_{\mathrm{pos}}\right)=0
$$

- How to construct $P_{r}$ such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \varepsilon
$$

with a rank $r \ll d$ ?

## Constructing the projector $P_{r}$

## Assumption (on the prior distribution)

There exist functions $V$ and $\psi$ such that

$$
\pi_{\mathrm{pr}}(x) \propto \exp (-V(x)-\Psi(x)) \quad \text { with } \quad\left\{\begin{array}{l}
\nabla^{2} V \succeq \Gamma \\
\exp (\sup \Psi-\inf \Psi) \leq \kappa
\end{array}\right.
$$

for some SPD matrix $\Gamma \in \mathbb{R}^{d \times d}$ and some $\kappa \geq 1$.

## Constructing the projector $P_{r}$

## Assumption (on the prior distribution)

There exist functions $V$ and $\psi$ such that

$$
\pi_{\mathrm{pr}}(x) \propto \exp (-V(x)-\Psi(x)) \quad \text { with } \quad\left\{\begin{array}{l}
\nabla^{2} V \succeq \Gamma \\
\exp (\sup \Psi-\inf \Psi) \leq \kappa
\end{array}\right.
$$

for some SPD matrix $\Gamma \in \mathbb{R}^{d \times d}$ and some $\kappa \geq 1$.


- Gaussian prior $\pi_{\mathrm{pr}}=\mathcal{N}\left(\mu_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ satisfies this assumption with $\Gamma=\Sigma_{\text {pr }}^{-1}$ and $\kappa=1$
- Gaussian mixture $\pi_{\mathrm{pr}} \propto \sum_{i} \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$ also satisfies this assumption


## Constructing the projector $P_{r}$

Based on this assumption, $\pi_{p r}$ satisfies the logarithmic Sobolev inequality 릴(Ledoux 1997]

$$
\int h^{2} \log \frac{h^{2}}{\int h^{2} \mathrm{~d} \pi_{\mathrm{pr}}} \mathrm{~d} \pi_{\mathrm{pr}} \leq 2 \kappa \int\|\nabla h\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\mathrm{pr}}
$$

for any function $h$ with sufficient regularity.

## Constructing the projector $P_{r}$

Based on this assumption, $\pi_{p r}$ satisfies the logarithmic Sobolev inequality

$$
\int h^{2} \log \frac{h^{2}}{\int h^{2} \mathrm{~d} \pi_{\mathrm{pr}}} \mathrm{~d} \pi_{\mathrm{pr}} \leq 2 \kappa \int\|\nabla h\|_{\Gamma_{-1}^{-1}}^{2} \mathrm{~d} \pi_{\mathrm{pr}}
$$

for any function $h$ with sufficient regularity.

## Proposition (subspace logarithmic Sobolev inequality)

$\pi_{\mathrm{pr}}$ also satisfies

$$
\int h^{2} \log \frac{h^{2}}{\mathbb{E}\left(h^{2} \mid P_{r} x\right)} \mathrm{d} \pi_{\mathrm{pr}} \leq 2 \kappa \int\left\|\left(l_{d}-P_{r}^{T}\right) \nabla h\right\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\mathrm{pr}}
$$

for any function $h$ with sufficient regularity and any projector $P_{r}$.

## Constructing the projector $P_{r}$

## Corollary

For any projector $P_{r}$ we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)
$$

where

$$
\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma_{-1}}^{2} \mathrm{~d} \pi_{\text {pos }}
$$

## Constructing the projector $P_{r}$

## Corollary

For any projector $P_{r}$ we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)
$$

where

$$
\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\text {pos }}
$$

Finding $P_{r}$ that minimizes this bound corresponds to PCA of $\nabla \log \mathcal{L}_{y}(X)$.

- For a fixed $r$, the minimizer $P_{r}^{*}$ of the reconstruction error $\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}\right)$ is the $\Gamma$-orthogonal projector onto the dominant generalized eigenspace of

$$
\mathbf{H}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pos}}
$$

- Furthermore we have $\mathcal{R}_{\pi_{\text {pos }}}\left(P_{r}^{*}\right)=\sum_{i>r} \lambda_{i}$, where $\lambda_{i}$ is the $i$-th generalized eigenvalue of $(\mathbf{H}, \Gamma)$


## An idealized algorithm

1 Compute

$$
\mathbf{H}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pos}}
$$

2 Define $P_{r}$ as the projector on the dominant eigenspace of $(\mathbf{H}, \Gamma)$
3 Compute the conditional expectation

$$
\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)
$$

Then $\pi_{\text {pos }}^{*}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\text {spr }}(x)$ satisfies

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \frac{\kappa}{2} \sum_{i>r} \lambda_{i}
$$

- At step 2, we can choose the rank $r=r(\varepsilon)$ of $P_{r}$ such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \pi_{\mathrm{pos}}^{*}\right) \leq \varepsilon
$$

- A strong decay in $\lambda_{i}$ implies $r(\varepsilon) \ll d$


## An idealized algorithm

1 Compute

$$
\mathbf{H}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \pi_{\mathrm{pos}}
$$

2 Define $P_{r}$ as the projector on the dominant eigenspace of $(\mathbf{H}, \Gamma)$
3 Compute the conditional expectation

$$
\widetilde{\mathcal{L}}\left(P_{r} x\right)=\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)
$$

## Practical issues

- Evaluating $\mathbf{H}$ requires computing an integral over the posterior
- Computing the conditional expectation requires some effort


## Sample approximations of H

- Monte Carlo approximation of $\mathbf{H}$ :

$$
\mathbf{H} \approx \widehat{\mathbf{H}}_{K}:=\frac{1}{K} \sum_{i=1}^{K} \nabla \log \mathcal{L}_{y}\left(X_{i}\right) \otimes \nabla \log \mathcal{L}_{y}\left(X_{i}\right) \quad \text { with } \quad X_{i} \stackrel{\mathrm{iid}}{\sim} \pi_{\mathrm{pos}}
$$

## Proposition

Under some assumptions, quasi-optimal projectors are obtained with high probability $1-\delta$ if

$$
K \geq \mathcal{O}\left(\sqrt{\operatorname{rank}(H)}+\sqrt{\log \left(2 \delta^{-1}\right)}\right)^{2}
$$

- Key assumption: $\nabla \log \mathcal{L}_{y}(X)$ is sub-Gaussian, for $X \sim \pi_{\text {pos }}$


## Approximation of $\pi_{\mathrm{pos}}^{*}(x) \propto \mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)$

- The conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ can be expressed as

$$
x \mapsto \int \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) z\right) \pi_{\mathrm{pr}}\left(z \mid P_{r} x\right) \mathrm{d} z
$$

where $\pi_{\mathrm{pr}}\left(\cdot \mid P_{r} x\right)$ denotes the conditional prior, which depends on $x$.

## Approximation of $\pi_{\mathrm{pos}}^{*}(x) \propto \mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)$

- The conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ can be expressed as

$$
x \mapsto \int \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) z\right) \pi_{\mathrm{pr}}\left(z \mid P_{r} x\right) \mathrm{d} z
$$

where $\pi_{\mathrm{pr}}\left(\cdot \mid P_{r} x\right)$ denotes the conditional prior, which depends on $x$.

- Consider the following Monte Carlo estimate

$$
\widetilde{\mathcal{L}}: x \mapsto \frac{1}{M} \sum_{i=1}^{M} \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) Z_{i}\right) \quad, \quad Z_{i} \stackrel{\mathrm{iid}}{\sim} \pi_{\mathrm{pr}}
$$

In general, $\widetilde{\mathcal{L}}\left(P_{r} x\right)$ is a biased estimator for $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$.

## Approximation of $\pi_{\text {pos }}^{*}(x) \propto \mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right) \pi_{\mathrm{pr}}(x)$

- The conditional expectation $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$ can be expressed as

$$
x \mapsto \int \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) z\right) \pi_{\mathrm{pr}}\left(z \mid P_{r} x\right) \mathrm{d} z
$$

where $\pi_{\mathrm{pr}}\left(\cdot \mid P_{r} x\right)$ denotes the conditional prior, which depends on $x$.

- Consider the following Monte Carlo estimate

$$
\widetilde{\mathcal{L}}: x \mapsto \frac{1}{M} \sum_{i=1}^{M} \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) Z_{i}\right) \quad, \quad Z_{i} \stackrel{\mathrm{iid}}{\sim} \pi_{\mathrm{pr}}
$$

In general, $\widetilde{\mathcal{L}}\left(P_{r} x\right)$ is a biased estimator for $\mathbb{E}_{\mathrm{pr}}\left(\mathcal{L}_{y} \mid P_{r} x\right)$.

## Proposition

The random distribution $\widetilde{\pi}_{\text {pos }}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x)$ is such that

$$
\mathbb{E}\left(D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{*} \| \widetilde{\pi}_{\mathrm{pos}}\right)\right) \lesssim\left(C_{1}+\frac{C_{2}}{M}\right) \mathcal{R}_{\pi_{\mathrm{pos}}\left(P_{r}\right)}
$$

## Approximating H using other distributions

- Recall that

$$
\mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\mathrm{pos}}
$$

- Let $\rho$ be a tractable density and consider

$$
\mathcal{R}_{\rho}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma^{-1}}^{2} \mathrm{~d} \rho
$$

## Approximating H using other distributions

- Recall that

$$
\mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Gamma-1}^{2} \mathrm{~d} \pi_{\mathrm{pos}}
$$

- Let $\rho$ be a tractable density and consider

$$
\mathcal{R}_{\rho}\left(P_{r}\right)=\int\left\|\left(I_{d}-P_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{r^{-1}}^{2} \mathrm{~d} \rho
$$

- The minimizer $P_{r}^{*}$ of $P_{r} \mapsto \mathcal{R}_{\rho}\left(P_{r}\right)$ is such that

$$
\mathcal{R}_{\pi_{\mathrm{pos}}}\left(P_{r}^{*}\right) \leq\left(\sup \frac{\pi_{\mathrm{pos}}}{\rho}\right) \sum_{i>r} \lambda_{i}^{(\rho)}
$$

where $\lambda_{i}^{(\rho)}$ is the $i$-th generalized eigenvalue of

$$
\mathbf{H}^{(\rho)}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \rho
$$

## A practical algorithm

1 Compute (e.g., with Monte Carlo)

$$
\mathbf{H}^{(\rho)}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \rho
$$

2 Compute the projector $P_{r}$ based on $\mathbf{H}^{(\rho)}$
3 Draw one sample $Z \sim \pi_{\text {pr }}$ and let

$$
\widetilde{\mathcal{L}}: x \mapsto \mathcal{L}_{y}\left(P_{r} x+\left(I_{d}-P_{r}\right) Z\right)
$$

Then $\widetilde{\pi}_{\text {pos }}(x) \propto \widetilde{\mathcal{L}}\left(P_{r} x\right) \pi_{\mathrm{pr}}(x)$ is such that

$$
\mathbb{E}\left(D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}} \| \widetilde{\pi}_{\mathrm{pos}}\right)\right) \leq(c s t)\left(\sup \frac{\pi_{\mathrm{pos}}}{\rho}\right) \sum_{i>r} \lambda_{i}^{(\rho)}
$$

- Ideally, $\rho$ should be close to $\pi_{\text {pos }}$
- The spectrum of $\left(\mathbf{H}^{(\rho)}, \Gamma\right)$ is still an indicator for the low effective dimensionality of the problem!
- Estimate gas densities $x=\varrho^{\text {gas }}(z)$ from transmission spectra $y_{\omega}(z)$
- Becr's law:

$$
y_{\omega}(z)=\exp \left(-\int_{\text {light path }} \sum_{\text {gas }} \alpha_{\omega}^{\text {gas }}(z(\zeta)) e^{\text {gas }}(z(\zeta)) d \zeta\right)+\xi
$$

Slpens:


- Gaussian prior $\mathcal{N}\left(\mu_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ (hence $\Gamma=\Sigma_{\mathrm{pr}}^{-1}$ and $\left.\kappa=1\right)$
- After discretization of the atmosphere, $\operatorname{dim}(x)=200$


## Results



## Results



## Results

$D_{\mathrm{KL}}\left(\pi_{\text {pos }} \| \widetilde{\pi}_{\text {pos }}\right)=$ function $(r)$

$\mathbf{H}^{(\rho)}=\int \nabla \log \mathcal{L}_{y} \otimes \nabla \log \mathcal{L}_{y} \mathrm{~d} \rho$

$$
\mathbf{H}_{\mathrm{LIS}}^{(\rho)}=\int(\nabla G)^{T} \Gamma_{\text {obs }}^{-1}(\nabla G) \mathrm{d} \rho
$$

## Results



## An iterative algorithm

1: Draw $M$ samples $Y_{1}, \ldots, Y_{M}$ from $\pi_{\mathrm{pr}}$
2: for $\ell=0, \ldots, L$ do
3: $\quad$ if $\ell=0$ then
4: $\quad$ Draw $K$ samples $X_{1}^{(\ell)}, \ldots, X_{k}^{(\ell)}$ from $\pi_{\mathrm{pr}}$
5: $\quad$ Compute $\nabla \log \mathcal{L}_{y}\left(X_{k}^{(\ell)}\right)$ and set the weights $w_{k}^{(\ell)}=1$
else

$$
\text { Draw } K \text { samples } X_{1}, \ldots, X_{K} \text { from } \hat{\nu}_{r}^{(\ell)} \text { (e.g, using MCMC) }
$$

Compute $\nabla \log \mathcal{L}_{y}\left(X_{k}^{(\ell)}\right)$ and $w_{k}^{(\ell)}=\frac{\mathcal{L}_{y}\left(X_{k}^{(\ell)}\right)}{\hat{F}_{r}^{(\ell)}\left(X_{k}^{(\ell)}\right)}$
9: Assemble the matrix

$$
\hat{H}^{(\ell)}=\frac{1}{\sum_{k=1}^{K} w_{k}^{(\ell)}} \sum_{k=1}^{K} w_{k}^{(\ell)}\left(\nabla \log \mathcal{L}_{y}\left(X_{k}^{(\ell)}\right)\right)\left(\nabla \log \mathcal{L}_{y}\left(X_{k}^{(\ell)}\right)\right)^{\top}
$$

10: $\quad$ Compute a projector $P_{r}^{(\ell+1)}$ such that $\mathcal{R}_{\Gamma}\left(P_{r}^{(\ell+1)}, \hat{H}^{(\ell)}\right) \leq \varepsilon$
11: Define the approximate distribution $\hat{\nu}_{r}^{(\ell+1)}$ as

$$
\frac{\mathrm{d} \hat{\mathrm{~L}}_{r}^{(\ell+1)}}{\mathrm{d} \pi_{\mathrm{pr}}} \propto \hat{F}_{r}^{(\ell+1)}, \quad \text { where } \quad \hat{F}_{r}^{(\ell+1)}=\frac{1}{M} \sum_{i=1}^{M} \mathcal{L}_{y}\left(P_{r}^{(\ell+1)} x+\left(I_{d}-P_{r}^{(\ell+1)}\right) Y_{i}\right)
$$

## Iterative algorithm: results


(left) fixed threshold; (right) fixed rank

## Summary on dimension reduction

## Conclusions:

- Exploit the low effective dimensionality of Bayesian inverse problems
- Methodology:
- Derive an upper bound on the error (KL-divergence)
- Compute a minimizer of the upper bound using PCA on $\nabla \log \mathcal{L}_{y}$
- Better performance than existing gradient-based methods (e.g., likelihood-informed subspace or active subspace)


## Summary on dimension reduction

## Conclusions:

- Exploit the low effective dimensionality of Bayesian inverse problems
- Methodology:
- Derive an upper bound on the error (KL-divergence)
- Compute a minimizer of the upper bound using PCA on $\nabla \log \mathcal{L}_{y}$
- Better performance than existing gradient-based methods (e.g., likelihood-informed subspace or active subspace)


## Open questions:

- Does there exist an optimal projector, i.e., a minimizer of the KL divergence?
- What is the best computational strategy to approximate $\mathbf{H}$ ?


## Back to transport: low rank structure

- Let $U=\left[U_{r} U_{\perp}\right] \in \mathbb{R}^{n \times n}$ be a unitary matrix, with $U_{r} \in \mathbb{R}^{n \times r}$. A lazy map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ takes the form:

$$
T(z)=U_{r} \tau\left(z_{1}, \ldots, z_{r}\right)+U_{\perp} z_{\perp}
$$

for some diffeomorphism $\tau: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$.

- Map $T \in \mathcal{T}_{r}(U)$ departs from the identity only on an $r$-dimensional subspace
- Proposition: For any lazy map $T \in \mathcal{T}_{r}(U)$, there exists a strictly positive function $f: \mathbb{R}^{r} \rightarrow \mathbb{R}_{+}$such that

$$
T_{\sharp} \eta(x)=f\left(U_{r}^{\top} x\right) \eta(x),
$$

for all $x \in \mathbb{R}^{n}$ where $\eta=\mathcal{N}\left(0, \mathbf{I}_{n}\right)$. Conversely, any density of the form $f\left(U_{r}^{\top} x\right) \eta(x)$ for some $f: \mathbb{R}^{r} \rightarrow \mathbb{R}_{+}$admits a lazy map representation.

## Low-rank structure

## Why would such structure (approximately) appear?

- Bayesian inverse problems: data only partially informative; posterior departs from the prior primarily on a low-dimensional subspace.
- Formalized by likelihood-informed subspace [Cui et al. 2014]; also, active subspace [Constantine et al. 2015], and recent refinements/connections [Zahm ct al. 2018].



## Error bound and subspace

How to find a good $U_{r}$ ?

- Define

$$
H_{\pi}:=\int\left(\nabla \log \frac{\pi}{\eta}\right)\left(\nabla \log \frac{\pi}{\eta}\right)^{\top} d \pi
$$

- Let $\left(\lambda_{i}, u_{i}\right)$ be the $i$ th eigenpair of $H_{\pi}$ and put $U_{r}=\left[u_{1} u_{2} \cdots u_{r}\right]$.
- Theorem [Zahm et al. 2018]:

$$
\mathcal{D}_{K L}\left(\pi \| T_{\sharp}^{\star} \eta\right) \leq \frac{1}{2}\left(\lambda_{r+1}+\ldots+\lambda_{d}\right) .
$$

where $T_{\sharp}^{\star} \eta=f^{\star}\left(U_{r}^{\top} x\right) \eta(x)$ and $f^{\star}\left(z_{r}\right)=\mathbb{E}_{X \sim \eta}\left[\left.\frac{\pi(X)}{\eta(X)} \right\rvert\, U_{r}^{\top} X=z_{r}\right]$.

- Good approximation when the spectrum of $H_{\pi}$ decays quickly
- Uses a ridge approximation of $d \pi / d \eta$ (e.g., the likelihood), with optimal profile function $f^{\star}$


## Layers of lazy maps

- What if $\left(\lambda_{i}\right)$ do not decay quickly? What if we are limited to small $r$ ?
- Answer: layers of lazy maps, via a greedy construction
- Given ( $\pi, \eta, r_{1}$ ): compute $H_{\pi}$ and construct a first lazy map $T_{1}$
- Pull back $\pi$ by $T_{1}: \pi_{2}:=\left(T_{1}^{-1}\right)_{\theta} \pi$
- Given ( $\pi_{2}, \eta_{1}, r_{2}$ ): compute $H_{\pi_{2}}$ and construct a next lazy map $T_{2} \ldots$
- Generic iteration: at stage $\ell$, build a lazy map to the pullback $\pi_{\ell}:=\left(T_{1} \circ T_{2} \circ \cdots \circ T_{\ell}\right)_{\eta}^{-1} \pi$
- Stop when $\frac{1}{2} \operatorname{Tr}\left(H_{\pi_{\ell}}\right)<\epsilon$



## Layers of lazy maps

Example: rotated "banana" target distribution, $r=1$ maps


## Example: log-Gaussian Cox process



Field $\boldsymbol{\Lambda}^{*}$ and observations $\mathbf{y}^{\star}$


Realizations of $\Lambda \sim \pi_{\mathrm{A} \mathbf{y}^{*}}$

## Example: log-Gaussian Cox process

- Parameter dimension $n=4096,30$ observations; fixed ranks $r$


Convergence


Spectrum of $H_{\pi_{k}}$

## Example: elliptic PDE Bayesian inverse problem

$$
\left\{\begin{array}{l}
\nabla \cdot\left(e^{\kappa(x)} \nabla u(\mathbf{x})\right)=0, \text { for } \mathbf{x} \in \mathcal{D}:=[0,1]^{2} \\
u(\mathbf{x})=0 \text { for } x_{1}=0, u(\mathbf{x})=1 \text { for } x_{1}=1, \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}}=0 \text { for } x_{2} \in\{0,1\}
\end{array}\right.
$$

- Infer $k(\mathbf{x})$, discretized with $n=2601$ parameters; 81 observations; lazy maps of $r \leq 4$ and polynomial degree up to 2

$u(\mathbf{x})$ and observations


Convergence


Posterior realizations of $\kappa(\mathbf{x})$

## Summary of Part 1

- Central idea: characterize complex/intractable distributions by constructing deterministic couplings
- Many kinds of low-dimensional structure (non-exhaustive):
- Sparse maps, decomposable maps
- Low rank structure (lazy maps)
- Exploiting the pullback distribution
- Compositions of approximate maps, constructed greedily
- (Part 2) Use approximate maps to precondition other sampling or cubature schemes


## Summary of Part 1

## Extensions and open questions:

- Using sparse grids or QMC for map construction
- Zoo of map parameterizations and their approximation properties
- Tail behavior of maps
- Additional varieties of low-dimensional structure: hierarchical, multiscale, tensor, . . .
- Maps from samples:
- We will explore this in Part 2


## Summary of Part 1

## Extensions and open questions:

- Using sparse grids or QMC for map construction
- Zoo of map parameterizations and their approximation properties
- Tail behavior of maps
- Additional varieties of low-dimensional structure: hierarchical, multiscale, tensor, ...
- Maps from samples:
- We will explore this in Part 2


## Thanks for your attention!

## References

- A. Spantini, R. Baptista, Y. Marzouk. "Coupling techniques for nonlinear ensemble filtering." arXiv:1907.00389.
- D. Bigoni, O. Zahm, A. Spantini, Y. Marzouk. "Greedy inference with layers of lazy maps." arXiv:1906.00031.
- O. Zahm, T. Cui, K. Law, A. Spantini, Y. Marzouk. "Certified dimension reduction in nonlinear Bayesian inverse problems." arXiv:1807.03712.
- A. Spantini, D. Bigoni, Y. Marzouk. "Inference via low-dimensional couplings." JMLR 19(66): 1-71, 2018.
- M. Parno, Y. Marzouk, "Transport map accelerated Markov chain Monte Carlo." SIAM JUQ 6: 645-682, 2018.
- G. Detomasso, T. Cui, A. Spantini, Y. Marzouk, R. Scheichl, "A Stein variational Newton method." NeurIPS 2018.
- R. Morrison, R. Baptista, Y. Marzouk. "Beyond normality: learning sparse probabilistic graphical models in the non-Gaussian setting." NeurIPS 2017.
- Y. Marzouk, T. Moselhy, M. Parno, A. Spantini, "An introduction to sampling via measure transport." Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, H. Owhadi, eds. Springer (2016). arXiv:1602.05023.
- General python code at http://transportmaps.mit.edu

