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Motivation: Bayesian inference in large-scale models

Observations y Parameters x

πpos(x) := π(x |y) ∝ π(y |x)πpr(x)︸ ︷︷ ︸
Bayes’ rule

◮ Characterize the posterior distribution (density πpos)

◮ This is a challenging task since:
◮ x ∈ Rn is typically high-dimensional (e.g., a discretized function)
◮ πpos is non-Gaussian
◮ evaluations of the likelihood (hence πpos) may be expensive

◮ πpos can be evaluated up to a normalizing constant
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Motivation: Sequential Bayesian inference

[image: NCAR]

◮ From batch to sequential approaches:

◮ State estimation (e.g., filtering and smoothing) in a Bayesian setting
◮ Need recursive algorithms for characterizing the posterior
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Plan for the lectures

Part 1 (Wednesday)

◮ Introduction to transport methods for inference and stochastic

modeling

◮ Sparsity and decomposability of transport maps

◮ Bayesian inference in state-space models

◮ Dimension reduction in Bayesian inverse problems

◮ Low-rank structure in transport maps; greedy approximations

Part 2 (Thursday)

◮ Preconditioning MCMC using transport

◮ Nonlinear ensemble filtering methods

◮ Structure learning in non-Gaussian graphical models
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Computational challenges of Bayesian inference

◮ Extract information from the posterior (means, covariances, event

probabilities, predictions) by evaluating posterior expectations:

Eπpos [h(x)] =

∫
h(x)πpos(x)dx

◮ Key strategy for making this computationally tractable:

◮ Surrogates or approximations of the {forward model, likelihood

function, posterior density}

◮ Efficient and structure-exploiting sampling schemes

Marzouk et al. ETICS Research School 5 / 71



Computational challenges of Bayesian inference

◮ Extract information from the posterior (means, covariances, event

probabilities, predictions) by evaluating posterior expectations:

Eπpos [h(x)] =

∫
h(x)πpos(x)dx

◮ Key strategy for making this computationally tractable:

◮ Surrogates or approximations of the {forward model, likelihood

function, posterior density}

◮ Efficient and structure-exploiting sampling schemes

◮ These lectures: relate to notions of coupling and transport. . .
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Deterministic couplings of probability measures

 T

 
η  π

Core idea

◮ Choose a reference distribution η (e.g., standard Gaussian)

◮ Seek a transport map T : Rn → Rn such that T♯η = π
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Deterministic couplings of probability measures

   S =T
−1

 
η  π

Core idea

◮ Choose a reference distribution η (e.g., standard Gaussian)

◮ Seek a transport map T : Rn → Rn such that T♯η = π

◮ Equivalently, find S = T−1 such that S♯π = η
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Deterministic couplings of probability measures

 T

 
η  π

Core idea

◮ Choose a reference distribution η (e.g., standard Gaussian)

◮ Seek a transport map T : Rn → Rn such that T♯η = π

◮ Equivalently, find S = T−1 such that S♯π = η

◮ In principle, enables exact (independent, unweighted) sampling!
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Deterministic couplings of probability measures

 T

 
η  π

Core idea

◮ Choose a reference distribution η (e.g., standard Gaussian)

◮ Seek a transport map T : Rn → Rn such that T♯η = π

◮ Equivalently, find S = T−1 such that S♯π = η

◮ Satisfying these conditions only approximately can still be useful!
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Choice of transport map

A useful building block is the Knothe–Rosenblatt rearrangement:

T (x) =




T 1(x1)

T 2(x1, x2)
...

T n(x1, x2, . . . , xn)




◮ Unique triangular and monotone map satisfying T♯η = π for

absolutely continuous η, π on Rn

◮ Jacobian determinant easy to evaluate
◮ Monotonicity is essentially one-dimensional: ∂xk

T k > 0
◮ “Exposes” marginals, enables conditional sampling. . .
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Choice of transport map

A useful building block is the Knothe–Rosenblatt rearrangement:

T (x) =




T 1(x1)

T 2(x1, x2)
...

T n(x1, x2, . . . , xn)




◮ Unique triangular and monotone map satisfying T♯η = π for

absolutely continuous η, π on Rn

◮ Jacobian determinant easy to evaluate
◮ Monotonicity is essentially one-dimensional: ∂xk

T k > 0
◮ “Exposes” marginals, enables conditional sampling. . .

◮ Numerical approximations can employ a monotone parameterization

guaranteeing ∂xk
T k > 0. For example:

T k(x1, . . . , xk) = ak(x1, . . . , xk−1)+

∫ xk

0

exp(bk(x1, . . . , xk−1,w)) dw
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How to construct triangular maps?

Construction #1: “maps from densities,” i.e., variational

characterization of the direct map T [Moselhy & M 2012]
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How to construct triangular maps?

Construction #1: “maps from densities,” i.e., variational

characterization of the direct map T [Moselhy & M 2012]

min
T∈T h

△

DKL(T♯ η ||π ) = min
T∈T h

△

DKL( η ||T
−1
♯ π )

◮ π is the “target” density on Rn; η is, e.g., N (0, In)

◮ T h
△ is a set of monotone lower triangular maps

◮ T h→∞
△ contains the Knothe–Rosenblatt rearrangement

◮ Expectation is with respect to the reference measure η
◮ Compute via, e.g., Monte Carlo, sparse quadrature

◮ Use unnormalized evaluations of π and its gradients

◮ No MCMC or importance sampling

◮ In general non-convex, unless π is log-concave
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Useful features

◮ Move samples; don’t just reweigh them

◮ Independent and cheap samples: xi ∼ η ⇒ T (xi)

◮ Clear convergence criterion, even with unnormalized target density:

DKL(T♯ η ||π ) ≈
1

2
Varη

[
log

η

T−1
♯ π̄

]
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Useful features

◮ Move samples; don’t just reweigh them

◮ Independent and cheap samples: xi ∼ η ⇒ T (xi)

◮ Clear convergence criterion, even with unnormalized target density:

DKL(T♯ η ||π ) ≈
1

2
Varη

[
log

η

T−1
♯ π̄

]

◮ Can either accept bias or reduce it by:
◮ Increasing the complexity of the map T ∈ T h

△

◮ Sampling the pullback T−1
♯ π using MCMC or importance sampling

(more on this later)
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Useful features

◮ Move samples; don’t just reweigh them

◮ Independent and cheap samples: xi ∼ η ⇒ T (xi)

◮ Clear convergence criterion, even with unnormalized target density:

DKL(T♯ η ||π ) ≈
1

2
Varη

[
log

η

T−1
♯ π̄

]

◮ Can either accept bias or reduce it by:
◮ Increasing the complexity of the map T ∈ T h

△

◮ Sampling the pullback T−1
♯ π using MCMC or importance sampling

(more on this later)

◮ Related transport constructions for inference and sampling: Stein variational

gradient descent [Liu & Wang 2016, DeTommaso 2018], normalizing flows

[Rezende & Mohamed 2015], SOS polynomial flow [Jaini et al. 2019], Gibbs

flow [Heng et al. 2015], particle flow filter [Reich 2011], implicit sampling

[Chorin et al. 2009–2015], etc.
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Ubiquity of triangular maps

Many “flows” recently proposed in machine learning are special cases of

triangular maps:

◮ NICE: Nonlinear independent component estimation [Dinh et al. 2015]

T k(x1, . . . , xk) = µk(x1:k−1) + xk

◮ Inverse autoregressive flow [Dinh et al. 2017]

T k(x1, . . . , xk) = (1− σk(x1:k−1))µk(x1:k−1) + xkσk(x1:k−1)

◮ Masked autogressive flow [Papamakarios et al. 2017]

T k(x1, . . . , xk) = µk(x1:k−1) + xk exp(αk(x1:k−1))

◮ Neural autoregressive flow [Huang et al. 2018

T k(x1, . . . , xk) = DNN(xk ;wk(x1:k−1))

◮ Sum-of-squares polynomial flow [Jaini et al. 2019]
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How to construct triangular maps?

Construction #2: “maps from samples”

min
S∈Sh

△

DKL(S♯π || η ) = min
S∈Sh

△

DKL(π ||S
−1
♯ η )

◮ Suppose we have Monte Carlo samples {xi}
M
i=1 ∼ π

◮ For standard Gaussian η, this problem is convex and separable

◮ This is density estimation via transport! (cf. Tabak & Turner 2013)
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How to construct triangular maps?

Construction #2: “maps from samples”

min
S∈Sh

△

DKL(S♯π || η ) = min
S∈Sh

△

DKL(π ||S
−1
♯ η )

◮ Suppose we have Monte Carlo samples {xi}
M
i=1 ∼ π

◮ For standard Gaussian η, this problem is convex and separable

◮ This is density estimation via transport! (cf. Tabak & Turner 2013)

◮ Equivalent to maximum likelihood estimation of S

Ŝ ∈ arg max
S∈Sh

△

1

M

MX

i=1

log S−1
♯ η︸ ︷︷ ︸

pullback

(xi), η = N (0, In),

◮ Each component Ŝk of Ŝ can be computed separately, via smooth

convex optimization

Ŝk ∈ arg min
Sk∈Sh

△,k

1

M

MX

i=1

(
1

2
Sk(xi)

2 − log ∂kSk(xi)

)
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Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions

◮ Major bottleneck: representation of the map, e.g., cardinality of the

map basis

◮ How to make the construction/representation of high-dimensional

transports tractable?
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Low-dimensional structure of transport maps

Underlying challenge: maps in high dimensions

◮ Major bottleneck: representation of the map, e.g., cardinality of the

map basis

◮ How to make the construction/representation of high-dimensional

transports tractable?

Main ideas:

1 Exploit Markov structure of the target distribution
◮ Leads to sparsity and/or decomposability of transport maps [Spantini,

Bigoni, & M JMLR 2018]

2 Exploit certain low rank structure
◮ Near-identity or “lazy” maps [Bigoni et al. arXiv:1906.00031]
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Markov random fields

◮ Let Z1, . . . ,Zn be random variables with joint density π > 0

(i , j) /∈ E iff Zi ⊥⊥ Zj |ZV\{i ,j}

◮ G = (V, E) encodes conditional independence (an I -map for π)

◮ Theorem [SBM 2018]: Define G s.t. (i , j) /∈ E iff ∂xi ,xj
logπ = 0. Then

the resulting G is the unique minimal I -map for π.
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Sparsity of transport maps

◮ Focus on the inverse triangular map S , where S♯π = η

◮ Theorem [SBM 2018]: S (a nonlinear function) inherits the same

sparsity pattern as the Cholesky factor of the incidence matrix

(properly scaled) of a graphical model for π, provided that

η(x) =
∏

i η(xi)

S(x) =




S1(x1)

S2(x1, x2)

S3(x1, x2, x3)
...

Sn(x1, x2, . . . , xn)



=⇒




S1(x1)

S2(x1, x2)

S3(x1,x2, x3)
...

Sn(x1, x2, . . . ,xn−1, xn)



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How to compute the sparsity pattern

3

2

5

14

G
5

3

2

5

14

G
4

3

2

5

14

G
3

5

2

4

13

G
2

◮ Compute marginal graphs: G i−1 is obtained from G i by removing

node i and by turning its neighborhood into a clique

(like variable elimination)

◮ Sparsity of inverse transport: the i-th

component of S can depend, at most, on the

variables in a neighborhood of node i in G i

◮ Sparsity depends on the ordering of the variables

(similar heuristics as sparse Cholesky) Pkj = ∂xj
Sk
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Decomposable transport maps

◮ Definition: a decomposable transport is a map T = T1 ◦ · · · ◦ Tk

that factorizes as the composition of finitely many maps of low

effective dimension that are triangular (up to a permutation), e.g.,

T (x) =




A1(x1, x2, x3)

B1(x2, x3)

C1(x3)

x4

x5

x6




︸ ︷︷ ︸
T1

◦




x1

A2(x2, x3, x4, x5)

B2(x3, x4, x5)

C2(x4, x5)

D2(x5)

x6




︸ ︷︷ ︸
T2

◦




x1

x2

x3

A3(x4)

B3(x4, x5)

C3(x4, x5, x6)




︸ ︷︷ ︸
T3

◮ Theorem [SBM 2018]: Decomposable graphical models for π lead to

decomposable direct maps T , provided that η(x) =
∏

i η(xi )
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Decomposable transport maps

◮ Example graph decomposition V = (A,S,B)

◮ Effective dimension of each component map is |A ∪ S|

A BS

2

3

1 6

4

5
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Graph decomposition

A BS

Definition

A triple (A,S ,B) of disjoint nonempty subsets of the vertex set V forms a

decomposition of G if the following hold

1 V = A ∪ S ∪ B

2 S separates A from B in G
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Step 1: build a local map

A BS

◮ For a given decomposition (A,S ,B), consider M1 : R3 → R3 s.t.

1 M1(xA, xS) =

[
A1(xS , xA)
B1(xS)

]
pushes forward η3 to marginal πXS∪A

2 Embed M1 in T1(xA, xS , xB) =




A1(xS , xA)

B1(xS)
xB


, T1 : R6 → R6

◮ What can we say about the pullback density T ♯1π ?
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Local graph sparsification

A BS

T = T1

◮ Figure: Markov structure of the pullback of π through T

◮ Just remove any edge incident to any node in A

◮ T1 is essentially a 3-D map

◮ Pulling back π through T1 makes ZA independent of ZS∪B !

Marzouk et al. ETICS Research School 17 / 71



Do it recursively!

A BS

T = T1

◮ Figure: Markov structure of the pullback of π through T

◮ Recursion at step k

1 Consider a new decomposition (A,S ,B)
2 Compute transport Tk

3 Pull back through Tk
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Step k: new decomposition and local map

A A BS

T = T1

◮ Figure: Markov structure of the pullback of π through T

◮ Recursion at step k

1 Consider a new decomposition (A,S ,B)
2 Compute transport Tk

3 Pull back through Tk
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Step k: local graph sparsification

A A BS

T = T1 ◦ T2

◮ Figure: Markov structure of the pullback of π through T

◮ T2 is essentially a 4-D map

◮ Each time we pull back by a new map we remove edges

◮ Intuition: Continue the recursion until no edges are left. . .
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And so on. . .

A A

T = T1 ◦ T2

◮ Figure: Markov structure of the pullback of π through T

◮ T2 is essentially a 4-D map

◮ Each time we pullback by a new map we remove edges

◮ Intuition. Continue the recursion until no edges are left...
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Decomposable maps

A A

T = T1 ◦ T2 ◦ T3

◮ Figure: Markov structure of the pullback of π through T

◮ Decomposability of G ⇒ existence of decomposable couplings

◮ Anisotropic triangular structure of (Ti) is essential

◮ Idea: inference decomposed into smaller steps (no need for

marginals!)

◮ In fact, we can make this more general. . .
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Decomposition theorem

Theorem [Decomposition of transports]

Let G be an I-map for π and let η =
∏

j ηXj
be a reference density.

If (A,S ,B) is a decomposition of G, then

1 ∃ a transport map:

T = T1 ◦ T2

◮ T1 is a monotone triangular transport s.t. η
T1−→ πXA∪S

· (
∏

j∈B ηXj
)

◮ T1 is the identity map along components in B: T k
1 (x) = xk for k ∈ B

◮ T2 is any transport s.t. η
T2−→ T ♯1π

2 XA is independent of XS∪B w.r.t. the pullback density T ♯1π

◮ T2 is the identity along components in A: T k
2 (x) = xk for k ∈ A

◮ Strategy: recursively apply theorem to further decompose T2
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Graph decomposition (end result)

A BS A A
◮ (right) I-map for the pullback of π through T

T (x) =




A1(x1, x2, x3)

B1(x2, x3)

C1(x3)

x4

x5

x6




︸ ︷︷ ︸
T1

◦




x1

A2(x2, x3, x4, x5)

B2(x3, x4, x5)

C2(x4, x5)

D2(x5)

x6




︸ ︷︷ ︸
T2

◦




x1

x2

x3

A3(x4)

B3(x4, x5)

C3(x4, x5, x6)




︸ ︷︷ ︸
T3
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Transport maps and graphical models

Key message

◮ Direct maps: enforce decomposable structure in the approximation

space T△, i.e., when solving minT∈T△ DKL(T♯η ||π )

◮ Inverse maps: enforce sparsity in the approximation space S△, i.e.,

in solving minS∈S△ DKL(π ||S
−1
♯ η )

◮ Can also use for structure learning in non-Gaussian graphical models

◮ A general tool for modeling and computation with non-Gaussian

Markov random fields
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Transport maps and state-space models

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

Θ

◮ In many situations, elements of the composition

T = T1 ◦ T2 ◦ · · · ◦ Tk can be constructed sequentially

◮ Yields new algorithms for smoothing and and joint state-parameter

inference in state-space models [SBM 2018; Houssineau, Jasra, Singh

2018]
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Application to state-space models (chain graph)

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

◮ Compute M0 : R2n → R2n s.t.

M0(x0, x1) =

[
A0(x0, x1)

B0(x1)

]

◮ Reference: ηX0
ηX1

◮ Target: πZ0
πZ1|Z0

πY0|Z0
πY1|Z1

B0())

◮ dim(M0) ≃ 2× dim(Z0)

T0(x) =




A0(x0, x1)

B0(x1)

x2

x3

x4

x5
.

.

.

xN




Marzouk et al. ETICS Research School 21 / 71



Second step: compute another 2-D map

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

◮ Compute M1 : R2n → R2n s.t.

M1(x1, x2) =

[
A1(x1, x2)

B1(x2)

]

◮ Reference: ηX1
ηX2

◮ Target: ηX1
πY2|Z2

πZ2|Z1
(·|B0 (·) )

◮ Uses only one component of M0 ()

T1(x) =




x0

A1(x1, x2)

B1(x2)

x3

x4

x5
.

.

.

xN



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Proceed recursively forward in time

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

◮ Compute M2 : R2n → R2n s.t.

M2(x2, x3) =

[
A2(x2, x3)

B2(x3)

]

◮ Reference: ηX2
ηX3

◮ Target: ηX2
πY3|Z3

πZ3|Z2
(·|B1 (·) )

◮ Uses only one component of M1 ()

T2(x) =




x0

x1

A2(x2, x3)

B2(x3)

x4

x5
.

.

.

xN



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A decomposition theorem for chains

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

Theorem.

1 (Bk)♯ ηXk+1
= πZk+1 |Y0:k+1

(filtering)

2 (Mk)♯ ηXk:k+1
≃ πZk ,Zk+1 |Y0:k+1

(lag-1 smoothing)

3 (T1 ◦ · · · ◦ Tk)♯ ηX0:k+1
= πZ0:k+1|Y0:k+1

(full Bayesian solution)
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A nested decomposable map

◮ Tk = T0 ◦ T1 ◦ · · · ◦ Tk characterizes the joint dist πZ0:k+1|Y0:k+1

Tk+1(x) =




A0(x0, x1)

B0(x1)

x2

x3

x4

x5
...

xN




︸ ︷︷ ︸
T0

◦




x0

A1(x1, x2)

B1(x2)

x3

x4

x5
...

xN




︸ ︷︷ ︸
T1

◦




x0

x1

A2(x2, x3)

B2(x3)

x4

x5
...

xN




︸ ︷︷ ︸
T2

◦ · · ·

◮ Trivial to go from Tk to Tk+1: just append a new map Tk+1

◮ No need to recompute T0, . . . ,Tk (nested transports)

◮ Tk is dense and high-dimensional but decomposable
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A nested decomposable map

◮ Tk = T0 ◦ T1 ◦ · · · ◦ Tk characterizes the joint dist πZ0:k+1|Y0:k+1

Tk+1(x) =




A0(x0, x1)

B0(x1)

x2

x3

x4

x5
...

xN




︸ ︷︷ ︸
T0

◦




x0

A1(x1, x2)

B1(x2)

x3

x4

x5
...

xN




︸ ︷︷ ︸
T1

◦




x0

x1

A2(x2, x3)

B2(x3)

x4

x5
...

xN




︸ ︷︷ ︸
T2

◦ · · ·

◮ Trivial to go from Tk to Tk+1: just append a new map Tk+1

◮ No need to recompute T0, . . . ,Tk (nested transports)

◮ Tk is dense and high-dimensional but decomposable
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Some intuition for smoothing

◮ Each lag-one smoothing map implements a factorization:

πZk ,Zk−1|y0:k
= πZk |y0:k

πZk−1|Zk ,y0:k
= πZk |y0:k

πZk−1|Zk ,y0:k−1

◮ The composition of maps then implements the following factorization:

πZ0:N |y0:N
= πZN |y0:N

πZN−1|ZN ,y0:N−1
πZN−2|ZN−1,y0:N−2

· · ·πZ1|Z2,y0:1
πZ0|Z1,y0
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A single-pass algorithm on the model

◮ Meta-algorithm:

1 Compute the maps M0,M1, . . ., each of dimension 2× dim(Z0)

2 Embed each Mj into an identity map to form Tj

3 Evaluate T0 ◦ · · · ◦ Tk for the full Bayesian solution

◮ Remarks:

◮ A single pass on the state-space model

◮ Non-Gaussian generalization of the Rauch-Tung-Striebel smoother

◮ Bias is only due to the numerical approximation of each map Mi

◮ Can either accept the bias or reduce it by:

◮ Increasing the complexity of each map Mi , or

◮ Computing weights given by the proposal density

(T0 ◦ T1 ◦ · · · ◦ Tk)♯ ηX0:k+1
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Joint parameter/state estimation

◮ Generalize to sequential joint parameter/state estimation

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

Θ

◮ (T0 ◦ · · · ◦ Tk)♯ ηΘ ηX0:k+1
= πΘ ,Z0:k+1 |Y0:k+1

(full Bayesian solution)

◮ Now dim(Mj) = 2× dim(Zj) + dim(Θ)

◮ Remarks:
◮ No artificial dynamic for the static parameters

◮ No a priori fixed-lag smoothing approximation
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Example: stochastic volatility model

◮ Build the decomposition recursively

T = Id◦T1◦TN−1

A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Start with the identity map
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Stochastic volatility model

◮ Build the decomposition recursively

T = Id◦T1◦TN−1

A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Find a good first decomposition of G
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0◦Id◦TN−1

A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Compute an (essentially) 4-D T0 and pull back π

◮ Underlying approximation of µ, φ,Z1|Y1
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0◦Id◦TN−1

A A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Find a new decomposition

◮ Underlying approximation of µ, φ,Z1|Y1
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0 ◦ T1◦Id◦TN−1

A A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Compute an (essentially) 4-D T1 and pull back π

◮ Underlying approximation of µ, φ,Z1:2|Y1:2
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0 ◦ T1◦Id◦TN−1

A A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Continue the recursion until no edges are left. . .

◮ Underlying approximation of µ, φ,Z1:2|Y1:2
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0 ◦ T1 ◦ T2◦Id ◦ TN−1

A A BS

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Continue the recursion until no edges are left. . .

◮ Underlying approximation of µ, φ,Z1:3|Y1:3
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0 ◦ T1 ◦ T2 ◦ · · · ◦ TN−3◦Id

A A

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Continue the recursion until no edges are left. . .

◮ Underlying approximation of µ, φ,Z1:N−1|Y1:N−1
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Stochastic volatility model

◮ Build the decomposition recursively

T = T0 ◦ T1 ◦ T2 ◦ · · · ◦ TN−3 ◦ TN−2◦Id

A A

1 2 3 4 N

µ φ

◮ Figure: Markov structure for the pullback of π through T

◮ Each map Tk is essentially 4-D regardless of N

◮ Underlying approximation of µ, φ,Z1:N |Y1:N
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Another decomposable map

Tk+1(x) =




P0(xθ)

A0(xθ, x0, x1)

B0(xθ, x1)

x2

x3

x4
...

xN




︸ ︷︷ ︸
T0

◦




P1(xθ)

x0

A1(xθ, x1, x2)

B1(xθ, x2)

x3

x4
...

xN




︸ ︷︷ ︸
T1

◦




P2(xθ)

x0

x1

A2(xθ, x2, x3)

B2(xθ, x3)

x4
...

xN




︸ ︷︷ ︸
T2

◦· · ·

◮ (P0 ◦ · · · ◦ Pk)♯ ηΘ = πΘ |Y0:k+1
(parameter inference)

◮ If Pk = P0 ◦ · · · ◦ Pk , then Pk can be computed recursively as

Pk = Pk−1 ◦ Pk

=⇒ cost of evaluating Pk does not grow with k
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Example: stochastic volatility model

◮ Stochastic volatility model: Latent log-volatilities take the form of

an AR(1) process for t = 1, . . . ,N:

Zt+1 = µ+ φ (Zt − µ) + ηt , ηt ∼ N (0, 1), Z1 ∼ N (0, 1/1− φ2)

◮ Observe the mean return for holding an asset at time t

Yt = εt exp( 0.5 Zt ), εt ∼ N (0, 1), t = 1, . . . ,N

◮ Markov structure for π ∼ µ, φ,Z1:N |Y1:N is given by:

1 2 3 4 N

µ φ
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Stochastic volatility example

◮ Variance diagnostic Varη[log(η/T−1
♯ π̄)] values, for a 947-dimensional

target π (smoothing and parameter estimation for 945 days) :

◮ Laplace map = 5.68; linear maps = 1.49; degree ≤ 7 maps = 0.11

◮ Important open question: how does error in the approximation of

the parameter posterior evolve over time?
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Too many cycles. . .

◮ For certain graphs, sparsity/decomposability do not imply
decoupling between the nominal dimension of the problem and the
dimension of each transport Ti (or the sparsity of S)
◮ Here, G is an n × n grid graph
◮ T S∪A acts on 2n dimensions at each stage
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Beyond the Markov properties of π

◮ Key idea: seek low-rank structure and near-identity maps

◮ Example: fix target π to be the posterior density of a Bayesian

inference problem,

π(z) := πpos(z) ∝ πY|Z(y | z)πZ(z)

◮ Let Tpr push forward the reference η to the prior πZ (prior map)

π̂pos(z) := T ♯pr πpos(z) ∝ πY|Z(y |Tpr(z) ) η(z)

Theorem [Graph decoupling]

If η =
∏

i ηXi
and

rank Eη [∇ log R ⊗∇ log R ] = k , R = π̂pos/η = πY|Z ◦ Tpr

then there exists a rotation Q such that:

Q♯ π̂pos(z) = g( z1, ..., zk )

n∏

i>k

ηXi
(zi)
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Changing the Markov structure. . .

◮ The pullback has a different Markov structure:

Q♯ π̂pos(z) = g( z1, ..., zk )

n∏

i>k

ηXi
(zi)

G G Pullback

◮ Corollary: There exists a transport T♯ η = Q♯ π̂pos of the form

T (x) = [ g(x1:k), xk+1, . . . , xn ], where g : Rk → Rk .

◮ The composition Tpr ◦Q ◦ T pushes forward η to πpos

◮ Why low rank structure? For example, few data-informed

directions.
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Log-Gaussian Cox process

G

◮ 4096-D GMRF prior, Z ∼ N (µ, Γ), Γ−1 specified through △+ κ2 Id

◮ 30 sparse observations at locations i ∈ I, Yi |Zi ∼ Pois( expZi)

◮ Posterior density Z|Y ∼ πpos is:

πpos(z) ∝
∏

i∈I

exp[− exp(zi) + zi · yi ] exp

[
−

1

2
(z− µ)⊤Γ−1(z− µ)

]

◮ What is an independence map G for πpos? A 64× 64 grid.
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Objective

Build an approximation of πpos of the form

π̃pos(x) ∝ L̃(Prx)πpr(x) with

{
L̃ : Rd → R+

Pr ∈ R
d×d rank-r projector

such that

DKL(πpos||π̃pos) ≤ ε

with r = r(ε) much smaller than d .
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Decomposition of the error

A “Pythagorean” theorem

For any Pr and L̃ we have

DKL

(
πpos

∣∣∣∣π̃pos

)
= DKL

(
πpos

∣∣∣∣π∗pos

)
︸ ︷︷ ︸

=function(Pr )

+DKL

(
π∗pos

∣∣∣∣π̃pos

)
︸ ︷︷ ︸
=function(Pr ,L̃)

where

π∗pos(x) ∝ Eπpr

(
Ly

∣∣Prx
)
πpr(x)
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Decomposition of the error

A “Pythagorean” theorem

For any Pr and L̃ we have

DKL

(
πpos

∣∣∣∣π̃pos

)
= DKL

(
πpos

∣∣∣∣π∗pos

)
︸ ︷︷ ︸

=function(Pr )

+DKL

(
π∗pos

∣∣∣∣π̃pos

)
︸ ︷︷ ︸
=function(Pr ,L̃)

where

π∗pos(x) ∝ Eπpr

(
Ly

∣∣Prx
)
πpr(x)

This allows decoupling the construction of L̃ and Pr .

◮ Given Pr , the function L̃ such that L̃(Prx) = Eπpr

(
Ly

∣∣Prx
)

yields

DKL

(
π∗pos

∣∣∣∣π̃pos

)
= 0

◮ How to construct Pr such that

DKL

(
πpos

∣∣∣∣π∗pos

)
≤ ε

with a rank r ≪ d ?
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Constructing the projector Pr

Corollary

For any projector Pr we have

DKL

(
πpos

∣∣∣∣π∗pos

)
≤
κ

2
Rπpos(Pr )

where

Rπpos(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖
2
Γ−1 dπpos
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Constructing the projector Pr

Corollary

For any projector Pr we have

DKL

(
πpos

∣∣∣∣π∗pos

)
≤
κ

2
Rπpos(Pr )

where

Rπpos(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖
2
Γ−1 dπpos

Finding Pr that minimizes this bound corresponds to PCA of ∇ logLy (X ).

◮ For a fixed r , the minimizer P∗r of the reconstruction error Rπpos(Pr ) is the

Γ-orthogonal projector onto the dominant generalized eigenspace of

H =

∫
∇ logLy ⊗∇ logLy dπpos

◮ Furthermore we have Rπpos(P
∗
r ) =

∑
i>r λi , where λi is the i-th generalized

eigenvalue of (H, Γ)
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An idealized algorithm

1 Compute

H =

∫
∇ logLy ⊗∇ logLy dπpos

2 Define Pr as the projector on the dominant eigenspace of (H, Γ)

3 Compute the conditional expectation

L̃(Prx) = Epr(Ly |Prx)

Then π∗pos(x) ∝ L̃(Prx)πSpr(x) satisfies

DKL

(
πpos

∣∣∣∣π∗pos

)
≤
κ

2

X

i>r

λi

◮ At step 2, we can choose the rank r = r(ε) of Pr such that

DKL(πpos||π
∗
pos) ≤ ε

◮ A strong decay in λi implies r(ε)≪ d
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An idealized algorithm

1 Compute

H =

∫
∇ logLy ⊗∇ logLy dπpos

2 Define Pr as the projector on the dominant eigenspace of (H, Γ)

3 Compute the conditional expectation

L̃(Prx) = Epr(Ly |Prx)

Practical issues

◮ Evaluating H requires computing an integral over the posterior

◮ Computing the conditional expectation requires some effort
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Sample approximations of H

◮ Monte Carlo approximation of H:

H ≈ ĤK :=
1

K

KX

i=1

∇ logLy (Xi)⊗∇ logLy (Xi) with Xi
iid
∼ πpos

Proposition

Under some assumptions, quasi-optimal projectors are obtained with high

probability 1− δ if

K ≥ O
(√

rank(H) +
√

log(2δ−1)
)2

◮ Key assumption: ∇ logLy (X ) is sub-Gaussian, for X ∼ πpos
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Approximation of π∗pos(x) ∝ Epr(Ly |Prx)πpr(x)

◮ The conditional expectation Epr(Ly |Prx) can be expressed as

x 7→

∫
Ly (Prx + (Id − Pr )z) πpr(z |Prx)dz

where πpr(·|Prx) denotes the conditional prior, which depends on x .
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Approximation of π∗pos(x) ∝ Epr(Ly |Prx)πpr(x)

◮ The conditional expectation Epr(Ly |Prx) can be expressed as

x 7→

∫
Ly (Prx + (Id − Pr )z) πpr(z |Prx)dz

where πpr(·|Prx) denotes the conditional prior, which depends on x .

◮ Consider the following Monte Carlo estimate

L̃ : x 7→
1

M

MX

i=1

Ly (Prx + (Id − Pr )Zi) , Zi
iid
∼ πpr

In general, L̃(Prx) is a biased estimator for Epr(Ly |Prx).
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Approximation of π∗pos(x) ∝ Epr(Ly |Prx)πpr(x)

◮ The conditional expectation Epr(Ly |Prx) can be expressed as

x 7→

∫
Ly (Prx + (Id − Pr )z) πpr(z |Prx)dz

where πpr(·|Prx) denotes the conditional prior, which depends on x .

◮ Consider the following Monte Carlo estimate

L̃ : x 7→
1

M

MX

i=1

Ly (Prx + (Id − Pr )Zi) , Zi
iid
∼ πpr

In general, L̃(Prx) is a biased estimator for Epr(Ly |Prx).

Proposition

The random distribution π̃pos(x) ∝ L̃(Prx)πpr(x) is such that

E

(
DKL(π

∗
pos||π̃pos)

)
.

(
C1 +

C2

M

)
Rπpos(Pr )
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Approximating H using other distributions

◮ Recall that

Rπpos(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖
2
Γ−1 dπpos

◮ Let ρ be a tractable density and consider

Rρ(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖
2
Γ−1 dρ
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Approximating H using other distributions

◮ Recall that

Rπpos(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖
2
Γ−1 dπpos

◮ Let ρ be a tractable density and consider

Rρ(Pr ) =

∫
‖(Id − PT

r )∇ logLy‖
2
Γ−1 dρ

◮ The minimizer P∗r of Pr 7→ Rρ(Pr ) is such that

Rπpos(P
∗
r ) ≤

(
sup
πpos

ρ

)X

i>r

λ
(ρ)
i

where λ
(ρ)
i is the i-th generalized eigenvalue of

H(ρ) =

∫
∇ logLy ⊗∇ logLy dρ
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A practical algorithm

1 Compute (e.g., with Monte Carlo)

H(ρ) =

∫
∇ logLy ⊗∇ logLy dρ.

2 Compute the projector Pr based on H(ρ)

3 Draw one sample Z ∼ πpr and let

L̃ : x 7→ Ly (Prx + (Id − Pr )Z )

Then π̃pos(x) ∝ L̃(Prx)πpr(x) is such that

E

(
DKL

(
πpos

∣∣∣∣π̃pos

))
≤ (cst)

(
sup
πpos

ρ

)X

i>r

λ
(ρ)
i

◮ Ideally, ρ should be close to πpos

◮ The spectrum of (H(ρ), Γ) is still an indicator for the low effective

dimensionality of the problem!
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Results

DKL(πpos||π̃pos) = function(r)

10 20 30 40 50

10
−6

10
−4

10
−2

10
0

10
2

10
4

error bound

New, ρ = πpos

H =

∫
∇ logLy ⊗∇ logLy dπpos
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Results

DKL(πpos||π̃pos) = function(r)

10 20 30 40 50

10−6

10−4

10−2

100

102

104

ρ = πpr

ρ = Laplace(πpos)
error bound

New, ρ = πpos

H(ρ) =

∫
∇ logLy ⊗∇ logLy dρ
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Results

DKL(πpos||π̃pos) = function(r)

10 20 30 40 50

10−6

10−4

10−2

100

102

104

LIS, ρ = πpos

LIS, ρ = Laplace(πpos)
LIS, ρ = πpr

ρ = πpr

ρ = Laplace(πpos)
error bound

New, ρ = πpos

H(ρ) =

∫
∇ logLy ⊗∇ logLy dρ H

(ρ)
LIS =

∫ (
∇G

)T
Γ−1

obs

(
∇G

)
dρ
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Results

DKL(πpos||π̃pos) = function(r)

10 20 30 40 50

10−6

10−4

10−2

100

102

104

LIS, ρ = πpos

LIS, ρ = Laplace(πpos)
LIS, ρ = πpr

ρ = πpr

ρ = Laplace(πpos)
error bound

New, ρ = πpos

dHell(πpos, π̃pos) = function(r)

10 20 30 40 50
10−4

10−3

10−2

10−1

100

LIS, ρ = πpos

LIS, ρ = Laplace(πpos)
LIS, ρ = πpr

ρ = πpr

ρ = Laplace(πpos)
New, ρ = πpos

H(ρ) =

∫
∇ logLy ⊗∇ logLy dρ H

(ρ)
LIS =

∫ (
∇G

)T
Γ−1

obs

(
∇G

)
dρ
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An iterative algorithm

1: Draw M samples Y1, . . . ,YM from πpr

2: for ℓ = 0, . . . ,L do

3: if ℓ = 0 then

4: Draw K samples X
(ℓ)
1 , . . . ,X

(ℓ)
K from πpr

5: Compute ∇ logLy (X
(ℓ)
k ) and set the weights w

(ℓ)
k = 1

6: else

7: Draw K samples X1, . . . ,XK from ν̂
(ℓ)
r (e.g, using MCMC)

8: Compute ∇ logLy (X
(ℓ)
k ) and w

(ℓ)
k =

Ly (X
(ℓ)
k

)

F̂
(ℓ)
r (X

(ℓ)
k

)

9: Assemble the matrix

Ĥ(ℓ) =
1

∑K
k=1 w

(ℓ)
k

K∑

k=1

w
(ℓ)
k

(
∇ logLy (X

(ℓ)
k )

)(
∇ logLy (X

(ℓ)
k )

)⊤

10: Compute a projector P
(ℓ+1)
r such that RΓ(P

(ℓ+1)
r , Ĥ(ℓ)) ≤ ε

11: Define the approximate distribution ν̂
(ℓ+1)
r as

dν̂
(ℓ+1)
r

dπpr
∝ F̂

(ℓ+1)
r , where F̂

(ℓ+1)
r =

1

M

M
∑

i=1

Ly

(

P
(ℓ+1)
r x + (Id − P

(ℓ+1)
r )Yi

)
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Iterative algorithm: results

1 2 3 4 5

iteration k

10
-3

10
-1

10
1

10
3

10
5

10
7

er
ro
r

fix error threshold = 10−2

error bound

DKL(ν||ν̂
(k)
r ), Yi = m

10−2

1 2 3 4 5

iteration k

30

35

40

ra
n
k

1 2 3 4 5

iteration k

10
-3

10
-1

10
1

10
3

10
5

10
7

er
ro
r

fix rank = 30

(left) fixed threshold; (right) fixed rank
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Summary on dimension reduction

Conclusions:

◮ Exploit the low effective dimensionality of Bayesian inverse problems

◮ Methodology:
◮ Derive an upper bound on the error (KL-divergence)
◮ Compute a minimizer of the upper bound using PCA on ∇ logLy

◮ Better performance than existing gradient-based methods (e.g.,

likelihood-informed subspace or active subspace)
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Conclusions:

◮ Exploit the low effective dimensionality of Bayesian inverse problems

◮ Methodology:
◮ Derive an upper bound on the error (KL-divergence)
◮ Compute a minimizer of the upper bound using PCA on ∇ logLy

◮ Better performance than existing gradient-based methods (e.g.,

likelihood-informed subspace or active subspace)

Open questions:

◮ Does there exist an optimal projector, i.e., a minimizer of the KL

divergence?

◮ What is the best computational strategy to approximate H?
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Back to transport: low rank structure

◮ Let U = [Ur U⊥] ∈ R
n×n be a unitary matrix, with Ur ∈ R

n×r . A

lazy map T : Rn → Rn takes the form:

T (z) = Urτ(z1, . . . , zr ) + U⊥z⊥

for some diffeomorphism τ : Rr → Rr .

◮ Map T ∈ Tr (U) departs from the identity only on an r -dimensional

subspace

◮ Proposition: For any lazy map T ∈ Tr (U), there exists a strictly

positive function f : Rr → R+ such that

T♯η(x) = f (U⊤r x) η(x),

for all x ∈ Rn where η = N (0, In). Conversely, any density of the

form f (U⊤r x) η(x) for some f : Rr → R+ admits a lazy map

representation.
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Error bound and subspace

How to find a good Ur?

◮ Define

Hπ :=

∫ (
∇ log

π

η

)(
∇ log

π

η

)⊤
dπ

.

◮ Let (λi , ui) be the ith eigenpair of Hπ and put Ur = [u1 u2 · · · ur ].

◮ Theorem [Zahm et al. 2018]:

DKL(π||T
⋆
♯ η) ≤

1

2
(λr+1 + . . .+ λd).

where T ⋆♯ η = f ⋆(U⊤r x)η(x) and f ⋆(zr ) = EX∼η

[
π(X )
η(X ) |U

⊤
r X = zr

]
.

◮ Good approximation when the spectrum of Hπ decays quickly

◮ Uses a ridge approximation of dπ/dη (e.g., the likelihood), with

optimal profile function f ⋆
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Summary of Part 1

◮ Central idea: characterize complex/intractable distributions by

constructing deterministic couplings

◮ Many kinds of low-dimensional structure (non-exhaustive):
◮ Sparse maps, decomposable maps
◮ Low rank structure (lazy maps)

◮ Exploiting the pullback distribution
◮ Compositions of approximate maps, constructed greedily
◮ (Part 2) Use approximate maps to precondition other sampling or

cubature schemes
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Summary of Part 1

Extensions and open questions:

◮ Using sparse grids or QMC for map construction

◮ Zoo of map parameterizations and their approximation properties

◮ Tail behavior of maps

◮ Additional varieties of low-dimensional structure: hierarchical,

multiscale, tensor, . . .

◮ Maps from samples:
◮ We will explore this in Part 2
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Extensions and open questions:

◮ Using sparse grids or QMC for map construction

◮ Zoo of map parameterizations and their approximation properties

◮ Tail behavior of maps

◮ Additional varieties of low-dimensional structure: hierarchical,

multiscale, tensor, . . .

◮ Maps from samples:
◮ We will explore this in Part 2

Thanks for your attention!
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