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Preconditioning Monte Carlo with transport

What to do when Tyn # 7
» Maybe close enough? Can evaluate variance diagnostic
Varn[log(n/Tuﬁlﬁ)], bound Tr(HTu—lﬂ_), etc.
» Enrich T, e.g., add a layer or expand TAh in the given layer

» Sample the pullback: treat Tﬂ_lflr with an asymptotically exact
scheme, e.g., Markov chain Monte Carlo
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Preconditioning Monte Carlo with transport

What to do when Tyn # 7
» Maybe close enough? Can evaluate variance diagnostic
Varn[log(n/Tﬁﬁlﬁ)], bound Tr(HTu—l,,r), etc.
» Enrich T, e.g., add a layer or expand TAh in the given layer

» Sample the pullback: treat Tﬂ_lﬂ with an asymptotically exact
scheme, e.g., Markov chain Monte Carlo

One possible construction: transport-accelerated MCMC

» Transport map “preconditions” MCMC target; use MCMC iterates in
maps-from-samples construction

» Can be understood in the framework of adaptive MCMC
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Preconditioning MCMC

» Effective MCMC proposal = adapted to the target

» Can we transform proposals or, equivalently, targets for better
sampling?
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Recall maps-from-samples construction

min Dy (Sym|[m) = min DKL(WHSu_l?’I)
sesh sesh

» Suppose we have Monte Carlo samples {x,-},-’\i1 ~ T

» For standard Gaussian 7, this problem is convex and separable for
any T

» This is density estimation via transport! (cf. Tabak & Turner 2013)
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Recall maps-from-samples construction

min Dy (Sym|[m) = min DKL(WHSu_l?’I)
sesh sesh

» Suppose we have Monte Carlo samples {X,-},-’\i1 ~ T

» For standard Gaussian 7, this problem is convex and separable for
any T

» This is density estimation via transport! (cf. Tabak & Turner 2013)

» Equivalent to maximum likelihood estimation of S

M
~ 1
S € arg max —E log St n(x;), =N(0,1,),

gSeSZ M SN ?7’( /) K (0.1n)

pullback
» Each component S¥ of S can be computed separately, via smooth
convex optimization

M
~ 1 1
k - K(y )2 k
S*e€arg min v ;_l (25 (xi)= — log 0xS (X,-))

Skesh
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Transport + MCMC sampling

> View §ﬂ7r as the “preconditioned” target

» In the MCMC setting, {x;}M, comprises dependent MCMC
samples

> §n7r may be far from standard Gaussian for small M and/or
crude SZ
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Map-accelerated MCMC

* Ingredient #1: static map
— Perform MCMC in the reference space, on the “preconditioned”
density
— Simple proposal in reference space (e.g., random walk)
corresponds to a more complex/tailored proposal on target
X
@) S(x)




Map-accelerated MCMC

* Ingredient #1: static map
— Perform MCMC in the reference space, on the “preconditioned”
density

— Simple proposal in reference space (e.g., random walk)
corresponds to a more complex/tailored proposal on target
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simple proposal ¢, on pushforward of
target through map




Map-accelerated MCMC

* Ingredient #1: static map
— Perform MCMC in the reference space, on the “preconditioned”
density

— Simple proposal in reference space (e.g., random walk)
corresponds to a more complex/tailored proposal on target

m(STENIVST L g,(r] )

!
I

(SN IVST g, 7)

o=

more complex proposal, directly on
target distribution




Map-accelerated MCMC

* Ingredient #2: adaptive map
— Update the map with each MCMC iteration:
more samples, more accurate [E_, better S

— Adaptive MCMC [Haario 2001, Andrieu 2006], but with
nonlinear transformation to capture non-Gaussian structure




Map-accelerated MCMC

* Ingredient #2: adaptive map

— Update the map with each MCMC iteration:
more samples, more accurate [E_, better S

— Adaptive MCMC [Haario 2001, Andrieu 2006], but with
nonlinear transformation to capture non-Gaussian structure
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Map-accelerated MCMC

* Ingredient #3: global proposals

— If the map becomes sufficiently accurate, would like to avoid
random-walk behavior

reference RW proposal mapped RW proposal



Map-accelerated MCMC

* Ingredient #3: global proposals

— If the map becomes sufficiently accurate, would like to avoid
random-walk behavior

reference independence proposal mapped independence proposal



Map-accelerated MCMC

* Ingredient #3: global proposals
— If the map becomes sufficiently accurate, would like to avoid
random-walk behavior
— Solution: delayed rejection MCMC [Mira 2001]

— First proposal = independent sample from 7 (global, more
efficient); second proposal = random walk (local, more robust)

* Entire scheme is provably ergodic with respect to the exact
posterior measure [Parno & M, SIAM JUQ 2018]

— Requires enforcing some regularity conditions on maps, to preserve
tail behavior of transformed target



Example: biological oxygen demand model

» Likelihood model:
d=01(1—exp(—6x)) +¢
e~ N(0,2x107%)
» 20 noisy observations at

True posterior density

» Degree-three polynomial map
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Results: MCMC chain

61 component of MCMC chain
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Transformed distribution

\\
Original posterior T Pushforward of posterior through
learned map, Sym
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Results: ESS per computational effort
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Example #2: predator-prey model

» Six parameter ODE population model

a :,pQ_P>_s”9

dt K a+ P
dQ PQ
g - Yarp @

» Five noisy observations of both populations
» Infer 6 parameters + 2 initial values; uniform priors

[ /e NN NN N NN S N N
[ 7 e NN NN N N NS N
[ 7 e NN N N NN SN NN
| 7 e O N N N NSNS

~— e o N ——
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Predator-prey model: chains

3
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Example: maple sap dynamics model

0 Sei Siw R’ RYR-r R'+R4+r RL2R'

» Coupled PDE system for o[

ice, water, and gas :

locations [Ceseri &
Stockie 2013]

» Measure gas pressure in
vessel

» Infer 10 physical model

parameters
fiber/
: vessel
» Very challenging ool vessel
posterior!

Image from Ceseri and Stockie, 2013
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Results: ESS per computational effort

ESS/(10,000 Evaluations) ESS/(1000 seconds)
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Comments on MCMC with transport maps

Useful characteristics of the algorithm:
» Map construction is easily parallelizable

» Requires no gradients from posterior density

Generalizes many current MCMC techniques:

» Adaptive Metropolis: map enables non-Gaussian proposals and a
natural mixing between local and global moves

» Manifold MCMC [Girolami & Calderhead 2011]: map also defines a
Riemannian metric
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Looking to higher dimensions: regularized estimation of S

For simplicity, consider map components S¥(x) = 2B (xuk—1) + akxi
N
—~ 1 1
Skearg min — <Sk(x,-)2 —log 8k5k(x,-)> + |81
skesh , N £
Assume sub-Gaussian 7 and basis functions ;(x)

Theorem [BZM]

For polynomial maps of degree m with sparsity s, with high probability

Er [ Dk <7F(Xk|X1:k71) I §£”7) ] < \/@

» Accurate estimation is feasible in high dimensions with N <« k

Takeaways

» From factorization property of density, error in conditionals ensures

~ s?mlogd
Dy (| SPn) < iy =20
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Next topic: ensemble filtering via transport

» Nonlinear/non-Gaussian state-space model:
» Transition density 77,7, ,
> Observation density (likelihood) Ty, |z,

T ? ? ?---?
Y, Ys Yy

Y, Y

» Interested in recursively updating the full Bayesian solution:

TZok 1Yo 7 MZoust [Yowst (smoothing)
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Next topic: ensemble filtering via transport

» Nonlinear/non-Gaussian state-space model:

» Transition density 77,7, ,
> Observation density (likelihood) Ty, |z,

T ? ? ?---
Y, Ys

Y, Y

Y

» Interested in recursively updating the full Bayesian solution:

TZok 1Yo 7 MZoust [Yowst (smoothing)
» Or focus on approximating the filtering distribution:
TZ1yok 7 TZpi1 | Yokin (marginals of the full Bayesian/smoothing

solution)
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Problem setting

» Consider the filtering of state-space models with:

@ High-dimensional states

@ Challenging nonlinear dynamics (e.g., chaotic systems)

© Intractable transition kernels: can only obtain forecast samples, i.e.,
draws from 7z, |2,

@ Limited model evaluations, e.g., small ensemble sizes

@ Sparse and local observations in space/time

» These constraints reflect typical challenges faced in numerical
weather prediction, geophysical data assimilation

Marzouk et al. ETICS Research School 18 / 49



Ensemble Kalman filter

» State-of-the-art results (in terms of tracking) are typically obtained
with the ensemble Kalman filter (EnKF)

forecast step

H (oY '

e 1o o :

© 0 1O 0.-9

o 0 ) o] A [ o"o v

o© ; Lo o

: oo --- o .

T I 7 :
NZp Y- b Z Y 0 ‘Zy Yo

Bayesian inference

» Move samples via an affine transformation; no weights or resampling!
> Yet ultimately inconsistent. does not converge to the true posterior
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Ensemble Kalman filter

» State-of-the-art results (in terms of tracking) are typically obtained
with the ensemble Kalman filter (EnKF)

forecast step

H (oY '

e 1o o :

© 0 1O 0.-9

o 0 ) o] A [ o"o v

o© ; Lo o

: oo --- o .

T I 7 :
NZp Y- b Z Y 0 ‘Zy Yo

Bayesian inference

» Move samples via an affine transformation; no weights or resampling!
> Yet ultimately inconsistent. does not converge to the true posterior

Can we improve and generalize the EnKF, preserving scalability, via
nonlinear transformations?
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Assimilation step

At any assimilation time k, we have a Bayesian inference problem:

TX TX|Y=y*
prior posterior
» Ty is the forecast distribution on R”

> Tyx is the likelihood of the observations Y € RY

> Txjy—y+ IS the filtering distribution for a realization y* of the data

Goal: sample the posterior given only M prior samples X1, ..., Xy

Marzouk et al. ETICS Research School 20 / 49



Inference as a transportation of measures

» Seek a map T that pushes forward prior to posterior
(Xl, c. ,X/\//) ~ T — (T(Xl), e, T(XM)) ~ WX\Y:y*
» The map induces a coupling between prior and posterior measures

transport map

T(x;)

TX TX|Y=y*

How to construct a "good” coupling from very few prior samples?

Marzouk et al. ETICS Research School 21 / 49



Consider the joint distribution of state and observations

S
{
/

(©
\ \/ /

TX|Y=y*

» Construct a map T from the joint distribution my x to the posterior
» T can be computed via convex optimization given samples from 7y x
» Sample Ty x using the forecast ensemble and the likelihood

(Vi Xi) ¥~ Ty x=x

» Intuition: a generalization of the “perturbed observation” EnKF
ETICS Research School 22 /49
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Couple the joint distribution with a standard normal

joint T :R%" — R" \ /]
7TY7X > \\ r\\d/" f/
o/

TX|Y=y*

We can find T by computing a Knothe—Rosenblatt (KR) rearrange-

ment S between Ty x and N(0, l44,)

joint S - RN _y R+
Ty X

23 / 49

» We will show how to derive T from S. ..
ETICS Research School
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Knothe—Rosenblatt (KR) rearrangement

» Definition: for any pair of absolutely continuous densities , 7 on
R™, there exists a unique triangular and monotone map

S:R"™ — R™ such that

Sim=m
» Triangular function (nonlinear generalization of a triangular matrix):
S'(x)
52 X1, X2
S(x1, ..., Xm) = | ( )
ST(X1, X2, ..y Xm)

» Existence stems from general factorization properties of a density,

T=TX; T Xy " T X1 Xzt

Marzouk et al. ETICS Research School 24 /49



Triangular maps enable conditional simulation

» Each component S¥ links marginal conditionals of 7 and 7
» For instance, if n = N(0,1), then for all x, ..., xx_; € RF!

5 — Sk(Xl ..... Xk_l,f) pushes 7TXk|X1:k,1($|Xl:k—l) to N(O, 1)
» Simulate the conditional 7y, |x,, , by inverting a 1-D map

¢ 5 SK(x1.x_1, &) at Gaussian samples (need triangular structure)

Marzouk et al. ETICS Research School 25 / 49



Filtering: the analysis map

» We are interested in the KR map S that pushes my x to AV(0, l44p)
» The KR map immediately has a block structure

SY(y) ]

S(YYX) = [ Sx(y,x)

which suggests two properties:
S* pushes my x to N(O,1,)

¢ — S*(y*,€) pushes myy—, to N(0,15)

» The analysis map that pushes 7y x to mxjy—_y- is then given by

T(y,x) = SX(y*, -)_1 o Sx(y, X)

Marzouk et al. ETICS Research School 26 / 49



A novel filtering algorithm with maps

joint
WYXXZK Ty X \T(y7 x)
\\\\ ’/'//

Xé///A\\\ \ \\ /) / /

/ N \ ‘\ =~ ‘\"

@) =)

\\ 7/

X

Transport map ensemble filter

@ Compute forecast ensemble x;
© Generate samples (y;, x;) from Ty x with y; ~ Ty|x=;

© Build an estimator T of T

~

© Compute analysis ensemble as x¥ = T(y;,x;) for i=1,..., M

Marzouk et al. ETICS Research School 27 / 49



Estimator for the analysis map

» Recall the form of S:

SY(y)

Sly.x) = [ SX(y, x)

], Sn Ty X Z./\/’(O,ld+n).

» We propose the following estimator T of T:

?(y, X) = §X(y*, -)*1 o §X(y, X),

where S is a maximum likelihood estimator of S

Marzouk et al. ETICS Research School 28 / 49



Estimating the KR rearrangement from samples

Given samples x1, . .., Xy from a distribution 7 on R9t", estimate
the KR rearrangement S that pushes forward 7 to N(0, lgp)

» Constrained MLE for S

M

~ 1

S €arg max — log S7tn(x,), = N(0,1,),

gSeSZM; 95 ) n=N(O.h)
B pullback

where SZ is an approximation space for the rearrangement

» Each component Sk of S can be computed separately, via smooth
convex optimization

M
~ 1 1
Skearg min —g <5kx-2—lo 85"x->
g SkESZ'k M P 2 ( l) g k ( l)

Marzouk et al. ETICS Research School 29 / 49



Map parameterizations

Sk : 1 a1 k(y\2 k

S*earg Skrggrik v ;(25 (x;)= —log 0kS (x,—))

» In general, convex optimization

» Optimization is not needed for nonlinear separable parameterizations
of the form §k(x1;k) = axk + 9(x1:4k—1) (Just linear regression)

» Connection to EnKF: a linear parameterization of Sk yields a
particular form of EnKF with “perturbed observations”

» Choice of approximation space allows control of the bias and variance
of S
» Richer parameterizations yield less bias, but potentially higher variance

Strategy: depart gradually from the linear ansatz by introducing
local nonlinearities + regularization

Marzouk et al. ETICS Research School 30 / 49



Example: Lorenz-63

Simple example: three-dimensional Lorenz-63 system

dX;

(- X)),

dt o(X = X)
dXs

Y2 X Xs) - X
dr 1(P 3) 2
dXs

— = X Xo —pBX

i 1X2 — BX3

v

Chaotic setting: p =28, 0 =10, 8 =8/3

Fully observed, with additive Gaussian observation noise
&~ N(O 22)
Assimilation interval At = 0.1

v

v

v

Results computed over 2000 assimilation cycles, following spin-up

» Map parameterizations: S*(x;.x) = Z,—Sk V;(x;), with W; = linear
+ {RBFs or sigmoids }

Marzouk et al. ETICS Research School 31/ 49



Example: Lorenz-63

Mean “tracking” error vs. ensemble size and choice of map

Marzouk et al.

0.9

? —0—EnKF
—0— Linear -
Linear + 1 RBF
—0—Linear + 2 RBF
=== Particle Filter

e
0

<
\]

Average RMSE
o o
ot (@)

0.4F

10 60100 200 400 600
Ensemble size M
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Example: Lorenz-63

How do M — oo “plateaus” depend on assimilation interval?

1.2

—_
T

<
o

—0—EnKF
—O—Linear

Linear + 1 RBF|]
—0—Linear + 2 RBF

Average RMSE
o
oo

©
=

<
b

0.1 0.2 0.3 0.4 0.5
Inter-observation time At
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Example: Lorenz-63

What about comparison to the true Bayesian solution?

0.8 —r— T :
o —0—EnKF
8 —O—Linear
T 0.61 Linear + 1 RBF |
% —o—Linear + 2 RBF
Q N e PF Std Error
g
o 0.41€ - -
'q —J A ¢
)
&
= 0.2} —— — 3
>
<
N e  t————
20 60100 200 400 600

Ensemble size M
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Example: Lorenz-63

What about comparison to the true Bayesian solution?

0.5 T T -
—0—EnKF
—O—Linear
Linear + 1 RBF|]
—O0—Linear + 2 RBF
------- PF Std Error

0.4

0.3

o~
g

0.2}

0.1f

Average Frobenius covariance error

0 1
20 60100 200 400 600
Ensemble size M
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“Localize” the map in high dimensions

» Regularize the estimator SofsS by imposing sparsity, €.g.,
St (x)
-~ §2 X1, X2
S(Xl ..... X4) = A3( )
S ( X2,X3)
54( X3, X4)

» The sparsity of the kth component of S depends on the sparsity of
the marginal conditional function y, x, , , (Xk|X1:xk—1)

» Localization heuristic: let each S¥ depend on variables (x;);< that
are within a distance £ from xj In state space. Estimate optimal £
offline

» Explicit link between sparsity of S and conditional independence in
non-Gaussian graphical models
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Lorenz-96 in chaotic regime (40-dimensional state)

» A hard test-case configuration [Bengtsson et al. 2003]:

dX; .
T; = (Xj+1—Xj_2)Xj_1—Xj—|—F, Jj=1,...,40
Y, = X +¢&, Jj=135...,39
» F =8 (chaotic) and & ~ N(0,0.5) (small noise for PF)

» Time between observations: Ags = 0.4 (large)
» Results computed over 2000 assimilation cycles, following spin-up



Lorenz-96: “hard”’ case

1.2 T
—o—EnKF

1.1 —O—Linear -
= Linear + 1 RBF
%3 1Q —o—Linear + 2 RBF|
m { - Var(é't)l/Q
<)
Y0l
<
3
>
<

0.6 : :
60100 200 400 600
Ensemble size M
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Lorenz-96: “hard”’ case

1.2 T
—o—EnKF

1.1 —O—Linear -
= Linear + 1 RBF
%3 1Q —o—Linear + 2 RBF|
m { - Var(é't)l/Q
<)
Y0l
<
3
>
<

0.6 : :
60100 200 400 600
Ensemble size M

» The nonlinear filter is =~ 25% more accurate in RMSE than EnKF

Marzouk et al. ETICS Research School 37 /49



Lorenz-96: “hard”’ case

> 0.98
=1
2 0.96}
Q9
o
B, 0.94}
&0
< 0.92
g
>
8 09 —o—EnKF
g-’o —O— Linear
< 0.88 Linear + 1 RBF|A
54 —o—Linear + 2 RBF
<t 0.86L— : :
60100 200 400 600

Ensemble size M
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Lorenz-96: non-Gaussian noise

» A heavy-tailed noise configuration:

dX; :
T = K =X)Xa =X F =140

Y, = X;+¢&;, J=15913,...,37
» F =8 (chaotic) and &; ~ Laplace(A = 1)

» Time between observations: Agps = 0.1
» Results computed over 2000 assimilation cycles, following spin-up

Marzouk et al. ETICS Research School 39 / 49



Lorenz-96: non-Gaussian noise

2.4 T
—0—EnKF

2.26 —O—Linear ]
&3] Linear + 1 RBF
%3 2t —o—Linear + 2 RBF|J
m —— Var(é't)l/Q
o 1.8
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Lorenz-96: non-Gaussian noise
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Lorenz-96: details on the filtering approximation

v

Observations were assimilated one at a time

v

Impose sparsity of the map with a 5-way interaction model (above)

v

Separable and nonlinear parameterization of each component

SHOGy Xy Xk) = P0G) + -+ P0x,) + D),

where ¥(x) = ag + a1 - x + Yo aiexp(—(x — ¢;)?/o).
Much more general parameterizations are of course possible

v
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Lorenz-96: tracking performance of the filter
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» Simple and and localized nonlinearities have significant impact!
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Remarks and questions

» Nonlinear generalization of the EnKF: move the ensemble members
via local nonlinear transport maps, no weights or degeneracy

» Learn non-Gaussian features via nonlinear continuous transport and
convex optimization

» Choice of map basis and sparsity provide regularization (e.g.,
localization)

Marzouk et al. ETICS Research School 44 / 49



Remarks and questions

» Nonlinear generalization of the EnKF: move the ensemble members
via local nonlinear transport maps, no weights or degeneracy

» Learn non-Gaussian features via nonlinear continuous transport and
convex optimization

» Choice of map basis and sparsity provide regularization (e.g.,
localization)

» In principle, filter is consistent as SZ is enriched and M — oo, but a
careful error analysis is needed!

» What is a good or even optimal choice of Sg for any fixed ensemble
size M?

» Can regularization penalties (e.g., £1) help identify sparse structure,
and/or learn sparse maps from few samples?
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Regularized estimation of S

For simplicity, consider map components S¥(x) = ZJ- Biwj(x1:k—1) + Xk

N
~ 1 1
Sk carg min —E <Skx-2—lo 8Skx->—i—>\

Assume sub-Gaussian 7 and basis functions ;(x)

Theorem [BZM]

For polynomial maps of degree m with sparsity s, with high probability

Er [ Dk <7F(Xk|X1:k71) I §£”7) ] < \/@

» Accurate estimation is feasible in high dimensions with N <« k

Takeaways

» From factorization property of density, error in conditionals ensures

~ s?mlogd
Dy (| SPn) < iy =20
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Inference in high dimensions with regularized maps

Linear—Gaussian problem
> Prior. X ~ N(u, Xpr) with exponential covariance
» Likelihood: Local observations Y = HX + & with & ~ N(0, /)
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Takeaway

» Learning sparse prior-to-posterior map matches oracle scaling
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Compare two approaches for posterior sampling
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Compare two approaches for posterior sampling
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» Propagating forecast through composed maps has lower error
» This is in fact a general approach to likelihood-free inference/ABC
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Comments on transport-based ensemble filtering
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There is also a “square root” version of the nonlinear ensemble filter
Continuous-time formulations?

Nonlinear ensemble smoothers

Open questions about estimation and regularization of continuous
transport maps:
» How to choose and adapt approximation space/basis to the forecast
ensemble?
» Properties of the estimator ?’, e.g., consistency, sample size
requirements and scaling
» Other forms of low-dimensional structure and regularization

» Applications to inference in “likelihood-free” settings
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General python code at http://transportmaps.mit.edu
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