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Motivation

ETICS 2017 thematics : Uncertainty in Scientific Computing

A key sub-theme : modeling sources of uncertainty with various theoretical tools and
applied methodologies

Probability Theory

Imprecise Probabilities Theory

Another key sub-theme in scientific computing is the use of expert judgment for
assessing uncertain information when there is a lack of experimental data (or other
objective source of information)

This lesson is driven by the questions :

Why and how stochastic modeling can be a relevant tool for using expert judgment, and
more generally dealing with epistemic uncertainty ?
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Expert judgment

Beyond scientific computing and uncertainty propagation, expert judgment has a
foremost role in decision-making
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Expert judgment

Beyond scientific computing and uncertainty propagation, expert judgment has a
foremost role in decision-making

guiding designs of experiments, ordering scientific results [4, 37, 20]

enriching economic [19] and actuarial studies [34] on the impact of financial risks

being determining in legal arbitration, public policies [22] or environmental
governance [21, 8]

Its influence on technological, economic, societal or personal choices when elaborating
strategies of gain-winning is explored by many epistemological and psychological authors
[12, 20, 11]
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What is an expert ?

An infinite number of conceptions

Among them, two main kinds of experts for [37] :

1 (performative expertise)

2
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What is an expert ?

An infinite number of conceptions

Among them, two main kinds of experts for [37] :

1 those who expertise is a function of what they do (performative expertise)

2 those who expertise is a function of what they know (epistemic expertise)

An usual view, with the ability of explaining and transmitting. Furthermore, acccording
to Luntley [20] :

I argue that what differentiates the epistemic standpoint of experts is not what or how
they know [...], but their capacity for learning
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What is an expert ?

Today’s question is in fact "what is formally an expert ?"

We should rather talk about “expert systems delivering new knowledge"

Typically :

implicit cognitive systems

humans
some artificial intelligences

explicit causal systems

phenomenological models and their numerical implementation (simulation
models)

Capacity for proving expertness ⇔ capacity of predicting adequately

Capacity for learning ⇔ capacity of inferring (processing) coherently when new data
arrive
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What we typically want to do from an expert system response ?

Eliciting = assessing her/his/its relevant epistemic information on the behavior of a
magnitude of interest X ∈ χ

elicio, eliciere : to extract from, to drawout (ex aliquo verbum elicere)

Immediate difficulties

bias

impact of subjectivity in the delivery process

lack of correct or sharp information

...

resulting in epistemic uncertainty

Our work : formalizing the most adapted measure of uncertainty, highlighting clearly the
subjective and objective parts of the modeling
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Prior information

Prior information = information whose the value of truth is justified by considerations
independent on experiment on focus [25]

other trial results (e.g., on mock-ups)

technical running specification

physical bounds

literature corpus

and of course, human experts

Often blueincomplete, always blueuncertain, because

of the non-existence of a system allowing a priori if the expertness is complete or
not

of the non-existence of a system precise enough to specify that X = x0 exactly
(except in rare cases)
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Simple questions and non-trivial answers

What means “uncertainty" and especially “epistemic uncertainty" ?

Why probabilities for dealing with uncertainty ?

If we are ok with probabilities, how choosing the probability distributions ?
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Simple questions and non-trivial answers

What means “uncertainty" and especially “epistemic uncertainty" ?
Hard philosophical question ! Providing answering attempts here

Why probabilities for dealing with uncertainty ?
Many practical advantages, but how proving they are theoretically relevant ?
Raises the question of auditability of mathematical procedures = growingly increasing
concern

If we are ok with probabilities, how choosing the probability distributions ?
Use the help of important Bayesian prior modeling techniques

ETICS Summer School 2017 8 / 126



Outline

1 Some arguments in favor of probabilities to deal with expert (and more generally)
epistemic uncertainty

2 Some methodological aspects of stochastic modeling for prior elicitation
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A rationale for the choice of probabilities to deal with

epistemic uncertainty of expert systems
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Treating prior information
from implicit cognitive systems
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Formalizing the state of information on X

If we were omniscient, a causal model could be

X = g(Z)

where :

Z is a hidden property of the experiment

g is a model of information production

The value of Z could be explained by another transformation g̃ of another hidden
property θ̃, etc.

However, there is still a model error between the true values of X and g(Z), since nor g
neither Z are known (completely or not)
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From information to knowledge (and reciprocally)

Hypothesis 1 (epistemological) by Lakatos [18]

Information on the world is hidden and partially revealed by a consensual theory (in
the sense of Popper [26] : by mutual decision of protagonists) defining objectivity
[13]

Knowledge is “filtered" from information

Filtering is performed through the intervention of symbols, or signs, in order to
transmit it or even implement it

Hypothesis 2 (arising from neurosciences) [29, 28, 27, 15, 7, 3]

Face to situations where uncertain information is mobilized, human reasoning
produces probabilistic inferences

Difficulties appear when trying to explicit this inferred knowledge by an
interpretative language ⇒ providing usable expertness
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Logics of uncertain information

We don’t know what is the “deconvolution" transforming uncertain knowledge
backwards into uncertain information, following Lakatos’ hypothesis

But we can have ideas about the impact of the addition of uncertain but useful
knowledge in the problem of determining X

It should traduce by the increasing of information on X = inference (updating)

⇒ this inference should stands on a reasoning principle

⇒ this principle should stand on a logic = set of formal rules
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Logics of uncertain information

We don’t know what is the “deconvolution" transforming uncertain knowledge
backwards into uncertain information, following Lakatos’ hypothesis

But we can have ideas about the impact of the addition of uncertain but useful
knowledge in the problem of determining X

Desirable properties [35]

Sorting atomic assertions of type X = x0 at each addition of information (exclusive

logic)

an initial situation (premise) is less informative than a conclusion (updating)

Allowing uncertain information

not only true or false situations can be sorted (non-boolean logic)

ETICS Summer School 2017 14 / 126



Logics of uncertain information

Definition [35]

Denote SX a set of atomic propositions of type X = xi . The set BX of all possible
compound propositions generated by

¬X = xi , X = xi ∧ X = xj ,

X = xi ∨ X = xj , X = xi ⇒ X = xj

and X = xi ⇔ X = xj

is called a state of information, with Dom(BX ) = logical closure of SX

The state of information BX summarizes the existing information on a set of
propositions about X

The same logic should guide how BX evolves : it is growing following a given metric
when information on X is increasing
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Plausibility, consistency and coherence

Definition

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

Consistency : BX is consistent if there is no proposition A for which both
[A|BX ] = T and ¬[A|BX ] = T

Propositional calculus :

(i) If A = A′ then [A|BX ] ⇔ [A′|BX ]
(ii) [A|BX ,CX ,DX ] = [A|(BX ∧ CX ),DX ]
(iii) If BX consistent and ¬[A|BX ] < T , then A ∪ BX is consistent

Coherence : there exists a non-increasing function S0 such that, for all x and
consistent BX

¬[A|BX ] = S0([A|BX ])

Density : the set [S0(T ),T ] admits a non-void, dense and consistent subset

ETICS Summer School 2017 16 / 126



Plausibility, consistency and coherence

Definition

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

Consistency : BX is consistent if there is no proposition A for which both
[A|BX ] = T and ¬[A|BX ] = T

Propositional calculus :

(i) If A = A′ then [A|BX ] ⇔ [A′|BX ]
(ii) [A|BX ,CX ,DX ] = [A|(BX ∧ CX ),DX ]
(iii) If BX consistent and ¬[A|BX ] < T , then A ∪ BX is consistent

Coherence : there exists a non-increasing function S0 such that, for all x and
consistent BX

¬[A|BX ] = S0([A|BX ])

Density : the set [S0(T ),T ] admits a non-void, dense and consistent subset

ETICS Summer School 2017 16 / 126



Plausibility, consistency and coherence

Definition

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

Consistency : BX is consistent if there is no proposition A for which both
[A|BX ] = T and ¬[A|BX ] = T

Propositional calculus : applicable to any problem domain for which we can formulate useful

propositions
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Plausibility, consistency and coherence

Axiom

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

This axiom of non-ambiguity is particularly important

This is an assumption of universal comparability

Consequence : an additional information (not a knowledge) can only increase or
decrease the plausibility of a proposition
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Plausibility, consistency and coherence

Axiom

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

This axiom of non-ambiguity is particularly important

This is an assumption of universal comparability

As seen later, the differences between probabilistic logic and extra-probabilistic logics
arises from the agreement or disagreement with this assumption

Jaynes [17] argues for its validity on pragmatic grounds
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Plausibility, consistency and coherence

Axiom

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

It is supported when we talk about quantities X with physical meanings and taking a
unique value at each instant (possibly given a finite measurement precision)

It may be not supported if we talk about :

magnitudes considered at the quantum scale (e.g., in neutronics)

imaginary magnitudes (e.g., latent variables)

Remember that we are dealing with objective information on X , not interpreted
knowledge !
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Controversy on density axiom

Statement

Density : the set [S0(T ),T ] admits a non-void, dense and consistent subset

Can be false when the set of all propositions is finite (e.g., discrete and bounded) [16]

Could be partially removed by arguments provided by Snow [32], plaiding for infinite
gradations of plausibility within even a single, finite domain

The source of an objective rational measure of belief is external to the cognitive apparatus of

the believer. Its value is determined by the vagaries of the real world or by some idealized model

of the world. There is no way to tell in advance just which values must arise, and each value

may be graduated with arbitrary precision. Any such value can simply be adopted by the believer

without recourse to unboundedly precise discrimination between affective states related to

credibility... [32]

Working (as usually) with uncountable input spaces for X is not an issue :-)
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The complete logic vulgarized

1 Reproductibility rule : two equivalent assertions about X have the same plausibility

2 Non-contradiction rule : if it exists several ways of coming to the same conclusion
about X , all have the same plausibility

3 Consistency rule : the logic cannot reach a conclusion contradicted by the common
deductive rules (e.g., transitivity)

4 Integrity rule : the logic cannot disregard a part of information to reach to a
conclusion about X to come to a conclusion

5 Monotony rule : the plausibility of the non-exclusive union of two assertions is at
least equal to the upper plausibility of each

6 Product rule : the plausibility of the intersection of two assertions is at most equal
to the lower plausibility of each

ETICS Summer School 2017 21 / 126



Cox-Jaynes representation theorem

Originally proven (erroneously) by Cox [5], corrected by Jaynes [17], extended more
rigorously by Paris [24], Van Horn [35] Dupré and Tipler [10] (among others) then
finalized by Terenin and Draper [33]

Theorem

Under the previous assumptions, there exists a continuous, increasing function P such
that, for every proposition A,C and consistent BX ,

(i) P([A|BX ]) = 0 iif A is known to be false given the information in X

(ii) P([A|BX ]) = 1 iif A is known to be true given the information in X

(iii) 0 ≤ P([A|BX ]) ≤ 1

(iv) P([A ∧ C |BX ]) = P([A|BX ])P([C |A,BX ])

(v) P(¬[A|BX ]) = 1 − P([A|BX ])

Any system of plausible reasoning, under the previous assumptions, is isomorphic to
probability theory
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A fundamental theorem in artificial intelligence

Goertzel [14] proved that if the consistency rule is weakened, then plausibilities behave
approximately like probabilities

The probability theory is relevant to account for uncertainties on a subject explored by a
cognitive system (human or machine) which could be not completely consistent

Numerous authors in artificial intelligence [36], epistemology [1] or cognitive sciences [6]
recognize the practical relevance of this axiomatic for extracting or updating
information, using Bayes rule
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Critics of the axiom of non-ambiguity

Axiom

Consider any proposition A on X . Given BX , the plausibility [A|BX ] is a single real
number, upperly bounded by a real (finite or infinite) T

Its mot common “relaxation" is the assumption that two dimensions are required to
represent correctly the plausibility of a proposition

At the origin of belief theory [30, 31] and possibility theory [9]

Experiments show that such a relaxation is clearly supported when the plausibility is
understood as the summary of a belief, or a gamble [35]

Nonetheless, this “relaxation" remains arbitrary, and usually stands on an interpretation
of the nature of knowledge (expressed through a language), and not of the nature of
information (expressed by physical reality or an idealized model of the reality) [32]
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Treating uncertain prior information
from causal models
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Model uncertainty

Practical models used by engineers (e.g., implemented computer codes Σ′′′) can produce
prior simulations of a phenomenon Σ

Real phenomenon → Theoretical model → Algorithmic model → Implemented model

Σ Σ′ Σ′′ Σ′′′

We want to define what is the conceptual nature of model uncertainty affecting Σ′′′

We could ask the question otherwise : what is the conceptual nature of reduction of
model uncertainty ?

We need also to define Σ′′′
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What is Σ′′′ in usual cases ?

Program. Sequence of operations and instructions

Algorithm. Finite and non-ambiguous sequence of operations and instructions
allowing for solving a problem that can be solved exhaustively

Self-delimiting program. A program that ends. Its ending is a command of the program
itself
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Reduction of model uncertainty

Happens at step Σ′′

Refining the algorithmic description Σ′′ by adding new parameters and/or
structural equations, necessarily based on improvement of Σ′

Refining the execution of Σ′′′ (e.g., improving a tolerance)

Reducing model uncertainty implies to reduce model error

Maybe the nature of model error could say something about the nature of model
uncertainty ?

We consider an illustrative example
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Incalculability of model error : a result

Consider a real phenomenon Σ with output Y described by

χ× χZ → Υ

Σ : X ,Z 7→ Y

where X are known and treated variables, and Z are unknown or untreated variables

Consider a self-delimiting, calculable model of Σ

χd → Υd

Σ′′′ : X ′′ 7→ Y ′′

where

χd ( χ is the subset of χ that can be reached by a calculus

Σ(χd , χZ ) = Υd (Galerkin problem solving)

Assume the following hypotheses

(H1) : Card(χd) <∞,

(H2) : χZ is countable and Card(χZ ) <∞.
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Incalculability of model error : a result

Assume that Υd is a metric space

It is possible to define a model error δ(x , z), through a measure D such that, for all
couple (x , z) ∈ χd × χZ ,

δ(x , z) = D
{
Σ′′(x),Σ(x , z)

}
≥ 0

with δ(x , z) = 0 iif Σ′′′(x) = Σ(x , z)

Proposition [B. and Denis 2017]

The model error δ(x , z) cannot be calculated ∀(x , z) ∈ χd × χZ

Proof : based on tools of computational complexity theory

A more general result can be proved using Turing’s machines
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Reduction of model uncertainty

The previous proposition (and its extensions) indicate that no algorithm is able to
compute all the values of the model error δ(x , z)

We cannot prove that the error never exists

Being cautious, we assume its existence
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Reduction of model uncertainty

What would be the nature of the best reachable (computable) approximation δ̃(x , z) of
δ(x , z) ?

δ̃(x , z) should be computed by a self-delimiting program

however there is no recursive function allowing to predict the next value of
δ̃(x ′, z ′) at (x ′, z ′)

It comes that any finite sequence of δ̃(xi , zi ) is exhaustively described only by itself

The adapted formalism to describe this property is the following

Kolmogorov’s algorithmic complexity

Kolmogorov’s complexity H(s) of a program producing a sequence s is the length of the
smallest program required to generate s.
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Reduction of model uncertainty

A consequence of the impossibility of compressing the information in the sequence of
δ̃(xi , zi ) is the following : ∃c ∈ IR such that

H(δ̃(x1, z1), . . . , δ̃(xn, zn)) ≥ n − c. (1)

Result (1) implies that the sequence δ̃(xi , zi ) is in the sense of Chaitin-Levin

Proposition (B. and Denis 2017)

The best computable approximation of model error is random.

Randomness contamines the nature of all concepts incorporating model error

It is arguable to use probabilities for modeling epistemic model uncertainty

ETICS Summer School 2017 33 / 126



Stochastic prior modeling : examples and recipes
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Situation

We got a rationale for choosing probabilities as relevant tools for yielding uncertain
information

The aim of this second part of the lesson is for exploring various methodological
approaches to stochastic prior modeling

No reference corpus available ! (not an easy journey)

We will sometimes consider alternatively two situations : quantification of uncertainties
and propagation of uncertainties (and take several examples)
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L’élicitation est la représentation, par des moyens mathématiques, de l’ontologie des
connaissances utiles pour résoudre un problème.

Marc Sancandi, CEA-CESTA, 2011.
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Preliminaries

In the following, we denote Π and π, respectively, the distribution and density function
of a random variable θ ∈ Θ

θ is the quantity for which prior uncertain information is provided, directly or indirectly

The notation X will be used too, but possibly not the same X than in the first part of
the lesson

ETICS Summer School 2017 37 / 126



A very simple example

Under the prism of scientific computing, we start with the following simple example

Prior information on θ is defined by two deterministic bounds :

Π(θ ∈ [θmin, θmax]) = 1

then
Θ = [θmin, θmax]

and we want to propagate the uncertainty on θ onto X through the deterministic relation

X = h(θ)

Which Π to choose ?
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A very simple example

We need a rationale for eliciting Π(θ)

Laplace’s principle of insufficient reason (1773)

In absence of information, all elementary events of a finite Θ are equiprobables, and the
same weight must be given to each possible value

Following this principle, Π(θ) should be chosen uniform in [xmin, xmax]

This choice is often done in practice in problems of simulation under uncertainty
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A very simple example

It is (very) wrong, and you should (a priori) burn in hell for this !

1 - Partitioning paradox.
It is inconsistent to apply the rule to all coarsening and refinings of the parameter space
simultaneously

Shafer’s example (1976)

Let Θ = {θ1, θ2}, where θ1 denotes the event that there is life in orbit about the star Sirius and

θ2 denotes the event that there is not. Laplace’s rule gives P(θ1) = P(θ1) = 1/2.

But now let R = {ω1, ω2, ω3} where ω1 denotes the event that there is life around Sirius, ω2

denotes the event that there are planets but no life, and ω3 denotes the event that there are no

planets. Then Laplace’s rule gives P(ω1) = P(ω2) = P(ω3) = 1/3.

The paradox is that the probability of life is P(θ1) = 1/2 if we adopt the first formulation, but is

P(ω1) = 1/3 if we adopt the second formulation
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A very simple example

2 - Non-invariance of information.
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A very simple example

How avoiding this ?

Consider the enveloppe model

X = h(θ) + ǫ

where ǫ is a known random noise and X ∗ is an observation

It is clearly enveloppe from the point of view of propagating uncertainties : obviously,
even if ǫ is very small, the variance of X increases
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A very simple example

More generally, consider

X = h(θ, ǫ)

which can rewritten under the classical form

X ∼ f (x |θ)

f being determined by h and ǫ

X was random thanks to the action of θ, but now X |θ is still random (because of ǫ)

Example : X = −θ−1 log(1 − ǫ) ∼ E(θ) if ǫ ∼ U [0, 1]

How choosing Π(θ) to conserve the invariance of information ?
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The problem of parameterization invariance

Assume to have no prior information (apart possibly the bounds on θ)

Principle of parameterization invariance
Transforming θ into η = g(θ) through a

bijection g , the prior information still do not exist and nothing should be modified

One has

π∗(η) =
∣∣Jac(g−1(η))

∣∣π(g−1(η)) =

∣∣∣∣det
∂η

∂θ

∣∣∣∣π(g
−1(η))

which (usually) does not stay constant if π(θ) = 1

Example : η = − log(1 − θ) ∼ E(1) if θ ∼ U [0, 1]
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Taking profit from the invariance features of f

Example 1 : location parameter. If one may write f (x |θ) = f (x − θ)

the family f is invariant by translation : if x ∼ f , then y = x − x0 ∼ f ∀x0

it is required that π(θ) be invariant by translation too :

π(θ) = π(θ − θ0) ∀θ0

This rule leads to uniform distribution over Θ

Example 2 : scale parameter. If one may write f (x |θ) = 1
θ
f (x/θ) with θ > 0

the family f is invariant by scale change : y = x/θ0 ∼ f ∀θ0 > 0

it is required that the prior distribution satisfies π(A) = π(A/c) for any measurable
set A ∈]0,+∞[ and c > 0

π(θ) =
1

c
π

(
θ

c

)

which implies

π(θ) ∝ 1/θ

We see that in this case, the invariance measure is no longer constant

ETICS Summer School 2017 45 / 126



Jeffrey’s principle of intrinsic invariance

These approaches imply to choose an invariance structure, in some arbitrary way

To avoid this choice, Jeffreys (1946) interested in the Fisher information matrix I (θ) :

let θ ∈ Θ ⊂ IRd ; the element (i , j) ∈ {1, . . . , k}2 of Iθ is

Iij(θ) = −Eθ

[
∂2

∂θi∂θj
log f (x |θ)

]

(under regularity conditions ensuring the existence)

Jeffrey’s prior
π(θ) ∝

√
det I (θ)

For any bijective variable change η = g(θ), one has

π(η) ∝
√

det I (η)

Hence this prior satisfies an intrinsic invariance principle, for any prior parameterization
choice
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A supplementary justification

I (θ) is widely accepted as an indicator of the quantity of information carried by the
sampling model (or its average observation) on θ (Fisher, 1956)

I (θ) measures the capacity of the sampling model to discriminate between θ and
θ + /− dθ via the mean slope of log f (x |θ)

Favoring the values of θ for which I (θ) is high is equivalent to minimize the
influence of the prior distribution

Unfortunately, Jeffreys’ prior is often not a real probability measure (improper prior) :
no possibility of simulating (for instance)

∫

Θ

π(θ) = ∞

It can be proper (true probability measure) only if Θ is bounded or discrete
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Coming back to our very simple example

Assume to have data xn = (x1, . . . , xn)

Using Bayes’rule, the prior measure on θ can be updated by conditioning and become a
posterior measure

π(θ|xn) =
f (xn|θ)π(θ)∫
f (xn|θ)π(θ)dθ

This is possible when π(θ) is improper, but for small dimensions of Θ only
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Example : exponential lifetime distribution

Consider a n−sample from an exponential distribution

X ∼ E(θ)

with density

f (x |θ) = θ exp(−θx)

Then the Jeffreys’ prior is

π(θ) ∝ 1/θ

Consequently, the posterior distribution is proportional to (∝)

θn−1 exp

(

−θ
n∑

i=1

xi

)

and we recognize the general term of the gamma G(n, nx̄n) distribution

Usually not so straightforward ⇒ typical computational tools : Monte Carlo Markov
Chains (MCMC)
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Example pursued

Choose now a gamma distribution G(a, b) as a prior on θ, instead of Jeffreys’s choice

π(θ) =
ba

Γ(a)
θa−1 exp(−bθ)✶{θ≥0}

Then the posterior distribution, given the likelihood

f (xn|θ) = θn exp

(

−θ
n∑

i=1

xi

)

,

is also a gamma distribution :

θ|xn ∼ G (a+ n, b + x̄n)

Jeffreys’ prior can be seen as a limiting case of a proper prior, here by choosing a → 0
and b → 0, according to a given topology [2]
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What is the sense of Jeffreys’ prior ?

To define a particular stochastic prior model π(θ) yielding information, we need a
benchmark prior model πJ(θ) (Jeffreys) such that :

it defines something like “the most objective prior form"

it yields something like “the minimum amount of prior information"

its posterior distribution πJ(θ|xn) is nearly confounded with the distribution of an
usual frequentist estimator of θ

There are many other benchmark (say, noninformative) priors
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Berger-Bernardo’s reference prior (1979, 1992)

Principe

The Kullback-Leibler divergence (“distance") between posterior and prior

KL(π, xn) =

∫

Θ

π(θ|xn) log
π(θ|xn)

π(θ)
dxn

measures the information brought by observed data xn on the modelling,
independently of the parameterization choice θ

The idea is to maximize KL(xn) in π for data xn that can be typically observed :
they are generated by the predictive prior distribution

f (xn) =

∫

Θ

f (xn|θ)π(θ) dθ

and to avoid choosing a size n, let make it tend to ∞

soit π∗ = arg max
π

lim
n→∞

Ef (xn) [KL(π, xn)]
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Main features

In dimension 1, it is the Jeffreys’ prior

Can solve posterior inconsistency problems in higher dimensions

Methodology of prior elicitation much less automated than for Jeffreys
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Coverage matching prior (of ith-order)

Let θn(α) be the α−order posterior quantile

∀α ∈ [0, 1], one may elicit a prior measure such that

Pθ (θ ≤ θn(α))︸ ︷︷ ︸
frequentist probability

= P (θ ≤ θn(α)|Xn)︸ ︷︷ ︸
Bayesian probability

+ O(n−i/2).

Frequentist coverage matching properties allow to discriminate between several
benchmark priors
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Illustration with extreme value models

Rainfall annual maxima X at Penta-di-Casinca (Corsica)
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Illustration with extreme value models

The statistical extreme value theory suggests to select f (x |θ) in the Generalized Extreme
Value (GEV) family, with pdf

F (x) = exp

{
−
[
1 + ξ

(
x − µ

σ

)]−1/ξ

+

}

and [x ]+ = max(x , 0)
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Action of two benchmark priors with extreme value models and comparison with MLE
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A first conclusion

Whatever the available information, establishing baseline (noninformative) priors for a
Bayesian situation is a prerequisite (having a true distribution is not mandatory)

Objective Bayesian modeling, dedicated to find benchmark (noninformative) priors for
statistical models, can provide good ideas

⇒ Exploring Bayesian elicitation
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Eliciting a prior form from pure statistical properties

Start from an application : the von Bertalanffy curve

L(t|θ) = L∞(1 − exp(−g(t, δ))

is frequently used as an age-length key, modelling the increasing of length of an
organism (e.g., fish) during its life

Denote θ = (L∞, δ) the vector of unknown parameters

Capture-recapture data : assume to have couples of observation {l∗(ti ), l
∗(ti+∆i

)} such
that

l
∗(ti ) = L(ti |θ) exp(ǫ1),

l
∗(ti+∆i

) = L(ti +∆i |θ) exp(ǫ2)

where (ǫ1, ǫ2) are observational noises

Classical estimations of the asymptotic length L∞ can be very sensitive to the size of
data

How placing a prior on L∞ ?
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Taking benefit from asymptotism properties

L∞ is given the sense of the maximal length that a fish can reach, on average on all
possible observations

Define L∗
∞ = L∞ exp(ǫ) the observed maximal length

Denote L̄ the medium length of a fish

Theorem (Pickands)
When L̄

increases, the distribution of L∗∞|L̄ = l is a generalized Pareto :

P
(

L∗∞ < x |L∗∞ > L̄, σ, µ
)

= 1 −

(

1 + µ

(

x − L̄

σ

))−1/µ

We obtain a justification for :

1 choosing a prior form for L∞ (given ǫ)

2 conditioning to L̄ ⇔ establishing a hierarchical Bayesian approach
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Another example : probability of survival

Let Xt be a number of individuals in a population

Denote θ = θt,t+1 the probability of surviving between t and t + 1

The likelihood can be defined by

Xt+1|Xt , θt,t−1 ∼ B(Xt , θt,t+1) (Bernoulli dist.)

One may write

θt,t+1 =
M+1∏

i=0

θt+i/M,t+(i+1)/M

therefore, from the CLT, when 1 ≪ M,

log(θt,t+1) ∼ N (µt , σ
2
t )

with µt < −σ2
t /2 such that E[θt,t+1] ∈ [0, 1]
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Realizing a meta-analysis on indirect data to elicit a prior

Principle :

Assume to have an average observation Y
∗ on Y = g(θ, c) where g is some

function and c a set of fixed parameters

Choose a likelihood linking Y
∗ and θ

Choose a noninformative prior πJ(θ) in function of this likelihood

Select π as the posterior πJ(θ|Y ∗)
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A motivating example : state-space population (cohort) model

B., Chassot, Hammill, Duplisea (2008-2011)

Modelling the cod abundance (Gadus morhua) in the Northern Gulf of St Lawrence
(Canada)

NAFO division 3Pn4RS
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Dynamics

Cod can live 15 years

Main sources of mortality :

predation by harp seal (Phoca groenlandica)

fishing (especially during the 90’s)

natural (residual) mortality (water layer temperature, etc.)

ETICS Summer School 2017 64 / 126



Observations : seal population increasing and cod decline

(Chassot et al. 2009)
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Hidden state-space dynamics of cod abundance Na,t

Cod predation Pa,t = pc
a,t · Na,t

Residual mortality 1 N ′
a,t = pm

a,t (Na,t − Pa,t , )

Commercial fishing Ca,t =
(
1 − pf

a,t

)
N ′

a,t

Middle-year abundance N ′′
a,t = N ′

a,t − Ca,t/2
Residual mortality 2 Na+1,t+1 = pm

a,t

(
N ′′

a,t − Ca,t/2
)

Total egg production TEPt =
∑A

a=1 Na,t ξa, t φa, t fa,t
Recruitment at age 0 Rt+1 = pr

t+1 · TEPt

Recruitment at age 1 N1,t+2 =
(
pm

0,t+1

)2
Rt+1

Sex ratio ξ
Proportion of maturing females φ

Fecundity (NoE cod−1) f
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Observations

Ia,t = q ςa, s N
′′
a, t Survey indice

with ςa, s =
1

1 + exp (−γs (a− δs))
Selectivity

and q Capturability

Ct =
A∑

a=1

Ca, t Total catch

pa, t, c = Ca, t/
A∑

a=1

Ca, t Catch-at-age obs. probability

pa, t, s = Ia, t/
A∑

a=1

Ia, t Survey-at-age obs. probability

J∗
t =

A∑

a=1

J
∗
a, t

iid
∼ N

(
A∑

a=1

log Ia, t(θ), ψ
2

)

ψ2 = Aσ2 + A2τ2

where J∗
a, t = log(I ∗a, t) = log(Ia, t) + ǫa, t + ηt

logC∗
t

iid
∼ N

(
logCt(θ)−

σ2
c

2
, σ2

c

)
σ2
c

p
∗
a t x

iid
∼ Dir

(
p1, t, x(θ), . . . , pA, t, x(θ), n

∗
t s

)
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List of unknown parameters

ζa Baseline attack rate for age a

(nb. attacks seal−1)
π Normalization coefficient of attack rates
m Shape parameter of the Holling response type
α Intercept of the natural mortality curve (yr−1)
β Slope of the natural mortality curve
F Fishing mortality rate of cod (yr−1)
Rmax Maximum nb. of cod recruits (NoI)
r TEP needed to produce recruitment = Rmax/2 (NoE)
ςa, c Commercial selectivity-at-age

γ1
c Shape parameter of the commercial selectivity

(1984-1993)

δ1
c Age of half-vulnerability (1984-1993)

γ2
c Shape parameter of the commercial selectivity

(1994-2006)

δ2
c Age of half-vulnerability (1994-2006)
ςa, s Survey selectivity-at-age
q Survey catchability
γs Shape parameter of the survey selectivity
δs Age of half-vulnerability
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Frequentist results (Chassot et al. 2009)

Too small “confidence" intervals (bootstrap)

Being Bayesian appears more respectful of all uncertainties around the modelling
assumptions
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Prior elicitation for selectivity parameters

ςa =
1

1 + exp(−γ{a− δ})
.

δ = age at which 50% of the cod population is sensitive to the fishing gear

γ = shape parameter

Meta-analysis of selectivity estimates obtained from survey / commercial catches-at-age
of Atlantic cod with similar gears

Following an idea of Harley and Myers (2001)

M = 153 datasets
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Let c1, . . . , cA+ be a sample of catches-at-age

Kaplan-Meier estimator = cumulative age frequency

ς
∗
a =

A∑

i=1

ci✶{i≤a}/
A∑

j=1

cj .

Our aim is

to define some kind of likelihood ℓ(ς∗1,i , . . . , ς
∗
A,i , i = 1, . . . ,M|γ, δ)

to define baseline (noninformative) priors for (γ, δ) with respect to ℓ

to select the final priors on (γ, δ) as posteriors
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Removing the age dependence

Consider the reparametrization

sa = − log(ς−1
a − 1) = γ(a− δ) (2)

and denote s
∗
a the corresponding vector of nonparametric estimates

Estimate then test the model hypothesis

s
∗
a = sa +N (0, σ2

a )

Classical tests (Shapiro-Wilks, etc.) do not deny this hypothesis (high p−values
∈[0.35,0.86])

Denote s
∗
I = (s∗1 (i1), . . . , s

∗
A(iA)), with ij 6= ik , the ij being chosen in I ⊂ {1, . . . ,M}, and

s̄
∗ =

1

A

A∑

j=1

s
∗
j (ij) = αγ − δ +N (0, σ2)

with σ2 =
∑A

a=1 σ
2
a/A and α = (A+ 1)/2.
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Minimizing the correlations to get a likelihood

There are (M!)/(M − A+!) possible values s̄∗

They are not independent (since they share data coming from same empirical
selectictivies)

Selecting farther ages (a1, a2), s
∗
a1(ia1) and s∗a2(ja2) remain however little correlated

A mixing distribution of random variable s̄∗ can be empirically simulated

The formal structure appeared relevant

s̄
∗ = s̄ +N (0, ν2)ETICS Summer School 2017 73 / 126



Eliciting an informative prior on (γ, δ)

1 Let πJ(γ, δ) be a noninformative prior for the likelihood model

reference prior rule from Berger & Bernardo (1992)
biological experts agreed that the widest interval for δ is
[al , ar ] = [1, 6] ⊂ [1,A]

πJ(γ, δ) ∝ ✶γ≥0✶{al≤δ≤ar}

2 Consider the “one-average-data" likelihood emanating from

s̄ = αγ − δ +N (0, ν2 + σ2)

3 Elicit π(γ, δ) = πJ(γ, δ|s̄∗), ie.

π(γ, δ) ∝ exp

{
−

1

2(σ2 + ν2)
(αγ − δ − s̄)2

}
✶{γ≥0}✶{al≤δ≤ar}

survey commercial survey commercial

σ2 1.221 1.510 s̄ 1.891 1.493
ν2 0.1146 0.1051 α 6.5 6.5
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Nuisance parameters

Once the posterior of generic parameter vector θ is obtained, we want to make
projections studies

Often θ = (θI ,θN) where

θI = {parameters of interest} (ex : selectivity parameters, recruitement...)

θN = {nuisance parameters} (observational variances, capturability)

purely relative to the obtention of data

J
∗
t =

A∑

a=1

J
∗
a, t

iid
∼ N

(
A∑

a=1

log Ia, t(θ), ψ
2

)

logC∗
t

iid
∼ N

(
logCt(θ)−

σ2
c

2
, σ2

c

)
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Conditional Berger-Bernardo reference prior for nuisance parameters

No prior information is usually available on θN = (q, σ2
c , ψ

2)

The choice of a baseline (noninformative) prior π(θN) must be independent on any
informative prior choice on θI

Kullback-Leibler divergence between posterior and prior

KL(π|x) =

∫

ΘN

π(θN |x) log
π(θN |x)

π(θN)
dθN

with π(θN) =
∫
π(θ)dθI

Elicit

π∗ = arg max
π

{

lim
card(X)→∞

Em [KL(π|X)]

}

One finds (after boring calculations)

π∗(ψ2, σ2
c , q) ∝ ψ−3σ−3

c q
−1

✶{(ψ,φ,q)∈IR3

+,∗
}.
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Some expected projections (B., Chassot et al. 2011)
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Some expected projections (2)
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Some expected projections (3)
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An example : failure rate

Let X represent the lifetime of a device Σ, X is given an exponential distribution E(λ)

λ = failure rate, which is an object an industrial expert can be familiar with

Dialog with the expert :

1 Consider a management (replacement) decision established on the given value λ̄
instead of the true λ

2 For a similar cost |λ̄− λ|, there are two possible policies :

let C1 be the mean chance of being too optimistic (assuming λ̄ ≤ λ)
let C2 be the mean chance of being too pessimistic (assuming λ̄ > λ)

3 Can you give an estimate δ̂ of the ratio δ = C2/C1 ?

The rationality axiom says that if the expert is risk-unconcerned, then

λ̄ = arg min
x

∫ ∞

0

|x − λ|
(
C1✶{x≤λ} + C2✶{x>λ}

)
π(λ) dλ

︸ ︷︷ ︸
cost function integrated over all prior possibilities for the true λ
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It follows than

∫ λ̄

0

dΠ(λ) = Π(λ < λ̄) =
C1

C1 + C2

The interpretation of the expert’s answer is that 1/(1 + δ̂) is an estimate of the prior
α−order quantile with α = C1/(C1 + C2)

Remark. The posterior work is similar in spirit : a decision must be adressed by
minimizing a cost function integrated over all posterior credible values of λ
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Anchoring variable

Unless the expert is very trained, he/she is not a statistician and does not know the
existence of a given parametrization θ

Anchoring variables must be selected : often X itself, since observable

The previous dialog is more realistic in the context when he/she is questioned about the
lifetime X and not λ

In this case, x̄ is perceived as the α−order prior predictible percentile
∫ x̄

0

m(x) dx = Pm(X < x̄) = α

where m(x) =

∫ ∞

0

f (x |λ)π(λ) dλ

This interpretation is probably the most accepted in the Bayesian community (O’Hagan
2006), therefore statisticians are motivated to ask questions like

Given the times x0 and x1 > x0, how much chances do the device Σ has to survive
after x0 rather than to survive after x1 ?

The answer is seen as an estimate of Pm(x0)/Pm(x1)ETICS Summer School 2017 82 / 126



Prospective questions about the auditability of a prior model

expert strenght quantifying the ratio “information yielded by an expert" / "data
information"

needs for an understandable definition

conservative bias do the models (fi (.|θi ), πi (θi )) are biased w.r.t. “cautious",
“reasonables", “conservative" specifications from the expert ?

coherence W.r.t. consensual qualitative knowledge on Σ, is π coherent ? (ex :
exponential aging from a component)

unicity For the model fi (.|θi ), is πi be defined in a unique way ?

equitability Do the complete Bayesian models (fi (.|θi ), πi (θi )) be equitable ?

a model should not be arbitrarily favorized a priori [Consonni and

Veronese 2008]

the prior of a nested sampling model should be itself nested in the
prior of a more complex model

ETICS Summer School 2017 83 / 126



An example of coherence : the Weibull banana shape

Weibull distribution in lifetime data analysis

f (t|η, β) =
β

η

(
t

η

)β−1

exp

{

−

(
t

η

)β}

✶{t≥0}

A prior π(β, η) with strongly positive correlation threatens to be incoherent with the
meaning of the model :

high β ⇔ strong ageing ⇒ short lifetime ⇔ small η
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Complementary wishes

practicity is π easy to handle ? [Rios Insua and Ruggeri 2000]

explicit if possible (sensitivity study are simplified)
easy to sample from (comparisons a posteriori-a priori)

opinion pooling how defining a unique π from several priors π(1), . . . , π(ne ) ?

no longer available experts information has been summarized in the past. How to deal
without questioning again ?
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A first view from information theory : Maximum entropy prior elicitation

Formal procedure for building a prior π(θ) under a given type of constraints reflecting
quantitative knowledge

Principle : we are looking for a π(θ) in the widest class of probability measures
respecting those constraints

The entropy is generally defined as measure of disorder (or uncertainty) associated to a
probability distribution

It is a fundamental concept of the information theory
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The concept of entropy (1/3)

To the origin of this concept, a problem of sorting a discretized information using
combinatorics :

Assume there exists a partition of k geographical areas

Assume that each area contains Ni = N×pi sites, with i = 1, . . . , k, and
∑

i pi = 1

Assume that on each site you want to find a given information

Assume that, to find information, you can simply ask binary questions (yes/not)

You want to minimize the number of questions

then it is enough to ask

1 Q ′
i = logNi = log pi + logN questions to sort the i−th area

2 on average on areas, Q ′ =
∑k

i=1 piQ
′
i is the total minimal number of questions

needed to find the information
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The concept of entropy (2/3)

Knowing in probability in which area is the information reduces the average number of
questions to ask of the quantity

∆Q = Q − Q
′ = −

k∑

i=1

pi log pi

which is positive and maximum when pi = 1/k

The less informative the probability distribution Π = (p1, . . . , pk), the higher this
quantity

Definition
The entropy of a finite random variable with distribution

Π = (π(θ1), . . . , π(θk)) is

H = −
k∑

i=1

π(θi ) log π(θi ) (Shannon’s entropy)
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The concept of entropy (3/3)

Generalizing to continuous cases :

the continuous case can be interpreted as a “limit"’ discrete case with smallest and
smallest intervals

the entropy must be invariant to any variable change θ 7→ ν(θ)

Definition
The entropy of a random variable with probability density π(θ) is

H(π) = −

∫

Θ
π(θ) log

π(θ)

π0(θ)
dθ (Kullback’s entropy)

where π0(θ) is a positive benchmark measure on Θ, representing complete ignorance of the
value of θ on Θ

Very usually π0(θ) is chosen as the uniform density over est Θ

Remark : the entropy is not always longer positive, but it remains maximum in π(θ) = π0(θ)
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Maximizing the entropy under linear constraints (1/2)

Aim : choose π(θ) as vague as possible

π∗(θ) = arg max
π∈P

−

∫

Θ
π(θ) log

π(θ)

π0(θ)
dθ (3)

in the set P of positive measures, under M linear-type constraints similar to

∫

Θ
gi (θ)π(θ) dθ = ci , , i = 1, . . . ,M

The first constraint is always a normalizing constraint :

∫

Θ
π(θ) = 1
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Maximizing the entropy under linear constraints (2/2)

Solution : if all previous integrals exist, the solution of problem (3) is of the form

π∗(θ) ∝ π0(θ) exp

(

M
∑

i=1

λigi (θ)

)

This form characterizes the laws from the exponential family

The parameters (λ1, . . . , λM) are Lagrange multipliers and must be calibrated by solving the
equations

∫

Θ
gi (θ)π

∗(θ) = ci , , i = 1, . . . ,M

When only the normalizing constraint is assumed, then

π∗(θ) = π0(θ)
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The exponential family

The maximum entropy principle can also be applied to X conditionaly to θ, and leads to the
following parametric family

Definition
Let (C , h) : Θ× Ω 7→ IR2

+, and (R,T ) : Θ× Ω 7→ IRk × IRk . The family of
distributions with density

f (x |θ) = C(θ)h(x) exp {R(θ) · T (x)}

is called exponential family of finite dimension k. When Θ ⊂ IRk and Ω ⊂ IRk , one can use the
simpler writing (up to a reparameterisation)

f (x |θ) = h(x) exp {θ · x − ψ(θ)}

with

Eθ[X ] = ∇ψ(θ) (gradient)

cov(Xi ,Xj ] =
∂2ψ

∂θi∂θj
(θ)

One speak rather about natural exponential family
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Examples

Dirichlet distribution. (extension of the Beta distribution)

f (x |θ) =
Γ(
∑k

i=1 θi )
∏k

i=1 Γ(θi )

k
∏

i=1

x
θi−1
i

✶{Sk (x)}

defined on the simplex Sk (x) =

{

x = (x1, . . . , xk );
k
∑

i=1
xi = 1, xi > 0

}

Gaussian vector. Si xn = (x1, . . . , xn) ∼ Np(µ, σ2Ip), the the joint distribution satisfies

f (xn|θ) = C(θ)h(xn) exp

(

nx̄ · (µ/σ2) +
n
∑

i=1

‖xi − x̄‖2(−1/2σ2)

)

with θ = (µ, σ), and the statistics (x̄ ,
∑n

i=1 ‖xi − x̄‖2) is exhaustive for all n ≥ 2
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A major property of the exponential family : conjugation

Let X |θ be a maximum entropy distribution, with density of the form :

f (x |θ) = exp

(
L∑

j=1

Tj(x)dj(θ)

)

If, moreover, the prior π(θ) is similarly elicited by maximum entropy :

π(θ) ∝ ν(θ) exp

(
M∑

i=1

λigi (θ)

)

Then, given xn = (x1, . . . , xn), the posterior distribution has the same structural form
than π(θ) :

π(θ|xn) ∝ ν(θ) exp

(
M∑

i=1

λigi (θ) +
L∑

j=1

[
n∑

k=1

Tj(xk)

]

dj(θ)

)

In this case the prior is said to conjugate
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In the most conventional writing of the natural exponential family

Let

f (x |θ) = h(x) exp(θ · x − ψ(θ))

then the prior measure automatically generated by

π(θ|a, b) = K(a, b) exp(θ · a− bψ(θ))

is naturally conjugate and the corresponding posterior measure, given a data x , is

π(θ|a+ x , b + 1)

K(a, b) is the normalizing constant

K(a, b) =

[∫

Θ
exp(θ · a− bψ(θ))

]−1

that is finite if b > 0 et a/b ∈ I̊N
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Some conjugate prior/posterior distributions for some usual exponential families

conjugate.jpeg

courtesy of VS-RSF
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The interest of conjugation

Rationale of form invariance :

the knowledge x ∼ f (x |θ) updating π(θ) into π(θ|x) is limited by nature

hence it should not lead to modify all the structural form of π(θ), but simply of its
hyperparameters :

π(θ) = π(θ|δ) ⇒ π(θ|x) = π(θ|δ + s(x))

this modification should remain of finite dimension, and a deeper change of π(θ) is not
acceptable

Another justification is the representation using virtual data (see next slide)

In practice, the interest of conjugation is the working convenience
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Meaning of natural conjugate priors

Let the conjugate prior

π(θ|x0,m) ∝ exp {θ · x0 −mψ(θ)} (4)

then the prior predictive mean (expectancy) is

E[X ] = E[E[X |θ]] = E [∇ψ(θ)] =
x0

m

and the posterior predictive mean, given a i.i.d. sample xn = (x1, . . . , xn), is

E[X |xn] =
x0 + nx̄

m + n
(5)

Hence m has the sense of a virtual sample size, offering an indication of the “strength" of
information carried through the prior

Theorem (Diaconis & Ylvisaker, 1979)

If the dominating measure is continuous with respect to
the Lebesgue measure, then (5) ⇒ (4)
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Example : exponential-gamma Bayesian model

Remember that the exponential model

X ∼ f (x |θ) = θ exp(−θx)✶{x≥0}

can be useful to model the lifetime of a device only submitted to accidental failures

Modelling very used in reliability engineering

Placing a gamma prior

θ ∼ G(a, b)

with density

π(θ) =
ba

Γ(a)
θa−1 exp(−bθ)✶{θ≥0}

Posterior distribution, given xn = (x1, . . . , xn) :

θ|xn ∼ G (a+ n, b + n · x̄n)
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Beyond the exponential family : other possible conjugations

Some models accept conjugate priors which does not belong to the exponential family

Example 1 : Pareto distribution with α > 0 known, and θ > 0

f (x |θ) = α
θα

xα+1
✶]θ,∞[(x)

admits a Pareto conjugate prior over 1/θ

Example 2 : uniform distributions

f (x |θ) =
✶[−θ,θ](x)

2θ

f (x |θ) =
✶[0,θ](x)

θ
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Another view (idealistic)

Imagine an expert is a statistician and can provide an iid sample ~xm ∼ f of size m

A nice (and logical) prior is π(θ) = πJ(θ|~xm) where πJ
i is noninformative

It answers to most of our requirements (unicity, assessing correlations within θ,
aggregation of opinions without paradoxes...)

We “just" have to care about the subjectivity in data ~xm (location, size, etc.)

Assuming π(θ) is not conflicting with real data, m is convenient to modulate our trust in
the expert opinion
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Inspirations & previous works

Virtual sample idea = not new

Construction principle of conjugate models, with π entirely explicit

Gamma prior G(m,
∑m

i=1 t̃i ) for exponential models

Dirichlet priors for multinomial models

Close idea to Zellner’s g− prior (Zellner 1986) for Gaussian regression models

Calibrating with information-theoretic distances
Theoretical works by Clarke (1996), Liu & Clarke (2004), Lin et al. (2007), Morita et al.
(2007)

Neal (2001) : imaginary data to equilibrate priors
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Virtual data posterior prior methodology

For a given f (t|θ)

1 select πJ(θ)

2 assume there exists a “hidden" (virtual) sample ~xm of size m

3 give a unique form choosing π(θ) ≡ πJ(θ|~xm), ie.

π(θ) = π(θ|∆m)

with ∆m a set of virtual statistics

4 estimate ∆m by ∆̂m = arg min
δm

D (Λe ,Λ(δm))

Λe are prior predictive features given by expert questioning
Λ(δm) are features of the effective prior predictive distribution with pdf

m(x |δm) =

∫

Θ
f (x |θ)π(θ|δm) dθ

D is some kind of distance
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Requirement

How choosing D ?

1 Ex : Cooke’s method of discrete Kullback-Leibler loss (1991).

denote Λe = {λ1,e , . . . , λq,e)
assume each λi,e is a couple (xi,e , αi,e) such that Pm(X < xi,e) = αi,e

D (Λe ,Λ(δm)) =

q
∑

i=0

(αi+1,e − αi,e) log
αi+1,e − αi,e

αi+1(δm)− αi (δm)

with α0,e = α0 = 0, αq+1,e = αq+1 = 1 and

αi (δm) =

∫ xi,e

−∞
m(x |δm) dt

2 One may weight the Kullback loss such that the most important constraints λi,e are
nearly fully respected (most trustworthy, pessimistic (conservative), normative...

One cannot hope all expert specifications are simultaneous coherent with the Bayesian
model
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Weibull example : lifetime of components from the secondary water circuit of a

power plant (B. 2009)

The Weibull model is not conjugate : P(X < x |θ) = 1 − exp
(
−µxβ

)

Jeffreys’ prior : πJ(µ, β) ∝ (µβ)−1

Most trustworthy specification

experts cred.intervals (5%,95%) median value

E1 (exploiter) [200,300] 250
E2 (manufacturer) [100,500] 250

Using the most trustworthy specification xe = 250, the virtual data posterior prior
modelling is

µ|β ∼ G

(
m,
(
(1 − α)−1/m − 1

)−1 (
x
(e)
α

)β)

β ∼ G (m,m/βe)

where α = 0.5 and βe = E[β] and m can be calibrated using the other percentiles (or
some qualitative knowledge on aging)
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Full calibration : minimizing Cooke’s criterion in (m, βe)

Existence ensured, unicity not formally proven but obtained in practice

Useful especially if the expert cannot be questioned again in practice, or when prior
information comes from past summaries

Expert E2 :
m βe coverage error

2.5 4.43 5.10−5

prior predictive pdf
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Ideas for calibrating m (to be cautious)

Idea 1 : it depends on the order of prior predictive percentiles

Idea 2 : bisection or hisgram methods (O’Hagan 2006)

Idea 3 : “true" percentiles orders can be corrected

Example of correction table (Lannoy and Procaccia 2002)

translation of expert opinion trueness a
∗
i

5% 25% 4
20% 33% 3
25% 40% 2
75% 60% 2
80% 66% 3
95% 75% 4
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Another non-conjugate example : Fréchet distribution for extreme values

Fréchet F(θ) : P(X < x |θ) = exp

{
−
(
x − µ

σ

)−1/ξ
}

with σ > 0, ξ > 0, µ ∈ IR and x ≥ µ

Reparametrize the Fréchet distribution F(θ) :

P(X < x |θ) = exp
{
−ν (x − µ)−1/ξ

}

and denote now θ = (µ, ν, ξ) with ν = σ1/ξ > 0.

A nice prior form is given in next proposition
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Another non-conjugate example : Fréchet distribution for extreme values

Proposition

Assume the Fréchet prior distribution π(ν, µ, ξ) defined by

ν|µ, ξ ∼ G (m, s1(µ, ξ)) ,

ξ|µ ∼ IG (m, s2(µ)) ,

π(µ) ∝
✶{µ≤xe1}

(xe2 − µ)msm2 (µ)
(6)

where µ < xe1 < xe2 and

s1(µ, ξ) = m(xe1 − µ)−1/ξ,

s2(µ) = m log

(
xe2 − µ

xe1 − µ

)
.

Then π(ν, µ, ξ) is proper for any m > 0, is conjugated for ν given (µ, ξ), and when
m ∈ IN∗, π(ν, µ, ξ) = πR(ν, µ, ξ|~xm) where πR is the Fréchet reference prior and ~xm is a
virtual Fréchet sample of size m with statistics {xe1 , xe2}
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Expert information available

Percentile order Pluviometry P (mm)

25% 75
50% 100
75% 150

Table – Prior predictive information on daily maxima per year, extrapolated by an
expert from daily maxima measured at a nearby station.
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Calibration using Cooke’s criterion

Virtual size m xe1 xe2 µinf Order of prior predictive quartiles
(75,100,150)

1 100.41 130.20 [25%, 50%, 75%]
2 95.30 138.39 [24%, 49%, 74%]
3 91.22 136.93 [23%, 51%, 74%]
4 89.18 135.10 [24%, 50%, 74%]
5 87.72 133.95 [24%, 51%, 75%]
6 87.65 133.88 [24%, 50%, 75%]
7 87.14 133.26 [25%, 50%, 74%]
10 86.63 132.65 [25%, 51%, 75%]
15 85.11 132.24 [26%, 50%, 75%]
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Equitability between models

Assume fi+1 is nested in fi

The virtual data elicitation automatically leads to a nested prior πi+1 ⊂ πi , with virtual
sizes m(i) and m(i+1)

In absence of data, we should not arbitrarily favor a Bayesian model in the elicitation
process

Many proposals [Ibrahim & Laud 1994 ; Dawid & Lauritzen 2000 ; Roverato & Consonni 2004]

Marin 2006. Assume having elicited πi . Then πi+1 is equitable w.r.t. πi if

πi+1 = arg min KL (mi (.)|mi+1(.)) = arg min

∫
mi (t) log

mi (t)

mi+1(t)
dt

with mi (t) =
∫
fi (t|θi )πi (θi )dθi
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m is a thought experiment from the Bayesian analyst

m is compared to n ⇔ m is linked to the choice of a particular model (or model
dimension)

If dim(fi ) > dim(fi+1), m data yield more information on θi+1 than θi

For a same marginal information, mi+1 should be greater than mi

Rule : given mi , minimizing in mi+1 the Kullback divergence between the encompassing
predictive model and the nested predictive model
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3 - Merging several priors

In numerous practical cases, one may dispose of several possible priors π1(θ), . . . , πM(θ)
assumed to be independent

Example : reunions of pharmacologist experts before putting a medicine on the market

A first idea : weighted linear merging (arithmetical average)

π(θ) =
M
∑

i=1

ωiπi (θ)

with
∑M

i=1 ωi = 1

Issues :

the result can be multi-modal

not externally Bayesian :

π(θ|xn) 6=
M
∑

i=1

ωiπi (θ|xn)

for one or several data xn
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A second idea : weighted logarithmic merging (geometrical average)

π(θ) =

M
∏

i=1
πωi (θ)

∫

Θ

M
∏

i=1
πω
i
(θ) dθ

with
∑M

i=1 ωi = 1

It is externally Bayesian

Issues : it is not coherent by marginalizing

Let A et B be two event such that A ∩ B = ∅ et C = A ∪ B ⇒ P(C) = P(A) + P(B)

Consider two experts providing their opinions on the occurence of events A and B

For each expert, one may directly calculate P(C) ou calculate separetely P(A) then P(B)

Only the linear merging allows the equality of both calculus
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In reality, the logarithmic merging appears a better choice since it can be explained by an
information-theoretic argument

The Kullback-Leibler divergence

KL(π, πi ) =

∫

Θ
π(θ) log

π(θ)

πi (θ)

expresses an information loss when the best prior choice π is replaced by πi

The minimizer of the weighted loss

π∗(θ) = arg min
π

M
∑

i=1

ωiKL(π, πi )

is the logarithmic merging prior

The calibration of weights ωi is an open problem, although several answers exist
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Take-home messages

Benchmark priors are fundamental : basis for learning from virtual or past data, for
criteria...

Ask the question of “which parameters is my knowledge independent on ?"

Do not forget that usually, a true expert does not know what a statistical
parameter is

Ask the question “which are the hyperparameters I must give a sense to for
defending my prior

Virtual data posterior priors are nice to quantify the “strength" of subjective
information
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For other details of elicitation problems...

Most recent overview of elicitation problems in [23]
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