Imprecise probabilities to propagate uncertainties: a tour

Sébastien Destercke
Heudiasyc, CNRS Compiègne, France

ETICS 2017 school
Lecture goal/content

What you will find in this talk

- Information representation seen by a non-statistician (mostly IA/engineer) guy
- Imprecise probabilities: when to (not) use it?
- Imprecise probabilities: definition and practical representation
- Merging imprecise probabilistic representations
- (In)dependence modelling and uncertainty propagation
- How (not) to decide with imprecise probabilities

What you will not find in this talk

- A deep and exhaustive study of a particular topic
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
A quantity of interest X can be

- **Generic**, when it refers to a population, or a set of situations.

Generic quantity example
The distribution of mother tongue within French inhabitants

- **Singular**, when it refers to an individual or a peculiar situation

Singular quantity example
My own mother tongue
Ontic and epistemic information [9]

An item of information I possessed by an agent about X can be

- **Ontic**, if it is a faithful, perfect representation of X

Ontic information example

A set X representing the exact set of languages spoken by me

e.g.: $X = \{ \text{French, English, Spanish} \}$

- **Epistemic**, if it is an imperfect representation of X

Epistemic information example

A set E containing my mother tongue

e.g., $E = \{ \text{French, Dutch, English} \}$
Everything is possible

We can have

- **Ontic** information about a **singular** quantity: the hair colour of a suspect; the mother tongue of someone

- **Epistemic** information about a **singular** quantity: the result of the next dice toss; the set of possible mother tongues of someone

- **Ontic** information about a **generic** quantity: the exact distribution of pixel colours in an image

- **Epistemic** information about a **generic** quantity: an interval about the frequency of French persons higher than 1.80 m
Uncertainty definition

Uncertainty: when our information I about the quantity of interest X is insufficient to answer with certainty to assertions

→ In this view, uncertainty is necessarily epistemic, as it reflects an imperfect knowledge of the agent.

Can concern both:

- **Singular quantity**
 - items in a data-base, values of some logical variables, time before failure of a component

- **Generic quantity**
 - parameter values of classifiers/regression models/probability distributions, time before failure of components, truth of a logical sentence ("birds fly")
The room example

Heights of people in a room: generic quantity

- Generic question: are 90% of people in room less than 1m80?
 ⇒ No, with **full certainty**

- Specific question: is the last person who entered less than 1m80?
 ⇒ Probably, with 60% chance (**uncertain answer**)
Uncertainty main origins [6, Ch. 3]

- **Variability** of a population applied to a peculiar, singular situation

Variability example
The result of one dice throw when knowing the probability of each face

- **Imprecision and incompleteness** due to partial information about the quantity S

Imprecision example
Observing limited sample of the population, describing suspect as "young", limited sensor precision

- **Conflict and unreliability** of different sources of information

Conflict example
Two redundant data base entries with different information for an attribute, two sensors giving different measurements of a quantity
Uncertainty propagation revisited

$\text{Model } f(x_1, \ldots, x_n) = y$

Propagation: usual steps

1. **Represent**: provide an uncertainty model for x_1, \ldots, x_n
2. **Merge**: if multiple models given for x_i, merge into a single one
3. **Combine**: specify (in)dependencies between x_i's to get global model
4. **Propagate**: propagate to get uncertainty over y
5. **Decide**: once uncertainty on y estimated, decide on an action

Output genericity: same as most generic input variable/parameter
Many notions making sense for generic quantities, make no or poor sense at all for singular ones:

- frequencies and "objective" true probability
- any statistic requiring population (variance, mean, median, ...)
- learning from samples
- stochastic independence

Mathematically equivalent notions may model something about your knowledge of the singular quantity, not about the quantity itself.
Outline

1. Introductory elements

2. Imprecise probabilities: use and misuse
 - Motivation without probabilities
 - A short word on interpretation
 - Some further reasons

3. Representing partial (probabilistic) knowledge

4. Merging partial (probabilistic) knowledge

5. Independence and propagation

6. Decision in presence of imprecision
Outline

1. Introductory elements

2. Imprecise probabilities: use and misuse
 - Motivation without probabilities
 - A short word on interpretation
 - Some further reasons

3. Representing partial (probabilistic) knowledge

4. Merging partial (probabilistic) knowledge

5. Independence and propagation

6. Decision in presence of imprecision
A non-probabilistic example

Assume the following:
- A function linking y and x with $f(y) = x^2$
- We want to estimate $f(y)$ but only know $x \in [-1, 6]$

We acknowledge our imprecise knowledge
Our final answer is that $f(x) \in [0, 36]$
Full imprecise knowledge + "uniform" selection

Assume the following:
- A function linking y and x with $f(y) = x^2$
- We want to estimate $f(y)$ but only know $x \in [-2, 5]$

We choose an "equiprobable" guess given x interval: $x^* = 2$
Our final answer is that $f(x^*) = 4 \rightarrow$ is it what we want?
Full imprecise knowledge + "uniform" selection

Assume the following:
- A function linking y and x with $f(y) = x^2$
- We want to estimate $f(y)$ but only know $x \in [-2, 5]$

\[
f(x) = x^2
\]

- We choose the worst case given x interval: $x^w = 0$
- Our final answer is $f(x^w) = 0 \rightarrow$ not easy to find? what we want?
Lesson from example

Two strategies:

1. take account of our knowledge as faithfully as possible
2. reduce it to something more manageable:
 - +: may make computations easier (not always)
 - -: selection will introduce a (possibly wanted) bias, whatever it is
 - -: "reference" point (uniform) may induce an unwanted bias

If you are fine with option 2, you can go for it. Another strategy:

3. Outer-approximate initial information for computational convenience

⇒

same remarks apply when a probability is ill-known
Outline

1. Introductory elements

2. Imprecise probabilities: use and misuse
 - Motivation without probabilities
 - A short word on interpretation
 - Some further reasons

3. Representing partial (probabilistic) knowledge

4. Merging partial (probabilistic) knowledge

5. Independence and propagation

6. Decision in presence of imprecision
Imprecise probabilities for generic information

Probabilities as frequencies

\[P(A) = \text{frequency with which } A \text{ has been observed/is observed} \]

Imprecise probabilities as robust/sensitivity analysis models:

- "true" \(P \) only known to belong to some set \(\mathcal{P} \)
- \(P(A) \) only known to lie in \([\underline{P}(A), \overline{P}(A)]\)
- imprecise observations, limited sample, expert bounds

Eventually, with enough information, get to \(P \) or a small \(\mathcal{P} \)
Imprecise probabilities: use and misuse

A short word on interpretation

Imprecise probabilities for singular information

Probabilities as subjective degrees

\[P(A) = \text{degree of belief that the true value will be in } A \]

Imprecise probabilities as models of beliefs:

- validity of probability to model partial belief or ignorance questionable
- separate notions of certainty and plausibility to encode ignorance
- asking for a precise \(P \) very demanding
- no notion of "true" \(P \) within \(\mathcal{P} \)

Eventually, with enough information, get the true value
Two views of imprecise probabilities

\(f \): true or "ideal" uncertainty model
\(\hat{f} \): estimated model/representation

The robust/sensitivity view
- Probabilities
- Probability sufficient in theory
- Hard to precisely obtain in practice

The richer model view
- Imprecise probabilities
- Probabilities not universal
- Accurate modelling may require richer theory
Outline

1. Introductory elements

2. Imprecise probabilities: use and misuse
 - Motivation without probabilities
 - A short word on interpretation
 - Some further reasons

3. Representing partial (probabilistic) knowledge

4. Merging partial (probabilistic) knowledge

5. Independence and propagation

6. Decision in presence of imprecision
Probability as a model of (partial) ignorance

The assumption ignorance=uniform probability has some issues

- Assume we know nothing about $S \in [1, 2]$, then ignorance is $p(s) \sim \mathcal{U}[1, 2]$
- Yet, if we consider the variable $1/s$, change of variable induce non-uniform probability over $[1/2, 1]$

$\rightarrow "mathematically right", but model of ignorance should be insensitive to variable changes$
The possibility of incomparability

Given two events A, B, whatever this event:
- a probabilistic model P will always output
 - $P(A) > P(B)$
 - $P(A) < P(B)$
 - $P(A) = P(B)$ (not possible for every pair A, B, though)
- in the case of P, you can end up with

$$A \succ \prec B \text{ if } [P(A), \overline{P}(A)] \cap [P(B), \overline{P}(B)]$$

As a direct consequence of lack of knowledge (rather than derive it through a detour \rightarrow variance/sensitivity)
Imprecision in input \neq in outputs

Assume x best guess is 3, $\pm 2 \Rightarrow$ get $[f(x)]$

$$f(x) = x^2$$

Propagating then adding imprecision \neq propagating imprecision
Imprecision in input ≠ in outputs

Assume x best guess is 3 \Rightarrow get $f(x) \pm 2$

$$f(x) = x^2$$

Propagating then adding imprecision ≠ propagating imprecision
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
 - Basic frameworks
 - Possibility distributions
 - Random sets
 - A glimpse into probability sets
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
Uncertainty propagation revisited

Model

\[f(x_1, \ldots, x_n) = y \]

Distrib. of data/parameter

- **Generic**
- **Singular**

Propagate

- Output genericity: same as most generic input variable/parameter

Prediction

Propagation: usual steps

1. **Represent**: provide an uncertainty model for \(x_1, \ldots, x_n \)
2. **Merge**: if multiple models given for \(x_i \), merge into a single one
3. **Combine**: specify (in)dependencies between \(x_i \)’s to get global model
4. **Propagate**: propagate to get uncertainty over \(y \)
5. **Decide**: once uncertainty on \(y \) estimated, decide on an action
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
 - Basic frameworks
 - Possibility distributions
 - Random sets
 - A glimpse into probability sets
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
Basic framework

Quantity S with possible **exclusive** states $S = \{s_1, \ldots, s_n\}$

\triangleright S: input variable, component state, model parameter, ...

Basic tools

A confidence degree $P : 2^{|S|} \rightarrow [0, 1]$ is such that

- $P(A)$: confidence $S \in A$
- $P(\emptyset) = 0, P(S) = 1$
- $A \subseteq B \Rightarrow P(A) \leq P(B)$

Uncertainty modelled by 2 degrees $\underline{P}, \overline{P} : 2^{|S|} \rightarrow [0, 1]$:

- $\underline{P}(A) \leq \overline{P}(A)$ (monotonicity)
- $\underline{P}(A) = 1 - \overline{P}(A^c)$ (duality)
Probability

Basic tool

A probability distribution \(p : S \rightarrow [0, 1] \) from which

\[
\begin{align*}
P(A) &= \bar{P}(A) = \mu(A) = \sum_{s \in A} p(s) \\
P(A) &= 1 - P(A^c): \text{auto-dual}
\end{align*}
\]

Main interpretations

- **Frequentist [37]**: \(P(A) = \) number of times \(A \) observed in a population
 - only applies to generic quantities (populations)

- **Subjectivist [24]**: \(P(A) = \) price for gamble giving 1 if \(A \) happens, 0 if not
 - applies to both singular and generic quantities
Sets

Basic tool

A set $E \subseteq S$ with true value $S \in E$ from which

- $E \subseteq A \rightarrow \mathbb{P}(A) = \overline{\mathbb{P}}(A) = 1$ (certainty truth in A)
- $E \cap A \neq \emptyset, E \cap A^c \neq \emptyset \rightarrow \mathbb{P}(A) = 0, \overline{\mathbb{P}}(A) = 1$ (ignorance)
- $E \cap A = \emptyset \rightarrow \mathbb{P}(A) = \overline{\mathbb{P}}(A) = 0$ (truth cannot be in A)

$\mathbb{P}, \overline{\mathbb{P}}$ are binary \rightarrow limited expressiveness

Classical use of sets:

- Interval analysis [26] (E is a subset of \mathbb{R})
- Propositional logic (E is the set of models of a KB)

Other cases: robust optimisation, decision under risk, ...
Example

Assume that it is known that pH value \(E \in [4.5, 5.5] \), then

- if \(A = [5, 6] \), then \(P(A) = 0, \overline{P}(A) = 1 \)

 ![Diagram 1]

- if \(A = [4, 7] \), then \(P(A) = \overline{P}(A) = 1 \)

 ![Diagram 2]

- if \(A = [6, 9] \), then \(P(A) = \overline{P}(A) = 0 \)

 ![Diagram 3]
In summary

Probabilities . . .
- (+) very informative quantification (do we need it?)
- (-) need lots of information (do we have it?)
- (-) if not enough, requires a choice (do we want to do that?)
- use probabilistic calculus (convolution, stoch. independence, . . .)

Sets . . .
- (+) need very few information
- (-) very rough quantification of uncertainty (Is it sufficient for us?)
- use set calculus (interval analysis, Cartesian product, . . .)

→ Need representations bridging these two
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
 - Basic frameworks
 - Possibility distributions
 - Random sets
 - A glimpse into probability sets
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
Possibility distributions

Basic tool

A distribution $\pi : S \rightarrow [0, 1]$, usually with s_i such that $\pi(s_i) = 1$, from which

- $\overline{P}(A) = \max_{s \in A} \pi(s)$
- $\underline{P}(A) = 1 - \overline{P}(A^c) = \min_{s \in A^c} (1 - \pi(s))$

Interval/set as special case

The set E can be modelled by the possibility distribution π_E such that

$$\pi_E(s) = \begin{cases} 1 & \text{if } s \in E \\ 0 & \text{else} \end{cases}$$
Representing partial (probabilistic) knowledge
Possibility distributions

A nice characteristic: Alpha-cut [10]

Definition

\[A_\alpha = \{ s \in S | \pi(s) \geq \alpha \} \]

- \(P(A_\alpha) = 1 - \alpha \)
- If \(\beta \leq \alpha \), \(A_\alpha \subseteq A_\beta \)

Simulation: draw \(\alpha \in [0, 1] \) and associate \(A_\alpha \)

\(\Rightarrow \) Possibilistic approach ideal to model **nested structures**
A basic distribution: simple support

A set E of most plausible values
A confidence degree $\alpha = P(E)$

Interesting case:
- Expert providing most plausible values E

Extend to multiple sets E_1, \ldots, E_p:
- confidence degrees over nested sets [32]

pH value $\in [4.5, 5.5]$ with $\alpha = 0.8$ (\(~"quite probable"\))
Normalized likelihood as possibilities [20] [7]

\[\pi(\theta) = \frac{\mathcal{L}(\theta|x)}{\max_{\theta \in \Theta} \mathcal{L}(\theta|x)} \]

Binomial situation:
- \(\theta \) = success probability
- \(x \) number of observed successes
- \(x = 4 \) succ. out of 11
- \(x = 20 \) succ. out of 55
Partially specified probabilities [2] [18]

Triangular distribution: \([\underline{P}, \overline{P}]\) encompass all probabilities with
- mode/reference value \(M\)
- support domain \([a, b]\).

Getting back to \(pH\)
- \(M = 5\)
- \([a, b] = [3, 7]\)
Other examples

- Statistical inequalities (e.g., Chebyshev inequality) [18]
- Linguistic information (fuzzy sets) [15]
- Approaches based on nested models
Possibility: limitations

For a given event \(A \), we can only have

\[
\underline{P}(A) > 0 \Rightarrow \overline{P}(A) = 1
\]

\[
\overline{P}(A) < 1 \Rightarrow \underline{P}(A) = 0
\]

\[
\Rightarrow \text{ interval } [\underline{P}(A), \overline{P}(A)] \text{ either}
\]

- \([\alpha, 1]\) or
- \([0, \beta]\),

Hence cannot model any \([\underline{P}(A), \overline{P}(A)]\) with \(\underline{P}(A) = \overline{P}(A)\)

Possibility distributions **do not include** probabilities as special case.
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
 - Basic frameworks
 - Possibility distributions
 - Random sets
 - A glimpse into probability sets
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
Random sets and belief functions

Basic tool

A positive distribution $m : 2^{|S|} \rightarrow [0, 1]$, with $\sum_E m(E) = 1$ and usually $m(\emptyset) = 0$, from which

- $\overline{P}(A) = \sum_{E \cap A \neq \emptyset} m(E)$
- $P(A) = \sum_{E \subseteq A} m(E) = 1 - \overline{P}(A^c)$

$m(E_1)$
$m(E_2)$
$m(E_3)$
$m(E_4)$
$m(E_5)$

A

- Mix set and probabilities by putting probability mass over sets rather than points
- Other approach: consider a (convex) set of probability masses
A characteristic of belief functions

Complete monotonicity

If P is a belief measure if and only if it satisfies the inequality

$$P(\bigcup_{i=1}^{n} A_i) \geq \sum_{A \subseteq \{A_1, \ldots, A_n\}} (-1)^{|A|+1} P(\bigcap_{A_i \in A} A_i)$$

for any collection of events.

Simply the exclusion/inclusion principle with an equality.
special cases

Measures $[\mathbb{P}, \overline{\mathbb{P}}]$ include:

- Probability distributions: mass on atoms/singletons
- Possibility distributions: mass on nested sets

→ "simplest" model including both sets and probabilities as subcases!
Frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"

- N(adal)
- F(ederer)
- D(jokovic)
- M(urray)
- O(ther)

60% replied \{N, F, D\} → m(\{N, F, D\}) = 0.6

15% replied "I do not know" \{N, F, D, M, O\} → m(S) = 0.15

10% replied Murray \{M\} → m(\{M\}) = 0.1

5% replied others \{O\} → m(\{O\}) = 0.05

...
P-box [21]

A pair $[F, \bar{F}]$ of cumulative distributions

Bounds over events $[-\infty, x]$:

- Percentiles by experts;
- Kolmogorov-Smirnov bounds;

Can be extended to any pre-ordered space [17], [36] ⇒ multivariate spaces!

Expert providing percentiles:

- $0 \leq P([-\infty, 12]) \leq 0.2$
- $0.2 \leq P([-\infty, 24]) \leq 0.4$
- $0.6 \leq P([-\infty, 36]) \leq 0.8$
Other means to get random sets/belief functions

- Extending modal logic: probability of provability [34]
- Parameter estimation using pivotal quantities [28]
- Statistical confidence regions [16]
- Modify source information by its reliability [30]
- ...
Limits of random sets

- Not yet satisfactory extension of Bayesian/subjective approach
- Still some items of information it cannot model in a simple way, e.g.,
 - probabilistic bounds over atoms s_i (imprecise histograms, . . .) \cite{13};
 - comparative assessments such as $2P(B) \leq P(A)$ \cite{29}
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
 - Basic frameworks
 - Possibility distributions
 - Random sets
 - A glimpse into probability sets
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
Imprecise probabilities

Basic tool
A set \mathcal{P} of probabilities on S or an equivalent representation

- $\overline{P}(A) = \sup_{P \in \mathcal{P}} P(A)$ (Upper probability)
- $\underline{P}(A) = \inf_{P \in \mathcal{P}} P(A) = 1 - \overline{P}(A^c)$ (Lower probability)

Note: lower/upper bounds on events alone cannot model any convex \mathcal{P}

$[\underline{P}, \overline{P}]$ as

- subjective lower and upper betting rates [38]
- bounds of an **ill-known probability measure**

$P \Rightarrow \underline{P} \leq P \leq \overline{P}$ [5] [39]
Illustrative example

\[p(x_1) = 0.2, \ p(x_2) = 0.5, \ p(x_3) = 0.3 \]
Illustrative example

\[p(x_1) \in [0.2, 0.3], \ p(x_2) \in [0.4, 0.5], \ p(x_3) = [0.2, 0.3] \]

\[
\begin{array}{cccccc}
\{x_1\} & \{x_2\} & \{x_3\} & \{x_1, x_2\} & \{x_1, x_3\} & \{x_2, x_3\} \\
0.2 & 0.4 & 0.2 & 0.7 & 0.5 & 0.7 \\
\end{array}
\]

\[\Rightarrow \text{not a belief function! By computing the corresponding } m, \text{ we have} \]

\[m(\{x_1, x_2, x_3\}) = -0.1 \]
Means to get Imprecise probabilistic models

- Include all representations mentioned so far . . .
- . . . and a couple of others
 - probabilistic comparisons
 - density ratio-class
 - expectation bounds
 - . . .
- fully coherent extension of Bayesian approach

\[P(\theta|x) = L(\theta|x)P(\theta) \]

→ often easy for "conjugate prior" [31]
- make probabilistic logic approaches imprecise [25, 14]
Example of Bayesian extension: the IDM

IDM: Imprecise Dirichlet Model

- Set of possibilities $\mathcal{X} = \{x_1, \ldots, x_n\}$
- "Parameters" $\Theta = (\theta_1, \ldots, \theta_n) \in [0, 1]^n$ with $\theta_i = p(x_i)$
- Observation vector $x = (a_1, \ldots, a_n)$ with $a_i = \#x_i$ and $\sum_i a_i = N$
- Likelihood
 \[
 L(\theta|x) = P(x|\theta) = \binom{N}{x} \theta_1^{a_1} \ldots \theta_n^{a_n}
 \]
- Prior $P(\theta) \sim Diri(\nu \phi)$ with
 - $\nu \in \mathbb{R}^+$: prior strength, $\sim \#$unobserved samples ($\nu = 0 \rightarrow$ no strength)
 - $\phi = (\phi_1, \ldots, \phi_n) \in [0, 1]^n$ with $\sum_i \phi_i = 1$: prior frequencies
- IDM: fix ν, let $\phi \in \Phi$ with Φ subset of $n - 1$ unit simplex
Possible prior sets

Unknown prior

\(\phi_1 \)

\(\phi_2 \)

\(\phi_3 \)

\(x_2 \) more likely (=modal value)

\(\phi_1 \)

\(\phi_2 \)

\(\phi_3 \)

All results equally likely

\(\phi_1 \)

\(\phi_2 \)

\(\phi_3 \)

Observation vector \(x = (3, 6, 1) \) and \(v = 3 \)

\[P(\theta_2 | x) = \frac{9}{13} \]

\[P(\theta_2 | x) = \frac{6}{13} \]

\[P(\theta_2 | x) = \frac{9}{13} \]

\[P(\theta_2 | x) = \frac{7}{13} \]

\[P(\theta_2 | x) = \frac{7}{13} \]
Other "imprecised" classical models

- Exponential family [31, 4]
- Bayesian Model Averaging [8]
- Gaussian process [27]
- Dirichlet process [35, 3]
A crude summary

Possibility distributions

-+: very simple, natural in many situations (nestedness), extend set-based approach

-: at odds with probability theory, limited expressiveness

Random sets

-+: include probabilities and possibilities, include many models used in practice

-: general models can be intractable, limited expressiveness

Imprecise probabilities

-+: most consistent extension of subjective probabilistic approach, very flexible

-: general models can be intractable
A not completely accurate but useful picture

Able to model variability
Incompleteness tolerant

Imprecise probability
Random sets

Probability
Possibility
Sets

Expressivity/flexibility
General tractability/scalability
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
Uncertainty propagation revisited

- **Distrib. of data/parameter**
- **Propagate**
- **Model**
 \[f(x_1, \ldots, x_n) = y \]
- **Prediction**
- **Single-valued data/parameter**
- **Uncertainty over value of interest**

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1. **Represent**: provide an uncertainty model for \(x_1, \ldots, x_n \)
2. **Merge**: if multiple models given for \(x_i \), merge into a single one
3. **Combine**: specify (in)dependencies between \(x_i \)’s to get global model
4. **Propagate**: propagate to get uncertainty over \(y \)
5. **Decide**: once uncertainty on \(y \) estimated, decide on an action
Merging: Definition and goals [19]

Combine items of information I_1, \ldots, I_S on quantity $X \in \mathcal{X}$ given by S sources:

$$f(I_1, \ldots, I_S) = I^*$$

- Usually, X assumed to have a true, yet unknown value in \mathcal{X}
- In principle S can be the (multi-dim) real space, finite space of elements/classes, space of functions, ...
- I_i and I^* are generally uncertainty models of the same theory (framework closeness)

Goal of information merging: how to pick f to
- Gain information from I_1, \ldots, I_S
- Increase the reliability (trust) in my final result
The three basic fusion schemes

- **Conjunction:**
 \[f = \cap, \quad I^* = \cap_{i=1}^{S} I_i \]
 Assumes that all sources provide reliable information (no important conflict allowed)

- **Disjunction:**
 \[f = \cup, \quad I^* = \cup_{i=1}^{S} I_i \]
 Assumes that at least one source is reliable (very conservative assumption)

- **(Weighted) average:**
 \[f = \sum w_i, \quad I^* = \sum_{i=1}^{S} w_i I_i \]
 Assumes that most sources are ok (equivalent to counting)
Probabilities and merging

Assume that we have P_1, P_2 as opinions:

- Conjunction is impossible, as $P_1 \cap P_2$ exists only if $P_1 = P_2$.
 \rightarrow Product $P_1 \cdot P_2$ may be considered as a surrogate to "intersection"

- Disjunction (or its convex hull) provides $P_1 \cup P_2$, not a single probability!

- Average is ok, $\alpha P_1 + (1 - \alpha) P_2$ still a probability
Sets and merging

Assume that we have E_1, E_2 as opinions:

- Conjunction is possible, provided by $E_1 \cap E_2 \neq \emptyset$ (no conflict)
- Disjunction gives $E_1 \cup E_2$, again a set, possibly quite big
- Average $\frac{1}{2}E_1 + \frac{1}{2}E_2$ gives a random set, not a set!
Using non-parametric Kolmogorov-Smirnov bounds.

Useful when small samples and no idea about the possible shape of the distribution (if it exists)

Example: variable $X \in [0, 16]$, observations (1; 1.5; 3; 3.5; 4; 6; 10; 11; 14; 15)
Expert providing a finite set of possible percentiles.

Exemple:

\[0 \leq P([\infty, 4]) \leq 0.2 \]
\[0.1 \leq P([\infty, 8]) \leq 0.3 \]
\[0.5 \leq P([\infty, 12]) \leq 0.7 \]
Combining those two sources

Different ways to combine this information

\[[F, \overline{F}]_2 \quad [F, \overline{F}]_1 \quad [F, \overline{F}]_{\Sigma} \quad [F, \overline{F}]_{\cap} \quad [F, \overline{F}]_{\cup} \]
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
 - Independence as a strong information
 - Independence with imprecise probabilities
 - Propagating imprecise probabilities
6. Decision in presence of imprecision
Independence and propagation

Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
 - Independence as a strong information
 - Independence with imprecise probabilities
 - Propagating imprecise probabilities
6. Decision in presence of imprecision
Uncertainty propagation revisited

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1. **Represent**: provide an uncertainty model for x_1, \ldots, x_n
2. **Merge**: if multiple models given for x_i, merge into a single one
3. **Combine**: specify (in)dependencies between x_i’s to get global model
4. **Propagate**: propagate to get uncertainty over y
5. **Decide**: once uncertainty on y estimated, decide on an action
Independence statement = strong information

- For one X, uniformity \neq lack of knowledge
 \rightarrow Symmetry of knowledge \neq knowledge of symmetry
- For two X, Y, independence \neq lack of knowledge about interaction
 \rightarrow No knowledge of interaction \neq knowledge of no interaction
- Statistically speaking, stating independence requires just as much data as stating dependence

IP tools instrumental to consider sets of dependence assumptions, even when marginal distributions are well-known.
A small reliability example

- Two pumps X and Y, either functioning (x, y) or not $(\neg x, \neg y)$
- Overall system $\phi(X, Y)$ works if and only if one of the pump works (XOR):
 - no pump functioning means no pumping
 - two pumps functioning means overload

\[
\phi(X, Y) = \begin{cases}
1 & \text{if } x \neg y \lor \neg xy \\
0 & \text{else } (xy \lor \neg x \neg y)
\end{cases}
\]

- Probability of the system functioning is

\[
P(\phi(X, Y) = 1) = P(x \neg y \lor \neg xy) \\
= P(x \neg y) + P(\neg xy)
\]
Independent case

Assume \(p_X(x) = 0.7, p_Y(y) = 0.6 \) and the resulting joint

\[
\begin{array}{ccc}
\text{x} & \neg \text{x} & \sum \\
\text{y} & 0.7 \cdot 0.6 & 0.3 \cdot 0.6 & 0.6 \\
\neg \text{y} & 0.7 \cdot 0.4 & 0.3 \cdot 0.4 & 0.4 \\
\sum & 0.7 & 0.3 & \\
\end{array}
\]

\[
P(\phi(X, Y) = 1) = P(x\neg y) + P(\neg xy) \\
= p_X(x)p_Y(\neg y) + p_X(\neg x)p_Y(y) = 0.46
\]

\(\rightarrow \) less chance of working than not working
Unknown dependence case: upper bound

Assume $p_X(x) = 0.7$, $p_Y(y) = 0.6$ and the table

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$\neg x$</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.3</td>
<td>$\min(p_X(\neg x), p_Y(y)) = 0.3$</td>
<td>0.6</td>
</tr>
<tr>
<td>$\neg y$</td>
<td>$\min(p_X(x), p_Y(\neg y)) = 0.4$</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>\sum</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

$$P(\phi(X, Y) = 1) = \max P(x \neg y) + P(\neg xy)$$

$$= 0.3 + 0.4 = 0.7$$
Independence and propagation

Unknown dependence case: lower bound

Assume $p_X(x) = 0.7, p_Y(y) = 0.6$ and the table

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$\neg x$</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\min(p_X(x), p_Y(y)) = 0.6$</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>$\neg y$</td>
<td>0.1</td>
<td>$\min(p_X(\neg x), p_Y(\neg y)) = 0.3$</td>
<td>0.4</td>
</tr>
<tr>
<td>\sum</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

$P(\phi(X, Y) = 1) = \min P(x \neg y) + P(\neg xy)$

$= 0.1 + 0 = 0.1$

$\rightarrow [P, \overline{P}] = [0.1, 0.7]$, incomparability of working vs not working
Independence and propagation

Partially assumed dependence: common case failure

Assume \(p_X(x) = 0.7, p_Y(y) = 0.6 \) and the following bounds

\[
\begin{array}{ccc}
\text{x} & \text{\neg x} & \sum \\
\hline
y & p_X(x) \cdot p_Y(y) + \epsilon & p_X(\neg x) \cdot p_Y(y) - \epsilon & 0.6 \\
\neg y & p_X(x) \cdot p_Y(\neg y) - \epsilon & p_X(\neg x) \cdot p_Y(\neg y) + \epsilon & 0.4 \\
\sum & 0.7 & 0.3 & \\
\end{array}
\]

with \(0 \leq \epsilon \leq 0.08 \), mild assumption of common cause failure

\(\rightarrow [P, \overline{P}] = [0.3, 0.46] \), no change in conclusions despite imprecision
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
 - Independence as a strong information
 - Independence with imprecise probabilities
 - Propagating imprecise probabilities
6. Decision in presence of imprecision
On independence and interpretation [11, 12]

Use of Independence \sim facilitate computations in multi-variate problems

Meaning for two quantities X, Y to be independent, when they are:

- **generic**: in this case, X, Y associated to distributions P_X, P_Y and stochastic independence may apply \rightarrow imprecise probabilities $=$ sensitivity analysis of an "objective" concept.

- **singular**: X, Y are supposed to have one true value.
 Independence here is "subjective", and purely concerns beliefs, not how the values of X and Y can affect each others.

In singular case, much less clear how it should be modelled and even measured?
Two views of independence

In general, two ways to express independence of X, Y:

- Compositional (stochastic) independence:

 \[P_{X,Y}(X \in A, Y \in B) = P_X(X \in A)P_Y(Y \in B) \]

 Clear if $P \simeq$ frequencies, less if $P = $ degrees of belief

- Conditional ("epistemic") independence of Y w.r.t. X:

 \[P_X(X \in A | Y \in B) = P_X(X \in A) \]

 Express that learning B about Y do not change belief about X
 - A non-symmetric notion, but with precise probabilities become symmetric
 - With precise probabilities, reduces to the first definition

When P becomes imprecise, the two notions extends in different ways.
Three different definitions

Assume I have $\mathcal{P}_X, \mathcal{P}_Y$ on finite spaces

- **Strong independence** (SI)
 \[
 \mathcal{P}^{SI}_{XY} = \{ p | p(x, y) = p(x)p(y), p(x) \in \mathcal{P}_X, p(y) \in \mathcal{P}_Y \}
 \]

- **Epistemic irrelevance** (IR) of X w.r.t. Y
 \[
 \mathcal{P}^{IR}_{X \rightarrow Y} = \{ p | p(x, y) = p(y|x)p(x), p(x) \in \mathcal{P}_X, p(y|x) \in \mathcal{P}_Y \}
 \]
 We can have $p(y|x) \neq p(y|x')$ for $x \neq x'$, and $\mathcal{P}^{IR}_{X \rightarrow Y} \neq \mathcal{P}^{IR}_{Y \rightarrow X}$

- **Random set independence**, if $\mathcal{P}_X, \mathcal{P}_Y$ representable by m_X, m_Y
 \[
 \mathcal{P}^{RI}_{XY} = \{ p | P(C) \geq \sum_{AxB \subseteq C} m_X(A)m_Y(B) \}
 \]
 equivalent to consider joint mass $m_X Y(A \times B) = m_X(A)m_Y(B)$
Inclusion relationship

In general, we have

\[\mathcal{P}^{SI}_{XY} \subseteq \left\{ \begin{array}{l} \mathcal{P}^{IR}_{X\rightarrow Y} \\ \mathcal{P}^{IR}_{Y\rightarrow X} \end{array} \right\} \subseteq \mathcal{P}^{RI}_{XY} \]

Allowing to use one principle to approximate another, for example for computational convenience.

In the precise case, they all collapse to the same formal definition.
Assume now $p_X(x) \in [0.6, 0.8]$ and $p_Y(y) \in [0.5, 0.7]$

$$P(\phi(X, Y) = 1) = p_X(x)p_Y(\neg y) + p_X(\neg x)p_Y(y) = 0.46$$

$$\overline{P}(\phi(X, Y) = 1) = \overline{p}_X(x)\overline{p}_Y(\neg y) + \overline{p}_X(\neg x)\overline{p}_Y(y)$$

$$0.8 \cdot 0.3 + 0.2 \cdot 0.7 = 0.38$$

$$\overline{P}(\phi(X, Y) = 1) = \overline{p}_X(x)\overline{p}_Y(\neg y) + \overline{p}_X(\neg x)\overline{p}_Y(y)$$

$$0.6 \cdot 0.4 + 0.2 \cdot 0.5 = 0.5$$
IP and random set independence: upper case

$p_X(x) \in [0.6, 0.8]$ and $p_Y(y) \in [0.5, 0.7]$ give masses m_X, m_Y. Apply product rule to get $m_{X,Y}$

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$\neg x$</th>
<th>$x, \neg x$</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>$\neg y$</td>
<td>0.18</td>
<td>0.06</td>
<td>0.06</td>
<td>0.3</td>
</tr>
<tr>
<td>$y, \neg y$</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>\sum</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

$P(\phi(X, Y) = 1) = \sum \text{[green]} = 0.28$

$\overline{P}(\phi(X, Y) = 1) = \sum \text{[green]} + \sum \text{[pink]} = 0.74$
A summary so far

Imprecise probability uses:
- Model a random variable whose distribution is ill-known
- Model beliefs about a deterministic but ill-known variable
- Relax the need to specify a single (in)dependence assumption
- Rather than making one computation per hypothesis, directly compute bounds over set of hypothesis

In practice, most operations can be achieved/approximated through linear optimisation, once propagation through f is done.

Some warnings
- Just as for probabilities, making exact computations for complex models difficult
- Some different notions reducing to the same mathematical tools in probability (independence) may have various extensions
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
 - Independence as a strong information
 - Independence with imprecise probabilities
 - Propagating imprecise probabilities
6. Decision in presence of imprecision
Uncertainty propagation revisited

Model
\[f(x_1, \ldots, x_n) = y \]

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1. Represent: provide an uncertainty model for \(x_1, \ldots, x_n \)
2. **Merge**: if multiple models given for \(x_i \), merge into a single one
3. **Combine**: specify (in)dependencies between \(x_i \)'s to get global model
4. **Propagate**: propagate to get uncertainty over \(y \)
5. **Decide**: once uncertainty on \(y \) estimated, decide on an action
Random set propagation: principle

Assume:
- each X_i is associated to mass m_i
- random set independence holds
- only intervals receive positive mass

Propagation is equivalent to
- Take selections of intervals E_1, \ldots, E_n from m_1, \ldots, m_n
- Compute $f(E_1, \ldots, E_n)$ (main bottleneck, as with probabilities)
- Associate product of masses $m_1(E_1) \ldots m_n(E_n)$ to $f(E_1, \ldots, E_n)$
- Make inferences from that mass
A minimal example

- two polluting elements X_1, X_2, expressed in average percentage per m^3
- experts tell that
 - $P(X_1 \in [1, 4]) = 0.8$, and in any case $X_1 \in [0, 10]$
 - $P(X_2 \in [2, 5]) = 0.6$, and in any case $X_2 \in [1, 8]$
- We are interested in the value $Y = X_1 + X_2$
A minimal example continued

<table>
<thead>
<tr>
<th>Interval</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 4]</td>
<td>0.8</td>
</tr>
<tr>
<td>[0, 10]</td>
<td>0.2</td>
</tr>
<tr>
<td>[2, 5]</td>
<td>0.6</td>
</tr>
<tr>
<td>[1, 8]</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Take selections of intervals E_1, \ldots, E_n from m_1, \ldots, m_n
A minimal example continued

<table>
<thead>
<tr>
<th>Interval</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 4]</td>
<td>0.8</td>
</tr>
<tr>
<td>[0, 10]</td>
<td>0.2</td>
</tr>
<tr>
<td>[2, 5]</td>
<td>0.6</td>
</tr>
<tr>
<td>[3, 9]</td>
<td></td>
</tr>
<tr>
<td>[2, 15]</td>
<td></td>
</tr>
<tr>
<td>[1, 8]</td>
<td>0.4</td>
</tr>
<tr>
<td>[2, 12]</td>
<td></td>
</tr>
<tr>
<td>[1, 18]</td>
<td></td>
</tr>
</tbody>
</table>

- Take selections of intervals E_1, \ldots, E_n from m_1, \ldots, m_n
- Compute $f(E_1, \ldots, E_n)$ (main bottleneck, as with probabilities)
A minimal example continued

<table>
<thead>
<tr>
<th>Interval</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 4]</td>
<td>0.8</td>
</tr>
<tr>
<td>[0, 10]</td>
<td>0.2</td>
</tr>
<tr>
<td>[2, 5]</td>
<td>0.6</td>
</tr>
<tr>
<td>[3, 9]</td>
<td>0.54</td>
</tr>
<tr>
<td>[2, 15]</td>
<td>0.12</td>
</tr>
<tr>
<td>[1, 8]</td>
<td>0.4</td>
</tr>
<tr>
<td>[2, 12]</td>
<td>0.32</td>
</tr>
<tr>
<td>[1, 18]</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- Take selections of intervals E_1, \ldots, E_n from m_1, \ldots, m_n
- Compute $f(E_1, \ldots, E_n)$ (main bottleneck, as with probabilities)
- Associate product of masses $m_1(E_1) \ldots m_n(E_n)$ to $f(E_1, \ldots, E_n)$
A minimal example continued

\[
m([1, 4]) = 0.8 \quad m([0, 10]) = 0.2
\]
\[
m([2, 5]) = 0.6 \quad m([3, 9]) = 0.54 \quad m([2, 15]) = 0.12
\]
\[
m([1, 8]) = 0.4 \quad m([2, 12]) = 0.32 \quad m([1, 18]) = 0.08
\]

\[P(Y \leq 10) = P(Y \in [0, 10]) \in [0.54, 1]\]

- Take selections of intervals \(E_1, \ldots, E_n\) from \(m_1, \ldots, m_n\)
- Compute \(f(E_1, \ldots, E_n)\) (main bottleneck, as with probabilities)
- Associate product of masses \(m_1(E_1) \ldots m_n(E_n)\) to \(f(E_1, \ldots, E_n)\)
- Make inferences from that mass
Random set propagation: practice [1, 23]

- Still assuming random set independence
- Pick $\alpha_1, \ldots, \alpha_N \in [0, 1]$ randomly from uniform

![Graphs showing random set propagation](image)

- Estimate $f([F_1^{-1}(\alpha_1), F_1^{-1}(\alpha_1)], \ldots, [F_N^{-1}(\alpha_N), F_N^{-1}(\alpha_N)])$
- Repeat R times: R imprecise samples of Y
A more involved example

- Enbankment construction
- Simplified model of flood levels h

\[
\begin{align*}
\text{if } q \geq 0 & : \quad h(q, k, u, d) = \left(\frac{q}{k \sqrt{\frac{u-d}{\ell}}} \right)^{1/3} b^{	ext{cm}} \\
\text{otherwise} & : \quad h(q, k, u, d) = 0
\end{align*}
\]
Parameter uncertainties

<table>
<thead>
<tr>
<th>significance</th>
<th>units</th>
<th>uncertainty</th>
<th>Repres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>h flood level</td>
<td>m</td>
<td>(model)</td>
<td>p-box</td>
</tr>
<tr>
<td>q maximal flow</td>
<td>m^3s^{-1}</td>
<td>Gumbel($\mu \in [1300, 1400]$, $\beta = 715$)</td>
<td></td>
</tr>
<tr>
<td>b river width</td>
<td>m</td>
<td>300</td>
<td>value</td>
</tr>
<tr>
<td>k Strickler coefficient</td>
<td>$m^{1/3}s^{-1}$</td>
<td>mode=30, support=[15,35]</td>
<td>possibility</td>
</tr>
<tr>
<td>u upriver level</td>
<td>m</td>
<td>mode=55, support=[54,56]</td>
<td>possibility</td>
</tr>
<tr>
<td>d downriver level</td>
<td>m</td>
<td>mode=50, support=[49,51]</td>
<td>possibility</td>
</tr>
<tr>
<td>l section length</td>
<td>m</td>
<td>6400</td>
<td>value</td>
</tr>
</tbody>
</table>
Exemple: illustration

Result on thresholding events ($P([0, x])$) for independence assumption
Random set propagation: limits and warnings

- Limited expressiveness: not all convex sets of probabilities are random sets
- Independence conservativeness: random set independence gives wider bounds than robust stochastic independence
- Dependence modelling: using copulas on distributions m is not equivalent to a robust applications of copulas, unless all marginal models are p-boxes (imprecise cumulative distributions)

Practical application not much more difficult than for precise probabilities (similar computational bottlenecks)
Propagation and imprecise probabilities: recent trends

- Using importance sampling techniques to consider multiple (set of) probabilities with one sample [22, 40]
- Combining imprecise probability tools with surrogate models, i.e., polynomial chaos expansions [33]
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
 - Risk and binary decisions
 - General decision rules
Uncertainty propagation revisited

Plot
- **Model** $f(x_1, \ldots, x_n) = y$
- **Prediction**
- **Distrib. of data/parameter**
- **single-valued data/parameter**
- **Uncertainty over value of interest**

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1. **Represent:** provide an uncertainty model for x_1, \ldots, x_n
2. **Merge:** if multiple models given for x_i, merge into a single one
3. **Combine:** specify (in)dependencies between x_i’s to get global model
4. **Propagate:** propagate to get uncertainty over y
5. **Decide:** once uncertainty on y estimated, decide on an action
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
 - Risk and binary decisions
 - General decision rules
Precise case

Fix a threshold τ, decide whether $P(X \leq \tau) \geq \alpha$ with α critical level
Precise case: example

For instance, take $\alpha = 0.9$

We have $P(X \leq \tau) > \alpha$, acceptable risk
Precise case: example

For instance, take $\alpha = 0.9$

We have $P(X \leq \tau) < \alpha$, unacceptable risk
Imprecise case

Fix a threshold τ, decide whether $P(X \leq \tau) \geq \alpha$ with α critical level

![Graph showing cumulative distribution functions](image-url)
Imprecise case: example

For instance, take $\alpha = 0.9$

We have $\overline{P}(X \leq \tau) > \underline{P}(X \leq \tau) > \alpha$, acceptable risk
Imprecise case: example

For instance, take $\alpha = 0.9$

We have $\underline{P}(X \leq \tau) < \overline{P}(X \leq \tau) < \alpha$, unacceptable risk
Imprecise case: example

For instance, take $\alpha = 0.9$

We have $P(X \leq \tau) < \alpha < \overline{P}(X \leq \tau)$, no clear answer
Imprecise case: three DM different attitudes

- No preference of behaviour: undecided
- Pessimistic: pick worst case $\overline{P}(X \leq \tau)$
- Optimistic: pick best case $\underline{P}(X \leq \tau)$

Key idea: decision maker attitude should be separated from the available information
Outline

1. Introductory elements
2. Imprecise probabilities: use and misuse
3. Representing partial (probabilistic) knowledge
4. Merging partial (probabilistic) knowledge
5. Independence and propagation
6. Decision in presence of imprecision
 • Risk and binary decisions
 • General decision rules
Decision-making: classical frames

Given set of uncertain quantities/utilities X_1, \ldots, X_n, compare pair-wisely

- By expectation: $X_i \succ_{E} X_j$ if $E(X_i) \geq E(X_j)$ with

 $$E(X) = \sum x \cdot p(x)$$

Pros: most recognized criteria, strong theoretical foundations

Cons: necessitates utility values to be elicited and well-defined

Risk decision: specific case with utility function $I_{X \leq \tau}$

- By statistical preference: $X_i \succ_{P} X_j$ if $P(X > Y) > 0.5$

Pros: only need an ordinal scale, close to the notion of median

Cons: possible cycles ($X \succ_{P} Y \succ_{P} Z \succ_{P} X$), need dependencies
Decision-making: classical frames

Given set of uncertain quantities/utilities \(X_1, \ldots, X_n \), compare pair-wisely

- By stochastic dominance: \(X_i \succ_F X_j \) if \(P(X_i \leq x) \leq P(X_j \leq x) \)

Pros: if \(X_i \succ_F X_j \), \(g(X_i) \succeq_E g(X_j) \) for any increasing \(g \)

Cons (?): may lead to incomparability (\(X_i \not\succ_F X_j \) and \(X_j \not\succ_F X_i \))

Risk decision: fixing a threshold rather than all of them
Imprecise probability: rough ideas for expectations

When going imprecise, points become intervals → how to compare

\[[\mathbb{E}(X_i), \overline{\mathbb{E}}(X_i)] \text{ and } [\mathbb{E}(X_j), \overline{\mathbb{E}}(X_j)]? \]

Back to precise comparison (need DM attitude)

- Maximin (pessimist): \(X_i \succ_{Mm} X_j \text{ if } \mathbb{E}(X_i) > \mathbb{E}(X_j) \)
- Maximax (optimist): \(X_i \succ_{MM} X_j \text{ if } \overline{\mathbb{E}}(X_i) > \overline{\mathbb{E}}(X_j) \)
- Hurwicz, in-between: \(X_i \succ_{\gamma} X_j \text{ if } \gamma \mathbb{E}(X_i) + (1 - \gamma)\overline{\mathbb{E}}(X_i) > \gamma \mathbb{E}(X_j) + (1 - \gamma)\overline{\mathbb{E}}(X_j) \)

Acknowledging imprecision and indecision

- Interval dominance: \(X_i \succ_{ID} X_j \text{ if } \mathbb{E}(X_i) > \overline{\mathbb{E}}(X_j) \)
A small example

Imprecise probability model

Three possible states \{a, b, c\}

- \(p(a) \in [0.1, 0.3] \)
- \(p(b) \in [0.3, 0.6] \)
- \(p(c) \in [0.3, 0.6] \)
A small example

Imprecise probability model

Three possible decisions/alternatives \(\{X_1, X_2, X_3\} \)

\[
\begin{pmatrix}
 a & b & c \\
 X_1 & 0 & 1 & 2 \\
 X_2 & 1 & 0.5 & 1 \\
 X_3 & 3 & 1 & 0 \\
\end{pmatrix}
\]

- \(\mathbb{E}(X_1) \in [1, 1.5] \)
- \(\mathbb{E}(X_2) \in [0.7, 0.85] \)
- \(\mathbb{E}(X_3) \in [0.6, 1.3] \)
Summary and main messages

- Importance to know what kind of uncertainty you want to model.
- Imprecise probability models useful to model lack of knowledge, or perform robustness analysis.
- Not useful if you want a precise numbers, comparability of any pair of events or of any decisions, no matter what your knowledge is.
- Computational burden usually higher, but not necessarily much higher than precise models.
References I

On the calculation of the bounds of probability of events using infinite random sets.

Practical representations of incomplete probabilistic knowledge.

Imprecise dirichlet process with application to the hypothesis test on the probability that \(x \leq y \).

Prior near ignorance for inferences in the k-parameter exponential family.

An overview of robust Bayesian analysis.
With discussion.

Likelihood-based statistical decisions.
References II

Credal model averaging: an extension of bayesian model averaging to imprecise probabilities.

Statistical reasoning with set-valued information: Ontic vs. epistemic views.

The necessity of the strong alpha-cuts of a fuzzy set.

Independence concepts in evidence theory.

A survey of concepts of independence for imprecise probabilities.

Probability intervals: a tool for uncertain reasoning.

Belief models: An order-theoretic investigation.

A possibilistic hierarchical model for behaviour under uncertainty.
References III

Constructing belief functions from sample data using multinomial confidence regions.

Unifying practical uncertainty representations: I generalized p-boxes.

Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities.

The basic principles of uncertain information fusion. an organised review of merging rules in different representation frameworks.
Information Fusion, 32:12–39, 2016.

A semantics for possibility theory based on likelihoods.,

Constructing probability boxes and dempster-shafer structures.

Imprecise random variables, random sets, and monte carlo simulation.
References IV

Applications of possibility and evidence theory in civil engineering.

Probabilistic satisfiability with imprecise probabilities.

Applied Interval Analysis.

[27] F. Mangili.
A prior near-ignorance gaussian process model for nonparametric regression.

Dempster-shafer theory and statistical inference with weak beliefs.

Extreme points of the credal sets generated by comparative probabilities.
References V

Relevance and truthfulness in information correction and fusion.

Imprecise probability models for inference in exponential families.

Elicitation, assessment and pooling of expert judgments using possibility theory.

Uncertainty propagation of p-boxes using sparse polynomial chaos expansions.

[34] P. Smets.
Probability of provability and belief functions.

Robust estimation of risks from small samples.

Probability boxes on totally preordered spaces for multivariate modelling.

Probability, Statistics and Truth.
References VI

[38] P. Walley.
Statistical reasoning with imprecise Probabilities.

The theory of interval-probability as a unifying concept for uncertainty.

[40] J. Zhang and M. D. Shields.
On the quantification and efficient propagation of imprecise probabilities resulting from small datasets.