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Lecture goal/content

What you will find in this talk

Information representation seen by a non-statistician (mostly

IA/engineer) guy

Imprecise probabilities: when to (not) use it?

Imprecise probabilities: definition and practical representation

Merging imprecise probabilistic representations

(In)dependence modelling and uncertainty propagation

How (not) to decide with imprecise probabilities

What you will not find in this talk

A deep and exhaustive study of a particular topic
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Introductory elements

Generic vs singular quantity

A quantity of interest X can be

Generic, when it refers to a population, or a set of situations.

Generic quantity example

The distribution of mother tongue within French inhabitants

Singular, when it refers to an individual or a peculiar situation

Singular quantity example

My own mother tongue
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Introductory elements

Ontic and epistemic information [9]

An item of information I possessed by an agent about X can be

Ontic, if it is a faithful, perfect representation of X

Ontic information example

A set X representing the exact set of languages spoken by me

e.g.: X = {French,English,Spanish}

Epistemic, if it is an imperfect representation of X

Epistemic information example

A set E containing my mother tongue

e.g., E = {French,Dutch,English}
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Introductory elements

Everything is possible

We can have

Ontic information about a singular quantity: the hair colour of a

suspect; the mother tongue of someone

Epistemic information about a singular quantity: the result of the

next dice toss; the set of possible mother tongues of someone

Ontic information about a generic quantity: the exact distribution

of pixel colours in an image

Epistemic information about a generic quantity: an interval about

the frequency of French persons higher than 1.80 m
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Introductory elements

Uncertainty definition

Uncertainty: when our information I about the quantity of interest X is

insufficient to answer with certainty to assertions

→ In this view, uncertainty is necessarily epistemic, as it reflect

an imperfect knowledge of the agent.

Can concern both:

Singular quantity

items in a data-base, values of some logical variables, time before

failure of a component

Generic quantity

parameter values of classifiers/regression models/probability

distributions, time before failure of components, truth of a logical

sentence ("birds fly")
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Introductory elements

The room example

Heights of people in a room: generic quantity

1m60 1m70 1m80 1m90 2m

20%

40%

Generic question: are 90% of people in room less than 1m80?

⇒ No, with full certainty

Specific question: is the last person who entered less than 1m80?

⇒ Probably, with 60% chance (uncertain answer)
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Introductory elements

Uncertainty main origins [6, Ch. 3]

Variability of a population applied to a peculiar, singular situation

Variability example

The result of one dice throw when knowing the probability of each face

Imprecision and incompleteness due to partial information

about the quantity S

Imprecision example

Observing limited sample of the population, describing suspect as

"young", limited sensor precision

Conflict and unreliability of different sources of information

Conflict example

Two redundant data base entries with different information for an

attribute, two sensors giving different measurements of a quantity
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Introductory elements

Uncertainty propagation revisited

singular

generic
Model

f (x1, ., xn) = y

Distrib. of

data/parameter

single-valued

data/parameter

Propagate

Uncertainty over

value of interest

Prediction

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1 Represent: provide an uncertainty model for x1, . . . , xn

2 Merge: if multiple models given for xi , merge into a single one

3 Combine: specify (in)dependencies between xi ’s to get global model

4 Propagate: propagate to get uncertainty over y

5 Decide: once uncertainty on y estimated, decide on an action
Sébastien Destercke (CNRS) IP and propagation ETICS 2017 school 10 / 121



Introductory elements

Generic vs singular: why bother?

Many notions making sense for generic quantities, make no or poor

sense at all for singular ones:

frequencies and "objective" true probability

any statistic requiring population (variance, mean, median, . . . )

learning from samples

stochastic independence

Mathematically equivalent notions may model something about your

knowledge of the singular quantity, not about the quantity itself
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Imprecise probabilities: use and misuse Motivation without probabilities

A non-probabilistic example

Assume the following:

A function linking y and x with f (y) = x2

We want to estimate f (y) but only know x ∈ [−1, 6]

f (x) = x2

We acknowledge our imprecise knowledge

Our final answer is that f (x) ∈ [0, 36]
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Imprecise probabilities: use and misuse Motivation without probabilities

Lesson from example

Two strategies:

1 take account of our knowledge as faithfully as possible
2 reduce it to something more manageable:

+: may make computations easier (not always)

-: selection will introduce a (possibly wanted) bias, whatever it is

-: "reference" point (uniform) may induce an unwanted bias

If you are fine with option 2, you can go for it. Another strategy:

3 Outer-approximate initial information for computational

convenience

⇒

same remarks apply when a probability is ill-known
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Imprecise probabilities: use and misuse A short word on interpretation
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Imprecise probabilities: use and misuse A short word on interpretation

Imprecise probabilities for generic information

Probabilities as frequencies

P(A) = frequency with which A has been observed/is observed

Imprecise probabilities as robust/sensitivity analysis models:

"true" P only known to belong to some set P

P(A) only known to lie in [P(A),P(A)]

imprecise observations, limited sample, expert bounds

Eventually, with enough information, get to P or a small P
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Imprecise probabilities: use and misuse A short word on interpretation

Imprecise probabilities for singular information

Probabilities as subjective degrees

P(A) = degree of belief that the true value will be in A

Imprecise probabilities as models of beliefs:

validity of probability to model partial belief or ignorance

questionable

separate notions of certainty and plausibility to encode ignorance

asking for a precise P very demanding

no notion of "true" P within P

Eventually, with enough information, get the true value
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Imprecise probabilities: use and misuse Some further reasons

Probability as a model of (partial) ignorance

The assumption ignorance=uniform probability has some issues

Assume we know nothing about S ∈ [1, 2], then ignorance is

p(s) ∼ U [1, 2]

Yet, if we consider the variable 1/S, change of variable induce

non-uniform probability over [1/2, 1]

s

1

p(s)

1 2 s

12

1/2 1

p′(f (s))

→ "mathematically right", but model of ignorance should be insensitive

to variable changes
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Imprecise probabilities: use and misuse Some further reasons

The possibility of incomparability

Given two events A,B, whatever this event:

a probabilistic model P will always output

P(A) > P(B)
P(A) < P(B)
P(A) = P(B) (not possible for every pair A,B, though)

in the case of P, you can end up with

A >< B if [P(A),P(A)] ∩ [P(B),P(B)]

As a direct consequence of lack of knowledge (rather than derive it

through a detour → variance/sensitivity)
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Imprecise probabilities: use and misuse Some further reasons

Imprecision in input 6= in outputs

Assume x best guess is 3, ±2 ⇒ get [f (x)]

f (x) = x2

Propagating then adding imprecision 6= propagating imprecision
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Representing partial (probabilistic) knowledge

Uncertainty propagation revisited

singular

generic
Model

f (x1, ., xn) = y

Distrib. of

data/parameter

single-valued

data/parameter

Propagate

Uncertainty over

value of interest

Prediction

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1 Represent: provide an uncertainty model for x1, . . . , xn

2 Merge: if multiple models given for xi , merge into a single one

3 Combine: specify (in)dependencies between xi ’s to get global model

4 Propagate: propagate to get uncertainty over y

5 Decide: once uncertainty on y estimated, decide on an action
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Representing partial (probabilistic) knowledge Basic frameworks

Basic framework

Quantity S with possible exclusive states S = {s1, . . . , sn}

⊲ S: input variable, component state, model parameter, . . .

Basic tools

A confidence degree P : 2|S| → [0, 1] is such that

P(A): confidence S ∈ A

P(∅) = 0, P(S) = 1

A ⊆ B ⇒ P(A) ≤ P(B)

Uncertainty modelled by 2 degrees P,P : 2|S| → [0, 1]:

P(A) ≤ P(A) (monotonicity)

P(A) = 1 − P(Ac) (duality)
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Representing partial (probabilistic) knowledge Basic frameworks

Probability

Basic tool

A probability distribution p : S → [0, 1] from which

P(A) = P(A) = µ(A) =
∑

s∈A p(s)

P(A) = 1 − P(Ac): auto-dual

Main interpretations

Frequentist [37] : P(A)= number of times A observed in a

population

⊲ only applies to generic quantities (populations)

Subjectivist [24] : P(A)= price for gamble giving 1 if A happens,

0 if not

⊲ applies to both singular and generic quantities
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Representing partial (probabilistic) knowledge Basic frameworks

Sets

Basic tool

A set E ⊆ S with true value S ∈ E from which

E ⊆ A → P(A) = P(A) = 1 (certainty truth in A)

E ∩ A 6= ∅,E ∩ Ac 6= ∅ → P(A) = 0,P(A) = 1 (ignorance)

E ∩ A = ∅ → P(A) = P(A) = 0 (truth cannot be in A)

P,P are binary → limited expressiveness

Classical use of sets:

Interval analysis [26] (E is a subset of R)

Propositional logic (E is the set of models of a KB)

Other cases: robust optimisation, decision under risk, . . .
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Representing partial (probabilistic) knowledge Basic frameworks

Example

Assume that it is known that pH value E ∈ [4.5, 5.5], then

if A = [5, 6], then P(A) = 0,P(A) = 1

E

A

if A = [4, 7], then P(A) = P(A) = 1

E

A

if A = [6, 9], then P(A) = P(A) = 0

E

A
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Representing partial (probabilistic) knowledge Basic frameworks

In summary

Probabilities . . .

(+) very informative quantification (do we need it?)

(-) need lots of information (do we have it?)

(-) if not enough, requires a choice (do we want to do that?)

use probabilistic calculus (convolution, stoch. independence, . . . )

Sets . . .

(+) need very few information

(-) very rough quantification of uncertainty (Is it sufficient for us?)

use set calculus (interval analysis, Cartesian product, . . . )

→ Need representations bridging these two
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Representing partial (probabilistic) knowledge Possibility distributions

Possibility distributions

Basic tool

A distribution π : S → [0, 1], usually with si such that π(si) = 1, from

which

P(A) = maxs∈A π(s)

P(A) = 1 − P(Ac) = mins∈Ac (1 − π(s))

Interval/set as special case

The set E can be modelled by the possibility distribution πE such that

πE(s) =

{

1 if s ∈ E

0 else
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Representing partial (probabilistic) knowledge Possibility distributions

A nice characteristic: Alpha-cut [10]

Definition

Aα = {s ∈ S|π(s) ≥ α}

P(Aα) = 1 − α

If β ≤ α, Aα ⊆ Aβ

Simulation: draw α ∈ [0, 1] and associate Aα

1

S

π

β
Aβ

α
Aα

⇒ Possibilistic approach ideal to model nested structures
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Representing partial (probabilistic) knowledge Possibility distributions

A basic distribution: simple support

A set E of most plausible values

A confidence degree α = P(E)

Interesting case:

Expert providing most

plausible values E

Extend to multiple sets

E1, . . . ,Ep:

confidence degrees over

nested sets [32]

pH value ∈ [4.5, 5.5] with

α = 0.8 (∼ "quite probable")

π

3 4 4.5 5.5 6 7
0

0.2

0.4

0.6

0.8

1.0
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Representing partial (probabilistic) knowledge Possibility distributions

Normalized likelihood as possibilities [20] [7]

π(θ) = L(θ|x)/maxθ∈Θ L(θ|x)

Binomial situation:

θ = success probability

x number of observed

successes

x= 4 succ. out of 11

x= 20 succ. out of 55

θ

1
π

4/11
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Representing partial (probabilistic) knowledge Possibility distributions

Partially specified probabilities [2] [18]

Triangular distribution: [P,P]
encompass all probabilities with

mode/reference value M

support domain [a, b].

Getting back to pH

M = 5

[a, b] = [3, 7]

1

pH

π

5 73
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Representing partial (probabilistic) knowledge Possibility distributions

Other examples

Statistical inequalities (e.g., Chebyshev inequality) [18]

Linguistic information (fuzzy sets) [15]

Approaches based on nested models
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Representing partial (probabilistic) knowledge Possibility distributions

Possibility: limitations

For a given event A, we can only have

P(A) > 0 ⇒ P(A) = 1

P(A) < 1 ⇒ P(A) = 0

⇒ interval [P(A),P(A)] either

[α, 1] or

[0, β],

Hence cannot model any [P(A),P(A)] with P(A) = P(A)

Possibility distributions do not include probabilities as special case.

Sébastien Destercke (CNRS) IP and propagation ETICS 2017 school 42 / 121



Representing partial (probabilistic) knowledge Random sets

Outline

1 Introductory elements

2 Imprecise probabilities: use and misuse

3 Representing partial (probabilistic) knowledge

Basic frameworks

Possibility distributions

Random sets

A glimpse into probability sets

4 Merging partial (probabilistic) knowledge

5 Independence and propagation

6 Decision in presence of imprecision

Sébastien Destercke (CNRS) IP and propagation ETICS 2017 school 43 / 121





Representing partial (probabilistic) knowledge Random sets

A characteristic of belief functions

Complete monotonicity

If P is a belief measure if and only if it satisfies the inequality

P(∪n
i=1Ai) ≥

∑

A⊆{A1,...,An}

(−1)|A|+1P(∩Ai∈AAi)

for any collection of events.

Simply the exclusion/inclusion principle with an equality
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Representing partial (probabilistic) knowledge Random sets

Frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"

N(adal) F(ederer) D(jokovic) M(urray) O(ther)

60 % replied {N,F ,D} → m({N,F ,D}) = 0.6

15 % replied "I do not know" {N,F ,D,M,O} → m(S) = 0.15

10 % replied Murray {M} → m({M}) = 0.1

5 % replied others {O} → m({O}) = 0.05

. . .
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Representing partial (probabilistic) knowledge Random sets

P-box [21]

A pair [F ,F ] of cumulative

distributions

Bounds over events [−∞, x ]

Percentiles by experts;

Kolmogorov-Smirnov bounds;

Can be extended to any

pre-ordered space [17], [36] ⇒
multivariate spaces!

Expert providing percentiles

0 ≤ P([−∞, 12]) ≤ 0.2

0.2 ≤ P([−∞, 24]) ≤ 0.4

0.6 ≤ P([−∞, 36]) ≤ 0.8

0.5

1.0

6 12 18 24 30 36 42

E1

E2

E3

E4

E5
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Representing partial (probabilistic) knowledge Random sets

Other means to get random sets/belief functions

Extending modal logic: probability of provability [34]

Parameter estimation using pivotal quantities [28]

Statistical confidence regions [16]

Modify source information by its reliability [30]

. . .
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Representing partial (probabilistic) knowledge A glimpse into probability sets
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Representing partial (probabilistic) knowledge A glimpse into probability sets

Imprecise probabilities

Basic tool

A set P of probabilities on S or an equivalent representation

P(A) = supP∈P P(A) (Upper probability)

P(A) = infP∈P P(A) = 1 − P(Ac) (Lower probability)

Note: lower/upper bounds on events alone cannot model any convex P

[P,P] as

subjective lower and upper betting rates [38]

bounds of an ill-known probability measure

P ⇒ P ≤ P ≤ P [5] [39]
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Representing partial (probabilistic) knowledge A glimpse into probability sets

Means to get Imprecise probabilistic models

Include all representations mentioned so far . . .

. . . and a couple of others

probabilistic comparisons

density ratio-class

expectation bounds

. . .

fully coherent extension of Bayesian approach

P(θ|x) = L(θ|x)P(θ)

→ often easy for "conjugate prior" [31]

make probabilistic logic approaches imprecise [25, 14]
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Representing partial (probabilistic) knowledge A glimpse into probability sets

Example of Bayesian extension: the IDM

IDM: Imprecise Dirichlet Model

Set of possibilities X = {x1, . . . , xn}

"Parameters" Θ = (θ1, . . . , θn) ∈ [0, 1]n with θi = p(xi)

Observation vector x = (a1, . . . , an) with ai = #xi and
∑

i ai = N

Likelihood

L(θ|x) = P(x |θ) =

(

N

x

)

θa1

1 . . . θan
n

Prior P(θ) ∼ Diri(vφ) with

v ∈ R
+: prior strength, ∼ #unobserved samples (v = 0 → no

strength)

φ = (φ1, . . . , φn) ∈ [0, 1]n with
∑

i φi = 1: prior frequencies

IDM: fix v , let φ ∈ Φ with Φ subset of n − 1 unit simplex
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Representing partial (probabilistic) knowledge A glimpse into probability sets

Other "imprecised" classical models

Exponential family [31, 4]

Bayesian Model Averaging [8]

Gaussian process [27]

Dirichlet process [35, 3]
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Representing partial (probabilistic) knowledge A glimpse into probability sets

A crude summary

Possibility distributions

+: very simple, natural in many situations (nestedness), extend

set-based approach

-: at odds with probability theory, limited expressiveness

Random sets

+: include probabilities and possibilities, include many models

used in practice

-: general models can be intractable, limited expressiveness

Imprecise probabilities

+: most consistent extension of subjective probabilistic approach,

very flexible

-: general models can be intractable
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Merging partial (probabilistic) knowledge

Uncertainty propagation revisited

singular

generic
Model

f (x1, ., xn) = y

Distrib. of

data/parameter

single-valued

data/parameter

Propagate

Uncertainty over

value of interest

Prediction

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1 Represent: provide an uncertainty model for x1, . . . , xn

2 Merge: if multiple models given for xi , merge into a single one

3 Combine: specify (in)dependencies between xi ’s to get global model

4 Propagate: propagate to get uncertainty over y

5 Decide: once uncertainty on y estimated, decide on an action
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Merging partial (probabilistic) knowledge

Merging: Definition and goals [19]

Combine items of information I1, . . . , IS on quantity X ∈ X given by S

sources:

f (I1, . . . , IS) = I∗

Usually, X assumed to have a true, yet unknown value in X

In principle S can be the (multi-dim) real space, finite space of

elements/classes, space of functions, . . .

Ii and I∗ are generally uncertainty models of the same theory

(framework closeness)

Goal of information merging: how to pick f to

Gain information from I1, . . . , IS

Increase the reliability (trust) in my final result
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Merging partial (probabilistic) knowledge

The three basic fusion schemes

Conjunction:

f = ∩, I∗ = ∩S
i=1Ii

Assumes that all sources provide reliable information (no

important conflict allowed)

Disjunction:

f = ∪, I∗ = ∪S
i=1Ii

Assumes that at least one source is reliable (very conservative

assumption)

(Weighted) average:

f =
∑

wi , I∗ =

S
∑

i=1

wiIi

Assumes that most sources are ok (equivalent to counting)
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Merging partial (probabilistic) knowledge

Probabilities and merging

Assume that we have P1,P2 as opinions:

Conjunction is impossible, as P1 ∩ P2 exists only if P1 = P2

→ Product P1 · P2 may be considered as a surrogate to

"intersection"

Disjunction (or its convex hull) provides P1 ∪ P2, not a single

probability!

Average is ok, αP1 + (1 − α)P2 still a probability
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Merging partial (probabilistic) knowledge

Sets and merging

Assume that we have E1,E2 as opinions:

Conjunction is possible, provided by E1 ∩ E2 6= ∅ (no conflict)

Disjunction gives E1 ∪ E2, again a set, possibly quite big

Average 1/2E1 + 1/2E2 gives a random set, not a set!
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Merging partial (probabilistic) knowledge

P1: p-box from confidence intervals

Using non-parametric

Kolmogorov-Smirnov bounds.

Useful when small samples and

no idea about the possible

shape of the distribution (if it

exists)

Example: variable X ∈ [0, 16],
observations (1; 1.5; 3; 3.5; 4;

6; 10; 11; 14; 15)

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12 14 16
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Merging partial (probabilistic) knowledge

P2: expert imprecise percentiles

Expert providing a finite set of

possible percentiles.

Exemple:

0 ≤ P([−∞, 4]) ≤ 0.2

0.1 ≤ P([−∞, 8]) ≤ 0.3

0.5 ≤ P([−∞, 12]) ≤ 0.7

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12 14 16
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Merging partial (probabilistic) knowledge

Combining those two sources

Different ways to combine this information

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12 14 16
[F ,F ]2 [F ,F ]1

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12 14 16
[F ,F ]

∩
[F ,F ]

∪
[F ,F ]∑
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Independence and propagation

Outline

1 Introductory elements

2 Imprecise probabilities: use and misuse
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Independence and propagation Independence as a strong information

Outline

1 Introductory elements

2 Imprecise probabilities: use and misuse

3 Representing partial (probabilistic) knowledge

4 Merging partial (probabilistic) knowledge

5 Independence and propagation

Independence as a strong information
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Independence and propagation Independence as a strong information

Uncertainty propagation revisited

singular

generic
Model

f (x1, ., xn) = y

Distrib. of

data/parameter

single-valued

data/parameter

Propagate

Uncertainty over

value of interest

Prediction

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1 Represent: provide an uncertainty model for x1, . . . , xn

2 Merge: if multiple models given for xi , merge into a single one

3 Combine: specify (in)dependencies between xi ’s to get global model

4 Propagate: propagate to get uncertainty over y

5 Decide: once uncertainty on y estimated, decide on an action
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Independence and propagation Independence as a strong information

Independence statement=strong information

For one X , uniformity 6= lack of knowledge

→ Symmetry of knowledge 6= knowledge of symmetry

For two X ,Y , independence 6= lack of knowledge about interaction

→ No knowledge of interaction 6= knowledge of no interaction

Statistically speaking, stating independence requires just as much

data as stating dependence

IP tools instrumental to consider sets of dependence assumptions,

even when marginal distributions are well-known.
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Independence and propagation Independence as a strong information

A small reliability example

Two pumps X and Y , either functioning (x , y ) or not (¬x ,¬y )

Overall system φ(X ,Y ) works if and only if one of the pump works
(XOR):

no pump functioning means no pumping

two pumps functioning means overload

φ(X ,Y ) =

{

1 if x¬y ∨ ¬xy

0 else (xy ∨ ¬x¬y)

Probability of the system functioning is

P(φ(X ,Y ) = 1) = P(x¬y ∨ ¬xy)

= P(x¬y) + P(¬xy)
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Independence and propagation Independence as a strong information

Independent case

Assume pX (x) = 0.7, pY (y) = 0.6 and the resulting joint

x ¬x
∑

y 0.7 · 0.6 0.3 · 0.6 0.6

¬y 0.7 · 0.4 0.3 · 0.4 0.4
∑

0.7 0.3

P(φ(X ,Y ) = 1) = P(x¬y) + P(¬xy)

= pX (x)pY (¬y) + pX (¬x)pY (y) = 0.46

→ less chance of working than not working
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Independence and propagation Independence as a strong information

Unknown dependence case: upper bound

Assume pX (x) = 0.7, pY (y) = 0.6 and the table

x ¬x
∑

y 0.3 min(pX (¬x), pY (y)) = 0.3 0.6

¬y min(pX (x), pY (¬y)) = 0.4 0.3 0.4
∑

0.7 0.3

P(φ(X ,Y ) = 1) = max P(x¬y) + P(¬xy)

= 0.3 + 0.4 = 0.7
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Independence and propagation Independence as a strong information

Unknown dependence case: lower bound

Assume pX (x) = 0.7, pY (y) = 0.6 and the table

x ¬x
∑

y min(pX (x), pY (y)) = 0.6 0 0.6

¬y 0.1 min(pX (¬x), pY (¬y)) = 0.3 0.4
∑

0.7 0.3

P(φ(X ,Y ) = 1) = min P(x¬y) + P(¬xy)

= 0.1 + 0 = 0.1

→ [P,P] = [0.1, 0.7], incomparability of working vs not working
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Independence and propagation Independence as a strong information

Partially assumed dependence: common case failure

Assume pX (x) = 0.7, pY (y) = 0.6 and the following bounds

x ¬x
∑

y pX (x) · pY (y) + ǫ pX (¬x) · pY (y)− ǫ 0.6

¬y pX (x) · pY (¬y)− ǫ pX (¬x) · pY (¬y) + ǫ 0.4
∑

0.7 0.3

with 0 ≤ ǫ ≤ 0.08, mild assumption of common cause failure

→ [P,P] = [0.3, 0.46], no change in conclusions despite imprecision
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Independence and propagation Independence with imprecise probabilities

Outline

1 Introductory elements
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Independence and propagation Independence with imprecise probabilities

On independence and interpretation [11, 12]

Use of Independence ∼ facilitate computations in multi-variate

problems

Meaning for two quantities X ,Y to be independent, when they are:

generic: in this case, X ,Y associated to distributions PX ,PY and

stochastic independence may apply → imprecise probabilities=

sensitivity analysis of an "objective" concept.

singular: X ,Y are supposed to have one true value.

Independence here is "subjective", and purely concerns beliefs,

not how the values of X and Y can affect each others.

In singular case, much less clear how it should be modelled and even

measured?
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Independence and propagation Independence with imprecise probabilities

Two views of independence

In general, two ways to express independence of X ,Y :

Compositional (stochastic) independence:

PX ,Y (X ∈ A,Y ∈ B) = PX (X ∈ A)PY (Y ∈ B)

Clear if P ≃frequencies, less if P=degrees of bellief

Conditional ("epistemic") independence of Y w.r.t. X :

PX (X ∈ A|Y ∈ B) = PX (X ∈ A)

Express that learning B about Y do not change belief about X

A non-symmetric notion, but with precise probabilities become

symmetric

With precise probabilities, reduces to the first definition

When P becomes imprecise, the two notions extends in different ways.
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Independence and propagation Independence with imprecise probabilities

Three different definitions

Assume I have PX ,PY on finite spaces

Strong independence (SI)

PSI
XY = {p|p(x , y) = p(x)p(y), p(x) ∈ PX , p(y) ∈ PY}

Epistemic irrelevance (IR) of X w.r.t. Y

P IR
X→Y = {p|p(x , y) = p(y |x)p(x), p(x) ∈ PX , p(y |x) ∈ PY}

We can have p(y |x) 6= p(y |x ′) for x 6= x ′, and P IR
X→Y 6= P IR

Y→X

Random set independence, if PX ,PY representable by mX ,mY

PRI
XY = {p|P(C) ≥

∑

AxB⊆C

mX (A)mY (B)}

equivalent to consider joint mass mX Y (A × B) = mX (A)mY (B)
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Independence and propagation Independence with imprecise probabilities

Inclusion relationship

In general, we have

PSI
XY ⊆

{

P IR
X→Y

P IR
Y→X

⊆ PRI
XY

Allowing to use one principle to approximate another, for example for

computational convenience.

In the precise case, they all collapse to the same formal definition.
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Independence and propagation Independence with imprecise probabilities

IP and robust stochastic independence

Assume now pX (x) ∈ [0.6, 0.8] and pY (y) ∈ [0.5, 0.7]

P(φ(X ,Y ) = 1) = pX (x)pY (¬y) + pX (¬x)pY (y) = 0.46

P(φ(X ,Y ) = 1) = pX (x)pY
(¬y) + p

X
(¬x)pY (y)

0.8 · 0.3 + 0.2 · 0.7 = 0.38

P(φ(X ,Y ) = 1) = p
X
(x)pY (¬y) + pX (¬x)p

Y
(y)

0.6 · 0.4 + 0.2 · 0.5 = 0.5
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Independence and propagation Independence with imprecise probabilities

A summary so far

Imprecise probability uses:

Model a random variable whose distribution is ill-known

Model beliefs about a deterministic but ill-known variable

Relax the need to specify a single (in)dependence assumption

Rather than making one computation per hypothesis, directly

compute bounds over set of hypothesis

In practice, most operations can be achieved/approximated through

linear optimisation, once propagation through f is done

Some warnings

Just as for probabilities, making exact computations for complex

models difficult

Some different notions reducing to the same mathematical tools in

probability (independence) may have various extensions
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Independence and propagation Propagating imprecise probabilities

Outline

1 Introductory elements

2 Imprecise probabilities: use and misuse
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Independence and propagation Propagating imprecise probabilities

Uncertainty propagation revisited

singular

generic
Model

f(x1, ., xn)= y

Distrib. of

data/parameter

single-valued

data/parameter

Propagate

Uncertainty over

value of interest

Prediction

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1 Represent: provide an uncertainty model for x1, . . . , xn

2 Merge: if multiple models given for xi , merge into a single one

3 Combine: specify (in)dependencies between xi ’s to get global model

4 Propagate: propagate to get uncertainty over y

5 Decide: once uncertainty on y estimated, decide on an action
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Independence and propagation Propagating imprecise probabilities

Random set propagation: principle

Assume:

each Xi is associated to mass mi

random set independence holds

only intervals receive positive mass

Propagation is equivalent to

Take selections of intervals E1, . . . ,En from m1, . . . ,mn

Compute f (E1, . . . ,En) (main bottleneck, as with probabilities)

Associate product of masses m1(E1) . . .mn(En) to f (E1, . . . ,En)

Make inferences from that mass
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Independence and propagation Propagating imprecise probabilities

A minimal example

two polluting elements X1,X2, expressed in average percentage

per m3

experts tell that

P(X1 ∈ [1, 4]) = 0.8, and in any case X1 ∈ [0, 10]
P(X2 ∈ [2, 5]) = 0.6, and in any case X2 ∈ [1, 8]

We are interested in the value Y = X1 + X2
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Independence and propagation Propagating imprecise probabilities

A minimal example continued

m([1, 4]) = 0.8 m([0, 10]) = 0.2

m([2, 5]) = 0.6

m([1, 8]) = 0.4

Take selections of intervals E1, . . . ,En from m1, . . . ,mn
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Independence and propagation Propagating imprecise probabilities

A minimal example continued

m([1, 4]) = 0.8 m([0, 10]) = 0.2

m([2, 5]) = 0.6 m([3, 9]) m([2, 15])

m([1, 8]) = 0.4 m([2, 12]) m([1, 18])

Take selections of intervals E1, . . . ,En from m1, . . . ,mn

Compute f (E1, . . . ,En) (main bottleneck, as with probabilities)
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Independence and propagation Propagating imprecise probabilities

A minimal example continued

m([1, 4]) = 0.8 m([0, 10]) = 0.2

m([2, 5]) = 0.6 m([3, 9]) = 0.54 m([2, 15]) = 0.12

m([1, 8]) = 0.4 m([2, 12]) = 0.32 m([1, 18]) = 0.08

Take selections of intervals E1, . . . ,En from m1, . . . ,mn

Compute f (E1, . . . ,En) (main bottleneck, as with probabilities)

Associate product of masses m1(E1) . . .mn(En) to f (E1, . . . ,En)
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Independence and propagation Propagating imprecise probabilities

A minimal example continued

m([1, 4]) = 0.8 m([0, 10]) = 0.2

m([2, 5]) = 0.6 m([3, 9]) = 0.54 m([2, 15]) = 0.12

m([1, 8]) = 0.4 m([2, 12]) = 0.32 m([1, 18]) = 0.08

e.g.,

P(Y ≤ 10) = P(Y ∈ [0, 10]) ∈ [0.54, 1]

Take selections of intervals E1, . . . ,En from m1, . . . ,mn

Compute f (E1, . . . ,En) (main bottleneck, as with probabilities)

Associate product of masses m1(E1) . . .mn(En) to f (E1, . . . ,En)

Make inferences from that mass
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Independence and propagation Propagating imprecise probabilities

Random set propagation: practice [1, 23]

Still assuming random set independence

Pick α1, . . . , αN ∈ [0, 1] randomly from uniform

X1

0.2

0.4

0.6

0.8

1.0

[F
−1
1

(α1),F
−1
1

(α1)]

XN

0.2

0.4

0.6

0.8

1.0

[F
−1
N

(αN ),F−1
N

(αN )]

Estimate f ([F
−1
1 (α1),F

−1
1 (α1)], . . . , [F

−1
N (αN),F

−1
N (αN)])

Repeat R times: R imprecise samples of Y
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Independence and propagation Propagating imprecise probabilities

A more involved example

q

ℓ

u

dd

h?

k

enbankment construction

simplified model of flood levels h

h(q, k , u, d) =























q

k
√

u−d
ℓ b





3
5

if q ≥ 0

0 otherwise.

(1)
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Independence and propagation Propagating imprecise probabilities

Parameter uncertainties

significance units uncertainty Repres.

h flood level m (model)

q maximal flow m3s−1 Gumbel(µ ∈ [1300, 1400], p-box

β = 715)

b river width m 300 value

k Strickler coefficient m1/3s−1 mode=30, support=[15,35] possibility

u upriver level m mode=55, support=[54,56] possibility

d downriver level m mode=50, support=[49,51] possibility

ℓ section length m 6400 value
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Independence and propagation Propagating imprecise probabilities

Exemple: illustration

Result on thresholding events (P([0, x ])) for independence assumption
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Independence and propagation Propagating imprecise probabilities

Random set propagation: limits and warnings

Limited expressiveness: not all convex sets of probabilities are

random sets

Independence conservativeness: random set independence gives

wider bounds than robust stochastic independence

Dependence modelling: using copulas on distributions m is not

equivalent to a robust applications of copulas, unless all marginal

models are p-boxes (imprecise cumulative distributions)

Practical application not much more difficult than for precise

probabilities (similar computational bottlenecks)
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Independence and propagation Propagating imprecise probabilities

Propagation and imprecise probabilities: recent trends

Using importance sampling techniques to consider multiple (set

of) probabilities with one sample [22, 40]

Combining imprecise probability tools with surrogate models, i.e.,

polynomial chaos expansions [33]
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Decision in presence of imprecision

Uncertainty propagation revisited

singular

generic
Model

f(x1, ., xn)= y

Distrib. of

data/parameter

single-valued

data/parameter

Propagate

Uncertainty over

value of interest

Prediction

Output genericity: same as most generic input variable/parameter

Propagation: usual steps

1 Represent: provide an uncertainty model for x1, . . . , xn

2 Merge: if multiple models given for xi , merge into a single one

3 Combine: specify (in)dependencies between xi ’s to get global model

4 Propagate: propagate to get uncertainty over y

5 Decide: once uncertainty on y estimated, decide on an action
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Decision in presence of imprecision Risk and binary decisions
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Decision in presence of imprecision Risk and binary decisions

Precise case

Fix a threshold τ , decide whether P(X ≤ τ) ≥ α with α critical level

RT0

1

F
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Decision in presence of imprecision Risk and binary decisions

Precise case: example

For instance, take α = 0.9

RT0

1
0.9

τ

F

We have P(X ≤ τ) > α, acceptable risk

Sébastien Destercke (CNRS) IP and propagation ETICS 2017 school 102 / 121



Decision in presence of imprecision Risk and binary decisions

Precise case: example

For instance, take α = 0.9

RT0

1
0.9

τ

F

We have P(X ≤ τ) < α, unacceptable risk
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Decision in presence of imprecision Risk and binary decisions

Imprecise case

Fix a threshold τ , decide whether P(X ≤ τ) ≥ α with α critical level

RT0

1

F F
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Decision in presence of imprecision Risk and binary decisions

Imprecise case: example

For instance, take α = 0.9

RT0

1
0.9

ττ

F F

We have P(X ≤ τ) > P(X ≤ τ) > α, acceptable risk
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Decision in presence of imprecision Risk and binary decisions

Imprecise case: example

For instance, take α = 0.9

RT0

1
0.9

ττ

F F

We have P(X ≤ τ) < P(X ≤ τ) < α, unacceptable risk
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Decision in presence of imprecision Risk and binary decisions

Imprecise case: example

For instance, take α = 0.9

RT0

1
0.9

ττ

F F

We have P(X ≤ τ) < α < P(X ≤ τ), no clear answer
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Decision in presence of imprecision Risk and binary decisions

Imprecise case: three DM different attitudes

No preference of behaviour: undecided

Pessimistic: pick worst case P(X ≤ τ)

Optimistic: pick best case P(X ≤ τ)

RT0

1
0.9

ττ

F F

Key idea: decision maker attitude should be separated from the

available information
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Decision in presence of imprecision General decision rules
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Decision in presence of imprecision General decision rules

Decision-making: classical frames

Given set of uncertain quantities/utilities X1, . . . ,Xn, compare

pair-wisely

By expectation: Xi ≻E Xj if E(Xi) ≥ E(Xj) with

E(X ) =
∑

x · p(x)

Pros: most recognized criteria, strong theoretical foundations

Cons: necessitates utility values to be elicited and well-defined

Risk decision: specific case with utility function Ix≤τ

By statistical preference: Xi ≻P Xj if P(X > Y ) > 0.5
Pros: only need an ordinal scale, close to the notion of median

Cons: possible cycles (X ≻P Y ≻P Z ≻P X ), need dependencies
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Decision in presence of imprecision General decision rules

Decision-making: classical frames

Given set of uncertain quantities/utilities X1, . . . ,Xn, compare

pair-wisely

By stochastic dominance: Xi ≻F Xj if P(Xi ≤ x) ≤ P(Xj ≤ x)

RT0

1

FXi
FXj

Pros: if Xi ≻F Xj , g(Xi) ≻E g(Xj) for any increasing g

Cons (?): may lead to incomparability (Xi 6≻F Xj and Xj 6≻F Xi )

Risk decision: fixing a threshold rather than all of them
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Decision in presence of imprecision General decision rules

Imprecise probability: rough ideas for expectations

When going imprecise, points become intervals → how to compare

[E(Xi),E(Xi)] and [E(Xj),E(Xj)]?

Back to precise comparison (need DM attitude)

Maximin (pessimist): Xi ≻Mm Xj if E(Xi) > E(Xj)

Maximax (optimist): Xi ≻MM Xj if E(Xi) > E(Xj)

Hurwicz, in-between: Xi ≻γ Xj if

γE(Xi) + (1 − γ)E(Xi) > γE(Xj) + (1 − γ)E(Xj)

Acknowledging imprecision and indecision

Interval dominance: Xi ≻ID Xj if E(Xi) > E(Xj)
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Decision in presence of imprecision General decision rules

Summary and main messages

Importance to know what kind of uncertainty you want to model

Imprecise probability models useful to model lack of knowledge, or

perform robustness analysis

Not useful if you want a precise numbers, comparability of any pair

of events or of any decisions, no matter what your knowledge is

Computational burden usually higher, but not necessarily much

higher than precise models
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Decision in presence of imprecision General decision rules
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