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You can fool all the people some of the time

and some of the people all the time

but you cannot fool all the people all the time

Abraham Lincoln



“Narrow” definition of UQ used in the course

• Uncertainties are modeled probabilistically

• The input to output map is computational expensive

– for us, that map involves solving PDEs

• Uncertainty enters into the PDEs through a finite set of random parameters



The curse of dimensionality

• Consider total degree interpolation in hypercubes

interpolation in N dimensions using
polynomials of total degree at most p

e.g., N = 2, p = 1 ⇒ a + bx + cy

and

interpolation in N dimensions using tensor products
polynomials of degree at most p in each direction
(e.g., tensor product bases)

e.g., N = 2, p = 1 ⇒ a + bx + cy + dxy

• For the same p, both have same the approximation properties

– for interpolating smooth functions, the rate of convergence is the same

•What about the complexity?



N = p = M = number of
number of maximal degree degrees of freedom
variables of polynomials using total degree using tensor

polynomial basis product basis

3 3 20 64
5 56 216

5 3 56 1,024
5 252 7,776

10 3 286 1,048,576
5 3,003 60,046,176

20 3 1,771 > 1×1012

5 53,130 > 3×1015

100 3 176,851 > 1×1060

5 96,560,646 > 6×1077

⇑ ⇑
(N + p)!

N !p!
(p + 1)N

=⇒ M = number of function evaluations (e.g., PDE solves)



• The curse of dimensionality =

the explosive growth in the number of parameter degrees of freedom

and therefore in the number of PDE
solves needed for a certain accuracy

as the number of parameters N and the degree p of the polynomials
increases

• If
one does not take advantage of any knowledge of the function
being approximated other than it is “smooth enough”

– total degree interpolation is relatively much more economical compared
to total tensor product interpolation

=⇒ even total degree interpolation suffers greatly from the curse
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Types of noise

• Random parameters

• White noise

• Colored (or correlated) noise



Random parameters

• Random parameters – a (finite) set of parameters y ∈ R
N appearing in the model

– chemical reaction rates, material properties, diffusivities, permeabilities, etc. are often

uncertain

– independent ⇒ the PDF ̺(y) =
∏N

n=1 ̺n(yn)

– dependent ⇒ joint distribution is not separable

– N could be large ⇒ there could be many random parameters in a problem, e.g., lots of

reacting chemical species

• Almost always, the PDF is assumed to be known for each parameter

– in actuality, almost always, the PDF is not known



• One is lucky if one knows a range for the parameters

– in which case, one usually assumes a uniform distribution over that range

• Not knowing anything, one usually assumes a Gaussian distribution, or, if one wants the

parameter to be positive, a log normal distribution

– for the Gaussian case, one usually assumes that the mean and variance are known

– for the log-normal case, one assumes a mean and variance for a Gaussian distribution

and then exponentiates it

– again, in actuality, one may not really know the mean and variance

• Of course, such

uncertainties in the uncertainties

has spawned the now rather big industry of

stochastic parameter identification



• The various parameters may have very different PDFs, whether known or assumed

– for this reason

if one samples the parameters to determine

realizations of the solution of a PDE

then

one should sample anisotropically



• Another industry spawned in cases where the number of parameters is

large is determining “unimportant” or “non-influential” parameters

whose uncertainties need not be modeled

– screening methods, sensitivity analyses, ANOVA, expert opinions,

experimental data, . . .

– warning: two parameters that are both non-influential on their own,

can have influential interactions

– warning: papers that claim that 1,000 parameters can be treated

efficiently usually use examples where there are, in fact, very few

significantly influential parameters



White noise

• White noise – random fields whose value at any point in a domain and/or at any time is

sampled independently (according of a single PDF ̺(ω)) from its value at any other point

and or any other time (values are i.i.d.)

– (infinite) stochastic process

– can be expressed in terms of an infinite number of parameters

(e.g., Weiner’s polynomial chaos expansions)

– the most common case (and the one that makes the most sense)

is Gaussian white noise

– in a simulation, has to be approximated in terms of a finite number of parameters



• For simplicity, we assume the PDF is centered and its variance σ2 is a

constant

– this is one reason why Gaussian white noise makes the most sense

- only the Gaussian PDF is completely determined

by its mean and variance

• The covariance of the white noise field is then given by

Covwhite(x,x
′) = σ2δ(x− x′)

– thus, the variance Varwhite(x) = Covwhite(x,x) of a white noise random field is infinite

– translations:

- white noise fields have a flat spectrum

- white noise fields have infinite energy

- white noise random fields are not physically realizable



• But white noise is (by far) the most used model for randomness

– is it a sane thing to have inputs into, e.g., a PDE, that have infinite variance?

– why do we get away with using white noise inputs?

• White noise is truncated

– physically, the spectrum is not really flat for all frequencies

– discretization truncates white noise

- discretized white noise is much smoother than white noise itself

– for elliptic and parabolic PDEs and other dissipative systems, the solution is much

smoother than than the inputs

• One means for approximating white noise fields is to use orthogonal

polynomial approximations

⇐= Weiner’s polynomial chaos expansions



• Grid based discretizations are a popular method for discretizing white noise

– let ηwhite(x;ω) denote a white noise random field whose values at points in the spatial

domain D are i.i.d. samples drawn from a one-dimensional PDF ̺(ω) having variance

σ2, and for simplicity, zero mean

– let {Dn}Nn=1 denote the cells of a meshing of D and let |Dn| denote the volume of Dn

– then, a grid-based discretization of the white noise field is defined as

ηNwhite(x;y) = µwhite(x) + σ

N∑

n=1

1√
|Dn|

✶n(x)yn(ω) ≈ ηwhite(x;ω)

where yn(ω), n = 1, . . . , N , are i.i.d. samples drawn from ̺(ω)

- discretized white noise is finite dimensional

it is expressed in terms of a finite number of parameters

– this is a piecewise constant approximation



Realizations of grid-based discretized white noise over in a square subdivided into 32,

72, 128, 242, 338, and 512 triangles

– a piecewise constant function is much smoother

than a white noise function



– discretized white noise has finite variance

VarNwhite(x) =
σ2

|Dn|
for x ∈ Dn

- note that as the grid size tends to zero,

the variance of discretized white noise goes to infinity

– but, for finite grid sizes, nothing bad happens

- you do not get any NAN’s

• Is there a notion of convergence?

CovNwhite(x,x
′) → Covwhite(x,x

′) = δ(x− x′) as maxn |Dn| → 0

• What about the solution of a PDE?



white noise input additive noise solutions multiplicative noise solutions

A realization of the white noise input in one-dimension and two realizations of the solution of

a simple two-point boundary value problem for a second-order ordinary differential equation

with additive and linear multiplicative noise. The ranges of the ordinates in the three plots

are [−150, 150], [−0.3, 0.2], and [−0.1,−.08].

– solutions of elliptic (and parabolic) differential equations are much smoother than the

input white noise



• Note that the number N of random parameters is intimitely tied to the grid size

– as the grid size decreases, the number or parameters increases

– in fact, N = O(h−d) where d is the spatial dimension

– in fact, N could be humongous

• Why do we get away with large N?

– because we are doing Monte Carlo sampling of the parameter hypercube Γ =
∏N

n=1 Γn

- we have Γn = Γω for all n

- where Γω = the support of ̺(ω)



Correlated (colored) noise

• Correlated (or colored) noise – random fields whose value at any point in a domain and/or

at any time is sampled according of a single PDF ̺(ω) but which are not independent

– the values of the correlated noise field are identically distributed

– but the values are not independent

– along with a function that determines the mean value of the field at each point,

- the field comes with a correlation or covariance function

that constrains the values of the field at points

– (infinite) stochastic process

– can be expressed in terms of an infinite number of parameters

– in a simulation, has to be approximated in terms of a finite number of parameters



• Now the uncertainties in the uncertainties are even worse

– one seldom knows the mean function, and even more so, the correlation function

– sometimes one can assume a type of realistic noise for which the

correlation is known

- Brownian noise, pink noise, fractional Brownian motion,

mean-reverting noise (Ornstein-Ulenbeck process), . . .

– most often, though, one simply assumes a correlation or covariance

function, e.g.,

exponential Cov(x;x′′) = e−
|x−x

′|
L

Gaussian Cov(x;x′) = e−(x−x′)TΣ−1(x−x′)

Matérn Cov(x;x′) =

σ2 1
Γ(ν)2ν−1

(√
2ν |x−x′|

L

)ν
Kν

(√
2ν |x−x′|

L

)



– note that covariance function identification problem is a really big problem

- e.g., in discretized models, one has to identify a matrix whose

size depends on the number or elements or nodes in a grid

• Working directly with mean and covariance functions is not easy

– e.g., how does one sample according the a given covariance function?

• One instead determines a representation of the noise in terms of random parameters

– because correlated noise is an (infinite) stochastic process, the number of parameters in

any representation is necessarily infinite

– of course, in practice, one has to use truncated expansions so that only a finite number

of parameters are involved

– of course, truncating an infinite expansion introduces an error

- this source of error is often ignored



• Ignoring this error (as is often done) is not a good thing

– the truncation error should be commensurate with the spatial

discretization error

⇒ the number of terms N one should keep should be

connected to the spatial grid size h

– for correlated noise, the tie between N and h is weaker than that for white noise dis-

cretizations, but it is still there



• There are several means available for representing correlated noises in terms of random

parameters, including global orthogonal polynomial expansions, grid-based methods, . . .

– perhaps the most popular means is to use Karhunen-Loève expansions

– KL expansions are based on the eigenpairs {λn, bn(x)}∞n=1 of the

covariance function

- of course, in practice, one uses the eigenpairs

of a discretized covariance function

- this is another source of error that is almost always ignored

– truncated KL expansions retain the dominant eigenpairs

– thus, for correlated random field with a given covariance function and, for simplicity,

zero mean, we have =⇒



η(x, ω)︸ ︷︷ ︸
“given” correlated random field with

values drawn from a centered PDF ̺(ω)

=

∞∑

n=1

√
λnbn(x)yn(ω)

︸ ︷︷ ︸
KL expansion

λhn in non-increasing order

parameters yn(ω) uncorrelated and drawn from ̺(ω)

≈︸︷︷︸
errors due to truncation

of the KL expansion and

spatial discretization of

the covariance function

N∑

n=1

√
λhnb

h
n(x)yn(ω)

︸ ︷︷ ︸
truncated and spatially

discretized KL expansion

= ηN,h(x, ω)︸ ︷︷ ︸
discretized

random field



• KL expansions do two wonderful things

– they represent a random field (for which only the mean and covariance functions are

known) in terms of parameters

- having a parametric representation means we can

evaluate a realization of the random field by merely

choosing values for the random parameters

– the random parameters in KL expansions are uncorrelated

- this is great because we did not know how to, e.g., sample

correlated parameters

• But, do we really know how to sample uncorrelated parameters? No we don’t

– what’s the problem? =⇒
independent ⇒ uncorrelated

but

uncorrelated 6⇒ independent



– example:

- let y1 be a random variable uniformly distributed in [−1, 1]

- let y2 = y21

- clearly, y1 and y2 are not independent

- however Cov(y1, y2) = 0

⇒ y1 and y2 are uncorrelated

– in fact, one can guarantee that a set uncorrelated random variables is independent only

if the random variables are multivariate Gaussian

– this fact is almost always ignored

- for other PDFs, the uncorrelated random variables in a KL expansion

are assumed to be independent

- usually this assumption is made tacitly without an explicit statement



• Log-normal correlated random fields are of interest because

– they reputedly arise in practice, e.g., in subsurface media

– they are convenient to use for coefficients of elliptic equations because they are positive

- whereas, of course, a Gaussian distributed coefficient would not be

– in the Karhunen-Loève setting, it is often assumed that

a(x;y) ≈ amin + eµ(x)+
∑

N
n=1

√
λn bn(x) yn (∗)

where {yn(ω)}Nn=1 are uncorrelated multivariate Gaussian random

variables, and are therefore independent



– question: is the given covariance function

for the log-normal field

or is it for

the Gaussian field in the exponent?

– so, a potential issue with this approach that is seldom addressed is that

- if one uses the given mean and covariance functions to determine

the truncated KL expansion of the Gaussian random field

appearing as the exponent

then

-the resulting log-normal random field will have different mean and

covariance functions which may not be the the physical one



– if one wants

- the log-normally distributed coefficient a(x;y) given by

(*) to correspond to a given mean function ν̃(x) and

covariance function C̃ov(x,x′)

then

- the mean µ(x) and covariance function Cov(x,x′) of
the Gaussian field whose KL expansion is the exponent

in (*) should be chosen as

µ(x) = ln
(
ν̃(x)

)
− 1

2
ln
(
1 +

C̃ov(x,x)
(
ν̃(x)

)2
)

and

Cov(x,x′) = ln
(
1 +

C̃ov(x,x′)

ν̃(x)ν̃(x′)

)



• For general non-Gaussian correlated random fields, our only recourses are to either

– assume that the KL parameters are independent (what is usually done)

- in which case we simply express the random field

in terms of its KL expansion

or

– express the non-Gaussian random field in terms of a Gaussian random field and then use

the KL expansion for the latter

– the second approach requires knowledge of the CDF of the non-Gaussian random field



Solving PDEs with random inputs using stochastic Galerkin methods

• Some lingo

– stochastic finite element methods

=

using a FEM for spatially discretizing a PDE with random inputs

– stochastic Galerkin methods

=

discretization with respect to the random parameters is effected

by a Galerkin method

– weak form: given κ(x,y) and f (x,y), seek u(x,y) ∈ X × Y such that
∫

Γ

∫

D

κ∇u · ∇v dxdy =

∫

Γ

∫

D

fv dxdy ∀ v(x,y) ∈ X × Y

spatial function space X e.g., H1
0 (D)

parameter function space Y e.g., L2
̺(Γ) ⇐=

∫
Γ

(
f (y)

)2
̺(y) dy <∞



• Finite dimensional approximation subspaces

– let XJ ⊂ X with basis {φ(x)}Jj=1

let YM ⊂ Y with basis {ψ(x)}Mm=1

– then, we seek approximations uJ,M(x,y) of u(x,y) of the form

uJ,M(x,y) =

M∑

m=1

J∑

j=1

cjmφj(x)ψm(y) (∗∗)

– then, the coefficients cjm, j = 1, . . . , J and m = 1, . . . ,M , are found by solving
∫

Γ

∫

D

a(∇uJ,M · ∇φj′)ψm′ dxtdy =

∫

Γ

∫

D

fφj′ψm′ dxdy (∗ ∗ ∗)

∀ j′ = 1, . . . , J, m′ = 1, . . . ,M

– note that to determine an approximation of u(x,y) at all points in the spatial domain

D and parameter domain Γ only a single solution of (***) is needed



• Suppose that F
(
u(x,y)

)
denotes an output of interest depending on a solution u(x,y) of

the PDE

- e.g., F could be u itself or functionals of u such as spatial

and/or temporal averages, maximum values, etc.

– then, the quantity of interest is some statistical information about the output of interest

F that is determined from ∫

Γ

G
(
F
(
u(x,y)

) )
̺(y) dy

where G indicates what sort of statistics one wants to see, e.g.,

G(F ) = F if we want the expected value E[F ] of F

G(F ) = F 2 − (E[F ])2 if we want the variance V[F ] of F

– then, we approximate by using the approximation uJ,M in place of u =⇒
∫

Γ

G
(
F
(
u(x,y)

) )
̺(y) dy ≈

∫

Γ

G
(
F
(
uJM(x,y)

) )
̺(y) dy (∗ ∗ ∗∗)



• Thus, to obtain desired statistical quantity of interest, one single discrete system has to be

solved

– however, note that (***) is a system of JM equations in JM unknowns

• Of course, the right-hand side of (****), i.e., the approximate quantity of interest

∫

Γ

G
(
F
(
uJM(x,y)

) )
̺(y) dy

has to be approximated as well because, in general, we cannot evaluate the integral exactly

– e.g., using a Monte Carlo approach, we would have the approximation

∫

Γ

G
(
F
(
uJM(x,y)

) )
̺(y) dy ≈ 1

M

M∑

m=1

G
(
F
(
uJM(x,ym)

) )
̺(ym)

if ym is randomly uniformly sampled



• Many types of bases for YM have been considered

- global polynomial, local polynomial, wavelet, . . .

• The most studied type of bases for YM are polynomial chaos bases

polynomial chaos

=

global orthogonal polynomial approximation in parameter space

– more precisely, products of one-dimensional global orthogonal polynomials are used

• PC = polynomial chaos ⇐ Gaussian PDF

⇒ use Hermite polynomials (orthogonal with respect to the PDF)

• gPC = generalized polynomial chaos ⇐ other PDFs

⇒ use polynomials that are orthogonal with respect to the PDF



• Good things about global orthogonal polynomial approximation

– because of the hierarchical nature of one-dimensional global orthogonal polynomials

- the degree of the kth polynomial is exactly k − 1

a basis of multivariate orthogonal polynomials can be constructed that exactly spans the

space of total degree polynomials

– by solving a single discrete system

- no sampling is needed

one obtains an approximation of the solution of a PDE with random inputs at every

point in the spatial domain and every point in the parameter domain



• Bad things about global orthogonal polynomial approximation

– in general (e.g., for nonlinear problems) one has to solve a

JM × JM discrete system

- for problems that are linear in the solution function,

it is possible to (partially) sparsify the discrete system

- substantial effort (mostly in the linear case) has been

devoted to developing efficient means for solving

polynomials chaos discrete systems



Solving PDEs with random inputs using sampling methods

• Sampling schemes

– sample M points {ym}Mm=1 in the parameter domain Γ

– for m = 1, . . . ,M , solve the spatially approximated PDE
∫

D

a(x,ym)∇uh(x,ym) · ∇vh(x) dx =

∫

D

f (x,ym)v
h(x) dx

to obtain the set of spatially approximated solutions {uh(x,ym)}Mm=1

– statistical information about the solution of the PDE, or more often about functionals

of the solution of the PDE, can be obtained from the set of solutions in much the same

way as for the stochastic Galerkin approach



– thus, to determine statistical information in the sampling setting

- one solves M discrete systems of size J × J

⇐= non-intrusive methods

compared to the polynomial chaos case for which

- one solves a single discrete system of size JM × JM

⇐= intrusive methods

• What should guide the selection of sampling points?

– if one is interested in using them the determine statistical information

- so that quadrature rules for approximating integrals

over the parameter domain are used

then

- the points should be selected so that they are good

for quadrature



– if one is interested in using the points to build surrogates, e.g.,

interpolants, then

- the points should be selected so that they

are good for surrogate construction

• The list of sampling schemes is, of course, very, very, very long

– among the ones we do not discuss is nonintrusive polynomial chaos

approximations

- still use orthogonal polynomials

- but now select a set of points at which the approximation is “sampled”



• Aside: sampling schemes are stochastic Galerkin schemes

– pick a set of points in Γ

– approximate the solution of the PDE by using the Lagrange polynomials

- the polynomials that are 1 at one point and 0 at all the others

as a basis (this also a global polynomial approximation)

– then, the JM × JM stochastic Galerkin discrete system becomes block diagonal

- it reduces to M discrete systems, each of size J × J



• The most popular algorithm (by far) for treating uncertainty, despite the fact that

– convergence is in expectation

⇒ more sampling does not necessarily make the error smaller

– convergence is very slow

⇒ ≈ σ√
M

σ2 = variance M = number of samples

• Popular because

– simple to implement

– sequential sampling, i.e., the next point sampled does not care about where the previously

sampled points are located

– convergence is independent of the dimensionN , i.e., of the number of random parameters

=⇒ MC does not suffer from the curse of dimensionality



• Monte Carlo is used a lot to approximate integrals

– certainly not good for interpolation

– for integration, MC is indeed simple to implement, e.g.,

one randomly samples M points {ym}Mm=1 in Γ and then

∫

Γ

f (y)̺(y) dy ≈





1

M

M∑

m=1

f (ym)

if one samples according to the PDF ̺(y)

1

M

M∑

m=1

f (ym)̺(ym)

if one samples uniformly

– is this really easy to implement for large N? even if Γ is a hypercube?



• Suppose one samples uniformly and suppose the PDF ̺(y) is short tailed (goes to zero

pretty fast)

– lots of sampling [and doing the expensive function evaluation f (ym)] is done where ̺(y)

is small

– this can get worse as N increases

- recall that the volume of the ball inscribed in a hypercube

goes to zero as N → ∞

• Suppose one samples according to the PDF ̺(y)

– for general ̺(y), not easy to do, even in one dimension

– in high dimension, only realistic for separable PDFs, i.e., ̺(y) =
∏N

n=1 ̺n(yn), assuming

one can efficiently sample the one dimensional PDFs

– easiest to do for radial PDFs, i.e., ̺(y) = ̺(|y− y0|) such as spherical Gaussian PDFs



Quasi-Monte Carlo

• The slow convergence of Monte Carlo has spawned a huge industry in

alternatives that are “better” than MC but for which we still have, e.g.,

∫

Γ

f (y)̺(y) dy ≈ 1

M

M∑

m=1

f (ym)̺(ym)

but now the sample points {ym}Mm=1 are sampled in different ways

– both deterministic and probabilistic, some sequential and some not,

alternative sampling strategies have been invented

- variance reduction techniques

- QMC sequences – Halton, Sobol, Faure, . . . ad infinitum; Hammersley

- Latin hypercube

- importance sampling

- stratified sampling

- lattice sampling

- othogonal arrays

- multilevel Monte Carlo
...

- ad nauseam



• Many of these methods have an

error ∝ (lnM)N+s

M

– for “small” N , get linear convergence

- better than the 1/
√
M convergence of MC

– for “large” N , the logarithmic term dominates

- drats! the curse of dimensionality bites us again



“Better” quadrature rules

• Everyone knows that in one dimension and for smooth integrands one can do “better” with

weighted rules compared to simple averaging rules

∫

Γ

f (y)̺(y) dy ≈





M∑

m=1

wmf (ym)

if one samples according to the PDF ̺(y)

M∑

m=1

f (ym)̺(ym)

if one samples uniformly

– of course, in one dimension, Gauss rules are the most beautiful example of how to define

“better” rules

- this is why in (very!) low dimension, tensor products of

Gauss rules have proven to be very useful

– but as we saw, tensor products should be avoided like ebola



• What about interpolatory rules based on total degree interpolation?

– good quadrature points in a hypercube, even in low dimensions, are not known

• Then along came Smolyak



Stochastic collocation methods

• Smolyak (or sparse) grids (for interpolation and quadrature) are a judiciously chosen subset

of tensor product grids

– for the same precision

- for interpolating or integrating the same polynomial space exactly

Smolyak grids

- require more points that does total degree interpolation or quadrature

- require much fewer points than does tensor product interpolation or

quadrature

total degree sparse grid tensor product

degrees of freedom
(N + p)!

N !p!
< O

(
p(ln p)N−1

)
≪ (p + 1)N

For three types of grids in R
N , degrees of freedom for interpolatory quadrature rules having

the same convergence behavior as total degree interpolatory quadrature using polynomials

of degree at most p



A 65 point sparse grid

• Note the big holes in the grid, i.e., volumetric coverage is very bad

– why do sparse grids work?



• If the function being interpolated or integrated is very smooth, the big holes do not matter

– sparse grids beat Monte Carlo, quasi-Monte Carlo, etc. for moderate dimensions N

- e.g., for N = 10 or so, sparse grids beat MC, etc. badly

• The need for smoothness

M SG estimate SG error MC estimate MC error

1 4.000 1.167 0.00000 5.16771

13 64.000 58.832 0.00000 5.16771

85 -42.667 47.834 3.01176 2.15595

389 -118.519 123.686 4.77121 0.39650

1457 148.250 143.082 5.15216 0.01555

4865 -24.682 29.850 5.41994 0.25226

exact 5.16771 – 5.16771 –

Comparison of sparse grid and Monte Carlo approximations of the integral of a function

with a jump discontinuity.



In what we have discussed so far,

where are we with respect to the curse of dimensionality?

• If our goal is to beat Monte Carlo for approximating statistical integrals

– made some progress

– still have far to go

• If our goal is to construct surrogates

– still have even further to go



ORTHOGONAL POLYNOMIAL APPROXIMATIONS

Max Gunzburger - Florida State University

Prepared with
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SETTING



High-dimensional parameterized PDEs

• PDE =⇒ L(u,y) = f in D ⊂ R
d , d = 1, 2, 3

– the operator L, linear or nonlinear, depends on a

vector of d parameters y = (y1, y2, . . . , yN) ∈ Γ =
∏N

n=1 Γn

which can be deterministic or stochastic

• In the deterministic setting, the parameters y are known

– the goal is, given y ∈ Γ, to quickly determine an approximation of the
solution map y 7→ u( · ,y)

• In the stochastic setting, the parameters y are subject to uncertainty

due to, e.g., measurement error, incomplete description, unresolved scales

modeled as a random vector y ∈ Γ with joint PDF ̺(y) =
∏N

n=1 ̺n(yn)

– the goal is to quantify the uncertainty in u or some statistical quantity
depending on u, e.g., E[u], V[u], P[u > u0] = E[1{u>u0}]



parameter vector y ∈ Γ ⊂ R
N

⇓
PDE L(u,y) = f in D ⊂ R

d , d = 1, 2, 3
⇓

solution u of the PDE
⇓

quantity of interest QoI[u( · ,y)]



• Deterministic Poisson problem

−∇ ·
(
a(x)∇u(x)

)
= f (x) ∀x ∈ D ⊂ R

d u(x) = 0 ∀x ∈ ∂D

– assuming amin = min
x∈D

a(x) > 0, by the Lax-Milgram lemma =⇒

there exists a unique solution u ∈ V = H1
0(D) with

‖u‖V = ‖∇u‖L2(D) ≤
1

amin
‖f‖V ′



• Let
Γ = [−1, 1]N , y = (y1, . . . , yN) ∈ Γ

assume a = a(x,y) depends on the parameter vector y

and consider the parameterized boundary value problem

for any y ∈ Γ, find u( · ,y) : D → R such that

−∇ · (a( · ,y)∇u( · ,y)) = f ( · ) in D u( · ,y) = 0 on ∂D

• Invoke
– continuity and coercivity (CC) assumption

0 < amin ≤ a(x,y) ≤ amax, ∀x ∈ D and y ∈ Γ

- Lax-Milgram=⇒ existence and uniqueness of solution u ∈ V ⊗ L2(Γ)

– analytic continuation (AN) assumption

- the complex continuation of a, represented as the map
a : CN → L∞(D), is an L∞(D)-valued analytic function on C

N



• Examples
1. a(x,y) = a0(x) +

∑N
n=1 ynψn(x) ⇐ affine

2. a(x,y) = a0(x) +
(∑N

n=1 ynψn(x)
)q
, q ∈ N ⇐ non-affine

3. a(x,y) = a0(x)+ exp
(∑N

n=1 ynψn(x)
)
⇐ motivated by truncated

Karhunen-Loève expansion
for the exponent

• Assume a(x,y) satisfies CC and AN; then

z 7→ u(z) is well defined and analytic in an
open neighborhood of Γ in C

N



– if a(x,y) satisfies CC and AN, then for some open neighborhood Γ̂ of Γ
in C

N

0 < δ ≤ Re(a(x, z)) ∀x ∈ D and z ∈ Γ̂

– u(z) is well-defined and analytic in Γ̂

– we refer to Γ̂ as the domain of uniform ellipticity

, ,

Domains of complex uniform ellipticity for some random fields

Here Γ is the line segment



• Example. We have 8 inclusions D1, D2, . . . , D8 within the D = [0, 1]2

– assume a is a piecewise constant function over D and on each Di the
value of a is uniformly random within [c − ci, c + ci] for some c and ci
satisfying 0 < ci < c

– a can be represented as

a(x,y) = a0(x) +
8∑

n=1

yiψi(x),

where a0(x) = c ψi = ciχDn y = (y1, . . . , y8) ∈ Γ = [−1, 1]8



GLOBAL POLYNOMIAL APPROXIMATIONS



• Observation: Solutions are often smooth with respect to the parameters

Consequence: u(y, · ) can be approximated with respect
to y by multivariate global polynomials

• Let ν = (ν1, . . . , νN) ∈ N
N
0 and let Λ ⊂ N

N
0 denote a multiindex set

– these serve to define the multivariate polynomial space

PΛ(Γ) = span

{
N∏

n=1

yνnn with ν ∈ Λ

}

– let {Ψν}ν∈Λ denote a basis for PΛ(Γ)

- e.g., multivariate Taylor, Legendre, Jacobi, Hermite, Lagrange, etc.

– then, for uΛ ∈ V ⊗ PΛ(Γ), we have the representation

uΛ(x,y) =
∑

ν∈Λ
cν(x)Ψν(y)



• Remarks
– global polynomial approximations take advantage of the smooth
dependence of u on the parameters

– in this case, global polynomial approximations result in faster convergence
than MC approximations

– the evaluation of uΛ requires the computation of coefficients cν

– for now, we do not explicitly consider spatial discretizations



• Taylor basis
– the Taylor expansion of u(x,y) is given by

u(x,y) =
∑

ν∈NN0

tν(x)y
ν

where

yν =

N∏

n=1

yνnn and tν( · ) =
1

ν!
∂νyu( · ,0) ∈ V

– then u is approximated by the truncated expansion

uΛ(x,y) =
∑

ν∈Λ
tν(x)y

ν



Orthonormal bases

• For stochastic Galerkin, we choose {Ψν}ν∈Λ as an orthonormal basis

– let ̺ = ̺(y) be a weight function on Γ ⇐= for us ̺ = PDF

=⇒ nonnegative and integrable in Γ

– let L2
̺(Γ) =

{
f : Γ → R,

∫

Γ

f 2(y)̺(y)dy <∞
}

– define the inner product and norm on L2
̺(Γ) =⇒ for f1, f2 ∈ L2

̺(Γ)

〈f1, f2〉 =
∫

Γ

f1(y)f2(y)̺(y)dy ‖f1‖L2̺(Γ) =
(∫

Γ

|f1(y)|2̺(y)dy
)1/2

– the set {Ψν}ν∈Λ is called orthogonal with respect to ̺ if

〈Ψν,Ψν ′〉 = 0, if ν 6= ν ′

– in addition, {Ψν}ν∈Λ is called orthonormal if 〈Ψν,Ψν〉 = 1 ∀ν ∈ Λ



• The univariate Legendre polynomials {Ln}∞n=1 are orthogonal polynomials
over the interval Γ = [−1, 1] with respect to the weight function ̺(y) = 1

2

weight polynomials

– the multivariate Legendre polynomials {Lν}ν∈NN0 , given by

Lν(y) =

N∏

n=1

Lνn(yn) ∀ν ∈ N
N
0

are orthogonal polynomials over the domain Γ = [−1, 1]N with respect to
the weight function ̺(y) = (1/2)N



• The univariate Chebyshev polynomials {Tj}∞j=1 are orthogonal polynomials
over the interval Γ = [−1, 1] with respect to the weight function ̺(y) =
π−1(1− y2)−1/2

weight polynomials

– the multivariate Chebyshev polynomials {Tν}ν∈NN0 , given by

Lν(y) =

N∏

n=1

Lνn(yn) ∀ν ∈ N
N
0

are orthogonal polynomials over the domain Γ = [−1, 1]N with respect to

the weight function ̺(y) = π−N
∏N

n=1
1

(1−y2n)−1/2



Some members of the Askey family of orthogonal polynomials

• Some well-know results

– for any function f ∈ L2
̺(Γ)

f (y) =
∑

ν∈NN0

f̂νΨν(y) with f̂ν = 〈f,Ψν〉

– Parseval’s equality =⇒ ‖f‖2
L2̺(Γ)

=
∑

ν∈NN0
|f̂ν|2

– for Λ ⊂ N
N
0 and fΛ(y) =

∑
ν∈Λ f̂νΨν(y)

‖f − fΛ‖L2̺(Γ) = min
f̃∈PΛ(Γ)

‖f − f̃‖L2̺(Γ)



• For a solution u ∈ V ⊗ L2
̺(Γ)

u(x,y) =
∑

ν∈NN0

ûν(x)Ψν(y) with ûν(x) = 〈u(x, · ),Ψν〉

– Parseval’s equality =⇒ ‖u‖2V⊗L2̺(Γ) =
∑

ν∈NN0
‖û‖2V

– the best approximation of u out of V ⊗ PΛ(Γ) is

uΛ(x,y) :=
∑

ν∈Λ
ûν(x)Ψν(y)

for which we have
∥∥u− uΛ

∥∥
V⊗L2̺(Γ)

= min
ũ∈V⊗PΛ(Γ)

∥∥u− ũ
∥∥
V⊗L2̺(Γ)

•What is a good polynomial approximation subspace?



• Natural choice in one dimension
Λ = {1, 2, 3, . . . , p} and uΛ(x,y) :=

∑p
j=1 ûj(x)Ψj(y)

• Several choices for the multi-index ν ∈ Λ(p)

tensor product (TP) max1≤n≤N νn ≤ p

total degree (TD)
∑N

n=1 νn ≤ p

hyperbolic cross (HC)
∏N

n=1(νn + 1) ≤ p + 1

Smolyak (SM)
∑N

n=1 f (νn) ≤ f (p) with f (ν) = ⌈log2(ν)⌉, ν ≥ 2



• TD, HC and SM all partially alleviate the curse of dimensionality with respect
to TP methods

#ΛTP (p) = (p + 1)N

#ΛTD(p) =
(N + p)!

N !p!

#ΛHC(p) . min{p34N , p2+log(N)}

#ΛSM(p) = O
(
p(ln p)N−1

)

• But beating tensor products is not a big thing

– we want to do better than that

– ideally, we would like to find, given an error tolerance, a polynomial
approximation that has the fewest possible terms that meets that tolerance

• Before looking into this, we mention an improvement on straightforward
sparse grid approximation



ANISOTROPIC SPARSE GRIDS



• Anisotropic representation of sparse grids

– introduce weight vector α = (α1, . . . , αN) ∈ R
N
+ with αmin = 1

Tensor product (TP): max1≤i≤d αnνn ≤ p

Total degree (TD):
∑N

i=1 αnνn ≤ p

Hyperbolic cross (HC):
∏N

n=1(νn + 1)αn ≤ p + 1

Smolyak (SM):
∑N

n=1 αnf (νn) ≤ f (p)}
with f (ν) = ⌈log2(ν)⌉, ν ≥ 2

• In some cases the weights can be determined

– e.g., in KL expansions, the coefficients are proportional to the decaying
eigenvalues of the correlation matrix

• In some cases, the weights can be determined adaptively



TP TD HC
Blue + red: standard grids Red: anisotropic grids with α1 = 1 and α2 = 1/2



BEST S-TERM APPROXIMATIONS



Defining best s-term approximations

• One easily obtains the estimates
– for Taylor expansions

‖u− uΛ‖L∞(Γ,V) = sup
y∈Γ

∥∥∥
∑

ν /∈Λ
tνy

ν
∥∥∥
V
≤ sup

y∈Γ

∑

ν /∈Λ
‖tνyν‖V =

∑

ν /∈Λ
‖tν‖V

– for Legendre expansions
∥∥u− uΛ

∥∥2
V⊗L2̺(Γ)

=
∑

ν /∈Λ
‖ûν‖2V

• Best S-term approximations

– choose Λ = Λopt
S =⇒ the set of s largest coefficients ‖tν‖V or ‖ûν‖V

– Λopt
S provides a theoretical approximation

- generally not realizable in practice

- you have to solve for the complete expression
to ascertain which are the largest coefficients!



• Analyticity of the solution revisited

– polydisc: Oγ =
⊗N

n=1 {zn ∈ C, |zn| ≤ γn}

polyellipse: Eγ =
⊗N

n=1

{
zn ∈ C, zn+z

−1
n

2 : |zn| = γn

}

– assume a(x,y) is affine in y and satisfies CC

=⇒ Γ̂ contains some polydisc Oγ with γ = (γn)1≤n≤N , γn > 1 ∀n

=⇒ {‖tν‖V}ν is ℓq-summable for all q < 1

– assume a(x,y) satisfies CC and AN

=⇒ the domain of uniform ellipticity Γ̂ contains some polyellipse Eγ
with γ = (γn)1≤n≤N , γn > 1 ∀n

=⇒ {‖ûν‖V}ν is ℓq-summable for all q < 1
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Domains of complex uniform ellipticity for some random fields

• Although the best S-term approximation is not realizable, it’s good to know
how good it is so that we judge the quality of realizable methods



Coefficient bounds

• Taylor coefficient estimate

– assume z 7→ u(z) is analytic in an open neighborhood of Oγ

with γn > 1 ∀n

– assume ℜ(a(x, z)) ≥ δ > 0 ∀x ∈ D, z ∈ Oγ

then

–
∑

ν∈NN0
tνy

ν converges uniformly towards u(y) in Γ

– decay of Taylor coefficients ‖tν‖V ≤ Cδγ
−ν

where Cδ =
‖f‖V′
δ and γ−ν = γ−ν11 · · · γ−νnn



• Legendre coefficient estimate

– assume z 7→ u(z) is analytic in an open neighborhood of Eγ
with γn > 1 ∀n

– assume ℜ(a(x, z)) ≥ δ > 0 ∀x ∈ D, z ∈ Eγ

then

–
∑

ν∈NN0
ûνLν(y) converges towards u(y) in V ⊗ L2(Γ) and

– decay of Legendre coefficients ‖ûν‖V ≤ Cγ,δγ
−ν

∏N
n=1

√
2νn + 1

where Cγ,δ =
‖f‖V′
δ

∏N
n=1

ℓ(Eγn)
4(γn−1)

ℓ(Eγn) denoting the perimeter of Eγn



• Optimal Taylor coefficient upper bounds

– let A denote the set of all (γ, δ), γn > 1, δ > 0, such that the polydisc

Oγ is contained in Γ̂

– assume ℜ(a(x, z)) ≥ δ > 0, ∀x ∈ D, z ∈ Oγ

then

‖tν‖V ≤ Cδγ
−ν ∀(γ, δ) ∈ A

– optimal Taylor coefficient bounds

inf
(γ,δ)∈A

Cδγ
−ν



• Optimal Legendre coefficient upper bounds

– let A denote the set of all (γ, δ), γn > 1, δ > 0, such that the polyellipse

Eγ is contained in Γ̂

– assume ℜ(a(x, z)) ≥ δ > 0, ∀x ∈ D, z ∈ Eγ)

then

‖ûν‖V ≤ Cγ,δγ
−ν

N∏

n=1

√
2νi + 1 ∀(γ, δ) ∈ A

– optimal Legendre coefficient bounds

inf
(γ,δ)∈A

Cγ,δγ
−ν

N∏

n=1

√
2νi + 1.



• Pessimistic convergence estimate for best S-term approximations

– let

C(q) = ‖(‖tν‖V)ν‖ℓq for Taylor

C(q) = ‖(‖ûν‖V)ν‖ℓq for Legendre

– then we have the estimates

Taylor: ‖u− u
Λ
opt
S
‖L∞(Γ,V) ≤ C(q)S1−1

q for all 0 < q < 1

Legendre:
∥∥u− u

Λ
opt
S

∥∥
V⊗L2̺(Γ)

≤ C(q)S
1
2−1

q for all 0 < q < 1

– Legendre approximation features faster convergence rate than that of
Taylor expansion

– smaller q =⇒ stronger convergence rate but bigger C(q).

– C(q) is implicit



Refined error estimate for best S-term approximations

• Let B(ν) denote the upper bound for ‖tν‖V or ‖ûν‖V
– define b(ν) = − lnB(ν) so that B(ν) = e−b(ν)

• Let ΛQopt
S denote the quasi-optimal index set corresponding to s largest

coefficient bounds (not the coefficients themselves)

•We have ‖cν‖V ≤ e−b(ν)

– then

sup
y∈Γ

∥∥∥u−
∑

ν∈Λopt
S

cνΨν

∥∥∥
V
≤

∑

ν /∈Λopt
S

‖cν‖V ≤
∑

ν /∈ΛQopt
S

e−b(ν)

where cν stands for either tν or ûν



• Assumption on coefficient bounds (AoB)

The map b : [0,∞)N → R satisfies

– b(0) = 0

– b is continuous in [0,∞)N

– the mapping τ 7→ 1
τ b(τν) is either

increasing in (0,∞) for all ν ∈ [0,∞)N

or

decreasing in (0,∞) for all ν ∈ [0,∞)N

– there exists 0 < c < C such that c|ν| < b(ν) < C|ν| as ν → ∞

• Given γ = (γn)1≤i≤N with γn > 1 ∀n
– let λ = (λn)1≤n≤N such that λn = log γn ∀n



• AoB is satisfied by

B(ν) = γ−ν b(ν) =
N∑
n=1

λnνn

B(ν) = γ−ν
N∏
n=1

√
2νn + 1 b(ν) =

N∑
n=1

(
λnνn − 1

2 log(2νn + 1)
)

B(ν) = inf
γ,δ

Cδγ
−ν b(ν) = sup

γ,δ

( N∑
n=1

λnνn − logCδ

)

B(ν) = inf
γ,δ

Cγ,δγ
−ν

N∏
n=1

√
2νn + 1 b(ν) = sup

γ,δ

( N∑
n=1

(
λnνn

−1
2 log(2νn + 1)

)
− logCγ,δ

)

B(ν) = γ−ν |ν|!
ν! b(ν) =

N∑
n=1

λnνn − log Γ(|ν|+1)
N∏
n=1

Γ(νn+1)

– until recently, analysis has been limited to the first case



• Consider the Taylor series ∑
ν∈NN0

tνy
ν of u

– recall that

‖tν‖V ≤ Cγ−ν ∀ν ∈ N
N
0

– denote by Λopt
S the set of indices corresponding to s largest coefficients

• Then, assuming AoB, we have that

– for any ε > 0, there exists Sε > 0 depending on ε such that

sup
y∈Γ

∥∥∥∥u(y)−
∑

ν∈Λopt
S

tνy
ν

∥∥∥∥
V
≤ Cu(ε)S exp

(
−
(
SN !

∏N
n=1 λn

(1 + ε)

)1/N)

for all S > Sε

=⇒ we achieve sub-exponential convergence rates of the form
S exp(−(κS)1/N) with optimized κ

– this is the best estimate obtained so far, improving on results obtain based
on “Stechkin estimation”



• Example 1. Estimate the truncation error of
∑

ν∈N4
0
γ−ν, where

γ1 = γ2 = 2, γ3 = 4, γ4 = 16

– we have a 4-dimensional parameter space

– this problem arises in error analysis of best S-term Taylor approximations
for parameterized elliptic PDEs with non-overlapping basis functions

– the best theoretical coefficient bound has the form: ‖tν‖V ≤ γ−ν
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• Example 2. Estimate the error of ∑
ν∈N8

0

γ−ν, where

γn = 2, n = 1, . . . , 8
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• A lower bound for the error in best S-term approximation can also be ob-
tained

– AoB is not enough

– Taylor polynmial approximations satisfy the additional assumptions

– the lower bound looks like

error ≥ ClowerS
1− 1

N exp(−(κlowers)
1/N)

as opposed to the upper bound

error ≤ CupperS exp(−(κuppers)
1/N)



QUASI-OPTIMAL BEST

S-TERM POLYNOMIAL APPROXIMATIONS



• The optimal best S-term approximation is in general not computable

• Instead, what can be done is to determine a quasi-optimal approximation

– first

- derive estimates for the sizes of the coefficients

– then

- throw out the coefficients for which the estimated values are small

– then

- construct an approximate solution involving only the
remaining coefficients

• This strategy will be effective only if one can obtain sharp estimates on the
sizes of the coefficients

– ideally, one would want sharp upper and lower bounds on the coefficients



• Still not useful estimates
– determining the radii γ is possible only in a few cases

– in case basis functions {ψi} have non-overlapping supports (as is the case
for “inclusion problems”) γ is independent of ν and can be found easily

– advantages

- practical surrogate for the best S-term approximation

- index sets can be determined near optimally and adaptively

– challenge

- sharp bounds on the coefficients are still very difficult
and are problem dependent



REFERENCES

• J. Beck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal

stochastic Galerkin methods for a class of PDEs with random coefficients, Computers and

Mathematics with Applications, 67, 2014, 732-751

• A. Chkifa, A. Cohen, R. DeVore, C. Schwab, Sparse adaptive Taylor approxi-

mation algorithms for parametric and stochastic elliptic PDEs, Model. Math. Anal. Numer.

47, 2013, 253-280

• A. Cohen, R. DeVore, C. Schwab, Analytic regularity and polynomial approxima-

tion of parametric and stochastic elliptic PDEs, Analysis and Applications, 9, 2011, 11-47.

• M. Gunzburger, C. Webster, G. Zhang, Stochastic finite element methods for

PDEs with random input data, Acta Numerica, 23, 2014, 521-650.

• H. Tran, C. Webster, G. Zhang, Analysis of quasi-optimal polynomial approxi-

mations for parameterized PDEs with deterministic and stochastic coefficients, Numerische

Mathematik, 37, 2017, 451-493.



DISCRETE LEAST-SQUARES APPROXIMATIONS
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• Objective: Determine a global polynomial approximation of h ∈ L2
̺(Γ)

h(y) =
∑

ν∈NN
0

ĥνΨν(y) with ĥν = 〈h,Ψν〉

• Given a multiindex set Λ, let

PΛ(Γ) = span

{
N∏

n=1

yνnn with ν ∈ Λ

}
⊂ L2

̺(Γ)

•We denote the best approximation of h out of PΛ(Γ) by

hΛ(y) =
∑

ν∈Λ
ĥνΨν(y)

for which we have

‖h− hΛ‖̺ = min
q∈PΛ(Γ)

‖h− q‖̺

• In general, we only know h at a set of points {ym}Mm=1 in Γ



Discrete least square (DLS) approximations

• The discrete least square (DLS) approximation is given by

hLS = argmin
q∈PΛ(Γ)

M∑

m=1

|h(ym)− q(ym)|2

• Let
– Λ denote a multi-index set and let S = #Λ = dim[PΛ(Γ)]

– {Ψν}ν∈Λ be a set of orthogonal polynomials

• Denote the discrete least-square approximation by

hLS =
∑

ν∈Λ
cνΨν(y)



• The vector of coefficients cΛ = (cν)ν∈Λ ∈ R
S is the solution of the

minimization problem

cΛ = argmin
zΛ=(zν)ν∈Λ∈RS

M∑

m=1

∣∣∣∣h(ym)−
∑

ν∈Λ
zνΨν(ym)

∣∣∣∣
2

• Of course, cΛ is the solution of the matrix problem

GcΛ = h

where G is the S × S matrix

Gν,ν ′ =
1

M

M∑

m=1

Ψν(ym)Ψν ′(ym)

and h is the S × 1 vector

hν =
1

M

M∑

m=1

h(ym)Ψν(ym)

– for stability, G needs to be well conditioned



• Observation

– assume ym is randomly sampled according to the measure ̺

– then

for M → ∞ =⇒ Gν,ν ′ →
∫

Γ

Ψν(y)Ψν ′(y)̺(y)dy = δν,ν ′

=⇒ E(G) = I

• How does one quantify the proximity of the matrices G and I?

• How large does the number of samples M have to be to insure stability?



• Let
K(Λ) = sup

y∈Γ

∑

ν∈Λ
|Ψν(y)|2 ⇐= property of the basis

and recall the spectral norm

|||G||| = max
z 6=0

|〈Gz, z〉|
‖z‖2

• Then, for 0 < δ < 1

P(|||G− I||| ≤ δ) > 1− 2S exp

(
− cδM

K(Λ)

)

where cδ = δ + (1− δ) log(1− δ) > 0



• Note that

|||G− I||| ≤ δ ⇐⇒ max
z 6=0

|〈Gz, z〉 − ‖z‖2|
‖z‖2 ≤ δ

⇐⇒ (1− δ)‖z‖2 ≤ 〈Gz, z〉 ≤ (1 + δ)‖z‖2 ∀z ∈ R
S

⇐⇒ (1− δ)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δ)‖z‖2 ∀z ∈ R
S

where A is an M × S sampling matrix with

Am,ν =
1√
M

Ψν(ym)

• Then we have the isometry property:

– for 0 < δ < 1, cδ = δ + (1− δ) log(1− δ) > 0

– and with probability exceeding 1− 2S exp
(
− cδM

K(Λ)

)

we have that

(1− δ)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δ)‖z‖2 ∀z ∈ R
S



•A satisfying the isometry property (IP)

– set δ = 1
2 and M such that M

logM ≥ K(Λ)(1+r)
c1/2

=⇒ IP holds with probability ≥ 1− 2M−r

– set M ≥ K(Λ)
cδ

(
log(2S) + log(1γ)

)

=⇒ holds with probability ≥ 1− γ

• Error estimate
– assume |h(y)| ≤ L for all y ∈ Γ

– if, for any r > 0, M satisfies
M

logM
≥ K(Λ)(1 + r)

c1/2

then

E(‖h− hLS‖2) . ‖h− hΛ‖2︸ ︷︷ ︸
best approximation error on Λ

+L2M−r



• Estimating K(Λ) in the 1D setting Λ = {0, 1, . . . , S − 1}
– recall that K(Λ) = sup

y∈Γ

∑
ν∈Λ

|Ψν(y)|2 =
∑

ν∈Λ ‖Ψν‖2L∞

- trigonometric polynomials Ψj(y)
‖Ψj‖L∞ = 1 ⇒ K(Λ) = S

stability condition:
M

log(M)
& S

- Legendre polynomials Lj(y)

‖Lj‖L∞ =
√
2j + 1 ⇒ K(Λ) =

S−1∑
j=0

(2j + 1) = S2

stability condition:
M

log(M)
& S2

- Chebyshev polynomials Tj(y)

T0 = 1, ‖Tj‖L∞ =
√
2 if j ≥ 1 ⇒ K(Λ) = 2S − 1

stability condition:
M

log(M)
& S



• Estimating K(Λ) in the multivariate setting

– an index set Λ ⊂ N
N
0 is called a lower set or a downward closed set if

(ν ∈ Λ and ν ′ ≤ ν) =⇒ ν ′ ∈ Λ,

where ν ′ ≤ ν means that ν ′n ≤ νn for all 1 ≤ n ≤ N

- a generalization of the set Λ = {0, . . . , S − 1} in 1D

- for smooth functions, good index sets are often lower sets

– assume Λ is a lower set =⇒
- Legendre: KL(Λ) =

∑
ν∈Λ

∏N
n=1(2νn + 1) ≤ (#Λ)2

- Chebyshev: KT (Λ) =
∑

ν∈Λ 2
#(supp(ν)) ≤ (#Λ)

log 3
log 2

– stability conditions

M

log(M)
& S2 for Legendre

M

log(M)
& S

log 3
log 2 for Chebyshev



Application to parameterized PDEs

1. Generate M random samples y1, . . . ,yM according to the measure ̺

2. For each ym, solve the spatially discretized parameterized PDEs L(u,ym) = f
to obtain the solution uh(ym) ∈ Vh

3. uLS =
∑
ν∈Λ

cν(x)Ψν(y), where

(cν)ν∈Λ = argmin
z=(zν)∈(Vh)S

M∑

m=1

∥∥u(ym)−
∑

ν∈Λ
zνΨν(ym)

∥∥2
V

4. c = (cν)ν∈Λ is the solution of

Gc = u

where G is an S × S matrix and u is an S × 1 vector in (Vh)S given by

Gν,ν ′ =
1

m

M∑

m=1

Ψν(ym)Ψν ′(ym) uν =
1

m

M∑

m=1

u(ym)Ψν(ym)



• Pros
– non-intrusive method

– mitigates Runge phenomena

• Cons
– number of samples is larger than the degree of freedom

– accuracy is sensitive to the choice of polynomial space
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INTRODUCTION



• Recover signals/functions from an underdetermined system

– want to find a solution of the matrix problem

linear algebra class =⇒ find minimum
norm solution

compressed
sensing =⇒ find solution vector for

which many of the
components are zero

– initially developed for signal recovery

• Sparse signals are recovered via sparsity-inducing norms

c = argmin ‖z‖q subject to u = Az with 0 < q ≤ 1



ℓ1

−2 −1 0 1 2
−2

−1

0

1

2

3
ℓ1/2

−2 −1 0 1 2
−2

−1

0

1

2

3

ℓ2

−2 −1 0 1 2
−2

−1

0

1

2

3

ℓ1 ℓ1/2 ℓ2



APPLICATION TO PARAMETERIZED PDES



• Approximate u(x,y) by
u(x,y) ≃ u#(x,y) =

∑

ν∈Λ
cν(x)Ψν(y)

• Non-intrusive approach: compute u( · ,ym) for a set of samples {y1, . . . ,yM}
in Γ

• c = (cν)ν∈Λ satisfies

u(x,ym) =
∑

ν∈Λ
cν(x)Ψν(ym) ∀m = 1, . . . ,M

⇐⇒ u = Ac

where

A = (Ψm,ν) = (Aν(ym))m∈[M ]
ν∈Λ

u = (u( · ,ym))m∈[M ] ∈ VM

• Solve u = Ac



• Observations
– each measurement u(ym) ⇐⇒ a PDE solve

– c = (cν)ν∈Λ decays fast (“approximately sparse”)
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– important coefficients often have low indices

– however, we don’t know the shape of the correct index set



•Main idea:

– approximate u on a big polynomial subspace PΛ0(Γ) with Λ0 possibly far
from optimal

- let S0 = #(Λ0)

– undersampling

generateM ≪ S0 samples y1, . . . ,yM and solve for u(y1), . . . , u(yM)

– reconstruction

determine c = (cν)ν∈Λ0 from the underdetermined system u = Ac

using a compressed sensing algorithm

c = argmin
z∈VN

‖z‖1 such that u = Az

where ‖z‖1 =
∑

ν∈Λ0
‖zν‖V



• Let
Θ = sup

ν∈Λ0

‖Ψν‖∞

denote the uniform bound for the orthonormal system of basis functions

and let A ∈ R
M×S0 be the random sampling matrix A = (Ψm,ν)

– then, if

M ≥ CΘ2S log2(S) log(S0)

the best S-term approximation is recovered

– note the seemingly very mild dependence on S0



•We have Θ = 1 for Fourier, Hadamard, circulant, etc. matrices

– to reconstruct best S-term approximation, need ≃ S samples

• For polynomial approximations, Θ can be prohibitively high

– Chebyshev basis: Θ = 2S0/2

– Legendre basis: Θ & S0

– preconditioned Legendre basis: Θ = 2S0/2

• If we constrain the compressed sensing minimization problem so that only
lower sets Λ are considered

i.e., we have ulower = argmin
#(Λ)=S
Λ lower

‖u− uΛ‖1

we obtain an approximation for which

– the sample complexity is reduced

– the best lower S-term is as good as the best S-term approximation

– the effect of Runge’s phenomenon is reduced



•We now have

M ≥ CK(S) log2(K(S)) log(S0)

– with

- for Legendre: K(S) ≤ S2

- for Chebyshev: K(S) ≤ S
log 3
log 2

•We can choose the multi-index set Λ0 as a hyperbolic cross Hs which is the
union of all lower sets of cardinality S, i.e.,

Hs =
{
ν = (ν1, . . . , νN) ∈ N

N
0 :

N∏

n=1

(νn + 1) ≤ S
}

– note that S0 = #(Hs) ≤ 2S34N



•We can do even better if we use weighted ℓ1 minimization

– choose the specific weights ων = ‖Ψν‖∞
– then solve the problem

find uCS(y) =
∑

ν∈Λ0
cνΨν(y), where c = (cν)ν∈Λ0

is the solution of

min
∑

ν∈Λ0

ων‖zν‖V subject to u = Az

– the weights favor low indices and penalize high indices



• Example 1: u(y) =
∏N/2

n=1 cos(8yn/2
i)
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• Example 2: u(y) = exp

(
−

∑N
n=1 cos(yn)

8N

)
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• Example 3: u(y) = exp
(
−

∑N
n=1 yn
2N

)
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• But even the improved bound is pessimistic

• Consider 1D Legendre expansion on Λ0 = {0, 1, . . . , S0 − 1}

– current theories give that the number of samples needed is
M ≥ Θ2S × log factor where Θ =

√
2S0 − 1

– numerical experiments show that there is some successful recovery with
underdetermined Legendre systems

– the number of measurements for guaranteed recovery guarantee should
not depend on S0 or the maximum polynomial degree

– recent result in 1D says that it is enough to have

M ≥ S2 × log factor

independent of the polynomial degree and of S0



– the key idea used in for deriving the improved estimate on the number of
samples needed is to use a better bound for the Legendre poynomials
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LOCAL SPARSE GRID INTERPOLATION



Hierarchical piecewise polynomial bases

•We begin by constructing hierarchical bases in one dimension

– we use the hat functions to explain the construction

- later we will consider other bases

– the hat function having support (yℓ,i − hℓ, yℓ,i + hℓ) is defined by

ψℓ,i(y) = ψ

(
y + 1− ihℓ

hℓ

)

• Delta property ⇐= each basis function is zero at other grid points

=⇒ ψℓ,i(yℓ,i′) = δii′



• A sequence of nodal bases can be generated by defining a sequence of mesh
sizes {hℓ}ℓ=0,1,...

– the most common choice is halve the mesh size

hℓ+1 =
hℓ

2
for ℓ = 0, 1, . . .

– the number of nodes (which equals the number of grid points) is then

R0 = 2 and Rℓ = 2ℓ + 1 for ℓ = 1, 2, . . .

• Let Vℓ denote the space spanned by the nodal basis on level ℓ =⇒
V0 = span {ψ0,0(y) , ψ0,1(y)}

Vℓ = span
{
ψℓ,i(y) : i = 0, . . . , 2ℓ

}
for ℓ = 1, 2, . . .

– due to the dyadic rule, the sequence {Vℓ} is nested =⇒
V0 ⊂ V1 ⊂ · · · ⊂ Vℓ ⊂ Vℓ+1 ⊂ · · · ⊂ V

– due to the nesting structure of {Vℓ}, we can define the incremental
subspace

Wℓ = Vℓ \ Vℓ−1 =⇒ Vℓ = Vℓ−1 ⊕Wl



•We then have a hierarchical subspace splitting of
Vℓ given by

Vℓ = V0 ⊕W1 ⊕ · · · ⊕Wℓ for ℓ = 1, 2, . . .

– each Wℓ contains about half of the basis
functions of the associated Vℓ

– non-overlapping property

for l ≥ 1, the supports of the basis
functions in Wℓ do not overlap

• The hierarchical and the nodal bases span the
same subspace Vℓ

• The hierarchical basis only possesses a
partial delta property =⇒
- the basis functions corresponding to a specific
level possess the delta property with respect
to its own level and coarser levels, but not
with respect to finer levels



Hierarchical piecewise linear interpolation

•We build, in one dimension, the piecewise linear interpolant of a function
with respect to the level L grid

• For each level ℓ = 1, . . . , L

the interpolant of a function g(y) with respect to the grid points

{yℓ,i}2
ℓ

i=0 and the corresponding nodal basis {ψℓ,i(y)}2
ℓ

i=0

is given by

Iℓ[g](y) =
2ℓ∑

i=0

g(yℓ,i)ψℓ,i(y) ∈ Vℓ

• Due to the nesting property Vℓ = Vℓ−1⊕Wℓ, we have Iℓ−1[g] = Iℓ
[
Iℓ−1[g]

]
,

based on which we define the incremental interpolation operator

∆l[g] = Iℓ[g]− Iℓ−1[g] = Iℓ
[
g − Iℓ−1[g]

]
=

2ℓ∑

i=0

cℓ,iψℓ,i(y)

where cℓ,i = g(yℓ,i)− Iℓ−1

[
g(yℓ,i)

]



•We then have

IL[g] = IL−1[g] + ∆L[g] = · · · = I0[g] +
L∑

ℓ=1

∆ℓ[g]

For L = 3:

solid red line =⇒ the piecewise linear interplolant

dashed blue lines =⇒ the absolute value of the coefficients cℓ,i, i = 1, . . . , 23



• The one-dimensional hierarchical polynomial basis can be extended to the
N -dimensional parameter domain Γ using tensorization

– theN -variate basis function ψℓ,i(y) associated with yℓ,i = (yℓ1,i1, . . . , yℓn,in)
is defined using tensor products ⇒

ψℓ,i(y) =

N∏

n=1

ψℓn,in(yn)

where ℓ = (ℓ1, . . . , ℓN) and i = (i1, . . . , iN) are multi-indices indicating
the resolution level and the grid point within the level

• The multi-dimensional space spanned by the nodal basis of level ℓ is then

Vℓ = span{ψℓ,i(y) : in = 0, . . . , 2ℓn, n = 1, . . . , N}
– this space could be anisotropic, i.e., ℓn 6= ℓn′ for some n 6= n′



• The N -dimensional hierarchical incremental subspace Wℓ can be defined by

Wℓ =

N⊗

n=1

Wℓn = span {ψℓ,i(y) | i ∈ Bℓ}

where the multi-index set Bℓ is defined by

Bℓ =

{

i ∈ N
N :

in ∈ {1, 3, 5, . . . , 2ℓn − 1} for n = 1, . . . , N if ℓn > 0

in ∈ {0, 1} for n = 1, . . . , N if ℓn = 0

}

• A subspace VJ of the tensorial space Vℓ can be defined by choosing a subset
J of multi-indices and then taking the the direct sum of the corresponding
sets of Wℓ =⇒

VJ =
⊕

ℓ∈J
Wℓ

–Wℓ contains the building blocks used to construct a subspace of the
tensorial space Vℓ

– the multi-index set J is the blueprint that determines which building
blocks are use to construct VJ



Sparse grids

• In any subspace Vℓ we can define a tensor-product interpolation operator

Iℓ[g] =
2ℓ1∑

i1=0

· · ·
2ℓN∑

iN=0

g(yℓ1,i1, . . . , yℓN ,iN )

(
N∏

n=1

ψℓn,in(yn)

)

• In any subspace Wℓ, we can define a tensor-product incremental operator

∆[g] = ∆ℓ1 ⊗ · · · ⊗∆ℓN [g]

=

N⊗

n=1

(Iℓn − Iℓn−1) [g]

=
∑

α∈{0,1}N

(

(−1)|α|
N⊗

n=1

Iℓn−αn[g]
)

where α = (α1, . . . , αN)
and |α| = α1 + · · · + αN



• The isotropic sparse grid interpolant is defined by choosing the index set J
as

J sg
L =

{
ℓ ∈ N

N : |ℓ| = ℓ1 + · · · + ℓN ≤ L
}

– the corresponding polynomial subspace VJ is given by

VJ sg
ℓ
=
⊕

ℓ∈J sg
L

Wℓ =

L⊕

ℓ=0

⊕

|ℓ|=ℓ
Wℓ

– the sparse grid interpolant can then be naturally obtained by summing all
the ∆ℓ associated with J sg

L

Isg
ℓ [g](y) =

L∑

ℓ=0

∑

|ℓ|=ℓ
∆ℓ1 ⊗ · · · ⊗∆ℓN︸ ︷︷ ︸

∆ℓ

[g](y)



• Sparse grid vs. full tensor product (L = 3)



Constructing sparse grid piecewise linear interpolants

• Computing the coefficients of a Lagrange interpolant is equivalent to solving
a linear system

Ψc = g

where Ψij is the value of the j-th basis function evaluated at the i-th inter-
polation point

– the interpolation matrix of a tensor product interpolant is the identity
matrix due to the delta property ⇐= Ψij = δij

– the sparse grid interpolant can also be written as the linear combination
of the basis functions in VJ sg

ℓ

Isg
L [g](y) =

L∑

ℓ=0

∑

|ℓ|=ℓ
∆ℓ1 ⊗ · · · ⊗∆ℓN [g](y) =

L∑

ℓ=0

∑

|ℓ|=ℓ

∑

i∈Bℓ

cℓ,i ψℓ,i(y)

– the coefficient matrix is no longer diagonal, but we would like to see if
we could exploit the partial delta property to solve it explicitly (without
recourse to a linear solver)



• The sparse grid interpolation can be written as a recursive process

Isg
L [g](y) =

L∑

ℓ=0

∑

|ℓ|=ℓ
∆ℓ1 ⊗ · · · ⊗∆ℓN [g](y)

= Isg
L−1[g](y) +

∑

|ℓ|=L
∆ℓ1 ⊗ · · · ⊗∆ℓN [g](y)

= Isg
L−1[g](y) +

∑

|ℓ|=L

∑

i∈Bℓ

cℓ,i ψℓ,i(y)

• For any ℓ satisfying |ℓ| = L and any ℓ′ satisfying |ℓ′| ≤ L, there exists
one component ℓn > ℓ′n such that ψℓn,in(yℓ′n,jn) = 0 due to the partial delta
property

– thus, we have

ψℓ,i(yℓ′,j) = 0 for ℓ ≥ ℓ′



• Now, suppose we are given Isg
L−1[g](y) and add new points on level L

– substituting any interpolation points yℓ,i satisfying |ℓ| < L, we have

Isg
L [g](yℓ,i) = Isg

L−1[g](yℓ,i)

– this means the new added basis functions on level L will not change the
coefficients of Isg

L−1[g]

• Substituting any new added point yℓ,i satisfying |ℓ| = L, we have

Isg
L−1[g](yℓ,i) + cℓ,iψℓ,i(y) = g(yℓ,i)

so that cℓ,i can be computed explicitly by

cℓ,i = g(yℓ,i)− Isg
L−1[g](yℓ,i)

– cℓ,i is called the surplus

•What we have shown is that

the sparse grid interpolation matrix is a lower triangular matrix



The error in sparse grid piecewise linear interpolation

• Define the mixed derivative and norm

‖g‖2Hs
mix

=

s∑

α=0

|Dαg|22 where Dαg =
∂|α|g

∂y
α1
1 · · · ∂yαdd

and the associated space Hs
mix

Hs
mix =

{
g : Γ → R : ‖g‖Hs

mix
<∞

}

• For a function g ∈ H2
mix, the error of the sparse grid interpolant the

error of the full tensor product interpolant are

‖g − Isg
L [g]‖L2 = O

(
h2L log(h

−1
L )N−1

)
‖g − Itp

L [g]‖L2 = O
(
h2L
)

• However the complexity comparison, i.e., the number of grid points, is

#(V sg
L ) = O

(
h−1
L log(h−1

L )N−1
)

vs. #(V tp
L ) = O

(
h−NL

)



ADAPTIVE LOCAL SPARSE GRID INTERPOLATION



• Adaptive mesh refinement (AMR) has been widely used to approximate func-
tions with irregular behavior, e.g., steep gradients, sharp transitions, jump
discontinuities, etc.

• The key to successful AMR is to exploit an a posteriori error indicator to
estimate the error of the current approximation and to guide us as to where
to add new grid points

• Questions

– can we do mesh refinement on sparse grids?

– if so, what is the error indicator?



Strategy 1: Dimensional adaptive anisotropic sparse grids

• This strategy shares ideas used for global sparse grids

• Instead of having the same resolution along each direction, we can add the
anisotropy by defining a weighted norm for the multi-index ℓ =⇒

J aniso
L =

{
ℓ ∈ N

N : |ℓ|w = w1ℓ1 + · · · + wNℓN ≤ L
}



Strategy 2: Local adaptive refinement

• Recall the expression of the surplus cℓ,i

cℓ,i = g(yℓ,i)− Isg
L−1[g](yℓ,i)

that can be bounded by

|cℓ,i| ≤ C2−2|ℓ|

– thus, the surplus can be used as an error indicator to guide the refinement

• For a given threshold τ > 0

the level L interpolant Isg
τ ,L[g]

retains only the terms of the isotropic SG interpolant Isg
L [g]

for which the magnitudes of the corresponding surpluses are larger than τ

– that is

Isg
τ,L[g](y) =

L∑

ℓ=0

∑

|ℓ|=ℓ

∑

i∈Bτ
ℓ

cℓ,i ψ,i(y) with Bτ
ℓ = {i ∈ B : |cℓ,i| > τ}



• One-dimensional example
level 6 adaptive sparse grid with τ = 0.01
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The resulting adaptive grid has 21 points (black points) whereas the full grid has 65 points
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• Two-dimensional example
level 2 sparse grid

H0,2

i 2
=

2

H0,1

i 2
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0
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H1,0

i1 = 1

H2,2

H2,1
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Isotropic sparse grid H2

2

Adaptive sparse grid Ĥ2

2

With adaptivity, each point that corresponds to a large surplus, e.g., the points in red, blue,

or green, lead to 2 children points added in each direction resulting in the adaptive sparse

grid having 12 points instead of the 17 point standard level sparse grid



• Characteristic functions in two and three dimensions

– results for the characteristic function

g(y) =

{
1
√
y21 + · · · + y2N ≤ 1

0 otherwise



SPARSE GRIDS WITH OTHER TYPES OF BASIS FUNCTIONS



Higher-order hierarchical piecewise polynomials

•When defining high-order bases, we would like to retain the partial delta
property

– new basis functions on level ℓ vanish at all the level ℓ′ ≤ ℓ level nodes
except, of course, at the node corresponding to the basis function



• For a function g ∈ H
p+1
mix , the error of the sparse grid interpolant Isg

L [g] is

‖g − Isg
L [g]‖L2 = O

(
h
p+1
L log(h−1

L )N−1
)
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• Adaptivity with high-order sparse-grid interpolation

– linear, quadratic and cubic approximations with tol = 10−3



Wavelet bases for sparse grids

•Motivation: The aforementioned hierarchical bases may have some stability
issues when doing adaptivity

– for example, for a g(y) and for finite element bases, we have the upper
bound

‖Isg
L [g]‖

2
L2

≤ C

L∑

ℓ=0

∑

|ℓ|=l

∑

i∈Bℓ

|cℓ,i|2

which may be an over estimate, meaning that a big coefficient may only
contribute very little to the approximation

• Ideally, we would like our basis to be a Riesz basis for which one has upper
and lower bounds

– i.e., there exists constants c and C independent of the level L such that

c

L∑

ℓ=0

∑

|ℓ|=l

∑

i∈Bℓ

|cℓ,i|2 ≤ ‖Isg
L [g]‖

2
L2

≤ C

L∑

ℓ=0

∑

|ℓ|=l

∑

i∈Bℓ

|cℓ,i|2



• Finite element bases are not Riesz bases
– the lower bound does not hold

• However, compactly supported hierarchical piecewise polynomial wavelet
bases that are Riesz bases can be constructed from a finite element hier-
archical basis

• In the linear case, such second-generation wavelets are defined by

φℓ,i = ψℓ,i −
1

4
ψℓ−1, i−1

2
− 1

4
ψℓ−1, i+1

2
for 1 < i < 2ℓ − 1, i odd

φℓ,i = ψℓ,i −
3

4
ψℓ−1, i−1

2
− 1

8
ψℓ−1, i+1

2
for i = 1

φℓ,i = ψℓ,i −
1

8
ψℓ−1, i−1

2
− 3

4
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2
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• An example: the bivariate function

f (x, y) =
1

|0.15− x2 − y2| + 0.1
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Compared to the adaptive finite element approximation, the L2 error of the adaptive wavelet

approximation is closer to that of the best s-term approximation



APPLICATION 1

HIERARCHICAL ACCELERATION OF

STOCHASTIC COLLOCATION METHODS



Computational costs of stochastic collocation methods

•We consider the computational costs of using stochastic collocation methods
for problems involving parameterized PDEs

– if we have M collocation points, we are required to solve the PDE M

times, once for each collocation point

– here we consider linear elliptic equations and finite element methods

– we denote the approximate finite element solution for the collocation point
yℓ,i by

uJh(x,yℓ,i) =

Jh∑

j=1

uj,ℓ,iφj(x)

where Jh denotes the number of finite element degrees of freedom



– we also assume that the stiffness matrices are symmetric and positive
definite and that a conjugate gradient method is used to solve the linear
systems, resulting in the approximation to the finite element solution given
by

ũJh(x,yℓ,i) =

Jh∑

j=1

ũj,ℓ,iφj(x) ≈ uJj(x,yℓ,i)

where ũℓ,i = (ũ1,ℓ,i, . . . , ũJh,ℓ,i)
⊤ is the output of the solver corresponding

to the collocation point yℓ,i

• In the case of using conjugate gradient methods, the error ei
k = ui −uk

i
is

bounded by

‖eik‖Ai
≤ 2

(√
κi − 1√
κi + 1

)k
‖ei0‖Ai



• The total computational cost for constructing ũJh,Mℓ
≈ uJh,Mℓ

is given by

Ctotal =
L∑

l=0

∑

|ℓ|=l

∑

i∈B
Mi

where Mi is the number of iterations needed at the collocation point yi.

• The approximation ũJh,Mℓ
(x,y) can be represented in a hierarchical manner:

ũJh,Mℓ
(x,y) = ũJh,Mℓ−1

(x,y) +
∑

g(ℓ)=L

∑

i∈Bl

c̃l,i(x) · ψl,i(y)

• At each collocation point yi on level L, ui = (u1,i, . . . , uJh,i)
⊤ can be

represented by

uj,i = uJh,Mℓ−1
(xj,yi) + cj,i, for j = 1, . . . , Jh



• Key idea: due to the decay of |cj,i| as |ℓ| → ∞, the initial guess for the CG
solver is chosen as

ũi
0 =

(
ũJh,Mℓ−1

(x1,yi), . . . , ũJh,Mℓ−1
(xJh,yi)

)⊤

where the error of such prediction is, for j = 1, . . . , Jh,∣∣ũ0j,i − u(xj,yi)
∣∣ ≤

∣∣ũJh,Mℓ−1
(xj,yi)− uJh,Mℓ−1

(xj,yi)
∣∣ + cj,i



•Without hierarchical acceleration, the minimum cost Cmin for building the
standard piecewise linear SG approximation ũJh,Mℓ

(x,y) with the prescribed
accuracy ε > 0 can be bounded by

Cmin ≤
α1

N


α2 + α3

log2

(
3Csg

ε

)

N




α4N (
3Csg

ε

)α5

× 1

log2

(√
κ + 1√
κ− 1

)
[
α6 log2

(
3Csg

ε

)
+ log2(

√
κτ0) + α7N + α8

]

where the constants α1, . . . , α8 are independent of L, N and ε.



•With hierarchical acceleration the minimum cost Cmin for building the stan-
dard piecewise linear SG approximation ũJh,Mℓ

(x,y) with the prescribed ac-
curacy ε > 0 can be bounded by

Cmin ≤ α1


α2 + α3

log2

(
2Csg

ε

)

N




α4N (
2Csg

ε

)α5

× 1

log2

(√
κ + 1√
κ− 1

)
[
2N − log2(N) + α9 + log2(

√
κ)
]

where the constants α1, . . . , α5 and α9 are independent of L, N , and ε



• Consider the 2D Poisson equation with random diffusivity and forcing term
{∇ · (a(x,y)∇u(x,y)) = f (x,y) in [0, 1]2 × Γ,

u(x,y) = 0 on ∂D × Γ

where a and f arethe nonlinear functions of the random vector y given by

a(x,y) = 0.1 + exp
[
y1 cos(πx1) + y2 sin(πx2)

]

and

f (x,y) = 10 + exp
[
y3 cos(πx1) + y4 sin(πx2)

]

where yn for n = 1, 2, 3, 4 are iid random variables following the uniform
distribution U([−1, 1])

– the quantity of interest is the mean value of the solution over D × Γ

QoI = E

[∫

D

u(x,y)dx

]



• The computational savings of the piecewise SG approach with hierarchical
acceleration

Basis type Error # SG points
hSGSC hSGSC+acceleration

cost cost saving

Linear
1.0e-2 377 13,841 7,497 45.8%
1.0e-3 1,893 81,068 38,670 52.2%
1.0e-4 7,777 376,287 167,832 55.3%

Quadratic
1.0e-3 701 29,874 11,877 60.2%
1.0e-4 2,285 110,744 36,760 66.8%
1.0e-5 6,149 329,294 100,420 69.5%

Cubic
1.0e-4 1,233 59,344 23,228 60.8%
1.0e-5 3,233 172,845 57,777 66.5%
1.0e-6 7,079 415,760 129,433 68.8%



APPLICATION 2

HIGH-DIMENSIONAL DISCONTINUITY DETECTION



Discontinuities in parameter space

parameters
y ∈ Γ ⊂ R

N =⇒
PDE

Lu = f

in D ⊂ R
d, d = 1, 2, 3

=⇒
output of
interest
F [u(·,y)]

• The PDE operator L depends on N parameters y = (y1, y2, . . . , yN) ∈ Γ

• The parameters y may be affected by uncertainty (measurement error, in-
complete description of parameters)

– uncertainty is modeled by endowing the random vector y with a joint PDF
̺(y) =

∏N
n=1 ̺n(yn)

• The output of interest F (y) = F (u(y)) is a functional of u which may

- be a smooth function of y

- have steep gradients with respect to y

- have discontinuities with respect to y



• Basic problem
– for F (y) with discontinuities in the parameter space Γ, we want to

- identify surfaces of discontinuity

- subdivide the geometry into subregions of smooth behavior

- construct a piecewise approximation which is
smooth over each subregion

• Event probability problems
– for any F (y), continuous or discontinuous,

- given the PDF ρ(y) for the input parameter y ∈ Γ

- given the threshold F0

- given an output of interest F (y) = F (u(y))

determine the probability of the event F (y) ≥ F0

P [F (u(y)) ≥ F0] =

∫

Γ

χ{F (y)≥F0}(y)ρ(y)dy



•Monte Carlo approach

no. of samples MC estimate MC error

1 0.000000 0.110691
10 0.200000 0.089309
100 0.090000 0.020691
1,000 0.106000 0.004691
10,000 0.108300 0.002391
100,000 0.110430 0.000261
1,000,000 0.110564 0.000127

exact 0.110691

• Monte Carlo is slow to converge

• lots of solutions of the

PDE are needed

• quadrature rules with global

polynomial approximation

do not work



Some more background

•We are given a bounded domain Γ ⊂ R
N but we are interested in a subdo-

main Γ0 which can only be described implicitly

– e.g. =⇒ for given F0, Γ0 = {y ∈ Γ : such that F (y) ≥ F0}

• Questions:
– can we detect the boundary of Γ0?

– can we accurately and efficiently estimate the integral

∫

Γ0

ρ(y)dy

• Our goals is to ameliorate the curse of dimensionality in

– building approximations to the boundary of Γ0

– estimating the above integral faster than conventional Monte Carlo sam-
pling and other approaches



• Existing methods for detecting jump discontinuities include

–Monte Carlo sampling

– adaptive triangular mesh refinement

– discontinuous Galerkin methods

– polynomial annihilation

– adaptive hierarchical sparse grids

2D adaptive sparse grid 3D adaptive sparse-grid

requires 5,925 points requires 21,501 points



• In the sparse grid approach, an adaptive process based on surpluses is used
to select a subset of the tensor product grid that is concentrated near the
discontinuity surface

– for discontinuous functions, the adaptive hierarchical sparse-grid method
can incur very high cost, even in low dimensions

⇑
⇑
⇑

- the sparse-grid interpolant does not converge in L∞ norm,
which means the surplus does not decay to zero

- the adaptivity generates a dense grid around the
N − 1 dimensional discontinuity surface

- many grid points do not contribute much to the approximation

- high-order hierarchical basis functions are useless



• For the characteristic function for the ball

=⇒ g(y) =

{
1
√
y21 + · · · + y2N ≤ 1

0 otherwise

2D adaptive sparse grid requires 5,925 points; 3D adaptive sparse-grid requires 21,501 points



The error is measured by

∣∣∣∣
∫
g(y)dy −

∫
Isg
L [g](y)dy

∣∣∣∣



A hyperspherical sparse-grid method for discontinuity detection

• Consider a bounded domain Γ ⊂ R
N , a subdomain Γ0 ⊂ Γ, and a charac-

teristic function g(y) : Γ → R defined by

g(y) =

{
1 if y ∈ Γ0 ⊂ Γ

0 otherwise

– Γ0 is the characteristic domain

– ∂Γ0 is the discontinuity surface described by an implicit equation G(y) =
0 in Γ

- e.g., a hypersphere can be represented by G(y) ≡
∑N

n=1 y
2
n−λ2 = 0

• The goal is to find two bounded domains Γ1 ⊂ Γ and Γ2 ⊂ Γ such that

Γ1 ⊂ Γ0 ⊂ Γ2 ⊂ Γ and dist (∂Γ1, ∂Γ2) ≤ ε

where ε is a prescribed accuracy

– clearly, g(y) = 0 for y ∈ ∂Γ2 and g(y) = 1 for y ∈ ∂Γ1



• About the domain Γ0 ∈ Γ, we assume

– Γ0 is a star-convex domain in Γ

– a point y0 in Γ0 is given such that for all y in Γ0, the line segment
{y0 + ty : t ∈ [0, 1]} from y0 to y is in Γ0

y

Left: a star-convex domain is not necessarily convex; Right: an annulus is
not a star-convex domain (The two figures are from Wikipedia)



• A hyperspherical coordinate system is a generalization of the 2D polar and
3D spherical coordinate systems to N dimensions

– we have

- one radial coordinate r ranging over [0,+∞)

- one angular coordinate θN−1 ranging over [0, 2π)

- N − 2 angular coordinates θ1, . . . , θN−2 ranging over [0, π)

• The conversion from hyperspherical coordinates centered at y0 to Cartesian
coordinates is given by

y1 = y0,1 + r cos(θ1)

y2 = y0,2 + r sin(θ1) cos(θ2)

y3 = y0,3 + r sin(θ1) sin(θ2) cos(θ3)
...

yN−2 = y0,N−2 + r sin(θ1) · · · sin(θN−2) cos(θN−1)

yN−1 = y0,N−1 + r sin(θ1) · · · sin(θN−2) sin(θN−1)



• The hyperspherical sparse-grid method for discontinuity detections proceeds
as follows

– transform the Cartesian coordinates y1, . . . , yN to the hyperspherical co-
ordinates r, θ1, . . . , θN−1 with the given origin point y0

– each point θ = (θ1, . . . , θN−1) corresponds to a ray in R
N out from y0

in a specific direction

- due to the star-convexity of the domain Γ0, there is only one jump
discontinuity in each direction θ

– ∂Γ0 can be represented by a function r = g(θ) on the bounded N -1
dimensional domain

Γθ =

N−1∏

n=1

[0, π]× [0, 2π]

where for any θ = (θ1, . . . , θN−1) ∈ Γθ, (g(θ),θ) is on ∂Γ0

– build an L-level sparse grid HN−1
L on Γθ with a total of M grid points

HN−1
L = {θm ∈ Γθ for m = 1, . . . ,M}



– for an accuracy tolerance ε and for m = 1, . . . ,M , from y0, along the
direction corresponding θm ∈ HN−1

L , use 1-D bisection method to find
two values g1m and g2m such that

g1m ≤ g(θm) ≤ g2m and |g1m − g2m| ≤ ε

– build sparse-grid interpolants g1(θ) and g2(θ) based on {g1m,m = 1, . . . ,M}
and {g2m,m = 1, . . . ,M}, respectively

- we then have (
g1(θ),θ

)
=⇒ ∂Γ1(

g2(θ),θ
)

=⇒ ∂Γ2

- number function evaluations =

M∑

m=1

(number bisection trials for θm)

- according to smoothness of the hyper-surface ∂Γ0, different types
of basis functions can be used, e.g., high-order hierarchical finite
element or wavelet bases


