Design of Computer Experiments
— (1) without model —
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Objectives

Computer experiments: based on simulations

» Usually, x € RY m observation Y(x) (physical experiment)

» here, numerical simulation: Y(x) = f(x), observation = evaluation of an
unknown function f(+)

(no measurement error)
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|
Objectives

Computer experiments: based on simulations

» Usually, x € RY m observation Y(x) (physical experiment)

» here, numerical simulation: Y(x) = f(x), observation = evaluation of an
unknown function f(+)

(no measurement error)

from pairs (x;, f(x;)), i=1,2,...,n
@ optimization: find x* = arg maxye o~ f(x)
@ inversion: construct {x € 2 : f(x) =T}

@ estimation of a probability of failure: Prob{f(x) > C} when x ~ probability
density o(-)
@ sensitivity analysis

e approximation/interpolation of f(-) by a predictor 7,(+), to be constructed

v
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Objective = approximation/interpolation

f(x) an unknown function, defined on 2~ C R9 (compact)
construct a “good” approximation 71,(-) of f(-) over 2" from pairs (x;, f(x;)),
i=1,2,...,n (n not necessarily fixed a priori)
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Objective = approximation/interpolation

f(x) an unknown function, defined on 2~ C R9 (compact)
construct a “good” approximation 71,(-) of f(-) over 2" from pairs (x;, f(x;)),
i=1,2,...,n (n not necessarily fixed a priori)

w Since f(-) is unknown, we must observe everywhere!

w maximize the spread of the n points X, = (x1,...,X,) in 2

(uniformly seems reasonable and can be properly justified (Biedermann and Dette,
2001))
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Objective = approximation/interpolation

f(x) an unknown function, defined on 2~ C R9 (compact)
construct a “good” approximation 71,(-) of f(-) over 2" from pairs (x;, f(x;)),
i=1,2,...,n (n not necessarily fixed a priori)

w Since f(-) is unknown, we must observe everywhere!

w maximize the spread of the n points X, = (x1,...,X,) in 2

(uniformly seems reasonable and can be properly justified (Biedermann and Dette,
2001))

> X, is the design (an n-point design) <
What does “observe everywhere” mean?

— very much based on (P., 2017)
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General overview: 3 families of design criteria J

1. Inter-distance: between X, and 2" (miniMax, dispersion)

... a bit tricky
(but we are never far from a design point)
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General overview: 3 families of design criteria J

1. Inter-distance: between X, and 2~ (miniMax, dispersion)
2. Intra-distances: within X, between design points x;, i=1,...,n
(Maximin, energy...)

...easier
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General overview: 3 families of design criteria J

1. Inter-distance: between X, and 2" (miniMax, dispersion)

2. Intra-distances: within X, between design points x;, i=1,...,n
(Maximin, energy...)

3. Uniformity of the distribution of x;, i =1,...,n
(entropy, discrepancy ™ generate infinite sequences of points)
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Inegualities, bounds

small
inter-distance

[minikax,
dispersion}

large
intra-distances
[Maximin, energy)

uniformity
[entropy,
discrepancy)
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Plan

@ Geometrical space-filling criteria

1.1 miniMax & Maximin: generalities

1.2 Latin hypercubes

1.3 miniMax (inter-distance) criterion

1.4 Maximin (intra-distances) criterion

1.5 Relations between ®p, and @, (d > 2)
1.6 Regularized Maximin, energy

© Uniformity: quasi Monte-Carlo, discrepancy
@ 2.1 Entropy, optimal graphs
@ 2.2 Discrepancy: motivation
@ 2.3 Discrepancy criteria
@ 2.4 Low discrepancy sequences
@ 2.5 (t,m,d)-nets & (t, d)-sequences
© Dispersion & miniMax
@ 3.1 Dispersion
@ 3.2 Low dispersion sequences

@ Conclusions part (1)
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1.1 miniMax & Maximin: generalities
1 Geometrical space-filling criteria

1.1 miniMax & Maximin: generalities (Johnson et al., 1990) J

® miniMax: minimize ®,1(X,) = maxyec2 min; ||x — x|

Smm(Xn) = dHausdorff(Xn, 27) = max{maxxe 2 d(x, X,,),):‘_neaxx d(xi, Z)}

\—,—/
=0 (Xpe'")
w |nter-distance between X,, and 2~

d=1<x=(2i—-1)/(2n),i=1,...,n
= v, = 1/(2n)

d > 1 & sphere-covering
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

@ Maximin: maximize ®ym(X,) = miniy; dj = min;; ||x; — x|
w Intra-distances for X, (between points x; in X,)

d=1x=(i-1)/(n—-1),i=1,...,n
= qyl\k/lm,n: 1/(’771)

d > 1 & sphere-packing
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1 Geometrical space eria 1.1 miniMax & Maximin: generalities

Examples :

® miniMax d =2,n=7

(radius:zﬁmM(Xn))
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Examples :
@® miniMax d =2,n=7 @ Maximin d =2,n=7
(radius:qﬁmM(Xn)) (radius:¢Mm(Xn)/2)
o o -
[ ] =
B
) [ i
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Why Maximin <> sphere-packing?

=5
o
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Why Maximin <> sphere-packing?

IOl
o<
\_
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1 Geometrical space-filling criteria

A few difficulties:

a) Local optima

Maximin d = 2,n =7, global opt.

Luc Pronzato (CNRS)

Design of Computer Experiments (1)

1.1 miniMax & Maximin: generalities

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

A few difficulties:

a) Local optima

Maximin d = 2,n =7, global opt. Maximin d =2,n =7, local opt.
i p [ i
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

A few difficulties:

a) Local optima

Maximin d = 2,n =7, global opt. Maximin d = 2,n =7, local opt.
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

A few difficulties:

a) Local optima

Maximin d = 2,n =7, global opt. Maximin d =2,n =7, local opt.
i p i m
-]
[ ]
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[ ]
[ i i T
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1 Geometrical space eria 1.1 miniMax & Maximin: generalities

b) Misleading intuition

Luc Pronzato (CNRS)

Which one is better?

Design of Computer Experiments (1)

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

b) Misleading intuition

. [] = = . -
| |
-] " 7]
= . a = a
]
- i ] ] ™ a .
. ]
-]
= " - s =
" -]
E o 2 .
m . " .
-]
Geometry : ®pm(X,) = 0.2020 Geometry : ®p,(X,) = 0.2302
® (X)) = 0.2357 O (X)) = 0.2217
Uniformity : Dcent,1,(Xn) = 0.0280 Uniformity : Dcent,1,(Xn) = 0.0536
Dwa,1,(X,) = 0.0388 Dwa,1,(X,) = 0.0633

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d=2,n=16

16 circles in a square

radius = 0.125000000000 density = 0.785398163397
ratio =  8.000000000000  contacts = 40

Ecole ETICS, Porquerolles, 06/10/2017 13 /
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d=2,n=25

25 circles in a square

radius = 0.100000000000 density = 0.785398163397
ratio = 10.000000000000  contacts = 60

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d=2,n=36

36 circles in a square

us = 0.083333333333  demsity = 0.785398163397
io = 12.000000000000 contacts = 84

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d=2,n=49

49 circles in a square

0.071692681704 e

radiu o, 1oaziesasszr
ratio = 13.948425086594  co

Cube packing is much easier! (see § 3.1)
Dt o @ (S (0]
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1.1 mirillax & Maximin: czneralities

d) Curse of dimensionality: when d » oc, all volume of [0, 1] is along the
boundary

2 =1y =[0,1)¢

vol = (1-26)°

0 g l-& 1
For ¢ given, volume of central part — (1 — 2¢)¥ — 0 when d — 20
Ex: 64 balls in a cube, in 4 regular layers of 16 balls

— 56 touch the boundary!

Lresign ot Computer Expeiments {1}

Ecale ETICS, Porquerclles. Ui/ 12017
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))

» Unit cube K4(0,1) = [~1/2,1/2]?: volume = 1, max distance between 2
points = Vid

» Unit ball %4(0,1): volume = 79/2/T(d/2 4+ 1) — 0 (quickly) as d — co, max
distance between 2 points = 2

Ecole ETICS, Porquerolles, 06/10/2017 %g /
1
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))

» Unit cube K4(0,1) = [~1/2,1/2]?: volume = 1, max distance between 2
points = Vid

» Unit ball %4(0,1): volume = 79/2/T(d/2 4+ 1) — 0 (quickly) as d — co, max
distance between 2 points = 2

Kq(0,1) C %4(0,1) for d < 4, but the vertices of the cube (at distance v/d /2
from 0) lie outside %4(0,1) for d > 5

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))

» Unit cube K4(0,1) = [~1/2,1/2]?: volume = 1, max distance between 2
points = v/d

» Unit ball %4(0,1): volume = 79/2/T(d/2 4+ 1) — 0 (quickly) as d — co, max
distance between 2 points = 2

Kq(0,1) C %4(0,1) for d < 4, but the vertices of the cube (at distance v/d /2
from 0) lie outside %4(0,1) for d > 5

vol[IC4(0,1) \ #0,1)] = 1 as d — oo, but #4(0,1) ¢ K4(0,1)! (the centers of
faces are always at distance 1/2 from0)

= For large d, working within a cube is much more difficult
than working within a ball

Ecole ETICS, Porquerolles, 06/10/2017 %Fg: /
1
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pNESTN ST LSRN EM 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))

» Unit cube K4(0,1) = [~1/2,1/2]?: volume = 1, max distance between 2
points = v/d

» Unit ball %4(0,1): volume = 79/2/T(d/2 4+ 1) — 0 (quickly) as d — co, max
distance between 2 points = 2

Kq(0,1) C %4(0,1) for d < 4, but the vertices of the cube (at distance v/d /2
from 0) lie outside %4(0,1) for d > 5

vol[IC4(0,1) \ #0,1)] = 1 as d — oo, but #4(0,1) ¢ K4(0,1)! (the centers of
faces are always at distance 1/2 from0)

= For large d, working within a cube is much more difficult
than working within a ball

We shall lower our ambitions: finding an optimal design is extremely difficult,
we shall only try to find “reasonable” designs

Ecole ETICS, Porquerolles, 06/10/2017 %Fg: /
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1.2 Latin hypercubes

Objective: ensure good projection properties along each principal axis
each 1d projection is Maximin-optimal
{xi}¢ € {O,ﬁ,... Ll 1Y forallt=1,...,d

' p—17
)d—l

w only (n! possible designs

Maximin-optimal Lh (d = 2,n =7, radius=¢nym(X,)/2)

Ecole ETICS, Porquerolles, 06/10/2017
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1.2 Latin hypercubes J

Objective: ensure good projection properties along each principal axis
each 1d projection is Maximin-optimal
{xi},€{0, -4, .., 5L L} forall £=1,...,d

w only (n!)¥~! possible designs

Maximin-optimal, not Lh, (d =2,n =7, radius=¢um(X,)/2)
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1.2 Latin hypercubes J

Objective: ensure good projection properties along each principal axis
each 1d projection is Maximin-optimal
{xi},€{0, -4, .., 5L L} forall £=1,...,d

w only (n!)¥~! possible designs

Lh, not Maximin-optimal, (d =2,n =7, radius=¢pm(X,)/2)
»
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1 Geometrical space-filling criteria [ENERIEITLNIYEIET

The Lh property only ensures good 1d projection properties!
w we need to optimize another space-filling criterion (in dimension d)
(typically, using simulated annealing, other heuristics may be considered)

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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1 Geometrical space-filling criteria [ENERIEITLNIYEIET

The Lh property only ensures good 1d projection properties!
w we need to optimize another space-filling criterion (in dimension d)
(typically, using simulated annealing, other heuristics may be considered)

m OQptimizing within the class of Lh designs ensures good 1d projection properties

Important when (-) may possibly not depend on some input factors {x}:
» no repetition of points a factor is removed
» the projection on d’ < d components is still a Lh
(but not necessarily with a good distribution of points if d’ > 1)

Abundant literature since (McKay et al., 1979), see (Viana, 2013)
The Lh constraint worsens the space-filling property

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria [ENERIEITLNIYEIET

Optimization within the class of Lh designs:

Let X, be a n-point Lh design:

choose a coordinate ¢ (among d)

choose a pair of points x; and x; in X,

exchange their /-th coordinate

ws X+ which is still a Lh design (dn(n — 1)/2 possible constructions)

(one may also exchange several pairs of points simultaneously)

Ecole ETICS, Porquerolles, 06/10/2017
Luc Pronzato (CNRS) Design of Computer Experiments (1)
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1 Geometrical space-filling criteria [ENERIEITLNIYEIET

Optimization within the class of Lh designs:
Let X, be a n-point Lh design:

choose a coordinate ¢ (among d)

choose a pair of points x; and x; in X,
exchange their /-th coordinate

ws X+ which is still a Lh design (dn(n — 1)/2 possible constructions)

(one may also exchange several pairs of points simultaneously)

Simulated annealing (minimization of ¢(-)) — principle:

0) start from a Lh design X9, set k = 0

1) generate a Lh design XX from XX

2) calculate Ad, = O(XLH) — d(XK)

3) Accept X4 T, ie., do XK+ = XK+ with probability

P, = min {1,exp (— Aﬁi*)}, keep XK1 = XK with prob. 1 — Py
k< k-+1, returnto 1

Ecole ETICS, Porquerolles, 06/10/2017 18 /
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1 Geometrical space-filling criteria [ENERIEITLNIYEIET

XXt such that Ad, < 0 is always accepted
Xﬁ* such that A®, > 0 is more often accepted for Ty than for T, < T3

m Take Ty large enough (to escape from
local optimas),

then decrease Ty (slowly enough)

(for instance, Ty = MJ%,
or Ty = a* Ty with a < 1)

Ecole ETICS, Porquerolles, 06/10/2017 19 /
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1 Geometrical space-filling criteria [ENERIEITLNIYEIET

XXt such that Ad, < 0 is always accepted
Xﬁ* such that A®, > 0 is more often accepted for Ty than for T, < T3

1 m Take To large enough (to escape from
local optimas),
1 then decrease Ty (slowly enough)

(for instance, Ty = MJ%,
or Ty = a* Ty with a < 1)

0 L L Se e L

2

7I'\/Iany f/sarianté, abundant literature. . .
Always store the best XX found along the trajectory of the algorithm!!!

m Ensures convergence to the optimum when k — co under rather general
conditions

Ecole ETICS, Porquerolles, 06/10/2017 19 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ®,,(X,,) = maxye 2 min; [|x — x;|| J

®,,u is interesting for approximation:
Any x in 2 is at most at distance ®,,y, from a design point x;

Evaluation of ®,u(X,) = maxxe g minji—1 . n||x — X;|| = maxxe 2 d(x, X,):
we need to find a x* = arg maxyc 2~ d(x, X,)

Key idea: replace arg maxc 2~ d(x, X,) by arg max,c 2, d(x, X,) for a suitable
finite 2o C 2

Ecole ETICS, Porquerolles, 06/10/2017 20 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ®,,(X,,) = maxye 2 min; [|x — x;|| J

®,,u is interesting for approximation:
Any x in 2 is at most at distance ®,,y, from a design point x;

Evaluation of ®,u(X,) = maxxe g minji—1 . n||x — X;|| = maxxe 2 d(x, X,):
we need to find a x* = arg maxyc 2~ d(x, X,)

Key idea: replace arg maxc 2~ d(x, X,) by arg max,c 2, d(x, X,) for a suitable
finite 2o C 2

0/ Usual trick: 2 = regular grid or first Q points of a Low Discrepancy
Sequence in 2~

Ecole ETICS, Porquerolles, 06/10/2017 20 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ®,,(X,,) = maxye 2 min; [|x — x;|| J

®,,u is interesting for approximation:
Any x in 2 is at most at distance ®,,y, from a design point x;

Evaluation of ®,u(X,) = maxxe g minji—1 . n||x — X;|| = maxxe 2 d(x, X,):
we need to find a x* = arg maxyc 2~ d(x, X,)

Key idea: replace arg maxc 2~ d(x, X,) by arg max,c 2, d(x, X,) for a suitable
finite 2o C 2

0/ Usual trick: 2 = regular grid or first Q points of a Low Discrepancy
Sequence in 2~

ww & (X 20) < Pmm(X,) (optimistic result)
requires @ = O(1/€?) to have ®,m(X,) < Pmm(Xn; 29) + €

Ecole ETICS, Porquerolles, 06/10/2017 20 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ®,,(X,,) = maxye 2 min; [|x — x;|| J

®,,u is interesting for approximation:
Any x in 2 is at most at distance ®,,y, from a design point x;

we need to find a x* = arg maxye 2~ d(x, X;,)

Key idea: replace arg maxc 2~ d(x, X,) by arg max,c 2, d(x, X,) for a suitable
finite 2o C 2

0/ Usual trick: 2 = regular grid or first Q points of a Low Discrepancy
Sequence in 2~

ww & (X 20) < Pmm(X,) (optimistic result)
requires Q = O(1/e9) to have ®u(X,) < Prm(Xn; 29) + €

A/ & B/ Tools from algorithmic geometry (d < 5) = exact result through the
construction of a suitable 27

C/ MCMC % = adaptive grid
Dt o @ (S (0]
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1



g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

A/ Delaunay triangulation

Z" = hypercube, see (P. and Miiller, 2012)

» Delaunay

e X, (= n points in 2~ = [0,1]9), consider X/,, with m = (2d + 1)n points,
formed by X, and its 2d reflections through the (d — 1)-dimensional faces of
Z

@ Compute the Delaunay triangulation of X! — d-dimensional simplices (each
one having d + 1 vertices), with circumscribed spheres S; not containing any
point of X/, in their interior

@ maxyec 2 d(x, Xy) is attained for x = centre of one S;
o Take Zq = finite set given by centres of S; that belong to 2~
o Q= |Zg| = O(m!9/?1), computational time = O(m*[4/2]) = small d only

i Ecole ETICS, Porquerolles, 06/10/2017 21 /
Luc Pronzato (CNRS) Design of Computer Experiments (1) 129



g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

2o = { centres of circumscribed spheres to Delaunay simplices }

2 T T T T T

0.51 4

1 L L L L L
-1 -05 0 0.5 1 15 2

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

2o = { centres of circumscribed spheres to Delaunay simplices }

2 T T T T T
. *
15F 1
* *
1+ b * 4
05k * « * o]
# *® &l *®
of E
* *
-05 1
* «
4 . . . . .
-1 -05 0 05 1 15 2
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

2o = { centres of circumscribed spheres to Delaunay simplices }

2 . . . .
15¢ ]
T i
o
:
05p i
.
or g
-05F ]
1 . . . . .
-1 -05 0 05 1 15 2

n =6 points, 45 triangles, 12 circles (the largest one is plotted)
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

B/ Voronoi tessellation

2 = polytope in RY, see Cortés and Bullo (2005, 2009)
@ Partition R9 into n cells C; containing points closest to x; than to any other
site in X,
@ Each C; = convex polyhedron in R? (some are open and infinite)

e 2 is a polytope of RY = C; N 2" = polytope — tessellation of 2" into n
bounded convex polyhedra

@ maxxec 2 d(x,X,) is attained when x is a vertex of one of these polyhedra
@ Take 2o = collection of these vertices
Q = O(nl4/21) = small d only

e Avoid infinite cells by adding a few (at least d + 1) generators x; out of 2",
far enough from 2" to ensure that the corresponding cells do not intersect 2

v
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1 Geometrical space CUEW 1.3 miniMax (inter-distance) criterion

2o = { vertices of Voronoi cells truncated to 2~ }

25 T T T T T T T

-05r 1

.5 -1 -0.5 0 0.5 1 1.5 2 25
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1 Geometrical space CUEW 1.3 miniMax (inter-distance) criterion

2o = { vertices of Voronoi cells truncated to 2~ }

25 T T T T T T T

0.5 = d

-05r 1

.5 -1 -0.5 0 0.5 1 1.5 2 25
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1 Geometrical space CUEW 1.3 miniMax (inter-distance) criterion

2o = { vertices of Voronoi cells truncated to 2~ }

25 T T T 3 T T T
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1 Geometrical space-filling criteria

2o = { vertices of Voronoi cells truncated to 2" }

25

1.3 miniMax (inter-distance) criterion
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n = 6 points, 6 cells, @ = 14 vertices x(¥) tested for min; ||x(¥) — x;||
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C/ Estimation via MCMC

2 ideas: extreme-value theory + multilevel splitting
C.a) Borrow results from extreme-value theory used in global optimization
(Zhigljavsky and Zilinskas, 2007, Chap. 2), (Zhigljavsky and Hamilton, 2010)

e Q points xY) i.i.d. in 2, compute the Q distances d; = d(x(f),X,,),
associated order statistics di.q > da.9 > -+ > dg.@

Ecole ETICS, Porquerolles, 06/10/2017 25 /
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C/ Estimation via MCMC

2 ideas: extreme-value theory + multilevel splitting
C.a) Borrow results from extreme-value theory used in global optimization
(Zhigljavsky and Zilinskas, 2007, Chap. 2), (Zhigljavsky and Hamilton, 2010)
e Q points xY) i.i.d. in 2, compute the Q distances di= d(xU),X,,),
associated order statistics di.q > da.9 > -+ > dg.@
o kfixed, 1 < k < Q (e.g., k = max{10,d}, Q> d), estimate ®,i(X,) by

i (Xn) = di.g + Ci(dh:q — di:Q)

where G, = by /(by — by) with b; =T (i +1/d)/T(i).
Also, the asymptotic confidence level of

di.@ — dk.q
(1 _ ('51/k)71/d —1

ks = |di.Q,d1.@ +

tendsto 1 — § for @ — oo

v
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C/ Estimation via MCMC

2 ideas: extreme-value theory + multilevel splitting
C.a) Borrow results from extreme-value theory used in global optimization
(Zhigljavsky and Zilinskas, 2007, Chap. 2), (Zhigljavsky and Hamilton, 2010)
e Q points xY) i.i.d. in 2, compute the Q distances di= d(xU),X,,),
associated order statistics di.q > da.9 > -+ > dg.@
o kfixed, 1 < k < Q (e.g., k = max{10,d}, Q> d), estimate ®,i(X,) by

i (Xn) = di.g + Ci(dh:q — di:Q)

where G, = by /(by — by) with b; =T (i +1/d)/T(i).
Also, the asymptotic confidence level of

di.@ — dk.q
(1 _ ('51/k)71/d —1

ks = |di.Q,d1.@ +

tendsto 1 — § for @ — oo

@ Precise estimation only for very large Q@ ™ 2nd idea

v
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj.q for large j (small dj.q) are useless
w multilevel splitting algorithm

Ecole ETICS, Porquerolles, 06/10/2017 1%8 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj.q for large j (small dj.q) are useless
w multilevel splitting algorithm

@ Replace all xU) at distance d; from X, less than some L, by points sampled
independently (and uniformly) in the set 27 (L;) = {x € 2" : d(x, X,) > L},
for an increasing sequence of levels L,

Ecole ETICS, Porquerolles, 06/10/2017 1%8 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj.q for large j (small dj.q) are useless
w multilevel splitting algorithm

@ Replace all xU) at distance d; from X, less than some L, by points sampled
independently (and uniformly) in the set 27 (L;) = {x € 2" : d(x, X,) > L},
for an increasing sequence of levels L,

@ Choose the level sequence of Guyader et al. (2011): at step £, the next level
is Lyyy = minj—1 . @d;
x;j+ (unique with probability one) such that dj« = Ly1 is replaced by a new
point sampled in 2 (Ls41)

e Stop when |/ 5| < e < 1 (§ = 0.05, say)

Ecole ETICS, Porquerolles, 06/10/2017 %8 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj.q for large j (small dj.q) are useless
w multilevel splitting algorithm

@ Replace all xU) at distance d; from X, less than some L, by points sampled
independently (and uniformly) in the set 27 (L;) = {x € 2" : d(x, X,) > L},
for an increasing sequence of levels L,

@ Choose the level sequence of Guyader et al. (2011): at step £, the next level
is Lyyy = minj—1 . @d;
x;j+ (unique with probability one) such that dj« = Ly1 is replaced by a new
point sampled in 2 (Ls41)

e Stop when |/ 5| < e < 1 (§ = 0.05, say)

e Sampling (“uniformly”) in 2°(L) is difficult when L is large: use a MCMC
method with Metropolis-Hastings transitions as in (Guyader et al., 2011):

o first replace x;« by a xj=x chosen at random among the other x;
o second, perform K successive steps of a random walk x — Proj 4-(x + z), with
z ~ N(0,0ly), accept transition if and only if d(x + z, X,) > Let1 = dj

Ecole ETICS, Porquerolles, 06/10/2017 %8 /
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1 Geometrical space:

CUEW 1.3 miniMax (inter-distance) criterion

xj= such that dj« = min; d;

O
| .@ @

Luc Pronzato (CNRS)

Design of Computer Experiments (1)

Ecole ETICS, Porquerolles, 06/10/2017
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Luc Pronzato (CNRS)

1 Geometrical space-filling criteria

replace by x;-- chosen at

1.3 miniMax (inter-distance) criterion

random among other x;

()

Ecole ETICS, Porquerolles, 06/10/2017
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1 Geometrical space-filling criteria

1.3 miniMax (inter-distance) criterion

perform K successive steps of random walk

o8
2O

[OF
)
e

Luc Pronzato (CNRS)
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

... after enough iterations
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1 Geometrical space CUEW 1.3 miniMax (inter-distance) criterion

log(computing time)
Z =1[0,1]¢, n =50 (6 = 0.05, ¢ = 0.001, K = 10, Q@ = nd for MCMC)
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Minimization of ®,u(X,) = maxxe 2 min; [|x — x;|| ?

(not convex, non differentiable)
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Minimization of ®,u(X,) = maxxe 2 min; [|x — x;|| ?

(not convex, non differentiable)
@ 0/ General global optimization method (e.g., simulated annealing): not
promising
@ A/ Voronoi tessellation + generalized gradient
@ B/ k-means and centroids
e C/ Stochastic gradient

Ecole ETICS, Porquerolles, 06/10/2017 29 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

A/ d (very) small: Voronoi tessellation + generalized gradient
(Pmm(+) not differentiable, but Lipschitz, with constant 1)

k+1 k ~ k
XU = XU — o, Fo, (XS

@ Y >0, lim ok =0and >, vk =00

@ all columns of ?%M(X,Sk)) equal 0, except the i-th one equal to

(i —x)/ I — "l where [[x; — x| = ®pu(X,)
" move X; towards x*

Ecole ETICS, Porquerolles, 06/10/2017
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

A/ d (very) small: Voronoi tessellation + generalized gradient
(Pmm(+) not differentiable, but Lipschitz, with constant 1)

X4 = X{9 = 74 Vo, (X19)
@ Y >0, lim ok =0and >, vk =00

@ all columns of ?%M(X,(,k)) equal 0, except the i-th one equal to
(x; — x*)/||xi — x*||, where ||x; — x*|| = ®nm(Xn)
m move X; towards x*

i

m one may also move each x; towards the furthest point x*' in its Voronoi cell

(Cortés and Bullo, 2005, 2009):

(k+1) _ (k) ( (k) x*.i)/ngk) - X*,iH

X; Xi " = Vk,ilX;

Voronoi cells can be exact, or obtained by a discretization of 2 into a Q-point
set 2o

Ecole ETICS, Porquerolles, 06/10/2017
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1.4 mirillax [irter-distanzz} criterion

Ecale ETICS, Porquerclles. Ui/ 12017 13% ;
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Ex: 2" =simplex 0 < xy, 0 < x2, x1 +x2 < 1, n =7 (radii = ®,,(X,))
0sf ]
08 , Ry
o7} | . ]
0.6~ N R . / B
os| N > ) ]
04l . , ]
s _____® ]

0.2f T - 1

o1t | 3 . 4’ i
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

B/ k-means and centroids

Minimize the L, energy functional

o) = [ (Sl lx= x| ax =[x xiax
Z \i=1 i=1 7/Ci

where T, = {C;, i =1,...,n} is a tessellation of 2
le, = indicator function of C;

Ecole ETICS, Porquerolles, 06/10/2017

Luc Pronzato (CNRS) Design of Computer Experiments (1)

33
129 /



g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

B/ k-means and centroids

Minimize the L, energy functional

T o) = | (Z/c,.(x) ||x—x,-||2> de=> [ xxi?ax
Z \i=1 i=17C

where T, = {C;, i =1,...,n} is a tessellation of 2
le, = indicator function of C;

Then (Du et al., 1999):
e C; = V(x;) = Voronoi region for the site x;, for all i
(= E(Th, Xn) = ]5{ d?(x, X,) dx)
@ simultaneously x; = centroid of C; (center of gravity) for all i:
X; = (fC,- x dx)/vol(C;)

— such a X, should thus perform reasonably well in terms of space-filling
(Lekivetz and Jones, 2015)

Ecole ETICS, Porquerolles, 06/10/2017
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Lloyd’s method (1982): (= fixed-point iterations)

‘—’ Move each x; to the centroid of its own Voronoi cell, repeat ...

m Algorithmic geometry (Voronoi tessellation) if d very small,
use a finite set 2o otherwise

Ecole ETICS, Porquerolles, 06/10/2017
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

30 points from Sobol’ LDS

Ecole ETICS, Porquerolles, 06/10/2017 35 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

k-means clustering (30 clusters) of 1,000 point from Sobol' LDS

Ecole ETICS, Porquerolles, 06/10/2017 35 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

However. . . minimax-optimal design is related to the construction of a centroidal
tessellation for

sq(’rn,xn)=/% S e (x) x — x| dx:Z/Cnx—x,-nqu
i=1 i=1 i

for g — oo (see (Mak and Joseph, 2016))
m yse Chebyshev centers

Ecole ETICS, Porquerolles, 06/10/2017
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

However. . . minimax-optimal design is related to the construction of a centroidal
tessellation for

£u(Ton Xo _/ Z/c ) Ix— ] dx—Z/nx—x,de

for g — oo (see (I\/Iak and Joseph, 2016))
m yse Chebyshev centers

an
LT
ar
a6 g = —|—OC -
as -
y
14 /’l -
’
23 <
q=0
2z
2.1
—2<g<0
" n 17 an 4 i Lk "y ap LA 1
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Variant of Lloyd’s method:

0) Select X,(,l) and e 1, set k=1

1) Compute the Voronoi tessellation {V;, i = 1,...,n} of 2" (or Z4) based on
X

2) Fori=1,...,n
» determine the smallest ball %(c;, r;) enclosing V; (= convex QP problem)
» replace x; by ¢; in X,(,k) (Chebyshev center of V;)

3) if CDmM(XE,k)) — <I>,,,M(X§1k+1)) < €, then stop; otherwise k <— k + 1, return to
step 1

‘—> Move each x; to the Chebyshev center of its own Voronoi cell, repeat . .. ‘

[cbm,\,,(XE,k)) decreases monotonically, convergence to a local minimum (or a saddle point)]

Ecole ETICS, Porquerolles, 06/10/2017
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z;,...,zy}
(vertices of a Voronoi cell, points of 27 closest to x;):

< minimize f(c) = maxj=1,_n|zi — c||? with respect to c € R

Ecole ETICS, Porquerolles, 06/10/2017 gg/
1
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z;,...,zy}
(vertices of a Voronoi cell, points of 27 closest to x;):

< minimize f(c) = maxj=1,_n|zi — c||? with respect to c € R

Direct problem = convex QP
Take any ¢g € R9, minimize |lc — co||® + t
with respect to (c,t) € RI1,
subject to [|z; — col|? — 2(zi —co) "(c —co) < t, i=1,...,N
(N linear constraints)

Ecole ETICS, Porquerolles, 06/10/2017 39 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z;,...,zy}

Dual problem = similar to an optimal design problem:
maximize trace[V(£)], with & a prob. measure on Z,
V(&) = covariance matrix for &
center of the ball = ¢(¢) = [ z£(dz2)

Ecole ETICS, Porquerolles, 06/10/2017
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z;,...,zy}

Dual problem = similar to an optimal design problem:
maximize trace[V(£)], with & a prob. measure on Z,
V(&) = covariance matrix for &
center of the ball = ¢(¢) = [ z£(dz2)

— Algorithms of the exchange-type (Yildirim, 2008)
(= Fedorov algorithm for D-optimal design: optimal step length is available)

— One can remove inessential points from Z: (P., 2017c)
m Combine this with the use of a standard QP solver for the direct problem

Ecole ETICS, Porquerolles, 06/10/2017
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C/ Stochastic gradient (P., 2017)

d is large: Lloyd's algorithm cannot be used (computational geometry
is too complicated, regular grids or LDS are not dense enough)

n
minimize £,*(X,) = / Z I, (%) [lx = x;[|7 | dx
Z \i=1

with V; = Voronoi region for the site x;

Ecole ETICS, Porquerolles, 06/10/2017
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C/ Stochastic gradient (P., 2017)

d is large: Lloyd's algorithm cannot be used (computational geometry
is too complicated, regular grids or LDS are not dense enough)

minimize £,*(X,) = / (Z b (x) [[x — Xi||q> dx
Z \i=1

with V; = Voronoi region for the site x;

— Stochastic gradient algorithm:
(MacQueen, 1967) for g = 2, (Cardot et al., 2012) for g =1
0) k=1, X", set njg=0foralli=1,....,n
1)
2) find i* = argminj=1 ., || X —x( )
3) U =X q||X —xIa2(xB — X), ke k1,

sample X uniformly distributed in 2~

,n,k<—n,k+1 [« X € cell V]

=gradient
return to step 1, stop when k = K

Ecole ETICS, Porquerolles, 06/10/2017 41 /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

e Typical choice for i« x = ¢/nfx ., with a € (1/2,1]
and consider X, = % Zszl X,Sk) when a < 1

o Little information to store (no grid or other finite approximation of 27)
— can also be used with large d

Ecole ETICS, Porquerolles, 06/10/2017

Luc Pronzato (CNRS) Design of Computer Experiments (1)

42
13



Example: n=10d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2918 points
from a LDS (Sobol’)

d=2,n=20

h. grad |‘“---'

™
Chebyshey |“-

krnzans
sk

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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Example: n=10d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2918 points
from a LDS (Sobol’)

d=3,n=30

i
i
'

ranckom
krnzans

i
Chebyshey |'H"
h. grad | “- -

sk

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Example: n=10d

all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2918 points
from a LDS (Sobol’)

Daz

0.

073

07

Luc Pronzato (CNRS)

d=4,n=140

Design of Computer Experiments (1)
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g CEE LB [ERSOTER 1.3 miniMax (inter-distance) criterion

Example:

1.45

d =10, n =100

Luc Pronzato (CNRS)

atach grad

rancam
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

1.4 Maximin criterion ®,(X,) = min;; dj = min;; [|x; — x| J

Easy to compute (from distances dj; between pairs of points)
®pm(X,) = minimum of convex functions = not concave, non differentiable

m Use a global optimization method (e.g., simulated annealing)
m | ocal descent with some ad'hoc initialization
(e.g., random m multistart)

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

1.4 Maximin criterion ®,(X,) = min;; dj = min;; [|x; — x| J

Easy to compute (from distances dj; between pairs of points)
®pm(X,) = minimum of convex functions = not concave, non differentiable

m Use a global optimization method (e.g., simulated annealing)
m | ocal descent with some ad'hoc initialization
(e.g., random m multistart)
Difficult problem, but:
®pim(+) is global Lipschitz (with constant v/2)
— ®pyy(-) is differentiable almost everywhere (Cortés and Bullo, 2005, 2009)

Ecole ETICS, Porquerolles, 06/10/2017 %g /
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Sub-differential 0P pm(X,) easy to compute:

0%uam(Xs) = co{0Putm 5(Xe) : 1x; = 53] = min [ e}

with ®ym (X,) = ||x; — x;|| and

sub-gradient 0Py, 5(X,) = (0,.. XX o, ,0,

* ’07 ) )
[%; = x|
~—_——

ith position

X,'—Xj
- 0,...,0

fxs —xl %0
jth position

Ecole ETICS, Porquerolles, 06/10/2017
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Sub-gradient algorithm to maximize ® ypm(+):

Xﬁ+1 = Proj [Xﬁ + Yk OP pim U(Xﬁ)]

for i,j such that ||x; — x;|| = ®um(XK)
and vk 0, > 4 vk = 0

We can also force all points to remain far away from the boundary of 2":
Puvim B2y (Xn) = min{®ym(X,),2min; d[x;, boundary(27)]}

Ecole ETICS, Porquerolles, 06/10/2017 46 /
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Ex: local maximization of &, B(gg)(X,,), n=7, Z = simplex 0 < xq, 0 < xp,
xp+x <1

Lo
(radius = 5 ®pm 2y (Xn))

1

0.9} )
0.8} o )
07} AN )
06t ) ) ’ i
05} o )
oaf AN _ ]
0.2} o / : - :

0.1} b

0 . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

A few alternatives:
1) Billiards (Lubachevsky and Stillinger, 1990; Lubachevsky, 1991)
Principle :

X, — nballsin &

random initial velocities

elastic collisions between balls and against boundaries

balls radius R(t) linearly increasing with time t

w jamming occurs for a local max. of ®p,(+)

Rather efficient for d = 2 (if R(t) increases slowly enough. . .)
but not very efficient for d > 2

Ecole ETICS, Porquerolles, 06/10/2017
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

n = 25 (R(t) increases too fast)
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

n = 25 (R(t) increases slowly enough)
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1.4 Maximin (intra-distances) criterion

1 Geometrical space-filling criteria

n =441

N N N A AN N NN N

49
1%
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

2) miniMax for Maximin
Principle: repeat the following steps

a) Choose x; from X,, ol ' ]

find x* in 2" such that

miniz [[xX* — x| = il 7
MaXge 27 Minjz; [|X — X;| 0sf ]

(a byproduct of calculation of 0l r

q)mM(X"\f)) 0af \\~ 1

Ecole ETICS, Porquerolles, 06/10/2017 gg/
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

2) miniMax for Maximin

Principle: repeat the following steps

b) Replace x; by x*

— which explains that

¢mM(XLm,n) S cIDM’"( ;ﬂm,n)

Luc Pronzato (CNRS)

Design of Computer Experiments (1)
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Related to “coffee-house design”: start with Xo = (), include points one by one
Xy at the centre of 27, then x,; furthest point from X, n >1
(called coffee-house design (Miiller, 2007, Chap. 4))

Ecole ETICS, Porquerolles, 06/10/2017 gé /
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Related to “coffee-house design”: start with Xo = (), include points one by one
Xy at the centre of 27, then x,; furthest point from X, n >1
(called coffee-house design (Miiller, 2007, Chap. 4))

Guarantees | Eff (X)) = % > 1 and Effy,(X,) = q;”j’i”i(x") > 1 forall n
m n Mm,n

with @, (X,) = minjzjc(1,.. 0y [[Xi — X;j|| the maximin-distance criterion,
and &}, . its optimal (maximum) value
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Related to “coffee-house design”: start with Xo = (), include points one by one
Xy at the centre of 27, then x,; furthest point from X, n >1
(called coffee-house design (Miiller, 2007, Chap. 4))

Guarantees | Eff (X)) = ¢¢ZZA(A>'€) > % and Effy,(X,) = q;”j’i”i(x") > % for all n

Mm,n

with @, (X,) = minjzjc(1,.. 0y [[Xi — X;j|| the maximin-distance criterion,
and &}, . its optimal (maximum) value

Proof. (Gonzalez, 1985) — repeated later

@ by construction:
D pim(Xnt1) £ MiNy,£x;€ X041 lIx;i — Xj” = d(Xnt1, Xn) = P (X5)

® X a ®,,y-optimal design: the n balls Z(x}, ®mm (X)), xI € X, cover 2
= one of them contains 2 points x;, x; in X,41 for any X,11 (n+ 1 points)
= Opm(Xnr1) < Ixi — x5l <20 5mm (X))
= P i1 < 20mm(X5) < 200m(Xn) = Puim(Xoi1)

Ecole ETICS, Porquerolles, 06/10/2017 gé /
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1 Geometrical space CUEW 1.4 Maximin (intra-distances) criterion

2 =1[0,1? n=7

W3 5
[ 3
w2 7 4
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1 Geometrical space:

2 =1[0,1? n=7

[ [

5

4

zato (CNRS)

eria

1.4 Maximin (intra-distances) criterion

Regular construction " large
fluctuations of Eff i (X,)

Ecole ETICS, Porquerolles, 06/10/2017
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Remark: a Maximin distance design is useful for the miniMax criterion
Principle:

Points from a Maximin-optimal X}, . tend to lie along the boundary of 2

m Apply an homothecy with center ¢ € int(.2") and ratio 1/(1 + €) to all points

in Xiym, (2 =100,1]% c= 31w X,(€) = ¢+ 75 (Xjym., — ©))

d=2 n=T, X;ﬂm’n Maximin-optimal
W | il
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Remark: a Maximin distance design is useful for the miniMax criterion
Principle:

Points from a Maximin-optimal X}, , tend to lie along the boundary of 2

m Apply an homothecy with center ¢ € int(.2") and ratio 1/(1 + €) to all points

in X (27 =[0,1]9, €= 31 Xy(€) = e+ 3 (Xjym,n — ©))

Som(Xn(e), 0 <e<1m ¢ =02

0.46 T T T T T T T T T

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
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p e CIE LB [ERSOTEM 1.4 Maximin (intra-distances) criterion

Remark: a Maximin distance design is useful for the miniMax criterion
Principle:

Points from a Maximin-optimal X}, . tend to lie along the boundary of 2

m Apply an homothecy with center ¢ € int(.2") and ratio 1/(1 + €) to all points

in Xijm, (2 =100,1]% c =31 m X,(€) = ¢+ 75 (Xjym., — ©))

Xp(e*) m &g (Xn(e™)) = 0.3181 (true miniMax optimum = 0.2743)

Ecole ETICS, Porquerolles, 06/10/2017

Luc Pronzato (CNRS) Design of Computer Experiments (1)

53
129 /



1.5 Relations between ®g, and ®,, (d = 2)

1.5 Relztions betvesen 'hMm and d’mM (a2 2)

Inequalities, bounds

small

{miniMax,
dizpersian)

inter-distance

large
intra-distances
{Maximin, energy)

uniformity
{entropy,
discrepancy)
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1.5 Relations between ®g, and ®,, (d = 2)

1.5 Relztions betvesen 'hMm and d’mM (a2 2)

Inequalities, bounds

small

{miniMax,
dizpersian)

inter-distance

large
intra-distances
{Maximin, energy)

uniformity
{entropy,
discrepancy)
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Notation: 2" = [0,1]9, V4 = vol[#(0,1)] = 79/2/I(d/2 + 1)
> &y, 2 ming, ®,m(X,), P 2 maxx, Pym(X,) <

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Notation: 2" = [0,1]9, V4 = vol[#(0,1)] = 79/2/I(d/2 + 1)
> &y, 2 ming, ®,m(X,), P 2 maxx, Pym(X,) <

° %¢Mm(Xn) < Opm(Xy), for all X, (n > 2)

(the n balls Z(x;, 3®ym(X,)) do not cover 27)

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

0 | 3Omm(Xnt1) < Ppyy, for all Xpyq (0> 1)

Proof: one of the n balls %(z;, ¥}, ), zi € X}, ,, contains 2 points x; and
x;j from X411

= Oum(Xni1) < [Ixi — x;l| <207, ,

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

2Oum(Xnp1) < Pl for all X (n>1)

Proof: one of the n balls %(z;, ¥}, ), zi € X}, ,, contains 2 points x; and

x;j from X411

= Oum(Xni1) < [Ixi — x;l| <207, ,

@ The n balls B(x;, ®mm(X,)) cover £, for all X,
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

o Sphere covering = nVq (®5,, )7 > 1

Ry < @ with R¥ = (nV,)~/d

Ecole ETICS, Porquerolles, 06/10/2017 gg/
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RIS PSR ([NERSUEM 1.5 Relations between 7, and &7 (d > 2)
; d
° *
Sphere covering = nVy (®;,, )¢ > 1

° q)*mMm < q)mM(X*Mm?n) < q)Mm( >ka,n) = X/Im,n

(proof by contradiction)

Ry < ®hnn < Phamn with R = (nVy)~1/9

Ecole ETICS, Porquerolles, 06/10/2017 gg/
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

o Sphere covering = nVq (®5,, )7 > 1

4 q)mMn— q)mM( >I\k/lm,n)§q)Mm( >kl\/lm,n) = >R/Im,n

(proof by contradiction)
@ packing of n balls with radius R in [0, 1]¢

=nVyRI <1, ie,

(and R; < % for n > [29/V,])

2R . _ ~1/d
Ry < ®hmn < Phumn < 7057 | with Ry = (nVa) /
(these bounds are rather loose — factor 1— 2R* > 2)
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Other upper bounds on ®7 /= ®,(X;) when 2~ = [0, 1] J

Upper bound: use any design! =

m9-point regular grid in 2"
or Vd.

md S ot

Take m = Lnl/dj, so that m¥ < n and CD",‘an < q):;/v/,md' therefore

— 4
mM,n < R = spa7a;
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

—%
— * *
d= 2' Rn < cDmM,n < Rn

ole I I T I I ]

|
o1sl

H
014 L--'i
042 i_____

0aF

noar

0.4

naz L L L L L
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

*

d=5 Ry <®;y, <R

n

D4z

0.4

Ll LTI

! L L L
[ 500 1000 1500 2000 2500 2000 3500 4000 4500 SO0
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

*

d=10, Ry < &%y, <R

n

0.

o4t -

= L L L
[ 1000 2000 3000 4000 5000 000 Y000 BO0OD  &000 10000
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

*

d=20, Ry <®ry, <R

n
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Why are such bounds useful?
@ They give an idea of the suboptimality of a given design (for small d)

Ecole ETICS, Porquerolles, 06/10/2017 gg/
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1.5 Relations between ® ;.. and ®1s (d > 2)
Why are such bounds useful?
@ They give an idea of the suboptimality of a given design (for small d)
@ They help understand algorithms:
e 1/ Method "miniMax for Maximin"
uses | 1 (Xiim,n) < Pran(Xism,n)
o 2/ Greedy algorithm of "coffee-house design"’

0) Choose x1 € 27, set X1 = {x1}
1) For k=1,2,..., find x* = argmaxye 2~ d(x, X), set X1 = Xx U {x*}

W3 W5
[ [}
2 7 4
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

A bit primitive ... but (Gonzalez, 1985) :

M.k 1 Dppm(Xe) 1
— > _—(k>1) and ———> —(k>2
‘DmM(Xk)*Q( = 1) M.k =5 (k=2)

Ecole ETICS, Porquerolles, 06/10/2017 lgé /

Luc Pronzato (CNRS) Design of Computer Experiments (1)



RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

A bit primitive ... but (Gonzalez, 1985) :

Pl k 1 Dppm(Xe) 1
Tt > 2 (k>1) and /> (k>2
Srm(Xk) ~ 2 (k=1) Plmi 2 (k22)

Proof: par construction, ®pm(Xkr1) = Prm(Xk) for all k > 1

%Cme(Xkﬂ) S (D*mM,k' for all Xk+1 (k 2 1) implies

a) ®r ok > (1/2) ®pm(Xi) and
b) PN ki1 < 2Pk < 2Pmm(Xi) = 2 Ppam(Xi41)

Ecole ETICS, Porquerolles, 06/10/2017
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Remark:

@ There exist better bounds d = 2,3: packing n balls with radius R in [0, 1]¢
= nVy R < 64 = packing density, with
e 0y = m/3/6 ~ 0.9069
[Lagrange, 1773 for lattices, T6th 1940 for general packings]
e 03 = m\/2/6 ~ 0.7405
[Kepler conjecture 1611, Gauss 1831 for lattices, Hales-Ferguson 2006 for
general packings]
o Little is known for d > 3: best (densest) lattice packing known for d < 8,
best general packings are known for d = 8 (Viazovska, 2016) and d = 24
(Cohn et al., 2017)
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Remark:

@ There exist better bounds d = 2,3: packing n balls with radius R in [0, 1]¢
= nVy R < 64 = packing density, with
e 0y = m/3/6 ~ 0.9069
[Lagrange, 1773 for lattices, T6th 1940 for general packings]
e 03 = m\/2/6 ~ 0.7405
[Kepler conjecture 1611, Gauss 1831 for lattices, Hales-Ferguson 2006 for
general packings]
o Little is known for d > 3: best (densest) lattice packing known for d < 8,

best general packings are known for d = 8 (Viazovska, 2016) and d = 24
(Cohn et al., 2017)

@ There exist recent results (Wahl et al., 2014) on the distribution of ®pm(X,)
when the x; are i.i.d. uniformly in [0, 1]¢
(but all ||x; — x;||? tend to concentrate around d/6 when d gets large)

Ecole ETICS, Porquerolles, 06/10/2017
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Remark:

@ There exist better bounds d = 2,3: packing n balls with radius R in [0, 1]¢
= nVy R < 64 = packing density, with
e 0y = m/3/6 ~ 0.9069
[Lagrange, 1773 for lattices, T6th 1940 for general packings]
e 03 = m\/2/6 ~ 0.7405
[Kepler conjecture 1611, Gauss 1831 for lattices, Hales-Ferguson 2006 for
general packings]
o Little is known for d > 3: best (densest) lattice packing known for d < 8,

best general packings are known for d = 8 (Viazovska, 2016) and d = 24
(Cohn et al., 2017)

@ There exist recent results (Wahl et al., 2014) on the distribution of ®pm(X,)
when the x; are i.i.d. uniformly in [0, 1]¢
(but all ||x; — x;||? tend to concentrate around d/6 when d gets large)

Ecole ETICS, Porquerolles, 06/10/2017
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Bounds on ®j,,, , and &7, : d =2

d=2using Ry <&, <& < min{%, Vd}

1

10
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Bounds on &3, and &, - d =2

d = 2 with moreover | ¢ S — acking densit;
Mm,n < 31/4 /n/2—1 (P g }/)

10"
10° |
107'F
1072 0 ‘1 2

10 10 10

n
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Bounds on &3, and &, - d =2

. . " 14+4/142(n—1) /V/3
d = 2 with moreover | &7, < —— 5= (Oler, 1961)
10'
10° -
107'E
1072 0 ‘1 2
10 10 10
n
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* * . _
Bounds on &3, and &, - d =2

d =2, including ®},,, . (proved up to n = 30 http://www.packomania.com/)

10

10
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* * . _
Bounds on ®j,,, , and &7, : d =2

d =2, including ;. , (proved up to n =70 van Dam et al. (2007),
http://www.spacefillingdesigns.nl/)
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* * . _
Bounds on ®j,,, , and &7, : d =2

d =2, including &/, , (proved up to n =27 (van Dam, 2008))

10

10
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Bounds on ®j,,, , and &7, : d =3

d =3 using| R} < &%y, < Oy < min{ ome \/d}

10° - T
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RS EN N NFRSI TP 1.5 Relations between ® /. and &4y (d > 2)

Bounds on &3, and &, - d =3

1

* I S

d = 3 with moreover | ®}, < (/A1

(packing density)

10 ¢

Luc Pronzato (CNRS) Design of Computer Experiments (1)
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* * . _
Bounds on &3, and &, - d =3

d =3, including 3, (http://www.randomwalk.de/sphere/incube/)
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* * . _
Bounds on &3, and &, - d =3

d =3, including 3, , (proved up to n =15
http://www.spacefillingdesigns.nl/)

10 T T

107 F
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* * . _
Bounds on ®j,,, , and 7, : d =5

m

d =5 using

Ry < ®htn < Pigmn < min{ 2z, V)

Luc Pronzato (CNRS)

Design of Computer Experiments (1)
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* * . _
Bounds on &3, and &, d =5

d =5, including ;.. 4 , (proved upto n==6
http://www.spacefillingdesigns.nl/)

Luc Pronzato (CNRS)

Design of Computer Experiments (1)
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1 Geometrical space- eria 1.6 Regularized Maximin, energy

1.6 Regularized Maximin, energy J

Maximin
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

1.6 Regularized Maximin, energy J

Maximin Regularization: we account for distances
between all pairs of points
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Denote d,J £ HX,' — XJH - CDMm(Xn) = min,~¢j d,J

—1/q 1 —1/q
B (Xn) 2 | D dy and g (Xa) £ | > d;

i<j i<j

with N = () = n(n—1)/2
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Denote d,J £ HX,' — XJH - CDMm(Xn) = min,~¢j d,J

—1/q
Ly ]

i<j

—1/q
(X [Zdu ] and ®py(X,) =

i<j

with N = () = n(n—1)/2

Then, | 911(Xs) < Puim(Xn) < S (Xn) < N9 (X,) | g >0,

(monotonic convergence to ®ym(X,) on both sides when g — o)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Denote d,J £ HX,' — XJH - CDMm(Xn) = min,~¢j d,J

—1/q
Ly ]

i<j

—1/q
(X [Zdu ] and ®py(X,) =

i<j

with N = () = n(n—1)/2

Then, | 911(Xs) < Puim(Xn) < S (Xn) < N9 (X,) | g >0,

(monotonic convergence to ®ym(X,) on both sides when g — o)

By continuity, ®(g)(X,) = exp |4 > i<jlog(dy)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let X, ] be optimal for @,

Snlq
D uim (X,
M > N9 tendsto 1 as g — 0o
Mm,n

(Maximin efficiency > 1 — ¢ for g > 2'&(n)y
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let X, ] be optimal for @,

“inlq

cl:)Mm ln*
M > N9 tendsto 1 as g — 0o
q);/lm n

(Maximin efficiency > 1 — ¢ for g > 2'&(n)y

» Maximize @, is equivalent to minimizing the energy
Eq(Xp) = ﬁ Z?.J‘:l,i;éj l[xi = x|~

Audze and Eglais (1977) have proposed g = 2; when g < 5 optimization of Lh
designs is easier than for ®y, (Morris and Mitchell, 1995)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let X, ] be optimal for @,

“inlq

cl:)Mm ln*
M > N9 tendsto 1 as g — 0o
¢X/lm n

(Maximin efficiency > 1 — ¢ for g > 2'&(n)y

» Maximize @, is equivalent to minimizing the energy
Eq(Xn) = ﬁ Z?.j:l.,i;éj l[xi = x|~

Audze and Eglais (1977) have proposed g = 2; when g < 5 optimization of Lh
designs is easier than for ®y, (Morris and Mitchell, 1995)

Regularized version ®;(X,): non-concave but differentiable
m |ocal maximization “easy” for g not too large ...
but g should be large enough to get a good approximation of ®p;,(X,)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let X, ] be optimal for @,

“inlq

S wim(Xnfq))

*
¢Mm n

> N9 tendsto 1 as g — 0o

(Maximin efficiency > 1 — ¢ for g > 2'&(n)y

» Maximize @, is equivalent to minimizing the energy
Eq(Xp) = ﬁ Z?.J‘:l,i;éj l[xi = x|~

Audze and Eglais (1977) have proposed g = 2; when g < 5 optimization of Lh
designs is easier than for ®y, (Morris and Mitchell, 1995)

Regularized version ®;(X,): non-concave but differentiable
m |ocal maximization “easy” for g not too large ...
but g should be large enough to get a good approximation of ®p;,(X,)

Relation with potential theory Landkof (1972); Saff (2010), P., Wynn and
Zhigljavsky (2016): lnrq] = Fekete points, asymptotically distributed (n — o0)

uniformly in 2" if
Ecole ETICS, Porquerolles, 06/10/2017 68 /
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

X, Maximin-optimal, n =7, d = 2: ®y,, and bounds &, and Dy

14

0.8 A 4

04f R g

0.2 1 4
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

6) Regularized Maximin with Nearest Neighbors (NN) J

Maximin

Ecole ETICS, Porquerolles, 06/10/2017 1%8 /
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

6) Regularized Maximin with Nearest Neighbors (NN) J

Maximin Regularization: we account for the
distance between each point and its NN

Ecole ETICS, Porquerolles, 06/10/2017 %8 /
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

We can write ®ym(X,) = min;d7, with d £ min;; [|x; — x|
= distance to NN of X;
Define

n —1/q n

9[NN,CI](X”) = Z(dl*)iq , E[NN,q](Xn) = Z @

i=1 i=1

(we only regularize min;)

Luc Pronzato (CNRS) Design of Computer Experiments (1)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

We can write ®ym(X,) = min;d7, with d £ min;; [|x; — x|
= distance to NN of X;
Define

n ~1/q n (d*)*q -1/q
9[NN,q](Xn) = [Z(df)q‘| ) 6[N’V#l](x”) = [Z i ‘|

i=1

(we only regularize min;)

Then, | Dy q(Xn) < Pum(X,) < nt/d Prin,g(Xn) |5 g>0

(monotonic convergence to ®y,(X,) on both sides when ¢ — o)

By continuity: 6[NN,O](Xn) = exp [27:1 Iog(d,-*):|

n

Ecole ETICS, Porquerolles, 06/10/2017
Luc Pronzato (CNRS) Design of Computer Experiments (1)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximin efficiency:
q>Mm(lnikNN,q]) >

3
Mm,n

n—l/q,

with X, (yy,q optimal for &y

Maximin efficiency > 1 — ¢ for g > @

— we gain a factor 2 comparatively to Q[q](Xn)
(we only regularized min;)
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Luc Pronzato (CNRS) Design of Computer Experiments (1)

72
129 /



1 Geometrical space:

eria 1.6 Regularized Maximin, energy

X, Maximin-optimal, n=7, d = 2:
®ym and regularization with Q[NN’q]
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

X, Maximin-optimal, n =7, d = 2:
®uvm and regularization with @5y, and @
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximum projection designs (Joseph et al., 2015)

w modification of regularized Maximin that produces designs with good
space-filling properties in all lower dimensional subspaces

v
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximum projection designs (Joseph et al., 2015)

w modification of regularized Maximin that produces designs with good
space-filling properties in all lower dimensional subspaces

. . . N —1/a
regularized Maximin: maximize ®(;(X,) = {Z:q d; q}

where dy = [[x; — x|, i,j =1,....n
(@ (Xn) = Pum(X,) = minjz; djj as g — o0)

Replace /> distance dj; by weighted-/, distance (measure of importance on factors)

s = [zk L bxdi— D))

— minimize >, 7 for a large g, but which w?

I<J

v
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximum projection designs (Joseph et al., 2015)

w modification of regularized Maximin that produces designs with good
space-filling properties in all lower dimensional subspaces

. . . N —1/a
regularized Maximin: maximize ®(;(X,) = {Z,Q d; q}

where dy = [[x; — x|, i,j =1,....n
(@ (Xn) = Pum(X,) = minjz; djj as g — o0)

Replace /> distance dj; by weighted-/, distance (measure of importance on factors)
s = [zk (P b

— minimize >, 7 for a large g, but which w?

I<J

Take w € Py = {w:w, >0, ZZ:;LWk:l}
Put a uniform prior m on (wy, ..., Wy_1)

_ - _ 1 1 ..
For q= 2d, | Ey {Zi<j dljni’l} — [(d—1)1]2 Zi<j HZ,I({Xl’}k—{XJ}k)Q Very promlsmg!

v
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Remark: measures of regularity (and not of space fillingness!)

var / ? 1/2 o, n
) £ El(;(*(; [Zl 2] ,with d £ E(d) = 3 X0, df
= 0 for a regular grld
A invariant by scale transformation A

sometimes called “covering measure”. .. which it is not

R1(X,

v

Luc Pronzato (CNRS) Design of Computer Experiments (1)

Ecole ETICS, Porquerolles, 06/10/2017

75
129 /



1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Remark: measures of regularity (and not of space fillingness!)

S varl/z(d* [ Z: 1 4 d)z]l/z Wlth E/ é E(d*) = 1 Z” d*

Rl(xn i=1 i

~
|
m
—~
Qo
*
~—|

=0 for a regular grld

A invariant by scale transformation A
sometimes called “covering measure”. .. which it is not

A maxi<i<,d .
Ry(X,) = ﬁ (> 1, =1 for a regular grid)

A invariant by scale transformation A
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Remark: measures of regularity (and not of space fillingness!)

S varl/z(d* [ Z: 1 4 d)z]l/z Wlth E/ é E(d*) = 1 Z” d*

Rl(xn i=1 i

~
|
m
—~
Qo
*
~—|

=0 for a regular grld
A invariant by scale transformation A
sometimes called “covering measure”. .. which it is not

Ry(X,) & M09 (51— 1 for a regular grid)

mini<i<n d;
A invariant by scale transformation A

These two designs have the same R; and R, values

X7
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

2 Uniformity: quasi Monte-Carlo, discrepancy

2.1 Entropy, optimal graphs J

Consider X, = (x1,...,X,) as a sample of size n of variables x;
i.id.in 2" with p.d.f. <p()

Rényi entropy of go( ) of order « :

H(,(*((P) T l—« |ngg0 dX (Oé 7& 1)
Tsallis entropy of <p( ) of order ! :

Ha(o) £ 5 [1- [ (x)dx] (a #1)

which tend to
Hi(¢) = —log [ (x) log[p(x)] dx (Shannon entropy) as a — 1
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2 Uniformity: quasi Monte-Carlo, discrepancy

2.1 Entropy, optimal graphs J

Consider X, = (x1,...,X,) as a sample of size n of variables x;
ii.d. in 2 with p.d.f. <p()

Rényi entropy of go( ) of order « :

H(,(*(SO) T l—« |ngg0 dX (Oé 7& 1)
Tsallis entropy of <p( ) of order ! :

Ha(o) £ 5 [1- [ (x)dx] (a #1)

which tend to
Hi(¢) = —log [ (x) log[p(x)] dx (Shannon entropy) as a — 1

> ‘ For a > 0, H,*(¢), Ha(p) maximum for ¢ uniform over 3&”‘
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

2 Uniformity: quasi Monte-Carlo, discrepancy

2.1 Entropy, optimal graphs

Consider X, = (x1,...,X,) as a sample of size n of variables x;
i.id.in 2" with p.d.f. <p()

Rényi entropy of go( ) of order « :

H(,(*((P) T l—« |ngg0 dX (Oé 7& 1)
Tsallis entropy of <p( ) of order ! :
Ha(o) £ 5 [1- [ (x)dx] (a #1)
which tend to
Hi(¢) = —log [ (x) log[p(x)] dx (Shannon entropy) as a — 1

> ‘ For a > 0, H,*(), Ha(p) maximum for ¢ uniform over 3&”‘

m Construct an estimate ., of H*(p) from X,
use H,, as design criterion, to be maximized w.r.t. X,

Ecole ETICS, Porquerolles, 06/10/2017
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

A Entropie of “distribution of x;” # entropy criterion for Gaussian Random
Fields, see § 11-1.3 (although relations exist)
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

A Entropie of “distribution of x;” # entropy criterion for Gaussian Random
Fields, see § 11-1.3 (although relations exist)

1) A rather natural idea: plug-in

o Construct a kernel estimator $,(x) = 2 37 | Kj2(x — x;),
K,2(+) = p.d.f. with mean 0 and variance oI, (small enough)

o Use H,(¥n), a > 0, as design criterion
Jourdan and Franco (2010) use Hi(p), computationally costly for large d
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

A Entropie of “distribution of x;” # entropy criterion for Gaussian Random
Fields, see § 11-1.3 (although relations exist)

1) A rather natural idea: plug-in

o Construct a kernel estimator $,(x) = 2 37 | Kj2(x — x;),
K,2(+) = p.d.f. with mean 0 and variance oI, (small enough)

@ Use H,($n), @ > 0, as design criterion
Jourdan and Franco (2010) use Hi(p), computationally costly for large d

A peculiarity of H,: if K,2(-) corresponds to N(0,0?), then
f]Rd @r(x) dx = % Zﬁj:l Kooz (xi — %;)

- H2(95n) =1- % sz:]_ K20.2(X,‘ — Xj)
= intra-distances criterion

Ecole ETICS, Porquerolles, 06/10/2017 77/
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2) Optimal graphs:

n points X,
(here, a Lh with n =10, d = 2)

Traveling Salesman (TS) graph Grs(X,)
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2) Optimal graphs:

n points X,
(here, a Lh with n =10, d = 2)

Traveling Salesman (TS) graph Grs(X,)

(Beardwood et al., 1959): x; i.i.d. with p.d.f. ¢, the edges e; of Grs(X,) satisfy:

Decgrs(x,) €] _
en(d+)/3 — C(d) /cp(d U/d(x)dx a.s., n— oo
Later (Steele, 1981) considered other Euclidean functionals on X, (Redmond and
Yukich, 1994) used the notion of quasi-additivity
Design of Computer Experiments (1)
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

Many results. .. (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). ..

ZeiGQ Xn ei‘ﬁ —

S o C(6.d) [P dx, o
with G(X,) Minimum Spanning Tree (MST), NN, TS, Voronoi, Delaunay, Sphere
of Influence, Gabriel... (different types of convergence (L,), different conditions
onyand f...)

Ecole ETICS, Porquerolles, 06/10/2017
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Many results. .. (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). ..

ZeiGQ Xn ei‘ﬁ —
S o C(6.d) [P dx, o
with G(X,) Minimum Spanning Tree (MST), NN, TS, Voronoi, Delaunay, Sphere
of Influence, Gabriel... (different types of convergence (L,), different conditions
onyand f...)
X, a Lh with n =10, d = 2: Grs(X,)
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Many results. .. (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). ..

ZeiGQ Xn ei‘ﬁ —
S o C(6.d) [P dx, o
with G(X,) Minimum Spanning Tree (MST), NN, TS, Voronoi, Delaunay, Sphere
of Influence, Gabriel... (different types of convergence (L,), different conditions
onyand f...)
X, a Lh with n =10, d = 2: GustT(X,)

Ecole ETICS, Porquerolles, 06/10/2017 %g /
1

Luc Pronzato (CNRS) Design of Computer Experiments (1)



Many results. .. (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). ..

ZeiGQ Xn ei‘ﬁ —
S o C(6.d) [P dx, o
with G(X,) Minimum Spanning Tree (MST), NN, TS, Voronoi, Delaunay, Sphere
of Influence, Gabriel... (different types of convergence (L,), different conditions
onyand f...)
X, a Lh with n =10, d = 2: Gyn(X,)
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

To summarize: we construct such a graph G on X,,, then

Sacoixy e’ |
O0.0(Xn) = ZOIEL o C(5.d) [ ) dx, o

=a@@/¢%nm,
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

To summarize: we construct such a graph G on X,,, then

Ze,- g(X, ei|B _
O0.0(Xn) = ZOIEL o C(5.d) [ ) dx, o

=a&@/¢%nm,

» yields an estimate of H,(p) = 15 [1 — [ ¢*(x)dx] for o« =1 — 3/d
(with a condition on § — typically, § > —d)
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

To summarize: we construct such a graph G on X,,, then

2. il _
O0.0(Xn) = ZOIEL o C(5.d) [ ) dx, o

= C(B,d) /<p

» yields an estimate of H,(p) = 15 [1 — [ ¢*(x)dx] for o« =1 — 3/d
(with a condition on § — typically, § > —d)

» Choice of X, ? maximize H, with o > 0
if > 1(—d < <0) = minimize [ ¢*(x)dx
m minimize ®g g(X,)
For Gyn ™ maximize $[NN3q](Xn) with0<g=-p<d

= maximize an intra-distances criterion

Ecole ETICS, Porquerolles, 06/10/2017 80 /
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

A Maximizing ®[yn,q)(Xs) with g < 0 is not always convenient A
(= maximize ®g,, 3(X,) with 3 > 0)

Ecole ETICS, Porquerolles, 06/10/2017 gé /
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

A Maximizing ®[yn,q)(Xs) with g < 0 is not always convenient A
(= maximize ®g,, 3(X,) with 3 > 0)

Ex: 2 =[0,1]%, comparaison between 2 designs X2 and X5 for ®(ypy,q
with g =—-1 (5 =1)

) & Xb
. central point at (v/3/2,1/2)
(1/n) X cgumixe leil = %52 =~ 0.70711 (1/n) X ecguuixe leil = 0.71058

... but the |e;| have a larger variance for X2 than for X2

Ecole ETICS, Porquerolles, 06/10/2017 81 /
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

MST Graph: Franco (2008); Franco et al. (2009) use a representation in the plane
defined by

the mean E, = (1/n) >_. cq, .- (x) l&il and

the standard deviation S, = (varg,,.,(x){|&i|})
to classify different sorts of space-filling designs X,,

1/2

— we wish to have a large E, and a small S,
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

MST Graph: Franco (2008); Franco et al. (2009) use a representation in the plane
defined by
the mean E, = (1/n) >_. cq, .- (x) l&il and
the standard deviation S, = (varg,,.,(x){|ei|}
to classify different sorts of space-filling designs X,,

)1/2

— we wish to have a large E, and a small S,

We might use another graph G than Gyst (e.g., Gan)
and use |&]|? (e.g., with —d < 3 < 0)
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2 Uniformity: quasi Monte-Carlo, discrepancy [EPRE=GIECIo VNI EIRET]E

MST Graph: Franco (2008); Franco et al. (2009) use a representation in the plane
defined by
the mean E, = (1/n) >_. cq, .- (x) l&il and
the standard deviation S, = (varg,,.,(x){|ei|}
to classify different sorts of space-filling designs X,,

)1/2

— we wish to have a large E, and a small S,

We might use another graph G than Gyst (e.g., Gan)
and use |&]|? (e.g., with —d < 3 < 0)

- For ¢Mm(')y or 6[(7]() with g > d, or 6[/\//\/)(7](') with g > 0,
the distribution of an optimum design should be close to uniformity
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

2.2 Discrepancy: motivation (see (Niederreiter, 1992, Chap. 1,2) — true
monument with 371 references)

Integration with Monte Carlo (MC) method

Z compact C R,

1 n
/% fu)du ~ vol(%);;f(x,-)

for x; i.i.d. ~ p uniform over 2~ m error ~ O(n~'/?)

4

Ecole ETICS, Porquerolles, 06/10/2017 84 /
Luc Pronzato (CNRS) Design of Computer Experiments (1) 129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

2.2 Discrepancy: motivation (see (Niederreiter, 1992, Chap. 1,2) — true
monument with 371 references)

Integration with Monte Carlo (MC) method

Z compact C R,
1 n
f(luyldu =~ vol(Z)= f(x;
| ()73 1)

for x; i.i.d. ~ p uniform over Z~ ™ error ~ O(n’l/z)
Trapezoidal rule in dimension d m error ~ O(n=2/9)

w MC better than trapezoidal rule for d > 5 (without any regularity assumption
on f)

We can do better: quasi-Monte Carlo (QMC) method
- discrepancy

4
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic x,- in X = ]Id £ [0,1]%

Aélz f(x;) — ﬁl u)d(u), n — oo,

for all Riemann mtegrable f |f the xl,xz7 ... are uniformly distributed in I4
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic x,- in X = ]Id £ [0,1]%

Aélz f(x;) — ﬁl u)d(u), n — oo,

for all Riemann mtegrable f |f the X1,X2, ... are uniformly distributed in I4

w requires limp_0o 2 37 | T(x) = vol(B) for all B C I,
Speed of convergence of I, — I(f)?

The distribution of x; must be close to uniform:
discrepancy measures distance to uniformity

Ecole ETICS, Porquerolles, 06/10/2017 85 /
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic x,- in X = ]Id £ [0,1]%
’\ A

In & 5 300 F(xi) = Jy, f(u)d(u), n — oo,

for all Rlemann mtegrable f |f the xl,xz, ... are uniformly distributed in I4

w requires limp_0o 2 37 | T(x) = vol(B) for all B C I,
Speed of convergence of I, — I(f)?

The distribution of x; must be close to uniform:
discrepancy measures distance to uniformity

Discrepancy

< nb. of x; in B
Be# n

with Z a family of subsets of Iy (= 0 < D,(%4,X,) <1)

> Dn(%,X,) = su

—vol(B)| <

Luc Pronzato (CNRS) Design of Computer Experiments (1)
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic x,- in X = ]Id £ [0,1]%
’\ A

In & 5 300 F(xi) = Jy, f(u)d(u), n — oo,

for all Rlemann mtegrable f |f the X1,X2, ... are uniformly distributed in I4

w requires limp_0o 2 37 | T(x) = vol(B) for all B C I,
Speed of convergence of I, — I(f)?

The distribution of x; must be close to uniform:
discrepancy measures distance to uniformity

Discrepancy

nb. of x; in B
sup | —— 2
BER n

with Z a family of subsets of Iy (= 0 < D,(%4,X,) <1)

> Dn(%,X,) = su

—vol(B)| <

We shall consider particular families & . ..

Luc Pronzato (CNRS) Design of Computer Experiments (1)
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2 Uniformicy: quasi Monte-Carlz. di SNt=rll 2.0 Discrepancy: mativatior

Two important special cases:

e Star-discrepancy D5 {X,) — D,(#, X)) when
Z contains all subsets defined by Hf_l[O, uy)
D}, (Xn) = supyeo,1)¢ [Falu) = Fulu}|
(Fo(-) £ empirical d.d.f, Fy(u) £ 11?_1 u}; = c.d.f. of uniform)
e Extreme discrepancy D,(X,) = D,(#, X,) when
94 contains all subsets defined by l[g_]_[Uff_._ ve)
For any X, C 1%, we have D7 (X)) < D,{(X,) < od D (X))

Ecale ETICS, Porquerclles. Ui/ 12017
Lresign ot Computer Expeiments {1}
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2 Uniformicy: quasi Monte-Carlz. di SNt=rll 2.0 Discrepancy: mativatior

Two important special cases:

e Star-discrepancy D5 {X,) — D,(#, X)) when
Z contains all subsets defined by Hf_l[O, uy)
D}, (Xn) = supyeo,1)¢ [Falu) = Fulu}|
(Fo(-) £ empirical d.d.f, Fy(u) £ 11?_1 u}; = c.d.f. of uniform)
e Extreme discrepancy D,(X,) = D,(#, X,) when
94 contains all subsets defined by l[g_]_[Uff_._ ve)
For any X, C 1%, we have D7 (X)) < D,{(X,) < od D (X))

1 1
: 0

o u, 1 0 !.f; v, 1
D3(X0): B = [T2,[0, we) DalXe): B =TTy [v: ve)

Ecale ETICS, Porquerclles. Ui/ 12017 133 ;
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2.2 Discrepancy: mativation

Xi—

. 1
DX, = %—l— max

1=i=ln

(m Kolmogorov-Smirnov test for uniformity)

1 . ,
Da(X;) = =4 max (i — x,-) — min (i — x,-)
n o 1<i=a \ n 1=i<n \ N

and D;(X,) = ot Dn(Xy) = L with equality for X, 4, 1 X = 21

n' 2n

Ecale ETICS, Porquerclles. Ui/ 12017 135 ;
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2.2 Discrepancy: mativation

In dimension d = 1, with 0 << x; << xp << - < x, < 1:
B 1 2i—1
OlXo) = gp T 0 T

(m Kolmogorov-Smirnov test for uniformity)

1 . ,
Da(X;) = =4 max (i — x,-) — min (i — x,-)
n o 1<i=a \ n 1=i<n \ N

and D;(X,) > o=, Da(X,) > 1, with equality for X\, 1 x; = 251 i

n' 2n

|
D
©
©
[0}

0 3/n) )

Ecale ETICS, Porquerclles. Ui/ 12017 135 ;
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

empirical c.d.f. F,(x) and Fy(x)
d =1, Xy = first 20 points of van der Corput sequence in base 2
(voir § 2.4)
Fn (van der Corput, base b=2, n=20)

1 T T T T T T T T T

0.9 4

0.7 4

0.6 4

0.51 4

0.4 1

0.2 1

0.1r 1
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Why is it important?

For d = 1, f with bounded variation on [0,1] (V(f) £ fol |df(u)| < o)

< Dy (X,) V(f)

o flu)du— 1507, £(x)

w Koksma (1942/1943) inequality (cannot be improved)
(easy proof, integration by parts)

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Therefore, for d =1
’fol f(u u— = Zli ( ) < V(f) for X:; such that x; = 2i2;1 Vi

whereas MC error ~ UEQ

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Therefore, for d =1
’fol flu)ydu— 137 f(x )‘ < YU 1 for X2 such that x; = 21 v

whereas MC error ~

In dimension d > 2 : "[I[d flu)du— 130 f(x)| < Di(X,) V(f)

(Koksma-Hlawka (1961) inequality, cannot be improved)

with V/(f) = variation in the sense of Hardy and Krause, and
1

V(F) Cy loen ™
for X,, = Hammersley point set
< ( )C/ Iogn
for X,, = flrst n elements
of Halton sequence (for instance) X

[, Flu)du— 2527 ()| <

voir § 2.4

Ecole ETICS, Porquerolles, 06/10/2017 90 /

Luc Pronzato (CNRS) Design of Computer Experiments (1) 129



PAVITCTEn TR TECTI Y [T GETS R F Tl 2.2 Discrepancy: motivation

Therefore, for d =1
’fol flu)ydu— 137 f(x )‘ < YU 1 for X2 such that x; = 21 v

whereas MC error ~

In dimension d > 2 : "[I[d flu)du— 130 f(x)| < Di(X,) V(f)

(Koksma-Hlawka (1961) inequality, cannot be improved)

with V/(f) = variation in the sense of Hardy and Krause, and
1

V(F) Cy loen ™
for X,, = Hammersley point set
< ( )C/ Iogn
for X,, = flrst n elements
of Halton sequence (for instance) X

[, Flu)du— 2527 ()| <

voir § 2.4

» Error N\ faster than for MC, but which constant Cy4 7
» n-point set X, # first n elements of an infinite sequence X,

Ecole ETICS, Porquerolles, 06/10/2017 90 /
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2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

2.3 Discrepancy criteria J

Difficulty : D} (X,) and D,(X,) are difficult to compute for d > 2
see, e.g., (Dobkin and Eppstein, 1993; Thiémard, 2001; Gnewuch et al., 2012)
and the references therein

= (many!) other definitions of discrepancy

i Ecole ETICS, Porquerolles, 06/10/2017 91 /
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2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

2.3 Discrepancy criteria

Difficulty : D} (X,) and D,(X,) are difficult to compute for d > 2
see, e.g., (Dobkin and Eppstein, 1993; Thiémard, 2001; Gnewuch et al., 2012)

and the references therein
= (many!) other definitions of discrepancy

One may wish to have:
@ invariance by permutation of principal axes, by reflection w.r.t. center of I4

@ a uniformity property on d’ dimensional subspaces, d’ < d
® a geometrical interpretation
@ a sort of Koksma-Hlawka inequality

® ...and easy evaluation!

Ecole ETICS, Porquerolles, 06/10/2017
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2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

For ®: substitute a L, norm for the Lo, norm
1/p
D;(X) = suPuepo.¢ [Fa() = Fu(u)] = ( fio s IFa(u) — Fu(u)l? du)

w Analytical expression for p = 2, fine for ®, @ and ®, but not for ® and @

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

For ®: substitute a L, norm for the Lo, norm
1/p
D;(X) = suPuepo.¢ [Fa() = Fu(u)] = ( fio s IFa(u) — Fu(u)l? du)

w Analytical expression for p = 2, fine for ®, @ and ®, but not for ® and @

For @: consider projections on all d’ dimensional faces, d’ < d
D;‘;(Xn) [T

m Analytical expression for p = 2, fine for @, @, ® and ®, but not for ®

Ecole ETICS, Porquerolles, 06/10/2017 92 /
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2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

For ®: substitute a L, norm for the Lo, norm

1/p
D;(X) = suPuepo.¢ [Fa() = Fu(u)] = ( fio s IFa(u) — Fu(u)l? du)
w Analytical expression for p = 2, fine for ®, @ and ®, but not for ® and @
For @: consider projections on all d’ dimensional faces, d’ < d

D;‘; (Xn) [T

m Analytical expression for p = 2, fine for @, @, ® and ®, but not for ®
For @: change the family of sets B in calculation of discrepancy

Ecole ETICS, Porquerolles, 06/10/2017 92 /
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2.4 Discrepancy criceria

DE(Xa): B = TT7_,[0, ue) Da(Xa): B = TT¢_ [, vr)

1

“2 ¥,
L",
o o
o u, 1 L v 1

Ecale ETICS, Porquerclles. Ui/ 12017 a3
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2.4 Discrepancy criceria

Do(X,): B = TTe_y [, ve)

i, ¥, —‘
fa",
] o
o o u, v, 1
Centered discrepancy: consider the Wrap-around discrepancy: consider
vertex of the (d’ dimensional) cube [t w] iF o < v and [, 1] L]0, v
closest to u otherwise
1 1
.|
V_,
o 4]
1] o o ¥ 1
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2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

They can be computed. .

et - m % -1

+ZH(1+

k,k’'=1i=1

3|3~ 3

o — (e

1 1
{xk}i — + 5 {xk }i — 2‘ —

{(a-

)

{Xk}i - {xk’}i

913
n2 H E — {Xk},' — {Xk/

)

see Hickernell (1998a,b); Fang and Ma (2001)
they are differentiable w.r.t. X,, and can be minimized (Fang and Ma, 2001; Fang
et al., 2003, 2005)

Ecole ETICS, Porquerolles, 06/10/2017 gg /
1

Luc Pronzato (CNRS) Design of Computer Experiments (1)



2 Uniformity: quasi Monte-Carlo, discrepancy [PRCEMIEEEl o NegI (LY

They can be computed. .

n d 2
e %) - [(13) 91 ((FRITAIR ERITAIE)
k=1 i=1
1/2
=S H(1+ Padi— g+ {xk/}ii‘; {xk},-{xk/},-)
k,k’'=1i=1

n d r

Dwa.1,(X,) = % H g— {xiti = {xw }i (1— {xiti = {xwr }i )}
Kkk'=1i=1 "

see Hickernell (1998a,b); Fang and Ma (2001)

they are differentiable w.r.t. X,, and can be minimized (Fang and Ma, 2001; Fang
et al., 2003, 2005)

m However, generating low discrepancy sequences of points is much easier!

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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2.8 Low discrepancy sequences

2.4 Low discrepancy sequences (LDS) (Niederreiter, 1892, Chap. 3)

X, has low discrepancy if D;(X}) is small
(or D,(X}), or another discrepancy)
In dimension 1:

n=>5
* 2i—1 1/(2n)
X}, such that x; = =,
i=1.....n e e e & e—|
0 3/(2n) 1

gives n x D7 (X} =1/2 for all n

Ecale ETICS, Porquerclles. Ui/ 12017
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2.8 Low discrepancy sequences

2.4 Low discrepancy sequences (LDS) (Niederreiter, 1892, Chap. 3) J

X, has low discrepancy if D;(X}) is small
(or D,(X}), or another discrepancy)
In dimension 1:

n=5
. 21 1/(2n)
X}, such that x; = =,
i=1.....n — & e € —1
0 3/(2n) 1

gives n x D7 (X} =1/2 for all n

but we cannot construct a sequence X, = (x1, xp. x3 ...} such that n consecutive
elements satisfy n x DX {(X..) = O(1)
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2 Uniformity: quasi Monte-Carle. discrepancy 2.£ Low distrapancy sequences

2.4 Low discrepancy sequences (LDS) (Niederreiter, 1892, Chap. 3)

X, has low discrepancy if D;(X}) is small
(or D,(X}), or another discrepancy)
In dimension 1:

n=5
. 21 1/(2n)
X}, such that x; = =,
i=1.....n — & e € —1
0 3/(2n) 1

gives n x DF(XE) = 1/2 for all n

but we cannot construct a sequence X, = (x1, xp. x3 ...} such that n consecutive
elements satisfy n x DX {(X..) = O(1)

nx D3{X,} necessarily fluctuates: D*{X.) = c'oﬁ” infinitely often
{best constant known ¢ — 0.06)

We know sequences X, such that | D2(X..) = C ('Dg”)

n

Ecale ETICS, Porquerclles. Ui/ 12017

g
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

e fractional parts (mainly for d = 1)
for given n <+ Lattices

@ van der Corput sequences (d = 1)
° w» Halton sequences (d > 1)

e (t, m, d)-nets and (t, d)-sequences (Sobol’, Faure)

Ecole ETICS, Porquerolles, 06/10/2017 96 /
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PAVIT TGN T A TECT IV LIS ETSRC IFl LTSl 2.4 Low discrepancy sequences

Fractional parts J

Ford =1:|x. £ {kz} = kz — |kz| |, k =1,2..., with z irrational (fractional
part of kz)
For instance, z = ¢ = (v/5 + 1)/2 ~ 1.618034 = Golden section

Ecole ETICS, Porquerolles, 06/10/2017 gg /
i
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2.4 Low discrepancy sequences

quasi Monte-Carlo, discrepancy

2 Uniformity:

Fractional parts

, k=1,2..., with z irrational (fractional

- )

Ford =1:|x, = {kz} = kz — | kz|

part of kz)
For instance, z = ¢ = (v/5 + 1)/2 ~ 1.618034 = Golden section

(n/log n) x D

g(n)

n

nD /lo

L L
700 800 900 1000

02 L L L L
0 100 200 300 400 500 600
n

Luc Pronzato (CNRS) Design of Computer Experiments (1)
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2 Uniformity: quasi Monte-Carlo, discrepancy

Fractional parts

2.4 Low discrepancy sequences

For d = 1:

xx 2 {kz} = kz — | kz|

, k

1,2..., with z irrational (fractional

part of kz)

For instance, z = ¢ = (/5 +1)/2 ~ 1.618034 = Golden

section

first 100 points xx

0.8 .

06("
55 05
04
03
0.2

01f o

Luc Pronzato (CNRS)

30 40 50 60 70 80 90 100
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[SLUIETE TR TEET RV I S EETg IR IEEL ISl 2.4 Low discrepancy sequences
Ford >1:

xk = {kg}, k=1,...,32

08 . 4

0.7 * 1

0.4 1

0.2 1

Ecole ETICS, Porquerolles, 06/10/2017 gg/
1
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2.4 Low discrepancy sequences

Uniformity: quasi Monte-Carlo, discrepancy

Ford >1

{ko}, k=1,...,32

Xk =

35

Ecole ETICS, Porquerolles, 06/10/2017
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Ford >1:

xi = (k/n, {ke}) "

Luc Pronzato (CNRS)

Design of Computer Experiments (1)

LELTSAN 2.4 Low discrepancy sequences

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

Ford>1:

xi = (k/n, {kg})"

m8
m16 m29

=3 w24

w11
|19 32

=6
mi4 il

a1 |22

mo
mi7 s

|4 w25

|12
H20

m7
mi5 m28

m2
|10 |23 ab1

m18

|5
mi3 m26

m Replace k/n (monotonically increasing and only valid for k =1,...,n) by
{kz}, z irrational — x4 € [0,1]%, k =1,2,3...
w repeat... — recursively x, € [0,1]9, for any given d

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

Take xi = {kz}, z irrational vector in R
(with independent components over rationals: q'z # 0, Vq € Q9)
m sequence Xo, uniformly distributed in [0, 1]¢
(Kuipers and Niederreiter, 1974, p. 48)
Ve > 0, Dy(Xs) = O (M) for almost all z

Interesting, but does not say which z we should take

Ecole ETICS, Porquerolles, 06/10/2017 gg /
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Take xx = {kz}, z irrational vector in RY
(with independent components over rationals: q'z # 0, Vq € Q9)
m sequence X, uniformly distributed in [0, 1]¢
(Kuipers and Niederreiter, 1974, p. 48)

d+1+e€

w e > 0, D,)(Xs) = O (% for almost all z

Interesting, but does not say which z we should take

d=2n=32z=(p, (vV2—-1)?)T

Ecole ETICS, Porquerolles, 06/10/2017
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Take xi = {kz}, z irrational vector in R

(with independent components over rationals: q'z # 0, Vq € Q9)

m sequence Xo, uniformly distributed in [0, 1]¢
(Kuipers and Niederreiter, 1974, p. 48)

Ve > 0, Dy(Xs) = O (M) for almost all z

Interesting, but does not say which z we should take

PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

d=2n=32z=(p, (vV2—-1)?)T

|5

|26

|13

|18

|23

|28

H10

|15

m20

m3f”2 mos

|7

=17
m22
m4
m27
mo

H14

w3

|12

m6

H29

|11

|16

m3 23

H3

m19

m24

P1

Luc Pronzato (CNRS)
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PAVIT TGN T A TECT IV LIS ETSRC IFl LTSl 2.4 Low discrepancy sequences

Lattices: z = g/n, with g € Z¢ J

o 2 {% g} (with repetitions if k > n)

n points # if gcd(g1,...,84,n) =1
n points # for each coordinate if gcd(g;, n) = 1 for all

w Regular arrangement of points (= grid)
Regularity of f(-) may be accounted for in integration error bounds

Ecole ETICS, Porquerolles, 06/10/2017 100 /
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PAVIT TGN T A TECT IV LIS ETSRC IFl LTSl 2.4 Low discrepancy sequences

Lattices: z = g/n, with g € Z¢

o 2 {% g} (with repetitions if k > n)

n points # if gcd(g1,...,84,n) =1
n points # for each coordinate if gcd(g;, n) = 1 for all

w Regular arrangement of points (= grid)
Regularity of f(-) may be accounted for in integration error bounds

Ford=2,g= (1, F,,_1)" for n= F,, is a very good choice,
with (F,,) = Fibonacci sequence: F; = F, =1, Fip1 = Fi + F1, k> 2

Since Fry—1/Fm — 1/¢ for m — oo, the construction is similar to
xi= (5 {EDT = (4 TkeD T k=1,....n

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

» Strong connection with optimal design for Fourier regression (sin, cos) (Bates
et al., 1996; Riccomagno et al., 1997)

» The exist constructions (non explicit) with good properties (good lattice
points) m tables (Maisonneuve, 1972)

» Korobov (1960) suggests g = (1,g,82,...,8971)7

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

» Strong connection with optimal design for Fourier regression (sin, cos) (Bates
et al., 1996; Riccomagno et al., 1997)

» The exist constructions (non explicit) with good properties (good lattice
points) m tables (Maisonneuve, 1972)

» Korobov (1960) suggests g = (1,g,82,...,8971)7

» Optimization of g in, e.g., (Sloan and Walsh, 1990; Sloan and Reztsov, 2002;
Nuyens, 2007)
Ex: d=2,n=21=Fg

g = (17 F7)
®pim = 0.2020 . .
&y = 0.2357 . .
Dcent.1, = 0.0280 . .
Dwa,1, = 0.0388 . .

Ecole ETICS, Porquerolles, 06/10/2017
Luc Pronzato (CNRS) Design of Computer Experiments (1)
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

» Strong connection with optimal design for Fourier regression (sin, cos) (Bates
et al., 1996; Riccomagno et al., 1997)

» The exist constructions (non explicit) with good properties (good lattice

points) m tables (Maisonneuve, 1972)
» Korobov (1960) suggests g = (1, 8,82, ...

» Optimization of g in, e.g., (Sloan and Walsh, 1990; Sloan and Reztsov, 2002;

Nuyens, 2007)

Ex: d=2,n=21=Fg

®m = 0.2020
® v = 0.2357
Deent.1, = 0.0280
Dwa,i, = 0.0388

Luc Pronzato (CNRS)

’gd—l)T

®ppm = 0.2302
Oy = 0.2217
Dcent,1, = 0.0536
Dwa.1, = 0.0633

Ecole ETICS, Porquerolles, 06/10/2017
Design of Computer Experiments (1)

g=(1g"
(optimal for ® )
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PAVIT TGN T A TECT IV LIS ETSRC IFl LTSl 2.4 Low discrepancy sequences

» Can only generate n points:
w infinite sequence in [0,1]7 if x, = {u, g}
with (uk) a (scalar) LDS (Hickernell, 1998b)

Ecole ETICS, Porquerolles, 06/10/2017
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PAVIT TGN T A TECT IV LIS ETSRC IFl LTSl 2.4 Low discrepancy sequences

» Can only generate n points:
w infinite sequence in [0,1]7 if x, = {u, g}
with (uk) a (scalar) LDS (Hickernell, 1998b)

We only considered the rank-on rule, there also exist
rank r rule: Xy, = {%gl + %gz + -+ %g,}, kie{1,...,n;}

Copy rule: divide [0,1]? into k9 cubes with edge length 1/k, construct a lattice in
each

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

van der Corput (1935) LDS J

d=1

Let Z, ={0,1,...,b — 1} be the alphabet for base b > 2
(e.g., 2o ={0,1}, 25 =40,1,2})

> Any k=0,1,...,b™ — 1 can be written as k = 5/ " a,b’
with m characters ag, a1, ..., am—1 (dependent on k)
(thatis, k = ap_1am—2 - 323120b)

» To k, we associate ®p,(k) = ’f’;ol agb—(+1)

w The van der Corput sequence in base b is defined by | x, = ®,(k)

Ecole ETICS, Porquerolles, 06/10/2017 103 /
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base b =2 (van der Corput, 1935)

Luc Pronzato (CNRS)

k k in base 2 | ¢p(k) in base 2 a(k)
0 01]0.0 0
1 1]01 1/2
2 10 | 0.01 1/4
3 11 | 0.11 3/4
4 100 | 0.001 1/8
5 101 | 0.101 5/8
k| am-1---a1a0, | 0.30a1" - am—1 2":_1 2,2~ (+1)

m 1D} (Xoo) = nDp(Xoo) < 1+ (22

Design of Computer Experiments (1)

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

base b=3
k | kin base 3 | ¢3(k)
0 0 0
1 1] 1/3
2 2| 2/3
3 10| 1/9
4 11| 4/9
5 12| 7/9
6 20 | 2/9
7 21| 5/9
8 22| 8/9

Ecole ETICS, Porquerolles, 06/10/2017 104 /
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

base b=3
k | kin base 3 | ¢3(k)
0 0 0
1 1] 1/3
2 2| 2/3
3 10| 1/9
4 11| 4/9
5 12| 7/9
6 20 | 2/9
7 21| 5/9
8 22| 8/9

Particular choice of b + suitable permutation of Z;
m best known performance for limsup,_,., nD}:/log(n) (b =12) and
limsup,_, ., nDy/log(n) (b = 36) (results by H. Faure (1977-20xx))

Ecole ETICS, Porquerolles, 06/10/2017 12491 /
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[SLUIETE TR TEET RV I S EETg IR IEEL ISl 2.4 Low discrepancy sequences

van der Corput : (n/logn) x D} for b =2 and b = 47

4 T - T
35
3l
— 25
(=]
=
3
< _?r
* e
[m]
S st
1k
0.5
0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Ecole ETICS, Porquerolles, 06/10/2017 123/
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2.4 Low discrepancy sequences

van der Corput : x1,X2 ..., X100

b=47, X1, X2 ...

1 T T T T T —— T T 1 : T
. . g Q
. . . B D
. . . K
0.9 . . 1 osr . 1
. . . .
08 . . . . 4 08l 4
. . .
. . .
07F . . . . 4 07t 4
06 . . ° . 1 061 1
~ . . M .
< 0sfe . .1 5% 05 4
. ° . .
04 . . . * R 04 B
. ° M :
o3 . . . R 03k ]
02| . * . R 02| 1
. M .
. . .
0.1r . . N . 1 01 0 o
. . o o
. . o 0
L L L L L L rs L L L hd Ad L L L L d
o 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 100

...and, moreover, [0,1] is filled in a particular order

Luc Pronzato (CNRS)
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2.4 Low discrepancy sequences

van der Corput : xqi,X2...,X70
b = 47, empirical c.d.f. b=47, x1,x...

1 T T T T T T
Fn (van der Corput, base b=47, n=70) o
.
! o9t o 1
B

09 08k o 1
08 L .’. 1

0.7 .

o

07 *

o8| . B
08 .‘

e ..' 1

05 o

04f o
0.4 .o.

03 K
03 o

02 o
02 .l .

o1f e . ]
0.1 o ‘c

d L L L It ol L
0 10 20 30 40 50 60 70
1 k

...and, moreover, [0,1] is filled in a particular order
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: work separately on each component

by, by ... integers such that ged(b;, bj) =1 for all i # j
(in practice, first prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 ..)
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: work separately on each component

by, by ... integers such that ged(b;, bj) =1 for all i # j
(in practice, first prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 ..)

» Hammersley: xx = (k/n, ¢p, (k). b, (k)T k=1,....n

(n is given — fixed)
D*(Xn) < Ad—l(log ”)d71 + O <(|Og ”)d_z)
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: work separately on each component

by, by ... integers such that ged(b;, bj) =1 for all i # j
(in practice, first prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 ..)

» Hammersley: xx = (k/n, ¢p, (k). b, (k)T k=1,....n
(n is given — fixed)

Di(Xn) < Ag_ (282" 1+o(7('°gg)"’2)

» Halton: xx = (ép,(k), ..., db, s P, (K)) T, k=1,2,3...
D:(Xoo) SAd(lognn) +0((Iogn)d 1)
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: work separately on each component

by, by ... integers such that ged(b;, bj) =1 for all i # j
(in practice, first prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 ..)

» Hammersley: xx = (k/n, ¢p, (k). b, (k)T k=1,....n
(n is given — fixed)

Di(Xn) < Ag_ (282" 1+o(7('°gg)"’2)

» Halton: xx = (ép,(k), ..., db, s P, (K)) T, k=1,2,3...
D:(Xoo) SAd(lognn) +0((Iogn)d 1)

It is conjectured that (only proved for d = 1,2)
1

D* (|°g”)d7
n(Xn) Z Bdf and
Di(Xo0) > B, 17" infinitely often

The speed of decrease of D} is thus optimal for Hammersley and Halton
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: work separately on each component

by, by ... integers such that ged(b;, bj) =1 for all i # j
(in practice, first prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 ..)

» Hammersley: xx = (k/n, ¢p, (k). b, (k)T k=1,....n
(n is given — fixed)

Di(Xn) < Ag_ (282" 1+o(7('°gg)"’2)

» Halton: xx = (ép,(k), ..., db, s P, (K)) T, k=1,2,3...
D:(Xoo) SAd(lognn) +0((Iogn)d 1)

It is conjectured that (only proved for d = 1,2)
1

D* (|°g”)d7
n(Xn) Z Bdf and
Di(Xo0) > B, 17" infinitely often

The speed of decrease of D} is thus optimal for Hammersley and Halton
.. but what about the constant A47?
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

It can be shown that limg_ oo (';’E)Q“’d =1

(Ag / super-exponentially fast with d!)

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

It can be shown that limg_ oo (';’E)Q“’d =1

(Ag / super-exponentially fast with d!)
m Discrepancy is not very good for large d

Halton LDS, d = 15 (= bys = 47) :
{xk}14 and {xx}15, k =1,...,200

Ecole ETICS, Porquerolles, 06/10/2017
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PRI T TECT IV [N S GETS IR IE T E Sl 2.4 Low discrepancy sequences

It can be shown that limg_ oo (';’E)Q“’d =1

(Ag / super-exponentially fast with d!)
m Discrepancy is not very good for large d

Halton LDS, d = 15 (= bys = 47) :
{xk}14 and {xx}15, k =1,...,200

... not too bad in the plane {xx}a,, {X«k}a, if 1 = by, ba,
(with by =~ d(log d + loglog d))
Ecole ETICS, Porquerolles, 06/10/2017 107 /
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

2.5 (t,m,d)-nets & (t,d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995)

Ecole ETICS, Porquerolles, 06/10/2017
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

2.5 (t,m,d)-nets & (t,d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995)

Motivation: overcome the issue Ay /" 0o as d — oo in Halton LDS
For a base b, consider an elementary interval (= a d-dimensional box)

d ra 1+a
P(a,q) = [[j= 5, 577
where g; and a; are integers, 0 < gj and 0 < a; < b% —1

d
P(a,q) C [0,1]7 and vol[P(a, q)] = [], b9 = b~ 2219

i Ecole ETICS, Porquerolles, 06/10/2017 108 /
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

2.5 (t, m, d)-nets & (t, d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995) J

Motivation: overcome the issue Ay /" 0o as d — oo in Halton LDS
For a base b, consider an elementary interval (= a d-dimensional box)

d a3 1+a
P(a,q) = [[j= 5, 577
where g; and a; are integers, 0 < gj and 0 < a; < b% —1

d
P(a,q) C [0,1]7 and vol[P(a, q)] = [], b9 = b~ 2219

Objective: put points in each elementary interval
(considering all possible cuts into elementary intervals)

Ecole ETICS, Porquerolles, 06/10/2017 108 /
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

2.5 (t, m, d)-nets & (t, d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995) J

Motivation: overcome the issue Ay /" 0o as d — oo in Halton LDS
For a base b, consider an elementary interval (= a d-dimensional box)

d 13 1+a
P(a,q) = [Timla9: 577
where g; and a; are integers, 0 < g;and 0 < a; < b¥ —1

P(a,q) C [0, 1] and vol[P(a, q)] = [[y b~% = b~ 219

Objective: put points in each elementary interval
(considering all possible cuts into elementary intervals)

More precisely: for 0 < t < m, a|(t, m, d)-net |in base b contains n = b points,

such that each elementary interval with volume b'~™ contains b' points

Ecole ETICS, Porquerolles, 06/10/2017

108
Luc Pronzato (CNRS) Design of Computer Experiments (1) 129 /



Example: (0,2,2)-net in base 2 (b=2,d=2 m=2,t=0)
w n=hp™ =4 b% =1 point in each elementary interval with volume
bt—m=1/4

Ecole ETICS, Porquerolles, 06/10/2017
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Example: (0,2,2)-net in base 2 (b=2,d=2, m=2,t=0)
w n=hp™ =4 b% =1 point in each elementary interval with volume
bt—m=1/4
d
D1 =m—t=2=q;€{0,1,2}

a1 | q

faary
N

0] 2 [a=0 2€{01,23}
(II) 2 0 a € {0, 1,2,3}, a=0
i 111

a) € {0,1}, a € {0,1}
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Example: (0,2,2)-net in base 2 (b=2,d=2, m=2,t=0)
w n=hp™ =4 b% =1 point in each elementary interval with volume
bt—m=1/4

Zleqj:m—t:2:> g € {0,1,2}
21=0, 3 € {0,1,2,3]

0| 2
(i) | 2] 0| ae{0,1,23}, =0
1|1 ae€{0,1}, ac{0,1}

\Ch\q

N

case (/) case (ii) case (iii)
08 08 08
06 06 06
0.1 0.1 0.1
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Example: (0,2,2)-net in base 2 (b=2,d=2, m=2,t=0)
w n=hp™ =4 b% =1 point in each elementary interval with volume

bt = 1/4
Zleqj:m—t:2:> g € {0,1,2}

a1 | q

faary
N

0|2 |a=0a€c{0,1,23}
) 2 0 | 4€{0,1,2,3}, a=0
1|1 ae€{0,1}, ae{0,1}

a (0,2,2)-net in base 2

*

0.1 *

0 of 02 03 04 05 06 07 08 09 1
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

A few properties :

@ t = m: trivial situation m b* = b™ = n points (all) in the interval with
volume bt~ =1

Ecole ETICS, Porquerolles, 06/10/2017
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

A few properties :
@ t = m: trivial situation m b* = b™ = n points (all) in the interval with
volume b*=m =1
@ (t,m,d)-net in base b = (t',m, d)-net in base b for t < t' < m
w difficulty increases as t decreases

Ecole ETICS, Porquerolles, 06/10/2017
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

A few properties :

@ t = m: trivial situation m b* = b™ = n points (all) in the interval with
volume b*=m =1

@ (t,m,d)-net in base b = (t',m, d)-net in base b for t < t' < m
w difficulty increases as t decreases

et=0 m=1, base b
= n= b™ = b points, b* = 1 point per elementary interval, 27:1 g=1=
aunique g #0, gj=1=a;€{0,1,...,b—1}
m 3 (0,1, d)-net in base b is a Lh with b points
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

A few properties :

@ t = m: trivial situation m b* = b™ = n points (all) in the interval with
volume b*=m =1

@ (t,m,d)-net in base b = (t',m, d)-net in base b for t < t' < m
w difficulty increases as t decreases

et=0 m=1, base b
= n= b™ = b points, b* = 1 point per elementary interval, 27:1 g=1=
aunique g #0, gj=1=a;€{0,1,...,b—1}
m 3 (0,1, d)-net in base b is a Lh with b points

@ A (0,2,d)-net in base b is an Orthogonal Array (OA) and a Lh with n = b?
points: previous example had b =2 and d =2

— but the construction is not always possible. . .

@ no (0, m, d)-net in base b for d > b+ 1 (Niederreiter, 1992, p. 62)

Ecole ETICS, Porquerolles, 06/10/2017 1%8/
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Xoo = ‘ (t,d)-sequence |in base b if for any k >0 and any m >t

the b™ points {Xupm, Xkbm 41, - - -, X(kt1)bm—1} form a (t, m, d)-net

Ecole ETICS, Porquerolles, 06/10/2017
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Xoo = ‘ (t,d)-sequence |in base b if for any k >0 and any m >t

the b™ points {Xupm, Xkbm 41, - - -, X(kt1)bm—1} form a (t, m, d)-net

A few properties:

@ Especially interesting for t small
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Xoo = ‘ (t,d)-sequence |in base b if for any k >0 and any m >t

the b™ points {Xupm, Xkbm 41, - - -, X(kt1)bm—1} form a (t, m, d)-net

A few properties:

@ Especially interesting for t small

@ no (0, d)-sequence in base b for d > b (Niederreiter, 1992, p. 62)
(0, d)-sequence in base b > d with b prime = Faure (1982) sequence
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Xoo = ‘ (t,d)-sequence |in base b if for any k >0 and any m >t

the b™ points {Xupm, Xkbm 41, - - -, X(kt1)bm—1} form a (t, m, d)-net

A few properties:

@ Especially interesting for t small

@ no (0, d)-sequence in base b for d > b (Niederreiter, 1992, p. 62)
(0, d)-sequence in base b > d with b prime = Faure (1982) sequence

@ van der Corput sequence in base b is a (0, 1)-sequence in base b
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

in base b if for any k >0 and any m >t

Xoo = ‘ (t, d)-sequence

the b™ points {Xupm, Xkbm 41, - - -, X(kt1)bm—1} form a (t, m, d)-net

A few properties:

@ Especially interesting for t small

@ no (0, d)-sequence in base b for d > b (Niederreiter, 1992, p. 62)
(0, d)-sequence in base b > d with b prime = Faure (1982) sequence

@ van der Corput sequence in base b is a (0, 1)-sequence in base b

@ Construction rather complicated. ..
For b =2, any d: Sobol' (1967) sequences, with a smaller t when d > 8 for
Niederreiter (1992) sequences

Ecole ETICS, Porquerolles, 06/10/2017
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

(t, d)-sequences in base b rely on rather complicated algebraic constructions, but
ensure a good distribution of points in Iy = [0, 1]¢

@ t and b should be as small as possible

@ Sobol" (1967) sequences: b =2

o Niederreiter (1992) sequences: b =2 and t smaller than for Sobol” when
d>8

e Faure (1982) (0, d)-sequences: base b > d, with b prime

Ecole ETICS, Porquerolles, 06/10/2017 112 /
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

(t, d)-sequences in base b rely on rather complicated algebraic constructions, but
ensure a good distribution of points in Iy = [0, 1]¢

@ t and b should be as small as possible

@ Sobol" (1967) sequences: b =2

o Niederreiter (1992) sequences: b =2 and t smaller than for Sobol” when
d>8

e Faure (1982) (0, d)-sequences: base b > d, with b prime

Di :
iscrepancy (log 1) (log n)?1
ik < o (o)

n n

bound similar to that of Halton LDS
... but here Cy4 N\, 0 super-exponentially fast as d — co!

Ecole ETICS, Porquerolles, 06/10/2017
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Halton: (n/logn) x D} for {X,}1 and {X,}1s
T T T

-~ T
35
sl
. 250
c
<
3
=_ r
* c
[m]
S st
e
05
0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Sobol’ : (

351

n/logn) x D} for {X,}1 and {X,}15

Luc Pronzato (CNRS)

Design of Computer Experiments (1)

80 20 100
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Faure : (n/logn) x D} for {X,}1 and {X,}1s5
T T T T T

351 4

0 10 20 30 40 50 60 70 80 20 100
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

[n/(log n)?] X Dcent.1,(X,) for Halton and Sobol’ (d = 15)

(/(log n)?, but no obvious normalization for Dcent,1,)

3.2 T

o
—
=
=
-
D
(e}
=
=
—
g
> 241 q
o
[a]
c
22 q
M PR anb E
\ -
oL v "‘~-w._~,’ 4
Y
'\' wr”TtN L "'
~ > Svo ,
. ¢! N
18 L N L L L L
100 200 300 400 500 600 800 900 1000
n

Luc Pronzato (CNRS)
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25 (¢, m, d)nets & (¢, d)-sequences
[n/(log n)?] x Dwa.1,(X,) for Halton and Sobol’ (d = 15)

(/(log n)?, but no obvious normalization for Dya1,)

9.5 T T

o
—
=
[
=)
s 7 |
=
-~ (aV}
=
< 75t q
o - - /‘
[ - [ -~V,
7 Fe . 4
\\ PRET LT RN ,’
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

[n/(log n)?] x Dwa.1,(X,) for Halton and Sobol’ (d = 15)

(/(log n)?, but no obvious normalization for Dya1,)
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» n = 1000 is small: the cube [0, 1] has 2!° = 32768 vertices!

Ecole ETICS, Porquerolles, 06/10/2017 lég /
1

Luc Pronzato (CNRS) Design of Computer Experiments (1)



PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Sobol’: d = 15, {xx}14 and {xx}1s,

Halton, d = 15: {xx}14 and {xx}1s,
k=1,...,200

k=1,...,200
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PAVLTTG TR TEC N VISR NG IECCLENSAl 2.5 (¢, m, d)-nets & (t, d)-sequences

Faure, d = 15: {xx}14 and {x«}1s, Sobol’: d = 15, {x}14 and {xx}1s,
k=1,...,200

k=1,...,200
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3 Dispersion & miniMax [EEBRPIESI

3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6)

Discrepancy measures uniformity of the distribution of the x
w» we can also restrict our attention to the “filling” of 2" by X, = (x4, . ..

do(Xn, 27) £ supye 9~ Ming<k<n A(X, Xk)
(A we shall minimize this measure of dispersion A)
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3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6) J

Discrepancy measures uniformity of the distribution of the x
m we can also restrict our attention to the “filling” of 2" by X, = (x1,...,Xp)

dn( X, Z7) £ SUPye 2~ Mini<k<n A(X, Xk)

(A we shall minimize this measure of dispersion A)

o If A(x,x") = ||x — x/|| (Euclidean distance),
> ‘ dn( X, £7) = dmm(X,) = miniMax distance criterion ‘

Ecole ETICS, Porquerolles, 06/10/2017

115
Luc Pronzato (CNRS) Design of Computer Experiments (1) 129 /



3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6) J

Discrepancy measures uniformity of the distribution of the x
m we can also restrict our attention to the “filling” of 2" by X, = (x1,...,Xp)

dn( X, Z7) £ SUPye 2~ Mini<k<n A(X, Xk)

(A we shall minimize this measure of dispersion A)

o If A(x,x") = ||x — x/|| (Euclidean distance),
> ‘ dn( X, £7) = dmm(X,) = miniMax distance criterion ‘

o If A(x,x") = ||x — X||oc = maxi<j<q|{x}; — {X'};| (s distance),
e doo n(Xp, Z7) (“balls” are cubes, easier to pack)
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3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6)

Discrepancy measures uniformity of the distribution of the x
m we can also restrict our attention to the “filling” of 2" by X, = (x1,...,Xp)

do(Xn, 27) £ supye 9~ Ming<k<n A(X, Xk)
(A we shall minimize this measure of dispersion A)

o If A(x,x") = ||x — x/|| (Euclidean distance),
> ‘ dn( X, £7) = dmm(X,) = miniMax distance criterion ‘

o If A(x,x") = ||x — X||oc = maxi<j<q|{x}; — {X'};| (s distance),
e doo n(Xp, Z7) (“balls” are cubes, easier to pack)

o doo n(Xp, 27) = dp(X;, Z7) for d = 1
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3.1 Dispersion

0 doo n(Xn, 27) < dp(Xp, 27) < Vd dog n(X, )
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3 Dispersion & miniMax [EEBRPIESI

® doo.n(Xn, 27) < dn(Xn, 27) < Vd dog n(Xn, 27)
@ Sphere covering (§ 1.1 and 1.5) :

vo 1/d
iy (%) # < dn(Xn’ %) = CDmM(X,,) (Vd = VO|[<@(07 1)])
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3 Dispersion & miniMax [EEEENEIESIE]

® doo.n(Xn, 27) < dn(Xn, 27) < Vd dog n(Xn, 27)
@ Sphere covering (§ 1.1 and 1.5) :

- () < X, 2) = G(X) (Vi = voll2(0,1)

o Cube covering : n[2 duoo n(Xn, 27)]¢ > vol(27)
> % (vol(%))l/d nl% < doo,n(Xny Z7)
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3 Dispersion & miniMax [EEBRPIESI

® doo.n(Xn, 27) < dn(Xn, 27) < Vd dog n(Xn, 27)
@ Sphere covering (§ 1.1 and 1.5) :

- () < X, 2) = G(X) (Vi = voll2(0,1)

o Cube covering : n[2 duoo n(Xn, 27)]¢ > vol(27)
> % (vol(%))l/d nl% < doo,n(Xny Z7)

For 2" =[0,1)¢ (vol(2') = 1)

% Lnll/dj < Cloc,n(xn7 <%)

with equality for some X,,, for any n an d
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3 Dispersion & miniMax [EEBRPIESI

° doo,n(xm <Q//) S dn(Xm t%/‘) S \/‘—jdoo,n(xna '%')
@ Sphere covering (§ 1.1 and 1.5) :

w () < (X0 2) = Oaa(X) (Vo = vol[(0,1)])

V4
o Cube covering : n[2 doo n(Xn, 27)]¢ > vol(27)
s % (vol(.f&”))l/d # < doo.n(Xny Z7)

For 2 =[0,1]¢ (vol(Z") = 1)
Sy € doen(Xn, 27) < [Dy(X)H < 20D (X, )]
with equality for some X,,, for any n an d

1)/

|
< A% for X, a LDS
» low discrepancy = low dispersion

1
2

v
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CIIEIEWANIVEN 3.1 Dispersion

° doo,n(xm <Q//) S dn(Xm t%/‘) S \/‘—jdoo,n(xna %‘)
@ Sphere covering (§ 1.1 and 1.5) :

o () 2 < (X, 2) = an(X,) (Vi = voll#(0, 1)

o Cube covering : n[2 doo n(Xn, 27)]¢ > vol(27)
s % (vol(%))l/d # < doo.n(Xny Z7)

For 2 = [0,1]9 (vol(2') = 1)

5 oy < doon(Xa, 27) < [Da(Xa)]Y < 2[D5(X

with equality for some X,,, for any n an d

< A("’g’,?l# for X,
Vd 1
1 1 1 — b*
= maX{(an)l/d-, 3 Lnl/dj} S - q)mM,n S 7 Lnl/dJ
minx,, ®mm(Xn)

§1.5
(slightly improves the bounds of §1.5)

")]1/d

a LDS

o
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3.1 Dispersion
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3 Dispersion & miniMax 3.2 Low dispersion sequences

3.2 Low dispersion sequences (Niederreiter, 1992, Chap. 6) J

d = 1: for any sequence Xoo, limsup,_, . ndp(Xoo) > 2|§g2 ~0.7213
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3 Dispersion & miniMax 3.2 Low dispersion sequences

3.2 Low dispersion sequences (Niederreiter, 1992, Chap. 6) J

d = 1: for any sequence X, limsup, ., ndn(Xsc) > 5 ng ~ 0.7213

The bound is reached for Ruzsa sequence:

xi=1 x = {23 k>0
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3 Dispersion & miniMax 3.2 Low dispersion sequences

3.2 Low dispersion sequences (Niederreiter, 1992, Chap. 6)

d = 1: for any sequence Xoo, limsup,_, . ndp(Xoo) > zlj 5 =~ 0.7213

The bound is reached for Ruzsa sequence:

xi=1 x = {23 k>0

but D (X..) /4 0 F, for n = 10000 points (D; ~ 0.0740)

Low discrepancy (< uniformity) = low dispersion
but low dispersion % low discrepancy

Ecole ETICS, Porquerolles, 06/10/2017
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3 Dispersion & miniMax 3.2 Low dispersion sequences

d>1: % <|infx_ limsup,_, . "/ 9dy o(Xoo) | < 2|01g2

Sequences that reach the upper bound ﬁ are known

The smallest value infx_ limsup, .. n"/?d. ,(X) is unknown
(and best sequences X, are unknown too)

(very) little is known about n'/?d,(Xs) = n*/9dp(Xso)!
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3 Dispersion & miniMax 3.2 Low dispersion sequences

. . 1
<|infx_ limsup,_, . "/ 9dy o(Xoo) | < TTog?

Sequences that reach the upper bound ﬁ are known

The smallest value infx_ limsup, .. n"/?d. ,(X) is unknown
(and best sequences X, are unknown too)

d>1:

N|=

(very) little is known about n'/?d,(Xs) = n*/9dp(Xso)!

Upper bounds (rather pessimistic):

» Halton in base (b, ..., by) | doo n(Xeo) < mx,lfi/fdb
. 1+t/d
» (t,d)-sequence in base b | doo n(Xoo) < b,,lﬁ
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Ex. : d =4, nfrom 1 to 100, ®,,m(X,) for Halton (b = (2,3,5,7)), Sobol

(t=3, b=2) and Faure (t =0, b=05)
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3 Dispersion & miniMax 3.2 Low dispersion sequences
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Ex. : d =4, nfrom 1 to 100, ®,,m(X,) for Halton (b = (2,3,5,7)), Sobol

(t=3, b=2) and Faure (t =0, b=05)

running kmeans algorithm on 10 000
points of Sobol’ LDS (with centers
initialized at the first n points)
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4 Conclusions part (1)

4 Conclusions part (1) — without model

o Many design criteria available (geometry, uniformity)
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4 Conclusions part (1)

4 Conclusions part (1) — without model

o Many design criteria available (geometry, uniformity)
@ Their optimization is difficult (non convex, multimodal, sometimes non

differentiable) m workable d not too large
&1 () is rather compelling, its evaluation is not trivial but possible
can be optimized by clustering (with Chebyshev centers) for small d,
by stochastic approximation otherwise
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4 Conclusions part (1)

4 Conclusions part (1) — without model

o Many design criteria available (geometry, uniformity)

@ Their optimization is difficult (non convex, multimodal, sometimes non
differentiable) m workable d not too large
&1 () is rather compelling, its evaluation is not trivial but possible
can be optimized by clustering (with Chebyshev centers) for small d,
by stochastic approximation otherwise

@ Low discrepancy sequences:
easy to generate
the sequence is well distributed (not necessary to choose n a priori)
can be used for any compact 2" (with non empty interior)
(generate points in a cube containing £, and reject
points not in Z")

Ecole ETICS, Porquerolles, 06/10/2017
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4 Conclusions part (1)

The curse of dimensionality is always present!

d = 50, Faure (0, d)-sequence ™ b prime > d — b = 53
If we want to ensure that there is a point in each box cut along g dimensions, then
S =g m—tom
= bCI
qg =2 n=2809
g =50 » n~ 1.6360 108°
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4 Conclusions part (1)

The curse of dimensionality is always present!

d = 50, Faure (0, d)-sequence ™ b prime > d — b = 53
If we want to ensure that there is a point in each box cut along g dimensions, then
S =g m—tom
= bCI
q =2 n=2809
g =50 » n~ 1.6360 108°

d =50, (t, d)-sequence in base 2, with smallest possible t — t = 77
If we want that each elementary interval cut along each dimension contains some
points, then n = b™ with 27:1 gg=d=m—t = m=127 and n~ 1.7014 103
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4 Conclusions part (1)

The curse of dimensionality is always present!

d = 50, Faure (0, d)-sequence ™ b prime > d — b = 53
If we want to ensure that there is a point in each box cut along g dimensions, then
S =g m—tom
= bq
qg =2 n=2809
g =50 » n~ 1.6360 108°

d =50, (t, d)-sequence in base 2, with smallest possible t — t = 77
If we want that each elementary interval cut along each dimension contains some
points, then n = b™ with 27:1 gg=d=m—t = m=127 and n~ 1.7014 103

4

See (Owen, 1998) for possible constructions, such as

{xn}l:s
Xn = Xn d —
{ }1 d ( {Xn}5+1:d
with e.g. {X,}1.s a LDS sequence

{Xn}5+l:d aLh
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