


Objectives

Computer experiments: based on simulations

➤ Usually, x ∈ Rd
➠ observation Y (x) (physical experiment)

➤ here, numerical simulation: Y (x) = f (x), observation = evaluation of an
unknown function f (·)
(no measurement error)
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Objectives

Computer experiments: based on simulations

➤ Usually, x ∈ Rd
➠ observation Y (x) (physical experiment)

➤ here, numerical simulation: Y (x) = f (x), observation = evaluation of an
unknown function f (·)
(no measurement error)

from pairs (xi , f (xi)), i = 1, 2, . . . , n

optimization: find x∗ = arg maxx∈X f (x)

inversion: construct {x ∈X : f (x) = T}
estimation of a probability of failure: Prob{f (x) > C} when x ∼ probability
density ϕ(·)
sensitivity analysis

approximation/interpolation of f (·) by a predictor ηn(·), to be constructed
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Objective = approximation/interpolation

f (x) an unknown function, defined on X ⊂ Rd (compact)
construct a “good” approximation ηn(·) of f (·) over X from pairs (xi , f (xi)),
i = 1, 2, . . . , n (n not necessarily fixed a priori)
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Objective = approximation/interpolation

f (x) an unknown function, defined on X ⊂ Rd (compact)
construct a “good” approximation ηn(·) of f (·) over X from pairs (xi , f (xi)),
i = 1, 2, . . . , n (n not necessarily fixed a priori)

➠ Since f (·) is unknown, we must observe everywhere!
➠ maximize the spread of the n points Xn = (x1, . . . , xn) in X

(uniformly seems reasonable and can be properly justified (Biedermann and Dette,

2001))
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Objective = approximation/interpolation

f (x) an unknown function, defined on X ⊂ Rd (compact)
construct a “good” approximation ηn(·) of f (·) over X from pairs (xi , f (xi)),
i = 1, 2, . . . , n (n not necessarily fixed a priori)

➠ Since f (·) is unknown, we must observe everywhere!
➠ maximize the spread of the n points Xn = (x1, . . . , xn) in X

(uniformly seems reasonable and can be properly justified (Biedermann and Dette,

2001))

⊲ Xn is the design (an n-point design) ⊳

What does “observe everywhere” mean?

— very much based on (P., 2017)
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General overview: 3 families of design criteria

1. Inter-distance: between Xn and X (miniMax, dispersion)

. . . a bit tricky
(but we are never far from a design point)

Luc Pronzato (CNRS) Design of Computer Experiments (1) École ETICS, Porquerolles, 06/10/2017 4 / 129



General overview: 3 families of design criteria

1. Inter-distance: between Xn and X (miniMax, dispersion)
2. Intra-distances: within Xn, between design points xi , i = 1, . . . , n

(Maximin, energy. . . )

. . . easier
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General overview: 3 families of design criteria

1. Inter-distance: between Xn and X (miniMax, dispersion)
2. Intra-distances: within Xn, between design points xi , i = 1, . . . , n

(Maximin, energy. . . )
3. Uniformity of the distribution of xi , i = 1, . . . , n

(entropy, discrepancy ➠ generate infinite sequences of points)
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Plan

1 Geometrical space-filling criteria
1.1 miniMax & Maximin: generalities
1.2 Latin hypercubes
1.3 miniMax (inter-distance) criterion
1.4 Maximin (intra-distances) criterion
1.5 Relations between ΦMm and ΦmM (d ≥ 2)
1.6 Regularized Maximin, energy

2 Uniformity: quasi Monte-Carlo, discrepancy
2.1 Entropy, optimal graphs
2.2 Discrepancy: motivation
2.3 Discrepancy criteria
2.4 Low discrepancy sequences
2.5 (t, m, d)-nets & (t, d)-sequences

3 Dispersion & miniMax
3.1 Dispersion
3.2 Low dispersion sequences

4 Conclusions part (1)
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

1 Geometrical space-filling criteria

1.1 miniMax & Maximin: generalities (Johnson et al., 1990)

➀ miniMax: minimize ΦmM(Xn) = maxx∈X mini ‖x− xi‖

ΦmM(Xn) = dHausdorff(Xn, X ) = max{maxx∈X d(x , Xn), max
xi ∈Xn

d(xi , X )

︸ ︷︷ ︸
=0 (Xn∈X n)

}

➠ Inter-distance between Xn and X

d = 1 ⇔ xi = (2i − 1)/(2n), i = 1, . . . , n
⇒ Φ∗

mM,n = 1/(2n)

d > 1 ⇔ sphere-covering
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

➁ Maximin: maximize ΦMm(Xn) = mini 6=j dij = mini 6=j ‖xi − xj‖

➠ Intra-distances for Xn (between points xi in Xn)

d = 1 ⇔ xi = (i − 1)/(n − 1), i = 1, . . . , n
⇒ Φ∗

Mm,n = 1/(n − 1)

d > 1 ⇔ sphere-packing
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Examples :

➀ miniMax d = 2, n = 7
(radius=φmM(Xn))
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Examples :

➀ miniMax d = 2, n = 7
(radius=φmM(Xn))

➁ Maximin d = 2, n = 7
(radius=φMm(Xn)/2)
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Why Maximin ⇔ sphere-packing?

d = 2, n = 7
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

Why Maximin ⇔ sphere-packing?

d = 2, n = 7 d = 2, n = 10
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

A few difficulties:

a) Local optima

Maximin d = 2, n = 7, global opt.
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

b) Misleading intuition

Which one is better?
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

b) Misleading intuition

Geometry : ΦMm(Xn) = 0.2020
ΦmM(Xn) = 0.2357

Uniformity : DCent,L2(Xn) = 0.0280
DWA,L2(Xn) = 0.0388

Geometry : ΦMm(Xn) = 0.2302
ΦmM(Xn) = 0.2217

Uniformity : DCent,L2(Xn) = 0.0536
DWA,L2(Xn) = 0.0633
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d = 2, n = 16

 16 circles in a square

radius =   0.125000000000

ratio  =   8.000000000000

density  = 0.785398163397

contacts = 40

 E.SPECHT

01-SEP-2009
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d = 2, n = 25

 25 circles in a square

radius =   0.100000000000

ratio  =  10.000000000000

density  = 0.785398163397

contacts = 60

 E.SPECHT

01-SEP-2009
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d = 2, n = 36

 36 circles in a square

radius =   0.083333333333

ratio  =  12.000000000000

density  = 0.785398163397

contacts = 84

 E.SPECHT

01-SEP-2009
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

c) Sphere-packing: no trivial solution,
see http://www.packomania.com/

d = 2, n = 49

 49 circles in a square

radius =   0.071692681704

ratio  =  13.948425086594

density  = 0.791216989527

contacts = 120

 E.SPECHT

01-SEP-2009

Cube packing is much easier! (see § 3.1)
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))
➤ Unit cube Kd(0, 1) = [−1/2, 1/2]d : volume = 1, max distance between 2
points =

√
d

➤ Unit ball Bd(0, 1): volume = πd/2/Γ(d/2 + 1)→ 0 (quickly) as d →∞, max
distance between 2 points = 2
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e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))
➤ Unit cube Kd(0, 1) = [−1/2, 1/2]d : volume = 1, max distance between 2
points =

√
d

➤ Unit ball Bd(0, 1): volume = πd/2/Γ(d/2 + 1)→ 0 (quickly) as d →∞, max
distance between 2 points = 2

Kd(0, 1) ⊂ Bd(0, 1) for d ≤ 4, but the vertices of the cube (at distance
√

d/2
from 0) lie outside Bd(0, 1) for d ≥ 5
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))
➤ Unit cube Kd(0, 1) = [−1/2, 1/2]d : volume = 1, max distance between 2
points =

√
d

➤ Unit ball Bd(0, 1): volume = πd/2/Γ(d/2 + 1)→ 0 (quickly) as d →∞, max
distance between 2 points = 2

Kd(0, 1) ⊂ Bd(0, 1) for d ≤ 4, but the vertices of the cube (at distance
√

d/2
from 0) lie outside Bd(0, 1) for d ≥ 5

vol[Kd(0, 1) \B(0, 1)]→ 1 as d →∞, but Bd(0, 1) 6⊂ Kd(0, 1)! (the centers of
faces are always at distance 1/2 from0)

=⇒ For large d , working within a cube is much more difficult
than working within a ball
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1 Geometrical space-filling criteria 1.1 miniMax & Maximin: generalities

e) Another issue related to dimension: big difference between a cube and a ball
for large d (see (Blum et al., 2016, Chap. 2))
➤ Unit cube Kd(0, 1) = [−1/2, 1/2]d : volume = 1, max distance between 2
points =

√
d

➤ Unit ball Bd(0, 1): volume = πd/2/Γ(d/2 + 1)→ 0 (quickly) as d →∞, max
distance between 2 points = 2

Kd(0, 1) ⊂ Bd(0, 1) for d ≤ 4, but the vertices of the cube (at distance
√

d/2
from 0) lie outside Bd(0, 1) for d ≥ 5

vol[Kd(0, 1) \B(0, 1)]→ 1 as d →∞, but Bd(0, 1) 6⊂ Kd(0, 1)! (the centers of
faces are always at distance 1/2 from0)

=⇒ For large d , working within a cube is much more difficult
than working within a ball

We shall lower our ambitions: finding an optimal design is extremely difficult,
we shall only try to find “reasonable” designs
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

1.2 Latin hypercubes

Objective: ensure good projection properties along each principal axis
each 1d projection is Maximin-optimal
{xi}ℓ ∈ {0, 1

n−1 , . . . , k−1
n−1 , . . . , 1} for all ℓ = 1, . . . , d

➠ only (n!)d−1 possible designs

Maximin-optimal Lh (d = 2, n = 7, radius=φMm(Xn)/2)
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1.2 Latin hypercubes

Objective: ensure good projection properties along each principal axis
each 1d projection is Maximin-optimal
{xi}ℓ ∈ {0, 1

n−1 , . . . , k−1
n−1 , . . . , 1} for all ℓ = 1, . . . , d

➠ only (n!)d−1 possible designs

Maximin-optimal, not Lh, (d = 2, n = 7, radius=φMm(Xn)/2)
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

1.2 Latin hypercubes

Objective: ensure good projection properties along each principal axis
each 1d projection is Maximin-optimal
{xi}ℓ ∈ {0, 1

n−1 , . . . , k−1
n−1 , . . . , 1} for all ℓ = 1, . . . , d

➠ only (n!)d−1 possible designs

Lh, not Maximin-optimal, (d = 2, n = 7, radius=φMm(Xn)/2)
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

The Lh property only ensures good 1d projection properties!
➠ we need to optimize another space-filling criterion (in dimension d)
(typically, using simulated annealing, other heuristics may be considered)
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

The Lh property only ensures good 1d projection properties!
➠ we need to optimize another space-filling criterion (in dimension d)
(typically, using simulated annealing, other heuristics may be considered)

➠ Optimizing within the class of Lh designs ensures good 1d projection properties

Important when f (·) may possibly not depend on some input factors {x}ℓ:
➤ no repetition of points a factor is removed
➤ the projection on d ′ < d components is still a Lh
(but not necessarily with a good distribution of points if d ′ > 1)

Abundant literature since (McKay et al., 1979), see (Viana, 2013)
The Lh constraint worsens the space-filling property

miniMax
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

Optimization within the class of Lh designs:
Let Xn be a n-point Lh design:

choose a coordinate ℓ (among d)

choose a pair of points xi and xj in Xn

exchange their ℓ-th coordinate

➠ X+
n , which is still a Lh design (dn(n − 1)/2 possible constructions)

(one may also exchange several pairs of points simultaneously)
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

Optimization within the class of Lh designs:
Let Xn be a n-point Lh design:

choose a coordinate ℓ (among d)

choose a pair of points xi and xj in Xn

exchange their ℓ-th coordinate

➠ X+
n , which is still a Lh design (dn(n − 1)/2 possible constructions)

(one may also exchange several pairs of points simultaneously)

Simulated annealing (minimization of Φ(·)) — principle:

0) start from a Lh design X0
n, set k = 0

1) generate a Lh design Xk+
n from Xk

n

2) calculate ∆Φk = Φ(Xk+
n )− Φ(Xk

n)

3) Accept Xk+
n , i.e., do Xk+1

n = Xk+
n with probability

Pk = min
{

1, exp
(
−∆Φk

Tk

)}
, keep Xk+1

n = Xk
n with prob. 1− Pk

k ← k + 1, return to 1
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

Xk+
n such that ∆Φk < 0 is always accepted

Xk+
n such that ∆Φk > 0 is more often accepted for T1 than for T2 < T1

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

T1

T2<T1

➠ Take T0 large enough (to escape from
local optimas),
then decrease Tk (slowly enough)
(for instance, Tk = T0

log(k+1) ,

or Tk = αkT0 with α < 1)
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1 Geometrical space-filling criteria 1.2 Latin hypercubes

Xk+
n such that ∆Φk < 0 is always accepted

Xk+
n such that ∆Φk > 0 is more often accepted for T1 than for T2 < T1

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

T1

T2<T1

➠ Take T0 large enough (to escape from
local optimas),
then decrease Tk (slowly enough)
(for instance, Tk = T0

log(k+1) ,

or Tk = αkT0 with α < 1)

Many variants, abundant literature. . .
Always store the best Xk

n found along the trajectory of the algorithm!!!
➠ Ensures convergence to the optimum when k →∞ under rather general
conditions
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ΦmM(Xn) = maxx∈X mini ‖x− xi‖

ΦmM is interesting for approximation:
Any x in X is at most at distance ΦmM from a design point xi

Evaluation of ΦmM(Xn) = maxx∈X mini=1,...,n ‖x− xi‖ = maxx∈X d(x, Xn):
we need to find a x∗ = arg maxx∈X d(x, Xn)

Key idea: replace arg maxx∈X d(x, Xn) by arg maxx∈XQ
d(x, Xn) for a suitable

finite XQ ⊂X
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1.3 miniMax criterion ΦmM(Xn) = maxx∈X mini ‖x− xi‖

ΦmM is interesting for approximation:
Any x in X is at most at distance ΦmM from a design point xi

Evaluation of ΦmM(Xn) = maxx∈X mini=1,...,n ‖x− xi‖ = maxx∈X d(x, Xn):
we need to find a x∗ = arg maxx∈X d(x, Xn)

Key idea: replace arg maxx∈X d(x, Xn) by arg maxx∈XQ
d(x, Xn) for a suitable

finite XQ ⊂X

0/ Usual trick: XQ = regular grid or first Q points of a Low Discrepancy
Sequence in X
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ΦmM(Xn) = maxx∈X mini ‖x− xi‖

ΦmM is interesting for approximation:
Any x in X is at most at distance ΦmM from a design point xi

Evaluation of ΦmM(Xn) = maxx∈X mini=1,...,n ‖x− xi‖ = maxx∈X d(x, Xn):
we need to find a x∗ = arg maxx∈X d(x, Xn)

Key idea: replace arg maxx∈X d(x, Xn) by arg maxx∈XQ
d(x, Xn) for a suitable

finite XQ ⊂X

0/ Usual trick: XQ = regular grid or first Q points of a Low Discrepancy
Sequence in X

➠ ΦmM(Xn; XQ) ≤ ΦmM(Xn) (optimistic result)
requires Q = O(1/ǫd) to have ΦmM(Xn) < ΦmM(Xn; XQ) + ǫ
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

1.3 miniMax criterion ΦmM(Xn) = maxx∈X mini ‖x− xi‖

ΦmM is interesting for approximation:
Any x in X is at most at distance ΦmM from a design point xi

Evaluation of ΦmM(Xn) = maxx∈X mini=1,...,n ‖x− xi‖ = maxx∈X d(x, Xn):
we need to find a x∗ = arg maxx∈X d(x, Xn)

Key idea: replace arg maxx∈X d(x, Xn) by arg maxx∈XQ
d(x, Xn) for a suitable

finite XQ ⊂X

0/ Usual trick: XQ = regular grid or first Q points of a Low Discrepancy
Sequence in X

➠ ΦmM(Xn; XQ) ≤ ΦmM(Xn) (optimistic result)
requires Q = O(1/ǫd) to have ΦmM(Xn) < ΦmM(Xn; XQ) + ǫ

A/ & B/ Tools from algorithmic geometry (d . 5) ➔ exact result through the
construction of a suitable XQ

C/ MCMC XQ = adaptive grid
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

A/ Delaunay triangulation

X = hypercube, see (P. and Müller, 2012)

Delaunay

Xn (= n points in X = [0, 1]d), consider X ′
m, with m = (2d + 1)n points,

formed by Xn and its 2d reflections through the (d − 1)-dimensional faces of
X

Compute the Delaunay triangulation of X ′
m ➞ d-dimensional simplices (each

one having d + 1 vertices), with circumscribed spheres Sj not containing any
point of X ′

m in their interior

maxx∈X d(x, Xn) is attained for x = centre of one Sj

Take XQ = finite set given by centres of Sj that belong to X

Q = |XQ | = O(m⌈d/2⌉), computational time = O(m1+⌈d/2⌉) ➞ small d only
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

XQ = { centres of circumscribed spheres to Delaunay simplices }
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

XQ = { centres of circumscribed spheres to Delaunay simplices }
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n = 6 points, 45 triangles, 12 circles (the largest one is plotted)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

B/ Voronoï tessellation
Voronoï

X = polytope in Rd , see Cortés and Bullo (2005, 2009)

Partition Rd into n cells Ci containing points closest to xi than to any other
site in Xn

Each Ci = convex polyhedron in Rd (some are open and infinite)

X is a polytope of Rd ⇒ Ci ∩X = polytope ➞ tessellation of X into n
bounded convex polyhedra

maxx∈X d(x, Xn) is attained when x is a vertex of one of these polyhedra

Take XQ = collection of these vertices

Q = O(n⌈d/2⌉) ➞ small d only

Avoid infinite cells by adding a few (at least d + 1) generators x′
j out of X ,

far enough from X to ensure that the corresponding cells do not intersect X
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

XQ = { vertices of Voronoï cells truncated to X }
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

XQ = { vertices of Voronoï cells truncated to X }
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n = 6 points, 6 cells, Q = 14 vertices x(k) tested for mini ‖x(k) − xi‖
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C/ Estimation via MCMC

2 ideas: extreme-value theory + multilevel splitting

C.a) Borrow results from extreme-value theory used in global optimization
(Zhigljavsky and Žilinskas, 2007, Chap. 2), (Zhigljavsky and Hamilton, 2010)

Q points x(j) i.i.d. in X , compute the Q distances dj = d(x(j), Xn),
associated order statistics d1:Q ≥ d2:Q ≥ · · · ≥ dQ:Q
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C/ Estimation via MCMC

2 ideas: extreme-value theory + multilevel splitting

C.a) Borrow results from extreme-value theory used in global optimization
(Zhigljavsky and Žilinskas, 2007, Chap. 2), (Zhigljavsky and Hamilton, 2010)

Q points x(j) i.i.d. in X , compute the Q distances dj = d(x(j), Xn),
associated order statistics d1:Q ≥ d2:Q ≥ · · · ≥ dQ:Q

k fixed, 1 ≤ k ≤ Q (e.g., k = max{10, d}, Q ≫ d), estimate ΦmM(Xn) by

Φ̂mM(Xn) = d1:Q + Ck(d1:Q − dk:Q)

where Ck = b1/(bk − b1) with bi = Γ(i + 1/d)/Γ(i).
Also, the asymptotic confidence level of

Ik,δ =

[
d1:Q , d1:Q +

d1:Q − dk:Q

(1− δ1/k)−1/d − 1

]

tends to 1− δ for Q →∞
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C/ Estimation via MCMC

2 ideas: extreme-value theory + multilevel splitting

C.a) Borrow results from extreme-value theory used in global optimization
(Zhigljavsky and Žilinskas, 2007, Chap. 2), (Zhigljavsky and Hamilton, 2010)

Q points x(j) i.i.d. in X , compute the Q distances dj = d(x(j), Xn),
associated order statistics d1:Q ≥ d2:Q ≥ · · · ≥ dQ:Q

k fixed, 1 ≤ k ≤ Q (e.g., k = max{10, d}, Q ≫ d), estimate ΦmM(Xn) by

Φ̂mM(Xn) = d1:Q + Ck(d1:Q − dk:Q)

where Ck = b1/(bk − b1) with bi = Γ(i + 1/d)/Γ(i).
Also, the asymptotic confidence level of

Ik,δ =

[
d1:Q , d1:Q +

d1:Q − dk:Q

(1− δ1/k)−1/d − 1

]

tends to 1− δ for Q →∞
Precise estimation only for very large Q ➠ 2nd idea

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 25 /

129



1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj:Q for large j (small dj:Q) are useless
➠ multilevel splitting algorithm
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj:Q for large j (small dj:Q) are useless
➠ multilevel splitting algorithm

Replace all x(j) at distance dj from Xn less than some Lℓ by points sampled
independently (and uniformly) in the set X (Lℓ) = {x ∈X : d(x, Xn) > Lℓ},
for an increasing sequence of levels Lℓ
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C.b) the order statistics dj:Q for large j (small dj:Q) are useless
➠ multilevel splitting algorithm

Replace all x(j) at distance dj from Xn less than some Lℓ by points sampled
independently (and uniformly) in the set X (Lℓ) = {x ∈X : d(x, Xn) > Lℓ},
for an increasing sequence of levels Lℓ

Choose the level sequence of Guyader et al. (2011): at step ℓ, the next level
is Lℓ+1 = minj=1,...,Q dj

xj∗ (unique with probability one) such that dj∗ = Lℓ+1 is replaced by a new
point sampled in X (Lℓ+1)

Stop when |Ik,δ| < ǫ≪ 1 (δ = 0.05, say)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C.b) the order statistics dj:Q for large j (small dj:Q) are useless
➠ multilevel splitting algorithm

Replace all x(j) at distance dj from Xn less than some Lℓ by points sampled
independently (and uniformly) in the set X (Lℓ) = {x ∈X : d(x, Xn) > Lℓ},
for an increasing sequence of levels Lℓ

Choose the level sequence of Guyader et al. (2011): at step ℓ, the next level
is Lℓ+1 = minj=1,...,Q dj

xj∗ (unique with probability one) such that dj∗ = Lℓ+1 is replaced by a new
point sampled in X (Lℓ+1)

Stop when |Ik,δ| < ǫ≪ 1 (δ = 0.05, say)
Sampling (“uniformly”) in X (L) is difficult when L is large: use a MCMC
method with Metropolis-Hastings transitions as in (Guyader et al., 2011):

first replace xj∗ by a xj∗∗ chosen at random among the other xj

second, perform K successive steps of a random walk x→ Proj
X

(x + z), with
z ∼ N (0, σId), accept transition if and only if d(x + z, Xn) > Lℓ+1 = dj∗
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

xj∗ such that dj∗ = minj dj
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

replace by xj∗∗ chosen at random among other xj
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

perform K successive steps of random walk
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

. . . after enough iterations
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

log(computing time)
X = [0, 1]d , n = 50 (δ = 0.05, ǫ = 0.001, K = 10, Q = nd for MCMC)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Minimization of ΦmM(Xn) = maxx∈X mini ‖x− xi‖ ?

(not convex, non differentiable)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Minimization of ΦmM(Xn) = maxx∈X mini ‖x− xi‖ ?

(not convex, non differentiable)

0/ General global optimization method (e.g., simulated annealing): not
promising

A/ Voronoï tessellation + generalized gradient

B/ k-means and centroids

C/ Stochastic gradient
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

A/ d (very) small: Voronoï tessellation + generalized gradient
(ΦmM(·) not differentiable, but Lipschitz, with constant 1)

X
(k+1)
n = X

(k)
n − γk ∇̃ΦmM

(X (k)
n )

γk > 0, limk→∞ γk = 0 and
∑

k γk =∞
all columns of ∇̃ΦmM

(X (k)
n ) equal 0, except the i-th one equal to

(xi − x∗)/‖xi − x∗‖, where ‖xi − x∗‖ = ΦmM(Xn)
➠ move xi towards x∗
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

A/ d (very) small: Voronoï tessellation + generalized gradient
(ΦmM(·) not differentiable, but Lipschitz, with constant 1)

X
(k+1)
n = X

(k)
n − γk ∇̃ΦmM

(X (k)
n )

γk > 0, limk→∞ γk = 0 and
∑

k γk =∞
all columns of ∇̃ΦmM

(X (k)
n ) equal 0, except the i-th one equal to

(xi − x∗)/‖xi − x∗‖, where ‖xi − x∗‖ = ΦmM(Xn)
➠ move xi towards x∗

➠ one may also move each xi towards the furthest point x∗,i in its Voronoï cell
(Cortés and Bullo, 2005, 2009):

x
(k+1)
i = x

(k)
i − γk,i(x

(k)
i − x∗,i)/‖x(k)

i − x∗,i‖

Voronoï cells can be exact, or obtained by a discretization of X into a Q-point
set XQ
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Ex: X = simplex 0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1, n = 7 (radii = ΦmM(Xn))
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

B/ k-means and centroids

Minimize the L2 energy functional

E2(Tn, Xn) =
∫

X

(
n∑

i=1

ICi
(x) ‖x− xi‖2

)
dx =

n∑

i=1

∫

Ci

‖x− xi‖2 dx

where Tn = {Ci , i = 1, . . . , n} is a tessellation of X

ICi
= indicator function of Ci
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

B/ k-means and centroids

Minimize the L2 energy functional

E2(Tn, Xn) =
∫

X

(
n∑

i=1

ICi
(x) ‖x− xi‖2

)
dx =

n∑

i=1

∫

Ci

‖x− xi‖2 dx

where Tn = {Ci , i = 1, . . . , n} is a tessellation of X

ICi
= indicator function of Ci

Then (Du et al., 1999):

Ci = V(xi) = Voronoï region for the site xi , for all i
(⇒ E2(Tn, Xn) =

∫
X

d2(x, Xn) dx)

simultaneously xi = centroid of Ci (center of gravity) for all i :
xi = (

∫
Ci

x dx)/vol(Ci)

➞ such a Xn should thus perform reasonably well in terms of space-filling
(Lekivetz and Jones, 2015)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Lloyd’s method (1982): (= fixed-point iterations)

➞ Move each xi to the centroid of its own Voronoï cell, repeat . . .

➠ Algorithmic geometry (Voronoï tessellation) if d very small,
use a finite set XQ otherwise
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

30 points from Sobol’ LDS
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

k-means clustering (30 clusters) of 1,000 point from Sobol’ LDS
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

However. . . minimax-optimal design is related to the construction of a centroidal
tessellation for

Eq(Tn, Xn) =
∫

X

(
n∑

i=1

ICi
(x) ‖x− xi‖q

)
dx =

n∑

i=1

∫

Ci

‖x− xi‖q dx

for q →∞ (see (Mak and Joseph, 2016))
➠ use Chebyshev centers
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X
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)
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∫
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Variant of Lloyd’s method:

0) Select X
(1)
n and ǫ≪ 1, set k = 1

1) Compute the Voronoï tessellation {Vi , i = 1, . . . , n} of X (or XQ) based on
X

(k)
n

2) For i = 1, . . . , n
➤ determine the smallest ball B(ci , ri) enclosing Vi (= convex QP problem)
➤ replace xi by ci in X

(k)
n (Chebyshev center of Vi)

3) if ΦmM(X(k)
n )− ΦmM(X(k+1)

n ) < ǫ, then stop; otherwise k ← k + 1, return to
step 1

➞ Move each xi to the Chebyshev center of its own Voronoï cell, repeat . . .

[ΦmM(X
(k)
n ) decreases monotonically, convergence to a local minimum (or a saddle point)]
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}
(vertices of a Voronoï cell, points of XQ closest to xi):

⇔ minimize f (c) = maxi=1,...,N ‖zi − c‖2 with respect to c ∈ Rd
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}
(vertices of a Voronoï cell, points of XQ closest to xi):

⇔ minimize f (c) = maxi=1,...,N ‖zi − c‖2 with respect to c ∈ Rd

Direct problem = convex QP
Take any c0 ∈ Rd , minimize ‖c− c0‖2 + t

with respect to (c, t) ∈ Rd+1,
subject to ‖zi − c0‖2 − 2(zi − c0)⊤(c− c0) ≤ t , i = 1, . . . , N

(N linear constraints)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}

Dual problem = similar to an optimal design problem:
maximize trace[V(ξ)], with ξ a prob. measure on Z,

V(ξ) = covariance matrix for ξ
center of the ball = c(ξ) =

∫
Z z ξ(dz)
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}

Dual problem = similar to an optimal design problem:
maximize trace[V(ξ)], with ξ a prob. measure on Z,

V(ξ) = covariance matrix for ξ
center of the ball = c(ξ) =

∫
Z z ξ(dz)

➞ Algorithms of the exchange-type (Yildirim, 2008)
(≈ Fedorov algorithm for D-optimal design: optimal step length is available)

➞ One can remove inessential points from Z: (P., 2017c)
➠ Combine this with the use of a standard QP solver for the direct problem
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C/ Stochastic gradient (P., 2017)

d is large: Lloyd’s algorithm cannot be used (computational geometry
is too complicated, regular grids or LDS are not dense enough)

minimize Eq
∗(Xn) =

∫

X

(
n∑

i=1

IVi
(x) ‖x− xi‖q

)
dx

with Vi = Voronoï region for the site xi
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

C/ Stochastic gradient (P., 2017)

d is large: Lloyd’s algorithm cannot be used (computational geometry
is too complicated, regular grids or LDS are not dense enough)

minimize Eq
∗(Xn) =

∫

X

(
n∑

i=1

IVi
(x) ‖x− xi‖q

)
dx

with Vi = Voronoï region for the site xi

➞ Stochastic gradient algorithm:
(MacQueen, 1967) for q = 2, (Cardot et al., 2012) for q = 1

0) k = 1, X
(1)
n , set ni,0 = 0 for all i = 1, . . . , n

1) sample X uniformly distributed in X

2) find i∗ = arg mini=1,...,n ‖X − x
(k)
i ‖, ni∗,k ← ni∗,k + 1 [← X ∈ cell V∗

i ]

3) x
(k+1)
i∗ = x

(k)
i∗ − γi∗,k q‖X − x

(k)
i∗ ‖q−2 (x(k)

i∗ − X )︸ ︷︷ ︸
=gradient

, k ← k + 1,

return to step 1, stop when k = K
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Typical choice for γi∗,k = c/nα
i∗,k , with α ∈ (1/2, 1]

and consider X̂n = 1
K

∑K
k=1 X

(k)
n when α < 1

Little information to store (no grid or other finite approximation of X )
➞ can also be used with large d
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Example: n = 10 d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2d+8 points

from a LDS (Sobol’)

d = 2, n = 20
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Example: n = 10 d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2d+8 points

from a LDS (Sobol’)

d = 3, n = 30
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Example: n = 10 d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2d+8 points

from a LDS (Sobol’)

d = 4, n = 40
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1 Geometrical space-filling criteria 1.3 miniMax (inter-distance) criterion

Example:

d = 10, n = 100
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

1.4 Maximin criterion ΦMm(Xn) = mini 6=j dij = mini 6=j ‖xi − xj‖

Easy to compute (from distances dij between pairs of points)
ΦMm(Xn) = minimum of convex functions ⇒ not concave, non differentiable

➠ Use a global optimization method (e.g., simulated annealing)
➠ Local descent with some ad’hoc initialization

(e.g., random ➠ multistart)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

1.4 Maximin criterion ΦMm(Xn) = mini 6=j dij = mini 6=j ‖xi − xj‖

Easy to compute (from distances dij between pairs of points)
ΦMm(Xn) = minimum of convex functions ⇒ not concave, non differentiable

➠ Use a global optimization method (e.g., simulated annealing)
➠ Local descent with some ad’hoc initialization

(e.g., random ➠ multistart)
Difficult problem, but:

ΦMm(·) is global Lipschitz (with constant
√

2)
→ ΦMm(·) is differentiable almost everywhere (Cortés and Bullo, 2005, 2009)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Sub-differential ∂ΦMm(Xn) easy to compute:

∂ΦMm(Xn) = co{∂ΦMm ij(Xn) : ‖xi − xj‖ = min
k 6=ℓ
‖xk − xℓ‖}

with ΦMm ij(Xn) = ‖xi − xj‖ and

sub-gradient ∂ΦMm ij(Xn) = (0, . . . , 0,
xi − xj

‖xi − xj‖︸ ︷︷ ︸
ith position

, 0, . . . , 0,

− xi − xj

‖xi − xj‖︸ ︷︷ ︸
jth position

, 0, . . . , 0)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Sub-gradient algorithm to maximize ΦMm(·):

Xk+1
n = ProjX

[
Xk

n + γk ∂ΦMm ij(Xk
n)
]

for i , j such that ‖xi − xj‖ = ΦMm(Xk
n)

and γk ց 0,
∑

k γk =∞

We can also force all points to remain far away from the boundary of X :
ΦMm B(X )(Xn) = min{ΦMm(Xn), 2 mini d [xi , boundary(X )]}
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Ex: local maximization of ΦMm B(X )(Xn), n = 7, X = simplex 0 ≤ x1, 0 ≤ x2,
x1 + x2 ≤ 1
(radius = 1

2 ΦMm B(X )(Xn))
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

A few alternatives:
1) Billiards (Lubachevsky and Stillinger, 1990; Lubachevsky, 1991)
Principle :

Xn → n balls in X

random initial velocities
elastic collisions between balls and against boundaries
balls radius R(t) linearly increasing with time t

➠ jamming occurs for a local max. of ΦMm(·)
Rather efficient for d = 2 (if R(t) increases slowly enough. . . )
but not very efficient for d > 2
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

n = 25 (R(t) increases too fast)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

n = 25 (R(t) increases slowly enough)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

n = 441
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

2) miniMax for Maximin
Principle: repeat the following steps

a) Choose xj from Xn,
find x∗ in X such that
mini 6=j ‖x∗ − xi‖ =

maxx∈X mini 6=j ‖x− xi‖
(a byproduct of calculation of
ΦmM(Xn\j))
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

2) miniMax for Maximin
Principle: repeat the following steps

b) Replace xj by x∗

— which explains that
ΦmM(X∗

Mm,n) ≤ ΦMm(X∗
Mm,n)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Related to “coffee-house design”: start with X0 = ∅, include points one by one
x1 at the centre of X , then xn+1 furthest point from Xn, n ≥ 1
(called coffee-house design (Müller, 2007, Chap. 4))
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Related to “coffee-house design”: start with X0 = ∅, include points one by one
x1 at the centre of X , then xn+1 furthest point from Xn, n ≥ 1
(called coffee-house design (Müller, 2007, Chap. 4))

Guarantees EffmM(Xn) =
Φ∗

mM,n

ΦmM (Xn) ≥ 1
2 and EffMm(Xn) = ΦMm(Xn)

Φ∗
Mm,n

≥ 1
2 for all n

with ΦMm(Xn) = mini 6=j∈{1,...,n} ‖xi − xj‖ the maximin-distance criterion,
and Φ∗

Mm,n its optimal (maximum) value
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Related to “coffee-house design”: start with X0 = ∅, include points one by one
x1 at the centre of X , then xn+1 furthest point from Xn, n ≥ 1
(called coffee-house design (Müller, 2007, Chap. 4))

Guarantees EffmM(Xn) =
Φ∗

mM,n

ΦmM (Xn) ≥ 1
2 and EffMm(Xn) = ΦMm(Xn)

Φ∗
Mm,n

≥ 1
2 for all n

with ΦMm(Xn) = mini 6=j∈{1,...,n} ‖xi − xj‖ the maximin-distance criterion,
and Φ∗

Mm,n its optimal (maximum) value

Proof. (Gonzalez, 1985) — repeated later

by construction:
ΦMm(Xn+1) , minxi 6=xj ∈Xn+1 ‖xi − xj‖ = d(xn+1, Xn) = ΦmM(Xn)

X∗
n a ΦmM-optimal design: the n balls B(x∗

i , ΦmM(X∗
n )), x∗

i ∈ X∗
n , cover X

⇒ one of them contains 2 points xi , xj in Xn+1 for any Xn+1 (n + 1 points)
⇒ ΦMm(Xn+1) ≤ ‖xi − xj‖ ≤ 2ΦmM(X∗

n )
⇒ Φ∗

Mm,n+1 ≤ 2ΦmM(X∗
n ) ≤ 2ΦmM(Xn) = ΦMm(Xn+1)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

X = [0, 1]2, n = 7
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

X = [0, 1]2, n = 7
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EffmM(Xn), n = 1 . . . , 50
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Regular construction ➠ large
fluctuations of EffmM(Xn)
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Remark: a Maximin distance design is useful for the miniMax criterion
Principle:
Points from a Maximin-optimal X∗

Mm,n tend to lie along the boundary of X

➠ Apply an homothecy with center c ∈ int(X ) and ratio 1/(1 + ǫ) to all points
in X∗

Mm,n (X = [0, 1]d , c = 1
2 1 ➠ Xn(ǫ) = c + 1

1+ǫ (X∗
Mm,n − c))

d = 2, n = 7, X∗
Mm,n Maximin-optimal
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Remark: a Maximin distance design is useful for the miniMax criterion
Principle:
Points from a Maximin-optimal X∗

Mm,n tend to lie along the boundary of X

➠ Apply an homothecy with center c ∈ int(X ) and ratio 1/(1 + ǫ) to all points
in X∗

Mm,n (X = [0, 1]d , c = 1
2 1 ➠ Xn(ǫ) = c + 1

1+ǫ (X∗
Mm,n − c))

ΦmM(Xn(ǫ)), 0 ≤ ǫ ≤ 1 ➠ ǫ∗ = 0.2
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1 Geometrical space-filling criteria 1.4 Maximin (intra-distances) criterion

Remark: a Maximin distance design is useful for the miniMax criterion
Principle:
Points from a Maximin-optimal X∗

Mm,n tend to lie along the boundary of X

➠ Apply an homothecy with center c ∈ int(X ) and ratio 1/(1 + ǫ) to all points
in X∗

Mm,n (X = [0, 1]d , c = 1
2 1 ➠ Xn(ǫ) = c + 1

1+ǫ (X∗
Mm,n − c))

Xn(ǫ∗) ➠ ΦmM(Xn(ǫ∗)) = 0.3181 (true miniMax optimum = 0.2743)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Notation: X = [0, 1]d , Vd = vol[B(0, 1)] = πd/2/Γ(d/2 + 1)
⊲ Φ∗

mM,n , minXn
ΦmM(Xn), Φ∗

Mm,n , maxXn
ΦMm(Xn) ⊳
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Notation: X = [0, 1]d , Vd = vol[B(0, 1)] = πd/2/Γ(d/2 + 1)
⊲ Φ∗

mM,n , minXn
ΦmM(Xn), Φ∗

Mm,n , maxXn
ΦMm(Xn) ⊳

1
2 ΦMm(Xn) ≤ ΦmM(Xn), for all Xn (n ≥ 2)

(the n balls B(xi ,
1
2 ΦMm(Xn)) do not cover X )
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

1
2 ΦMm(Xn+1) ≤ Φ∗

mM,n, for all Xn+1 (n ≥ 1)

Proof: one of the n balls B(zi , Φ∗
mM,n), zi ∈ X∗

mM,n, contains 2 points xi and
xj from Xn+1

=⇒ ΦMm(Xn+1) ≤ ‖xi − xj‖ ≤ 2Φ∗
mM,n
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

1
2 ΦMm(Xn+1) ≤ Φ∗

mM,n, for all Xn+1 (n ≥ 1)

Proof: one of the n balls B(zi , Φ∗
mM,n), zi ∈ X∗

mM,n, contains 2 points xi and
xj from Xn+1

=⇒ ΦMm(Xn+1) ≤ ‖xi − xj‖ ≤ 2Φ∗
mM,n

The n balls B(xi , ΦmM(Xn)) cover X , for all Xn
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Sphere covering ⇒ nVd (Φ∗
mM,n)d > 1

R∗
n < Φ∗

mM,n with R∗
n = (nVd)−1/d
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Sphere covering ⇒ nVd (Φ∗
mM,n)d > 1

Φ∗
mM,n ≤ ΦmM(X∗

Mm,n) ≤ ΦMm(X∗
Mm,n) = Φ∗

Mm,n

(proof by contradiction)

R∗
n < Φ∗

mM,n ≤ Φ∗
Mm,n with R∗

n = (nVd)−1/d
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Sphere covering ⇒ nVd (Φ∗
mM,n)d > 1

Φ∗
mM,n ≤ ΦmM(X∗

Mm,n) ≤ ΦMm(X∗
Mm,n) = Φ∗

Mm,n

(proof by contradiction)

packing of n balls with radius R in [0, 1]d

⇒ nVd Rd < 1, i.e., R < R∗
n

(and R∗
n < 1

2 for n > ⌈2d/Vd⌉)

R∗
n < Φ∗

mM,n ≤ Φ∗
Mm,n <

2R∗
n

1−2R∗
n

with R∗
n = (nVd)−1/d

(these bounds are rather loose — factor 2
1−2R∗

n
> 2)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Other upper bounds on Φ∗
mM,n = ΦmM(X∗

n ) when X = [0, 1]d

Upper bound: use any design!

md -point regular grid in X :
Φ∗

mM,md ≤
√

d
2m

:

Take m = ⌊n1/d⌋, so that md ≤ n and Φ∗
mM,n ≤ Φ∗

mM,md , therefore

Φ∗
mM,n ≤ R

∗
n =

√
d

2⌊n1/d ⌋
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

d = 2, R∗
n ≤ Φ∗

mM,n ≤ R
∗
n
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

d = 5, R∗
n ≤ Φ∗

mM,n ≤ R
∗
n
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

d = 10, R∗
n ≤ Φ∗

mM,n ≤ R
∗
n
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

d = 20, R∗
n ≤ Φ∗

mM,n ≤ R
∗
n
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Why are such bounds useful?

They give an idea of the suboptimality of a given design (for small d)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Why are such bounds useful?

They give an idea of the suboptimality of a given design (for small d)
They help understand algorithms:

1/ Method "miniMax for Maximin"

uses ΦmM(X∗

Mm,n) ≤ ΦMm(X∗

Mm,n)

2/ Greedy algorithm of "coffee-house design"
0) Choose x1 ∈ X , set X1 = {x1}
1) For k = 1, 2, . . ., find x∗ = arg maxx∈X d(x, Xk), set Xk+1 = Xk ∪ {x∗}
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

A bit primitive . . . but (Gonzalez, 1985) :

Φ∗
mM,k

ΦmM(Xk)
≥ 1

2
(k ≥ 1) and

ΦMm(Xk)
Φ∗

Mm,k

≥ 1
2

(k ≥ 2)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

A bit primitive . . . but (Gonzalez, 1985) :

Φ∗
mM,k

ΦmM(Xk)
≥ 1

2
(k ≥ 1) and

ΦMm(Xk)
Φ∗

Mm,k

≥ 1
2

(k ≥ 2)

Proof: par construction, ΦMm(Xk+1) = ΦmM(Xk) for all k ≥ 1

1
2 ΦMm(Xk+1) ≤ Φ∗

mM,k , for all Xk+1 (k ≥ 1) implies

a) Φ∗
mM,k ≥ (1/2) ΦmM(Xk) and

b) Φ∗
Mm,k+1 ≤ 2Φ∗

mM,k ≤ 2 ΦmM(Xk) = 2 ΦMm(Xk+1)

Regularized Maximin
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Remark:

There exist better bounds d = 2, 3: packing n balls with radius R in [0, 1]d

⇒ nVd Rd < δd = packing density, with
• δ2 = π

√
3/6 ≃ 0.9069

[Lagrange, 1773 for lattices, Tóth 1940 for general packings]
• δ3 = π

√
2/6 ≃ 0.7405

[Kepler conjecture 1611, Gauss 1831 for lattices, Hales-Ferguson 2006 for
general packings]

Little is known for d > 3: best (densest) lattice packing known for d ≤ 8,
best general packings are known for d = 8 (Viazovska, 2016) and d = 24
(Cohn et al., 2017)

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 62 /

129



1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Remark:

There exist better bounds d = 2, 3: packing n balls with radius R in [0, 1]d

⇒ nVd Rd < δd = packing density, with
• δ2 = π

√
3/6 ≃ 0.9069

[Lagrange, 1773 for lattices, Tóth 1940 for general packings]
• δ3 = π

√
2/6 ≃ 0.7405

[Kepler conjecture 1611, Gauss 1831 for lattices, Hales-Ferguson 2006 for
general packings]

Little is known for d > 3: best (densest) lattice packing known for d ≤ 8,
best general packings are known for d = 8 (Viazovska, 2016) and d = 24
(Cohn et al., 2017)

There exist recent results (Wahl et al., 2014) on the distribution of ΦMm(Xn)
when the xi are i.i.d. uniformly in [0, 1]d

(but all ‖xi − xj‖2 tend to concentrate around d/6 when d gets large)
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⇒ nVd Rd < δd = packing density, with
• δ2 = π
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[Lagrange, 1773 for lattices, Tóth 1940 for general packings]
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√
2/6 ≃ 0.7405

[Kepler conjecture 1611, Gauss 1831 for lattices, Hales-Ferguson 2006 for
general packings]

Little is known for d > 3: best (densest) lattice packing known for d ≤ 8,
best general packings are known for d = 8 (Viazovska, 2016) and d = 24
(Cohn et al., 2017)

There exist recent results (Wahl et al., 2014) on the distribution of ΦMm(Xn)
when the xi are i.i.d. uniformly in [0, 1]d

(but all ‖xi − xj‖2 tend to concentrate around d/6 when d gets large)

Regularized Maximin
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 2

d = 2 using R∗
n < Φ∗

mM,n ≤ Φ∗
Mm,n < min{ 2R∗

n

1−2R∗
n

,
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 2

d = 2 with moreover Φ∗
Mm,n < 1
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 2

d = 2 with moreover Φ∗
Mm,n <

1+
√

1+2 (n−1) /
√

3
n−1 (Oler, 1961)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 2

d = 2, including Φ∗
Mm,n (proved up to n = 30 http://www.packomania.com/)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 2

d = 2, including Φ∗
Mm−Lh,n (proved up to n = 70 van Dam et al. (2007),

http://www.spacefillingdesigns.nl/)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 2

d = 2, including Φ∗
mM−Lh,n (proved up to n = 27 (van Dam, 2008))
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 3

d = 3 using R∗
n < Φ∗

mM,n ≤ Φ∗
Mm,n < min{ 2R∗

n

1−2R∗
n
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d}

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

n

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 64 /

129



1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 3

d = 3 with moreover Φ∗
Mm,n < 1

(n/
√

2)1/3−1
(packing density)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 3

d = 3, including Φ∗
Mm,n (http://www.randomwalk.de/sphere/incube/)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 3

d = 3, including Φ∗
Mm−Lh,n (proved up to n = 15

http://www.spacefillingdesigns.nl/)
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 5

d = 5 using R∗
n < Φ∗

mM,n ≤ Φ∗
Mm,n < min{ 2R∗

n

1−2R∗
n
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√
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1 Geometrical space-filling criteria 1.5 Relations between ΦMm and ΦmM (d ≥ 2)

Bounds on Φ∗Mm,n and Φ∗mM,n: d = 5

d = 5, including Φ∗
Mm−Lh,n (proved up to n = 6

http://www.spacefillingdesigns.nl/)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

1.6 Regularized Maximin, energy

Maximin
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

1.6 Regularized Maximin, energy

Maximin Regularization: we account for distances
between all pairs of points
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Denote dij , ‖xi − xj‖ ➠ ΦMm(Xn) = mini 6=j dij

Φ[q](Xn) ,

[
∑

i<j

d−q
ij

]−1/q

and Φ[q](Xn) ,

[
1
N

∑

i<j

d−q
ij

]−1/q

with N =
(

n
2

)
= n(n − 1)/2

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 67 /

129



1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Denote dij , ‖xi − xj‖ ➠ ΦMm(Xn) = mini 6=j dij

Φ[q](Xn) ,

[
∑

i<j

d−q
ij

]−1/q

and Φ[q](Xn) ,

[
1
N

∑

i<j

d−q
ij

]−1/q

with N =
(

n
2

)
= n(n − 1)/2

Then, Φ[q](Xn) ≤ ΦMm(Xn) ≤ Φ[q](Xn) ≤ N1/q Φ[q](Xn) , q > 0,

(monotonic convergence to ΦMm(Xn) on both sides when q →∞)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Denote dij , ‖xi − xj‖ ➠ ΦMm(Xn) = mini 6=j dij

Φ[q](Xn) ,

[
∑

i<j

d−q
ij

]−1/q

and Φ[q](Xn) ,

[
1
N

∑

i<j

d−q
ij

]−1/q

with N =
(

n
2

)
= n(n − 1)/2

Then, Φ[q](Xn) ≤ ΦMm(Xn) ≤ Φ[q](Xn) ≤ N1/q Φ[q](Xn) , q > 0,

(monotonic convergence to ΦMm(Xn) on both sides when q →∞)

By continuity, Φ[0](Xn) = exp
[

1
N

∑
i<j log(dij)

]
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let Xn
∗
[q] be optimal for Φ[q]:

ΦMm(Xn
∗
[q])

Φ∗
Mm,n

≥ N−1/q , tends to 1 as q →∞

(Maximin efficiency > 1− ǫ for q > 2 log(n)
ǫ )
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let Xn
∗
[q] be optimal for Φ[q]:

ΦMm(Xn
∗
[q])

Φ∗
Mm,n

≥ N−1/q , tends to 1 as q →∞

(Maximin efficiency > 1− ǫ for q > 2 log(n)
ǫ )

➤ Maximize Φ[q] is equivalent to minimizing the energy
Eq(Xn) = 2

n(n−1)

∑n
i,j=1, i 6=j ‖xi − xj‖−q

Audze and Eglais (1977) have proposed q = 2; when q . 5 optimization of Lh
designs is easier than for ΦMm (Morris and Mitchell, 1995)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let Xn
∗
[q] be optimal for Φ[q]:

ΦMm(Xn
∗
[q])

Φ∗
Mm,n

≥ N−1/q , tends to 1 as q →∞

(Maximin efficiency > 1− ǫ for q > 2 log(n)
ǫ )

➤ Maximize Φ[q] is equivalent to minimizing the energy
Eq(Xn) = 2

n(n−1)

∑n
i,j=1, i 6=j ‖xi − xj‖−q

Audze and Eglais (1977) have proposed q = 2; when q . 5 optimization of Lh
designs is easier than for ΦMm (Morris and Mitchell, 1995)

Regularized version Φ[q](Xn): non-concave but differentiable
➠ local maximization “easy” for q not too large . . .

but q should be large enough to get a good approximation of ΦMm(Xn)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Let Xn
∗
[q] be optimal for Φ[q]:

ΦMm(Xn
∗
[q])

Φ∗
Mm,n

≥ N−1/q , tends to 1 as q →∞

(Maximin efficiency > 1− ǫ for q > 2 log(n)
ǫ )

➤ Maximize Φ[q] is equivalent to minimizing the energy
Eq(Xn) = 2

n(n−1)

∑n
i,j=1, i 6=j ‖xi − xj‖−q

Audze and Eglais (1977) have proposed q = 2; when q . 5 optimization of Lh
designs is easier than for ΦMm (Morris and Mitchell, 1995)

Regularized version Φ[q](Xn): non-concave but differentiable
➠ local maximization “easy” for q not too large . . .

but q should be large enough to get a good approximation of ΦMm(Xn)

Relation with potential theory Landkof (1972); Saff (2010), P., Wynn and
Zhigljavsky (2016): Xn

∗
[q] = Fekete points, asymptotically distributed (n→∞)

uniformly in X if q ≥ d
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Xn Maximin-optimal, n = 7, d = 2: ΦMm and bounds Φ[q] and Φ[q]
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

6) Regularized Maximin with Nearest Neighbors (NN)

Maximin
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

6) Regularized Maximin with Nearest Neighbors (NN)

Maximin Regularization: we account for the
distance between each point and its NN
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

We can write ΦMm(Xn) = minid
∗
i , with d∗

i , minj 6=i ‖xi − xj‖
= distance to NN of Xi

Define

Φ[NN,q](Xn) =

[
n∑

i=1

(d∗
i )−q

]−1/q

, Φ[NN,q](Xn) =

[
n∑

i=1

(d∗
i )−q

n

]−1/q

(we only regularize mini)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

We can write ΦMm(Xn) = minid
∗
i , with d∗

i , minj 6=i ‖xi − xj‖
= distance to NN of Xi

Define

Φ[NN,q](Xn) =

[
n∑

i=1

(d∗
i )−q

]−1/q

, Φ[NN,q](Xn) =

[
n∑

i=1

(d∗
i )−q

n

]−1/q

(we only regularize mini)

Then, Φ[NN,q](Xn) ≤ ΦMm(Xn) ≤ n1/q Φ[NN,q](Xn) , q > 0

(monotonic convergence to ΦMm(Xn) on both sides when q →∞)

By continuity: Φ[NN,0](Xn) = exp
[∑n

i=1
log(d∗

i )
n

]
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximin efficiency:
ΦMm(Xn

∗
[NN,q])

Φ∗
Mm,n

≥ n−1/q ,

with Xn
∗
[NN,q] optimal for Φ[NN,q]

Maximin efficiency > 1− ǫ for q > log(n)
ǫ

→ we gain a factor 2 comparatively to Φ[q](Xn)
(we only regularized mini)
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Xn Maximin-optimal, n = 7, d = 2:
ΦMm and regularization with Φ[NN,q]
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Xn Maximin-optimal, n = 7, d = 2:
ΦMm and regularization with Φ[NN,q] and Φ[q]
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximum projection designs (Joseph et al., 2015)

➠ modification of regularized Maximin that produces designs with good
space-filling properties in all lower dimensional subspaces
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximum projection designs (Joseph et al., 2015)

➠ modification of regularized Maximin that produces designs with good
space-filling properties in all lower dimensional subspaces

regularized Maximin: maximize Φ[q](Xn) ,
[∑

i<j d−q
ij

]−1/q

where dij , ‖xi − xj‖, i , j = 1, . . . , n
(Φ[q](Xn)→ ΦMm(Xn) = mini 6=j dij as q →∞)

Replace ℓ2 distance dij by weighted-ℓ2 distance (measure of importance on factors)

dij,w =
[∑d

k=1 wk({xi}k − {xj}k)2
]1/2

➞ minimize
∑

i<j d−q
ij,w for a large q, but which w?
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Maximum projection designs (Joseph et al., 2015)

➠ modification of regularized Maximin that produces designs with good
space-filling properties in all lower dimensional subspaces

regularized Maximin: maximize Φ[q](Xn) ,
[∑

i<j d−q
ij

]−1/q

where dij , ‖xi − xj‖, i , j = 1, . . . , n
(Φ[q](Xn)→ ΦMm(Xn) = mini 6=j dij as q →∞)

Replace ℓ2 distance dij by weighted-ℓ2 distance (measure of importance on factors)

dij,w =
[∑d

k=1 wk({xi}k − {xj}k)2
]1/2

➞ minimize
∑

i<j d−q
ij,w for a large q, but which w?

Take w ∈ Pd = {w : wk ≥ 0,
∑d

k=1 wk = 1}
Put a uniform prior π on (w1, . . . , wd−1)

For q = 2d , Ew

{∑
i<j d−q

ij,w

}
= 1

[(d−1)!]2
∑

i<j
1∏

d

k=1
({xi }k −{xj }k )2

Very promising!
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Remark: measures of regularity (and not of space fillingness!)

R1(Xn) , var1/2(d∗
i )

E(d∗
i

) =
[ 1

n

∑
n

i=1
(d∗

i −d̄)2]1/2

d̄
, with d̄ , E(d∗

i ) = 1
n

∑n
i=1 d∗

i

= 0 for a regular grid
▲ invariant by scale transformation ▲

sometimes called “covering measure”. . . which it is not
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Remark: measures of regularity (and not of space fillingness!)

R1(Xn) , var1/2(d∗
i )

E(d∗
i

) =
[ 1

n

∑
n

i=1
(d∗

i −d̄)2]1/2

d̄
, with d̄ , E(d∗

i ) = 1
n

∑n
i=1 d∗

i

= 0 for a regular grid
▲ invariant by scale transformation ▲

sometimes called “covering measure”. . . which it is not

R2(Xn) , max1≤i≤n d∗
i

min1≤i≤n d∗
i

(≥ 1, = 1 for a regular grid)
▲ invariant by scale transformation ▲
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1 Geometrical space-filling criteria 1.6 Regularized Maximin, energy

Remark: measures of regularity (and not of space fillingness!)

R1(Xn) , var1/2(d∗
i )

E(d∗
i

) =
[ 1

n

∑
n

i=1
(d∗

i −d̄)2]1/2

d̄
, with d̄ , E(d∗

i ) = 1
n

∑n
i=1 d∗

i

= 0 for a regular grid
▲ invariant by scale transformation ▲

sometimes called “covering measure”. . . which it is not

R2(Xn) , max1≤i≤n d∗
i

min1≤i≤n d∗
i

(≥ 1, = 1 for a regular grid)
▲ invariant by scale transformation ▲

These two designs have the same R1 and R2 values
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

2 Uniformity: quasi Monte-Carlo, discrepancy

2.1 Entropy, optimal graphs

Consider Xn = (x1, . . . , xn) as a sample of size n of variables xi

i.i.d. in X with p.d.f. ϕ(·)

Rényi entropy of ϕ(·) of order α :
Hα

∗(ϕ) , 1
1−α log

∫
ϕα(x) dx (α 6= 1)

Tsallis entropy of ϕ(·) of order α :
Hα(ϕ) , 1

α−1

[
1−

∫
ϕα(x) dx

]
(α 6= 1)

which tend to
H1(ϕ) , − log

∫
ϕ(x) log[ϕ(x)] dx (Shannon entropy) as α→ 1
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

2 Uniformity: quasi Monte-Carlo, discrepancy

2.1 Entropy, optimal graphs

Consider Xn = (x1, . . . , xn) as a sample of size n of variables xi

i.i.d. in X with p.d.f. ϕ(·)

Rényi entropy of ϕ(·) of order α :
Hα

∗(ϕ) , 1
1−α log

∫
ϕα(x) dx (α 6= 1)

Tsallis entropy of ϕ(·) of order α :
Hα(ϕ) , 1

α−1

[
1−

∫
ϕα(x) dx

]
(α 6= 1)

which tend to
H1(ϕ) , − log

∫
ϕ(x) log[ϕ(x)] dx (Shannon entropy) as α→ 1

➤ For α > 0, Hα
∗(ϕ), Hα(ϕ) maximum for ϕ uniform over X
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

2 Uniformity: quasi Monte-Carlo, discrepancy

2.1 Entropy, optimal graphs

Consider Xn = (x1, . . . , xn) as a sample of size n of variables xi

i.i.d. in X with p.d.f. ϕ(·)

Rényi entropy of ϕ(·) of order α :
Hα

∗(ϕ) , 1
1−α log

∫
ϕα(x) dx (α 6= 1)

Tsallis entropy of ϕ(·) of order α :
Hα(ϕ) , 1

α−1

[
1−

∫
ϕα(x) dx

]
(α 6= 1)

which tend to
H1(ϕ) , − log

∫
ϕ(x) log[ϕ(x)] dx (Shannon entropy) as α→ 1

➤ For α > 0, Hα
∗(ϕ), Hα(ϕ) maximum for ϕ uniform over X

➠ Construct an estimate Ĥnα of H∗
α(ϕ) from Xn,

use Ĥnα as design criterion, to be maximized w.r.t. Xn
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

▲ Entropie of “distribution of xi” 6= entropy criterion for Gaussian Random
Fields, see § II-1.3 (although relations exist)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

▲ Entropie of “distribution of xi” 6= entropy criterion for Gaussian Random
Fields, see § II-1.3 (although relations exist)

1) A rather natural idea: plug-in

Construct a kernel estimator ϕ̂n(x) = 1
n

∑n
i=1 Kσ2(x− xi),

Kσ2(·) = p.d.f. with mean 0 and variance σ2Id (small enough)

Use Hα(ϕ̂n), α > 0, as design criterion

Jourdan and Franco (2010) use H1(ϕ), computationally costly for large d
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

▲ Entropie of “distribution of xi” 6= entropy criterion for Gaussian Random
Fields, see § II-1.3 (although relations exist)

1) A rather natural idea: plug-in

Construct a kernel estimator ϕ̂n(x) = 1
n

∑n
i=1 Kσ2(x− xi),

Kσ2(·) = p.d.f. with mean 0 and variance σ2Id (small enough)

Use Hα(ϕ̂n), α > 0, as design criterion

Jourdan and Franco (2010) use H1(ϕ), computationally costly for large d

A peculiarity of H2: if Kσ2(·) corresponds to N (0, σ2), then∫
Rd ϕ̂2

n(x) dx = 1
n2

∑n
i,j=1 K2σ2(xi − xj)

➠ H2(ϕ̂n) = 1− 1
n2

∑n
i,j=1 K2σ2(xi − xj)

= intra-distances criterion
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

2) Optimal graphs:

n points Xn

(here, a Lh with n = 10, d = 2)

Traveling Salesman (TS) graph GTS(Xn)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

2) Optimal graphs:

n points Xn

(here, a Lh with n = 10, d = 2)

Traveling Salesman (TS) graph GTS(Xn)

(Beardwood et al., 1959): xi i.i.d. with p.d.f. ϕ, the edges ei of GTS(Xn) satisfy:
∑

ei ∈GTS (Xn) |ei |
n(d−1)/d

→ C(d)
∫

ϕ(d−1)/d(x) dx a.s. , n→∞

Later (Steele, 1981) considered other Euclidean functionals on Xn, (Redmond and
Yukich, 1994) used the notion of quasi-additivity
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

Many results. . . (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). . .

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

with G(Xn) Minimum Spanning Tree (MST), NN, TS, Voronoï, Delaunay, Sphere
of Influence, Gabriel. . . (different types of convergence (Lp), different conditions
on ϕ and β. . . )
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

Many results. . . (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). . .

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

with G(Xn) Minimum Spanning Tree (MST), NN, TS, Voronoï, Delaunay, Sphere
of Influence, Gabriel. . . (different types of convergence (Lp), different conditions
on ϕ and β. . . )

Xn a Lh with n = 10, d = 2: GTS(Xn)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

Many results. . . (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). . .

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

with G(Xn) Minimum Spanning Tree (MST), NN, TS, Voronoï, Delaunay, Sphere
of Influence, Gabriel. . . (different types of convergence (Lp), different conditions
on ϕ and β. . . )

Xn a Lh with n = 10, d = 2: GMST (Xn)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

Many results. . . (Redmond and Yukich, 1996; Yukich, 1998; Penrose and Yukich,
2003; Wade, 2007; Penrose and Yukich, 2011). . .

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

with G(Xn) Minimum Spanning Tree (MST), NN, TS, Voronoï, Delaunay, Sphere
of Influence, Gabriel. . . (different types of convergence (Lp), different conditions
on ϕ and β. . . )

Xn a Lh with n = 10, d = 2: GNN(Xn)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

To summarize: we construct such a graph G on Xn, then

ΦG,β(Xn) =

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

= C(β, d)
∫

ϕα(x) dx ,
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

To summarize: we construct such a graph G on Xn, then

ΦG,β(Xn) =

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

= C(β, d)
∫

ϕα(x) dx ,

➤ yields an estimate of Hα(ϕ) = 1
α−1

[
1−

∫
ϕα(x) dx

]
for α = 1− β/d

(with a condition on β — typically, β > −d)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

To summarize: we construct such a graph G on Xn, then

ΦG,β(Xn) =

∑
ei ∈G(Xn) |ei |β
n1−β/d

→ C(β, d)
∫

ϕ1−β/d(x) dx , n→∞

= C(β, d)
∫

ϕα(x) dx ,

➤ yields an estimate of Hα(ϕ) = 1
α−1

[
1−

∫
ϕα(x) dx

]
for α = 1− β/d

(with a condition on β — typically, β > −d)

➤ Choice of Xn ? maximize Hα with α > 0
if α > 1 (−d < β < 0) ➠ minimize

∫
ϕα(x) dx

➠ minimize ΦG,β(Xn)
For GNN ➠ maximize Φ[NN,q](Xn) with 0 < q = −β < d

= maximize an intra-distances criterion

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 80 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

▲ Maximizing Φ[NN,q](Xn) with q < 0 is not always convenient ▲

(= maximize ΦGNN ,β(Xn) with β > 0)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

▲ Maximizing Φ[NN,q](Xn) with q < 0 is not always convenient ▲

(= maximize ΦGNN ,β(Xn) with β > 0)

Ex: X = [0, 1]2, comparaison between 2 designs Xa
n and Xb

n for Φ[NN,q]

with q = −1 (β = 1)

Xa
n

(1/n)
∑

ei ∈GNN (Xa
n) |ei | =

√
2

2 ≃ 0.70711

Xb
n

central point at (
√

3/2, 1/2)
(1/n)

∑
ei ∈GNN (Xb

n) |ei | ≃ 0.71058

. . . but the |ei | have a larger variance for Xb
n than for Xa

n
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

MST Graph: Franco (2008); Franco et al. (2009) use a representation in the plane
defined by

the mean En = (1/n)
∑

ei ∈GMST (X) |ei | and

the standard deviation Sn =
(
varGMST (X){|ei |}

)1/2

to classify different sorts of space-filling designs Xn

➞ we wish to have a large En and a small Sn
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

MST Graph: Franco (2008); Franco et al. (2009) use a representation in the plane
defined by

the mean En = (1/n)
∑

ei ∈GMST (X) |ei | and

the standard deviation Sn =
(
varGMST (X){|ei |}

)1/2

to classify different sorts of space-filling designs Xn

➞ we wish to have a large En and a small Sn

We might use another graph G than GMST (e.g., GNN)
and use |ei |β (e.g., with −d < β < 0)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.1 Entropy, optimal graphs

MST Graph: Franco (2008); Franco et al. (2009) use a representation in the plane
defined by

the mean En = (1/n)
∑

ei ∈GMST (X) |ei | and

the standard deviation Sn =
(
varGMST (X){|ei |}

)1/2

to classify different sorts of space-filling designs Xn

➞ we wish to have a large En and a small Sn

We might use another graph G than GMST (e.g., GNN)
and use |ei |β (e.g., with −d < β < 0)

➠ For ΦMm(·), or Φ[q](·) with q > d , or Φ[NN,q](·) with q > 0,
the distribution of an optimum design should be close to uniformity
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

2.2 Discrepancy: motivation (see (Niederreiter, 1992, Chap. 1,2) — true
monument with 371 references)

Integration with Monte Carlo (MC) method

X compact ⊂ Rd ,

∫

X

f (u) du ≃ vol(X )
1
n

n∑

i=1

f (xi)

for xi i.i.d. ∼ µ uniform over X ➠ error ≃ O(n−1/2)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

2.2 Discrepancy: motivation (see (Niederreiter, 1992, Chap. 1,2) — true
monument with 371 references)

Integration with Monte Carlo (MC) method

X compact ⊂ Rd ,

∫

X

f (u) du ≃ vol(X )
1
n

n∑

i=1

f (xi)

for xi i.i.d. ∼ µ uniform over X ➠ error ≃ O(n−1/2)

Trapezoidal rule in dimension d ➠ error ≃ O(n−2/d)

➠ MC better than trapezoidal rule for d ≥ 5 (without any regularity assumption
on f )

We can do better: quasi-Monte Carlo (QMC) method
➠ discrepancy
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic xi in X = Id , [0, 1]d :
În , 1

n

∑n
i=1 f (xi)→ I(f ) =

∫
Id

f (u) d(u), n→∞,
for all Riemann integrable f if the x1, x2, . . . are uniformly distributed in Id
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic xi in X = Id , [0, 1]d :
În , 1

n

∑n
i=1 f (xi)→ I(f ) =

∫
Id

f (u) d(u), n→∞,
for all Riemann integrable f if the x1, x2, . . . are uniformly distributed in Id

➠ requires limn→∞
1
n

∑n
i=1 IB(x) = vol(B) for all B ⊂ Id

Speed of convergence of În → I(f )?
The distribution of xi must be close to uniform:

discrepancy measures distance to uniformity
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic xi in X = Id , [0, 1]d :
În , 1

n

∑n
i=1 f (xi)→ I(f ) =

∫
Id

f (u) d(u), n→∞,
for all Riemann integrable f if the x1, x2, . . . are uniformly distributed in Id

➠ requires limn→∞
1
n

∑n
i=1 IB(x) = vol(B) for all B ⊂ Id

Speed of convergence of În → I(f )?
The distribution of xi must be close to uniform:

discrepancy measures distance to uniformity

Discrepancy

⊲ Dn(B, Xn) , sup
B∈B

∣∣∣∣
nb. of xi in B

n
− vol(B)

∣∣∣∣ ⊳

with B a family of subsets of Id (⇒ 0 ≤ Dn(B, Xn) ≤ 1)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Quasi-Monte Carlo (QMC) method

Evaluate f at deterministic xi in X = Id , [0, 1]d :
În , 1

n

∑n
i=1 f (xi)→ I(f ) =

∫
Id

f (u) d(u), n→∞,
for all Riemann integrable f if the x1, x2, . . . are uniformly distributed in Id

➠ requires limn→∞
1
n

∑n
i=1 IB(x) = vol(B) for all B ⊂ Id

Speed of convergence of În → I(f )?
The distribution of xi must be close to uniform:

discrepancy measures distance to uniformity

Discrepancy

⊲ Dn(B, Xn) , sup
B∈B

∣∣∣∣
nb. of xi in B

n
− vol(B)

∣∣∣∣ ⊳

with B a family of subsets of Id (⇒ 0 ≤ Dn(B, Xn) ≤ 1)

We shall consider particular families B . . .
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

empirical c.d.f. Fn(x) and FU(x)
d = 1, X20 = first 20 points of van der Corput sequence in base 2

(voir § 2.4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
n
  (van der Corput, base b=2, n=20)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Why is it important?

For d = 1, f with bounded variation on [0, 1] (V (f ) ,
∫ 1

0 |df (u)| <∞)

∣∣∣
∫ 1

0 f (u) du − 1
n

∑n
i=1 f (xi)

∣∣∣≤ D∗
n (Xn) V (f )

➠ Koksma (1942/1943) inequality (cannot be improved)
(easy proof, integration by parts)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Therefore, for d = 1∣∣∣
∫ 1

0 f (u) du − 1
n

∑n
i=1 f (xi)

∣∣∣ ≤ V (f )
2n

for X∗
n such that xi = 2i−1

2n
∀i

whereas MC error ≃ σ(f )
n1/2
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Therefore, for d = 1∣∣∣
∫ 1

0 f (u) du − 1
n

∑n
i=1 f (xi)

∣∣∣ ≤ V (f )
2n

for X∗
n such that xi = 2i−1

2n
∀i

whereas MC error ≃ σ(f )
n1/2

In dimension d ≥ 2 :
∣∣∣
∫
Id

f (u) du− 1
n

∑n
i=1 f (xi)

∣∣∣ ≤ D∗
n (Xn) V (f )

(Koksma-Hlawka (1961) inequality, cannot be improved)
with V (f ) = variation in the sense of Hardy and Krause, and

∣∣∣
∫
Id

f (u) du− 1
n

∑n
i=1 f (xi)

∣∣∣ ≤





V (f ) Cd
(log n)d−1

n

for Xn = Hammersley point set

V (f ) C ′
d

(log n)d

n

for Xn = first n elements
of Halton sequence (for instance) X∞

voir § 2.4
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.2 Discrepancy: motivation

Therefore, for d = 1∣∣∣
∫ 1

0 f (u) du − 1
n

∑n
i=1 f (xi)

∣∣∣ ≤ V (f )
2n

for X∗
n such that xi = 2i−1

2n
∀i

whereas MC error ≃ σ(f )
n1/2

In dimension d ≥ 2 :
∣∣∣
∫
Id

f (u) du− 1
n

∑n
i=1 f (xi)

∣∣∣ ≤ D∗
n (Xn) V (f )

(Koksma-Hlawka (1961) inequality, cannot be improved)
with V (f ) = variation in the sense of Hardy and Krause, and

∣∣∣
∫
Id

f (u) du− 1
n

∑n
i=1 f (xi)

∣∣∣ ≤





V (f ) Cd
(log n)d−1

n

for Xn = Hammersley point set

V (f ) C ′
d

(log n)d

n

for Xn = first n elements
of Halton sequence (for instance) X∞

voir § 2.4

➤ Error ց faster than for MC, but which constant Cd ?
➤ n-point set Xn 6= first n elements of an infinite sequence X∞
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

2.3 Discrepancy criteria

Difficulty : D∗
n (Xn) and Dn(Xn) are difficult to compute for d ≥ 2

see, e.g., (Dobkin and Eppstein, 1993; Thiémard, 2001; Gnewuch et al., 2012)
and the references therein

➟ (many!) other definitions of discrepancy
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

2.3 Discrepancy criteria

Difficulty : D∗
n (Xn) and Dn(Xn) are difficult to compute for d ≥ 2

see, e.g., (Dobkin and Eppstein, 1993; Thiémard, 2001; Gnewuch et al., 2012)
and the references therein

➟ (many!) other definitions of discrepancy

One may wish to have:

➀ invariance by permutation of principal axes, by reflection w.r.t. center of Id

➁ a uniformity property on d ′ dimensional subspaces, d ′ < d

➂ a geometrical interpretation

➃ a sort of Koksma-Hlawka inequality

➄ . . . and easy evaluation!
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

For ➄: substitute a Lp norm for the L∞ norm

D∗
n (Xn) = supu∈[0,1]d |Fn(u)− FU(u)| ➠

(∫
[0,1]d |Fn(u)− FU(u)|p du

)1/p

➠ Analytical expression for p = 2, fine for ➂, ➃ and ➄, but not for ➀ and ➁
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

For ➄: substitute a Lp norm for the L∞ norm

D∗
n (Xn) = supu∈[0,1]d |Fn(u)− FU(u)| ➠

(∫
[0,1]d |Fn(u)− FU(u)|p du

)1/p

➠ Analytical expression for p = 2, fine for ➂, ➃ and ➄, but not for ➀ and ➁

For ➁: consider projections on all d ′ dimensional faces, d ′ < d
D∗

n (Xn) ➠(∑d
d′=1

∑
i1<···<id′

∫
[0,1]d′ |Fn({u}i1,...,id′ )− FU({u}i1,...,id′ )|p d{u}i1,...,id′

)1/p

➠ Analytical expression for p = 2, fine for ➁, ➂, ➃ and ➄, but not for ➀
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

For ➄: substitute a Lp norm for the L∞ norm

D∗
n (Xn) = supu∈[0,1]d |Fn(u)− FU(u)| ➠

(∫
[0,1]d |Fn(u)− FU(u)|p du

)1/p

➠ Analytical expression for p = 2, fine for ➂, ➃ and ➄, but not for ➀ and ➁

For ➁: consider projections on all d ′ dimensional faces, d ′ < d
D∗

n (Xn) ➠(∑d
d′=1

∑
i1<···<id′

∫
[0,1]d′ |Fn({u}i1,...,id′ )− FU({u}i1,...,id′ )|p d{u}i1,...,id′

)1/p

➠ Analytical expression for p = 2, fine for ➁, ➂, ➃ and ➄, but not for ➀

For ➀: change the family of sets B in calculation of discrepancy
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

They can be computed. . .

DCent,L2(Xn) =

[(
13
12

)d

− 2
n

n∑

k=1

d∏

i=1

(
1 +

1
2

∣∣∣∣{xk}i −
1
2

∣∣∣∣−
1
2

∣∣∣∣{xk}i −
1
2

∣∣∣∣
2
)

+
1
n2

n∑

k,k′=1

d∏

i=1

(
1 +

1
2

∣∣∣∣{xk}i −
1
2

∣∣∣∣+
1
2

∣∣∣∣{xk′}i −
1
2

∣∣∣∣−
1
2

∣∣∣∣{xk}i − {xk′}i

∣∣∣∣
)


1/2

DWA,L2(Xn) =





1
n2

n∑

k,k′=1

d∏

i=1

[
3
2
−
∣∣∣∣{xk}i − {xk′}i

∣∣∣∣
(

1−
∣∣∣∣{xk}i − {xk′}i

∣∣∣∣
)]

−
(

4
3

)d
}1/2

see Hickernell (1998a,b); Fang and Ma (2001)
they are differentiable w.r.t. Xn and can be minimized (Fang and Ma, 2001; Fang
et al., 2003, 2005)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.3 Discrepancy criteria

They can be computed. . .

DCent,L2(Xn) =

[(
13
12

)d

− 2
n

n∑

k=1

d∏

i=1

(
1 +

1
2

∣∣∣∣{xk}i −
1
2

∣∣∣∣−
1
2

∣∣∣∣{xk}i −
1
2

∣∣∣∣
2
)

+
1
n2

n∑

k,k′=1

d∏

i=1

(
1 +

1
2

∣∣∣∣{xk}i −
1
2

∣∣∣∣+
1
2

∣∣∣∣{xk′}i −
1
2

∣∣∣∣−
1
2

∣∣∣∣{xk}i − {xk′}i

∣∣∣∣
)


1/2

DWA,L2(Xn) =





1
n2

n∑

k,k′=1

d∏

i=1

[
3
2
−
∣∣∣∣{xk}i − {xk′}i

∣∣∣∣
(

1−
∣∣∣∣{xk}i − {xk′}i

∣∣∣∣
)]

−
(

4
3

)d
}1/2

see Hickernell (1998a,b); Fang and Ma (2001)
they are differentiable w.r.t. Xn and can be minimized (Fang and Ma, 2001; Fang
et al., 2003, 2005)
➠ However, generating low discrepancy sequences of points is much easier!
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

fractional parts (mainly for d = 1)
for given n ↔ Lattices

van der Corput sequences (d = 1)

➠ Halton sequences (d > 1)

(t, m, d)-nets and (t, d)-sequences (Sobol’, Faure)

→ van der Corput
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

Fractional parts

For d = 1: xk , {kz} = kz − ⌊kz⌋ , k = 1, 2 . . ., with z irrational (fractional

part of kz)
For instance, z = ϕ = (

√
5 + 1)/2 ≃ 1.618034 = Golden section
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For d = 1: xk , {kz} = kz − ⌊kz⌋ , k = 1, 2 . . ., with z irrational (fractional

part of kz)
For instance, z = ϕ = (

√
5 + 1)/2 ≃ 1.618034 = Golden section

(n/ log n)× D∗
n

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

n
 D

n*
/l
o
g
(n

)

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 97 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

Fractional parts

For d = 1: xk , {kz} = kz − ⌊kz⌋ , k = 1, 2 . . ., with z irrational (fractional

part of kz)
For instance, z = ϕ = (

√
5 + 1)/2 ≃ 1.618034 = Golden section

first 100 points xk
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

For d > 1 :

xk = {kϕ}, k = 1, . . . , 32
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

For d > 1 :

xk = (k/n, {kϕ})⊤
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

For d > 1 :

xk = (k/n, {kϕ})⊤

1
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28

29

30

31

32

➠ Replace k/n (monotonically increasing and only valid for k = 1, . . . , n) by
{kz}, z irrational → xk ∈ [0, 1]2, k = 1, 2, 3 . . .

➠ repeat... → recursively xk ∈ [0, 1]d , for any given d
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

Take xk , {kz}, z irrational vector in R
d

(with independent components over rationals: q⊤z 6= 0, ∀q ∈ Qd)
➠ sequence X∞ uniformly distributed in [0, 1]d

(Kuipers and Niederreiter, 1974, p. 48)

➠ ∀ǫ > 0, Dn(X∞) = O
(

(1+log n)d+1+ǫ

n

)
for almost all z

Interesting, but does not say which z we should take
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Take xk , {kz}, z irrational vector in R
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(with independent components over rationals: q⊤z 6= 0, ∀q ∈ Qd)
➠ sequence X∞ uniformly distributed in [0, 1]d

(Kuipers and Niederreiter, 1974, p. 48)

➠ ∀ǫ > 0, Dn(X∞) = O
(

(1+log n)d+1+ǫ
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)
for almost all z

Interesting, but does not say which z we should take

d = 2, n = 32, z = (ϕ, (
√

2− 1)2)⊤
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

Lattices: z = g/n, with g ∈ Zd

➠ xk ,
{

k
n

g
}

(with repetitions if k ≥ n)
n points 6= if gcd(g1, . . . , gd , n) = 1
n points 6= for each coordinate if gcd(gi , n) = 1 for all i

➠ Regular arrangement of points (≈ grid)
Regularity of f (·) may be accounted for in integration error bounds
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

Lattices: z = g/n, with g ∈ Zd

➠ xk ,
{

k
n

g
}

(with repetitions if k ≥ n)
n points 6= if gcd(g1, . . . , gd , n) = 1
n points 6= for each coordinate if gcd(gi , n) = 1 for all i

➠ Regular arrangement of points (≈ grid)
Regularity of f (·) may be accounted for in integration error bounds

For d = 2, g = (1, Fm−1)⊤ for n = Fm is a very good choice,
with (Fm) = Fibonacci sequence: F1 = F2 = 1, Fk+1 = Fk + Fk−1, k ≥ 2

Since Fm−1/Fm → 1/ϕ for m→∞, the construction is similar to

xk = ( k
n
,
{

k
ϕ

}
)⊤ = ( k

n
, {kϕ})⊤, k = 1, . . . , n
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

➤ Strong connection with optimal design for Fourier regression (sin, cos) (Bates
et al., 1996; Riccomagno et al., 1997)

➤ The exist constructions (non explicit) with good properties (good lattice
points) ➠ tables (Maisonneuve, 1972)

➤ Korobov (1960) suggests g = (1, g , g2, . . . , gd−1)⊤
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

➤ Strong connection with optimal design for Fourier regression (sin, cos) (Bates
et al., 1996; Riccomagno et al., 1997)

➤ The exist constructions (non explicit) with good properties (good lattice
points) ➠ tables (Maisonneuve, 1972)

➤ Korobov (1960) suggests g = (1, g , g2, . . . , gd−1)⊤

➤ Optimization of g in, e.g., (Sloan and Walsh, 1990; Sloan and Reztsov, 2002;
Nuyens, 2007)
Ex: d = 2, n = 21 = F8

ΦMm = 0.2020
ΦmM = 0.2357
DCent,L2 = 0.0280

DWA,L2 = 0.0388

g = (1, F7)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

➤ Strong connection with optimal design for Fourier regression (sin, cos) (Bates
et al., 1996; Riccomagno et al., 1997)

➤ The exist constructions (non explicit) with good properties (good lattice
points) ➠ tables (Maisonneuve, 1972)

➤ Korobov (1960) suggests g = (1, g , g2, . . . , gd−1)⊤

➤ Optimization of g in, e.g., (Sloan and Walsh, 1990; Sloan and Reztsov, 2002;
Nuyens, 2007)
Ex: d = 2, n = 21 = F8

ΦMm = 0.2020
ΦmM = 0.2357
DCent,L2 = 0.0280

DWA,L2 = 0.0388

g = (1, F7)

ΦMm = 0.2302
ΦmM = 0.2217
DCent,L2 = 0.0536

DWA,L2 = 0.0633

g = (1, g∗)
(optimal for ΦMm)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

➤ Can only generate n points:
➠ infinite sequence in [0, 1]d if xk , {uk g}
with (uk) a (scalar) LDS (Hickernell, 1998b)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

➤ Can only generate n points:
➠ infinite sequence in [0, 1]d if xk , {uk g}
with (uk) a (scalar) LDS (Hickernell, 1998b)

We only considered the rank-on rule, there also exist

rank r rule: xk1,...,kr
,
{

k1
n1

g1 + k2
n2

g2 + · · ·+ kr

nr
gr

}
, kj ∈ {1, . . . , nj}

Copy rule: divide [0, 1]d into kd cubes with edge length 1/k, construct a lattice in
each
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

van der Corput (1935) LDS

d = 1

Let Zb = {0, 1, . . . , b − 1} be the alphabet for base b ≥ 2
(e.g., Z2 = {0, 1}, Z3 = {0, 1, 2})

➤ Any k = 0, 1, . . . , bm − 1 can be written as k =
∑m−1

ℓ=0 aℓb
ℓ

with m characters a0, a1, . . . , am−1 (dependent on k)
(that is, k = am−1am−2 · · · a2a1a0

b
)

➤ To k, we associate Φb(k) =
∑m−1

ℓ=0 aℓb
−(ℓ+1)

➠ The van der Corput sequence in base b is defined by xk , Φb(k)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

base b = 2 (van der Corput, 1935)

k k in base 2 φb(k) in base 2 φ2(k)
0 0 0.0 0
1 1 0.1 1/2
2 10 0.01 1/4
3 11 0.11 3/4
4 100 0.001 1/8
5 101 0.101 5/8
k am−1 · · · a1a02

0.a0a1 · · · am−1
∑m−1

ℓ=0 aℓ2−(ℓ+1)

...
...

...
...

➠ nD∗
n (X∞) = nDn(X∞) ≤ 1 + log n

log 8
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

base b = 3

k k in base 3 φ3(k)
0 0 0
1 1 1/3
2 2 2/3
3 10 1/9
4 11 4/9
5 12 7/9
6 20 2/9
7 21 5/9
8 22 8/9
...

...
...

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 104 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

base b = 3

k k in base 3 φ3(k)
0 0 0
1 1 1/3
2 2 2/3
3 10 1/9
4 11 4/9
5 12 7/9
6 20 2/9
7 21 5/9
8 22 8/9
...

...
...

Particular choice of b + suitable permutation of Zb

➠ best known performance for lim supn→∞ nD∗
n /log(n) (b = 12) and

lim supn→∞ nDn/log(n) (b = 36) (results by H. Faure (1977–20xx))
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

van der Corput : (n/ log n)× D∗
n for b = 2 and b = 47
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

van der Corput : x1, x2 . . . , x100
b = 2
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b = 47, x1, x2 . . .
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. . . and, moreover, [0, 1] is filled in a particular order
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

van der Corput : x1, x2 . . . , x70

b = 47, empirical c.d.f.
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

d > 1 : work separately on each component
b1, b2 . . . integers such that gcd(bi , bj) = 1 for all i 6= j
(in practice, first prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . .)

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 106 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

d > 1 : work separately on each component
b1, b2 . . . integers such that gcd(bi , bj) = 1 for all i 6= j
(in practice, first prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . .)

➤ Hammersley: xk , (k/n, φb1(k), . . . , φbd−1(k))⊤, k = 1, . . . , n
(n is given — fixed)

D∗
n (Xn) ≤ Ad−1

(log n)d−1

n
+O

(
(log n)d−2

n

)

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 106 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

d > 1 : work separately on each component
b1, b2 . . . integers such that gcd(bi , bj) = 1 for all i 6= j
(in practice, first prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . .)

➤ Hammersley: xk , (k/n, φb1(k), . . . , φbd−1(k))⊤, k = 1, . . . , n
(n is given — fixed)

D∗
n (Xn) ≤ Ad−1

(log n)d−1

n
+O

(
(log n)d−2

n

)

➤ Halton: xk , (φb1(k), . . . , φbd−1 , φbd
(k))⊤, k = 1, 2, 3 . . .

D∗
n (X∞) ≤ Ad

(log n)d

n
+O

(
(log n)d−1

n

)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

d > 1 : work separately on each component
b1, b2 . . . integers such that gcd(bi , bj) = 1 for all i 6= j
(in practice, first prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . .)

➤ Hammersley: xk , (k/n, φb1(k), . . . , φbd−1(k))⊤, k = 1, . . . , n
(n is given — fixed)

D∗
n (Xn) ≤ Ad−1

(log n)d−1

n
+O

(
(log n)d−2

n

)

➤ Halton: xk , (φb1(k), . . . , φbd−1 , φbd
(k))⊤, k = 1, 2, 3 . . .

D∗
n (X∞) ≤ Ad

(log n)d

n
+O

(
(log n)d−1

n

)

It is conjectured that (only proved for d = 1, 2)

D∗
n (Xn) ≥ Bd

(log n)d−1

n
and

D∗
n (X∞) ≥ B′

d
(log n)d

n
infinitely often

The speed of decrease of D∗
n is thus optimal for Hammersley and Halton
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

d > 1 : work separately on each component
b1, b2 . . . integers such that gcd(bi , bj) = 1 for all i 6= j
(in practice, first prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . .)

➤ Hammersley: xk , (k/n, φb1(k), . . . , φbd−1(k))⊤, k = 1, . . . , n
(n is given — fixed)

D∗
n (Xn) ≤ Ad−1

(log n)d−1

n
+O

(
(log n)d−2

n

)

➤ Halton: xk , (φb1(k), . . . , φbd−1 , φbd
(k))⊤, k = 1, 2, 3 . . .

D∗
n (X∞) ≤ Ad

(log n)d

n
+O

(
(log n)d−1

n

)

It is conjectured that (only proved for d = 1, 2)

D∗
n (Xn) ≥ Bd

(log n)d−1

n
and

D∗
n (X∞) ≥ B′

d
(log n)d

n
infinitely often

The speed of decrease of D∗
n is thus optimal for Hammersley and Halton

. . . but what about the constant Ad?
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

It can be shown that limd→∞
log Ad

d log d
= 1

(Ad ր super-exponentially fast with d!)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

It can be shown that limd→∞
log Ad

d log d
= 1

(Ad ր super-exponentially fast with d!)
➠ Discrepancy is not very good for large d

Halton LDS, d = 15 (⇒ b15 = 47) :
{xk}14 and {xk}15, k = 1, . . . , 200
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.4 Low discrepancy sequences

It can be shown that limd→∞
log Ad

d log d
= 1

(Ad ր super-exponentially fast with d!)
➠ Discrepancy is not very good for large d

Halton LDS, d = 15 (⇒ b15 = 47) :
{xk}14 and {xk}15, k = 1, . . . , 200

. . . not too bad in the plane {xk}d1 , {xk}d2 if n = bd1bd2

(with bd ≈ d(log d + log log d))
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

2.5 (t, m, d)-nets & (t, d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995) suites-(t, d)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

2.5 (t, m, d)-nets & (t, d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995) suites-(t, d)

Motivation: overcome the issue Ad ր∞ as d →∞ in Halton LDS
For a base b, consider an elementary interval (= a d-dimensional box)

P(a, q) =
∏d

j=1[ aj

b
qj ,

1+aj

b
qj ]

where qj and aj are integers, 0 ≤ qj and 0 ≤ aj ≤ bqj − 1

P(a, q) ⊂ [0, 1]d and vol[P(a, q)] =
∏d

j=1 b−qj = b
−
∑

d

j=1
qj
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2.5 (t, m, d)-nets & (t, d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995) suites-(t, d)

Motivation: overcome the issue Ad ր∞ as d →∞ in Halton LDS
For a base b, consider an elementary interval (= a d-dimensional box)

P(a, q) =
∏d

j=1[ aj

b
qj ,

1+aj

b
qj ]

where qj and aj are integers, 0 ≤ qj and 0 ≤ aj ≤ bqj − 1

P(a, q) ⊂ [0, 1]d and vol[P(a, q)] =
∏d

j=1 b−qj = b
−
∑

d

j=1
qj

Objective: put points in each elementary interval
(considering all possible cuts into elementary intervals)
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2.5 (t, m, d)-nets & (t, d)-sequences (Niederreiter, 1992, Chap. 4), (Owen,
1995) suites-(t, d)

Motivation: overcome the issue Ad ր∞ as d →∞ in Halton LDS
For a base b, consider an elementary interval (= a d-dimensional box)

P(a, q) =
∏d

j=1[ aj

b
qj ,

1+aj

b
qj ]

where qj and aj are integers, 0 ≤ qj and 0 ≤ aj ≤ bqj − 1

P(a, q) ⊂ [0, 1]d and vol[P(a, q)] =
∏d

j=1 b−qj = b
−
∑

d

j=1
qj

Objective: put points in each elementary interval
(considering all possible cuts into elementary intervals)

More precisely: for 0 ≤ t ≤ m, a (t, m, d)-net in base b contains n = bm points,

such that each elementary interval with volume bt−m contains bt points
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Example: (0, 2, 2)-net in base 2 (b = 2, d = 2, m = 2, t = 0)
➠ n = bm = 4, b0 = 1 point in each elementary interval with volume

bt−m = 1/4
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Example: (0, 2, 2)-net in base 2 (b = 2, d = 2, m = 2, t = 0)
➠ n = bm = 4, b0 = 1 point in each elementary interval with volume

bt−m = 1/4

∑d
j=1 qj = m − t = 2 ⇒ qj ∈ {0, 1, 2}

q1 q2

(i) 0 2 a1 = 0, a2 ∈ {0, 1, 2, 3}
(ii) 2 0 a1 ∈ {0, 1, 2, 3}, a2 = 0
(iii) 1 1 a1 ∈ {0, 1}, a2 ∈ {0, 1}
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Example: (0, 2, 2)-net in base 2 (b = 2, d = 2, m = 2, t = 0)
➠ n = bm = 4, b0 = 1 point in each elementary interval with volume

bt−m = 1/4

∑d
j=1 qj = m − t = 2 ⇒ qj ∈ {0, 1, 2}

q1 q2

(i) 0 2 a1 = 0, a2 ∈ {0, 1, 2, 3}
(ii) 2 0 a1 ∈ {0, 1, 2, 3}, a2 = 0
(iii) 1 1 a1 ∈ {0, 1}, a2 ∈ {0, 1}

case (i)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Example: (0, 2, 2)-net in base 2 (b = 2, d = 2, m = 2, t = 0)
➠ n = bm = 4, b0 = 1 point in each elementary interval with volume

bt−m = 1/4

∑d
j=1 qj = m − t = 2 ⇒ qj ∈ {0, 1, 2}

q1 q2

(i) 0 2 a1 = 0, a2 ∈ {0, 1, 2, 3}
(ii) 2 0 a1 ∈ {0, 1, 2, 3}, a2 = 0
(iii) 1 1 a1 ∈ {0, 1}, a2 ∈ {0, 1}

a (0, 2, 2)-net in base 2
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

A few properties :

t = m: trivial situation ➠ bt = bm = n points (all) in the interval with
volume bt−m = 1
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A few properties :

t = m: trivial situation ➠ bt = bm = n points (all) in the interval with
volume bt−m = 1

(t, m, d)-net in base b ⇒ (t ′, m, d)-net in base b for t ≤ t ′ ≤ m
➠ difficulty increases as t decreases
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

A few properties :

t = m: trivial situation ➠ bt = bm = n points (all) in the interval with
volume bt−m = 1

(t, m, d)-net in base b ⇒ (t ′, m, d)-net in base b for t ≤ t ′ ≤ m
➠ difficulty increases as t decreases

t = 0, m = 1, base b
⇒ n = bm = b points, bt = 1 point per elementary interval,

∑d
j=1 qj = 1 ⇒

a unique qj 6= 0, qj = 1 ⇒ aj ∈ {0, 1, . . . , b − 1}
➠ a (0, 1, d)-net in base b is a Lh with b points
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

A few properties :

t = m: trivial situation ➠ bt = bm = n points (all) in the interval with
volume bt−m = 1

(t, m, d)-net in base b ⇒ (t ′, m, d)-net in base b for t ≤ t ′ ≤ m
➠ difficulty increases as t decreases

t = 0, m = 1, base b
⇒ n = bm = b points, bt = 1 point per elementary interval,

∑d
j=1 qj = 1 ⇒

a unique qj 6= 0, qj = 1 ⇒ aj ∈ {0, 1, . . . , b − 1}
➠ a (0, 1, d)-net in base b is a Lh with b points

A (0, 2, d)-net in base b is an Orthogonal Array (OA) and a Lh with n = b2

points: previous example had b = 2 and d = 2
— but the construction is not always possible. . .

no (0, m, d)-net in base b for d > b + 1 (Niederreiter, 1992, p. 62)
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

X∞ = (t, d)-sequence in base b if for any k ≥ 0 and any m ≥ t

the bm points {xkbm , xkbm+1, . . . , x(k+1)bm−1} form a (t, m, d)-net
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X∞ = (t, d)-sequence in base b if for any k ≥ 0 and any m ≥ t

the bm points {xkbm , xkbm+1, . . . , x(k+1)bm−1} form a (t, m, d)-net

A few properties:

Especially interesting for t small
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the bm points {xkbm , xkbm+1, . . . , x(k+1)bm−1} form a (t, m, d)-net

A few properties:

Especially interesting for t small

no (0, d)-sequence in base b for d > b (Niederreiter, 1992, p. 62)
(0, d)-sequence in base b ≥ d with b prime = Faure (1982) sequence
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

X∞ = (t, d)-sequence in base b if for any k ≥ 0 and any m ≥ t

the bm points {xkbm , xkbm+1, . . . , x(k+1)bm−1} form a (t, m, d)-net

A few properties:

Especially interesting for t small

no (0, d)-sequence in base b for d > b (Niederreiter, 1992, p. 62)
(0, d)-sequence in base b ≥ d with b prime = Faure (1982) sequence

van der Corput sequence in base b is a (0, 1)-sequence in base b

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 111 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

X∞ = (t, d)-sequence in base b if for any k ≥ 0 and any m ≥ t

the bm points {xkbm , xkbm+1, . . . , x(k+1)bm−1} form a (t, m, d)-net

A few properties:

Especially interesting for t small

no (0, d)-sequence in base b for d > b (Niederreiter, 1992, p. 62)
(0, d)-sequence in base b ≥ d with b prime = Faure (1982) sequence

van der Corput sequence in base b is a (0, 1)-sequence in base b

Construction rather complicated. . .
For b = 2, any d : Sobol’ (1967) sequences, with a smaller t when d ≥ 8 for
Niederreiter (1992) sequences
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

(t, d)-sequences in base b rely on rather complicated algebraic constructions, but
ensure a good distribution of points in Id = [0, 1]d

t and b should be as small as possible

Sobol’ (1967) sequences: b = 2

Niederreiter (1992) sequences: b = 2 and t smaller than for Sobol’ when
d ≥ 8

Faure (1982) (0, d)-sequences: base b ≥ d , with b prime
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

(t, d)-sequences in base b rely on rather complicated algebraic constructions, but
ensure a good distribution of points in Id = [0, 1]d

t and b should be as small as possible

Sobol’ (1967) sequences: b = 2

Niederreiter (1992) sequences: b = 2 and t smaller than for Sobol’ when
d ≥ 8

Faure (1982) (0, d)-sequences: base b ≥ d , with b prime

Discrepancy:

D∗
n (X∞) ≤ Cd

(log n)d

n
+O

(
(log n)d−1

n

)

bound similar to that of Halton LDS
. . . but here Cd ց 0 super-exponentially fast as d →∞!
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Halton: (n/ log n)× D∗
n for {Xn}1 and {Xn}15
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Sobol’ : (n/ log n)× D∗
n for {Xn}1 and {Xn}15
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Faure : (n/ log n)× D∗
n for {Xn}1 and {Xn}15

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

n

n
 D

n*
/l
o

g
(n

)

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 113 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

[n/(log n)2]× DCent,L2(Xn) for Halton and Sobol’ (d = 15)
(/(log n)2, but no obvious normalization for DCent,L2 )

100 200 300 400 500 600 700 800 900 1000
1.8

2

2.2

2.4

2.6

2.8

3

3.2

n

n
 D

C
e
n
t,
L

2

/(
lo

g
(n

))
2

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 113 /

129



2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

[n/(log n)2]× DWA,L2(Xn) for Halton and Sobol’ (d = 15)
(/(log n)2, but no obvious normalization for DWA,L2 )
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

[n/(log n)2]× DWA,L2(Xn) for Halton and Sobol’ (d = 15)
(/(log n)2, but no obvious normalization for DWA,L2 )
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➤ n = 1 000 is small: the cube [0, 1]15 has 215 = 32 768 vertices!
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Halton, d = 15: {xk}14 and {xk}15,
k = 1, . . . , 200

Sobol’: d = 15, {xk}14 and {xk}15,
k = 1, . . . , 200
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2 Uniformity: quasi Monte-Carlo, discrepancy 2.5 (t, m, d)-nets & (t, d)-sequences

Faure, d = 15: {xk}14 and {xk}15,
k = 1, . . . , 200

Sobol’: d = 15, {xk}14 and {xk}15,
k = 1, . . . , 200

Luc Pronzato (CNRS) Design of Computer Experiments (1)
École ETICS, Porquerolles, 06/10/2017 114 /

129



3 Dispersion & miniMax 3.1 Dispersion

3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6)

Discrepancy measures uniformity of the distribution of the xk

➠ we can also restrict our attention to the “filling” of X by Xn = (x1, . . . , xn)

dn(Xn, X ) , supx∈X min1≤k≤n ∆(x, xk)

(▲ we shall minimize this measure of dispersion ▲)
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3.1 Dispersion (Niederreiter, 1992, Chap. 6)

Discrepancy measures uniformity of the distribution of the xk

➠ we can also restrict our attention to the “filling” of X by Xn = (x1, . . . , xn)

dn(Xn, X ) , supx∈X min1≤k≤n ∆(x, xk)

(▲ we shall minimize this measure of dispersion ▲)

• If ∆(x, x′) = ‖x− x′‖ (Euclidean distance),

➠ dn(Xn, X ) = φmM(Xn) = miniMax distance criterion
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3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6)

Discrepancy measures uniformity of the distribution of the xk

➠ we can also restrict our attention to the “filling” of X by Xn = (x1, . . . , xn)

dn(Xn, X ) , supx∈X min1≤k≤n ∆(x, xk)

(▲ we shall minimize this measure of dispersion ▲)

• If ∆(x, x′) = ‖x− x′‖ (Euclidean distance),

➠ dn(Xn, X ) = φmM(Xn) = miniMax distance criterion

• If ∆(x, x′) = ‖x− x′‖∞ = max1≤j≤d |{x}j − {x′}j | (ℓ∞ distance),
➠ d∞,n(Xn, X ) (“balls” are cubes, easier to pack)
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3 Dispersion & miniMax 3.1 Dispersion

3 Dispersion & miniMax

3.1 Dispersion (Niederreiter, 1992, Chap. 6)

Discrepancy measures uniformity of the distribution of the xk

➠ we can also restrict our attention to the “filling” of X by Xn = (x1, . . . , xn)

dn(Xn, X ) , supx∈X min1≤k≤n ∆(x, xk)

(▲ we shall minimize this measure of dispersion ▲)

• If ∆(x, x′) = ‖x− x′‖ (Euclidean distance),

➠ dn(Xn, X ) = φmM(Xn) = miniMax distance criterion

• If ∆(x, x′) = ‖x− x′‖∞ = max1≤j≤d |{x}j − {x′}j | (ℓ∞ distance),
➠ d∞,n(Xn, X ) (“balls” are cubes, easier to pack)

• d∞,n(Xn, X ) = dn(Xn, X ) for d = 1
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3 Dispersion & miniMax 3.1 Dispersion

d∞,n(Xn, X ) ≤ dn(Xn, X ) ≤
√

d d∞,n(Xn, X )
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3 Dispersion & miniMax 3.1 Dispersion

d∞,n(Xn, X ) ≤ dn(Xn, X ) ≤
√

d d∞,n(Xn, X )

Sphere covering (§ 1.1 and 1.5) :

➠

(
vol(X )

Vd

)1/d
1

n1/d ≤ dn(Xn, X ) = ΦmM(Xn) (Vd = vol[B(0, 1)])
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3 Dispersion & miniMax 3.1 Dispersion

d∞,n(Xn, X ) ≤ dn(Xn, X ) ≤
√

d d∞,n(Xn, X )

Sphere covering (§ 1.1 and 1.5) :

➠

(
vol(X )

Vd

)1/d
1

n1/d ≤ dn(Xn, X ) = ΦmM(Xn) (Vd = vol[B(0, 1)])

Cube covering : n[2 d∞,n(Xn, X )]d ≥ vol(X )

➠
1
2 (vol(X ))1/d 1

n1/d ≤ d∞,n(Xn, X )
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3 Dispersion & miniMax 3.1 Dispersion

d∞,n(Xn, X ) ≤ dn(Xn, X ) ≤
√

d d∞,n(Xn, X )

Sphere covering (§ 1.1 and 1.5) :

➠

(
vol(X )

Vd

)1/d
1

n1/d ≤ dn(Xn, X ) = ΦmM(Xn) (Vd = vol[B(0, 1)])

Cube covering : n[2 d∞,n(Xn, X )]d ≥ vol(X )

➠
1
2 (vol(X ))1/d 1

n1/d ≤ d∞,n(Xn, X )

For X = [0, 1]d (vol(X ) = 1)

1
2

1
⌊n1/d ⌋ ≤ d∞,n(Xn, X )

with equality for some Xn, for any n an d
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3 Dispersion & miniMax 3.1 Dispersion

d∞,n(Xn, X ) ≤ dn(Xn, X ) ≤
√

d d∞,n(Xn, X )

Sphere covering (§ 1.1 and 1.5) :

➠

(
vol(X )

Vd

)1/d
1

n1/d ≤ dn(Xn, X ) = ΦmM(Xn) (Vd = vol[B(0, 1)])

Cube covering : n[2 d∞,n(Xn, X )]d ≥ vol(X )

➠
1
2 (vol(X ))1/d 1

n1/d ≤ d∞,n(Xn, X )

For X = [0, 1]d (vol(X ) = 1)

1
2

1
⌊n1/d ⌋ ≤ d∞,n(Xn, X ) ≤ [Dn(Xn)]1/d ≤ 2[D∗

n (Xn)]1/d

with equality for some Xn, for any n an d

≤ A (log n)(d−1)/d

n1/d for Xn a LDS
low discrepancy ⇒ low dispersion
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3 Dispersion & miniMax 3.1 Dispersion

d∞,n(Xn, X ) ≤ dn(Xn, X ) ≤
√

d d∞,n(Xn, X )

Sphere covering (§ 1.1 and 1.5) :

➠

(
vol(X )

Vd

)1/d
1

n1/d ≤ dn(Xn, X ) = ΦmM(Xn) (Vd = vol[B(0, 1)])

Cube covering : n[2 d∞,n(Xn, X )]d ≥ vol(X )

➠
1
2 (vol(X ))1/d 1

n1/d ≤ d∞,n(Xn, X )

For X = [0, 1]d (vol(X ) = 1)

1
2

1
⌊n1/d ⌋ ≤ d∞,n(Xn, X ) ≤ [Dn(Xn)]1/d ≤ 2[D∗

n (Xn)]1/d

with equality for some Xn, for any n an d

≤ A (log n)(d−1)/d

n1/d for Xn a LDS
low discrepancy ⇒ low dispersion

⇒ max
{

1
(nVd )1/d , 1

2
1

⌊n1/d ⌋

}
≤ = Φ∗

mM,n︸ ︷︷ ︸
minXn ΦmM (Xn)

≤
√

d

2
1

⌊n1/d⌋︸ ︷︷ ︸
§1.5

(slightly improves the bounds of §1.5)
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3 Dispersion & miniMax 3.2 Low dispersion sequences

3.2 Low dispersion sequences (Niederreiter, 1992, Chap. 6)

d = 1: for any sequence X∞, lim supn→∞ ndn(X∞) ≥ 1
2 log 2 ≃ 0.7213
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3.2 Low dispersion sequences (Niederreiter, 1992, Chap. 6)

d = 1: for any sequence X∞, lim supn→∞ ndn(X∞) ≥ 1
2 log 2 ≃ 0.7213

The bound is reached for Ruzsa sequence:
x1 = 1, xk = { log(2k−3)

log 2 }, k ≥ 2
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3 Dispersion & miniMax 3.2 Low dispersion sequences

3.2 Low dispersion sequences (Niederreiter, 1992, Chap. 6)

d = 1: for any sequence X∞, lim supn→∞ ndn(X∞) ≥ 1
2 log 2 ≃ 0.7213

The bound is reached for Ruzsa sequence:
x1 = 1, xk = { log(2k−3)

log 2 }, k ≥ 2

but D∗
n (X∞) 6→ 0 ! Fn for n = 10 000 points (D∗

n ≃ 0.0740)
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Low discrepancy (⇔ uniformity) ⇒ low dispersion
but low dispersion 6⇒ low discrepancy
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3 Dispersion & miniMax 3.2 Low dispersion sequences

d > 1 : 1
2 ≤ infX∞

lim supn→∞ n1/dd∞,n(X∞) ≤ 1
2 log 2

Sequences that reach the upper bound 1
2 log 2 are known

The smallest value infX∞
lim supn→∞ n1/dd∞,n(X∞) is unknown

(and best sequences X∞ are unknown too)

(very) little is known about n1/ddn(X∞) = n1/dΦmM(X∞)!
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3 Dispersion & miniMax 3.2 Low dispersion sequences

d > 1 : 1
2 ≤ infX∞

lim supn→∞ n1/dd∞,n(X∞) ≤ 1
2 log 2

Sequences that reach the upper bound 1
2 log 2 are known

The smallest value infX∞
lim supn→∞ n1/dd∞,n(X∞) is unknown

(and best sequences X∞ are unknown too)

(very) little is known about n1/ddn(X∞) = n1/dΦmM(X∞)!

Upper bounds (rather pessimistic):

➤ Halton in base (b1, . . . , bd) ➠ d∞,n(X∞) <
max1≤i≤d bi

n1/d

➤ (t, d)-sequence in base b ➠ d∞,n(X∞) < b1+t/d

n1/d
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3 Dispersion & miniMax 3.2 Low dispersion sequences

Ex. : d = 4, n from 1 to 100, ΦmM(Xn) for Halton (b = (2, 3, 5, 7)), Sobol
(t = 3, b = 2) and Faure (t = 0, b = 5)
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3 Dispersion & miniMax 3.2 Low dispersion sequences

Ex. : d = 4, n from 1 to 100, ΦmM(Xn) for Halton (b = (2, 3, 5, 7)), Sobol
(t = 3, b = 2) and Faure (t = 0, b = 5)
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running kmeans algorithm on 10 000
points of Sobol’ LDS (with centers
initialized at the first n points)
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4 Conclusions part (1)

4 Conclusions part (1) — without model

Many design criteria available (geometry, uniformity)
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4 Conclusions part (1)

4 Conclusions part (1) — without model

Many design criteria available (geometry, uniformity)

Their optimization is difficult (non convex, multimodal, sometimes non
differentiable) ➠ workable d not too large
ΦmM(·) is rather compelling, its evaluation is not trivial but possible

can be optimized by clustering (with Chebyshev centers) for small d ,
by stochastic approximation otherwise
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4 Conclusions part (1)

4 Conclusions part (1) — without model

Many design criteria available (geometry, uniformity)

Their optimization is difficult (non convex, multimodal, sometimes non
differentiable) ➠ workable d not too large
ΦmM(·) is rather compelling, its evaluation is not trivial but possible

can be optimized by clustering (with Chebyshev centers) for small d ,
by stochastic approximation otherwise

Low discrepancy sequences:
easy to generate
the sequence is well distributed (not necessary to choose n a priori)
can be used for any compact X (with non empty interior)
(generate points in a cube containing X , and reject
points not in X )
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4 Conclusions part (1)

The curse of dimensionality is always present!

d = 50, Faure (0, d)-sequence ➠ b prime ≥ d → b = 53
If we want to ensure that there is a point in each box cut along q dimensions, then∑d

j=1 qj = q = m − t = m
➠ n = bq

q = 2 ➠ n = 2809
q = 50 ➠ n ≃ 1.6360 1086
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4 Conclusions part (1)

The curse of dimensionality is always present!

d = 50, Faure (0, d)-sequence ➠ b prime ≥ d → b = 53
If we want to ensure that there is a point in each box cut along q dimensions, then∑d

j=1 qj = q = m − t = m
➠ n = bq

q = 2 ➠ n = 2809
q = 50 ➠ n ≃ 1.6360 1086

d = 50, (t, d)-sequence in base 2, with smallest possible t → t = 77
If we want that each elementary interval cut along each dimension contains some
points, then n = bm with

∑d
j=1 qj = d = m − t ➠ m = 127 and n ≃ 1.7014 1038
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4 Conclusions part (1)

The curse of dimensionality is always present!

d = 50, Faure (0, d)-sequence ➠ b prime ≥ d → b = 53
If we want to ensure that there is a point in each box cut along q dimensions, then∑d

j=1 qj = q = m − t = m
➠ n = bq

q = 2 ➠ n = 2809
q = 50 ➠ n ≃ 1.6360 1086

d = 50, (t, d)-sequence in base 2, with smallest possible t → t = 77
If we want that each elementary interval cut along each dimension contains some
points, then n = bm with

∑d
j=1 qj = d = m − t ➠ m = 127 and n ≃ 1.7014 1038

See (Owen, 1998) for possible constructions, such as

Xn = {Xn}1:d =

(
{Xn}1:s

{Xn}s+1:d

)

with e.g. {Xn}1:s a LDS sequence
{Xn}s+1:d a Lh
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