Design of Computer Experiments — (2) with model —

Luc Pronzato

Université Côte d'Azur, CNRS, I3S, France

Plan I

Optimal design for Gaussian process models & kriging

- 1.1 Gaussian processes and kriging
- 1.2 Criteria based on MSE
- 1.3 Maximum Entropy Sampling

Optimal design for linear regression

- 2.1 Linear regression
- 2.2 Exact design
- 2.3 Approximate design theory
- 2.4 Tensor-product models
- 2.5 Consequences for space-filling design
- Optimal design for Bayesian prediction
 - 3.1 Karhunen-Loève decomposition
 - 3.2 Bayesian prediction
 - 3.3 IMSE-optimal design
- 4 Beyond space filling
- 5 Conclusions part (2)

Objectives (same as part (1))

Computer experiments: based on simulations

> Usually, x ∈ ℝ^d → observation Y(x) (physical experiment)
 > here, numerical simulation: Y(x) = f(x), observation = evaluation of an unknown function f(·)
 (no measurement error)

Objectives (same as part (1))

Computer experiments: based on simulations

> Usually, x ∈ ℝ^d → observation Y(x) (physical experiment)
 > here, numerical simulation: Y(x) = f(x), observation = evaluation of an unknown function f(·)
 (no measurement error)

from pairs $(x_i, f(x_i)), i = 1, 2, ..., n$

- optimization: find $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} f(\mathbf{x})$
- inversion: construct $\{\mathbf{x} \in \mathscr{X} : f(\mathbf{x}) = T\}$
- estimation of a probability of failure: Prob{f(x) > C} when x ∼ probability density φ(·)
- sensitivity analysis
- approximation/interpolation of $f(\cdot)$ by a predictor $\eta_n(\cdot)$, to be constructed

1 Optimal design for Gaussian process models & kriging

1.1 Gaussian processes and kriging

Model for $f(\cdot)$: Gaussian process

 $f(\mathbf{x}) = \mathbf{r}^{\top}(\mathbf{x})\beta + Z(\mathbf{x})$, with $\mathbf{r}(\mathbf{x})$ a vector of known functions of \mathbf{x} (the <u>trend</u>) $Z(\mathbf{x}) =$ realization of a random process (random field), second-order stationary, typically supposed to be Gaussian) $E\{Z(\mathbf{x})\} = 0, E\{Z(\mathbf{x})Z(\mathbf{x}')\} = \sigma^2 C(\mathbf{x} - \mathbf{x}'; \theta)$

1 Optimal design for Gaussian process models & kriging

1.1 Gaussian processes and kriging

Model for $f(\cdot)$: Gaussian process

 $f(\mathbf{x}) = \mathbf{r}^{\top}(\mathbf{x})\beta + Z(\mathbf{x})$, with $\mathbf{r}(\mathbf{x})$ a vector of known functions of \mathbf{x} (the <u>trend</u>) $Z(\mathbf{x})$ = realization of a random process (random field), second-order stationary, typically supposed to be Gaussian) $E\{Z(\mathbf{x})\} = 0, E\{Z(\mathbf{x})Z(\mathbf{x}')\} = \sigma^2 C(\mathbf{x} - \mathbf{x}'; \theta)$

Computer experiments

Following (Sacks et al., 1989), choose $C(\delta; \theta)$ continuous at $\delta = 0$, $C(0; \theta) = 1$ $\Rightarrow 2$ repetitions at the same x yield the same f(x)(no measurement error) Objective = interpolation (or extrapolation): build a predictor $\eta_n(\mathbf{x})$ based on a single realization of $Z(\cdot)$ much different from prediction of other realizations of $Z(\cdot)$ (\mathfrak{m} simply estimate β) Objective = interpolation (or extrapolation): build a predictor $\eta_n(\mathbf{x})$ based on a single realization of $Z(\cdot)$ much different from prediction of other realizations of $Z(\cdot)$ (\blacksquare simply estimate β)

ordinary kriging

(expression for universal kriging with trend $\mathbf{r}^{\top}(\mathbf{x})\beta$, $\beta \in \mathbb{R}^{p}$, p > 1, are slightly more complicated):

$$f(\mathbf{x}) = \beta + Z(\mathbf{x}) \rightarrow \eta_n(\mathbf{x}) = \eta_n[f](\mathbf{x})$$

BLUP (Best Linear Unbiased Predictor) at \mathbf{x} : $\eta_n(\mathbf{x}) = \mathbf{v}_n^{\top}(\mathbf{x})\mathbf{y}_n$ with

•
$$\mathbf{y}_n = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^\top$$

• $\mathbf{v}_n(\mathbf{x})$ minimizes $\mathsf{E}\{(\mathbf{v}_n^\top \mathbf{y}_n - [\beta + Z(\mathbf{x})])^2\}$
• with the constraint $\mathsf{E}\{\mathbf{v}_n^\top \mathbf{y}_n\} = \beta \sum_{i=1}^n \{\mathbf{v}_n\}_i = \mathsf{E}\{f(\mathbf{x})\} = \beta$, i.e. $\sum_{i=1}^n \{\mathbf{v}_n\}_i = 1$

5 / 62

Prediction:
$$\eta_n(\mathbf{x}) = \hat{\beta}^n + \mathbf{c}_n^{\top}(\mathbf{x})\mathbf{C}_n^{-1}(\mathbf{y}_n - \hat{\beta}^n\mathbf{1})$$

MSE (Mean-Squared Error) proportional to

$$\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^\top(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n & \mathbf{1} \\ \mathbf{1}^\top & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$$

[with { \mathbf{C}_n }_{*i*,*j*} = $C((X_i - X_j); \theta)$, { $\mathbf{c}_n(x)$ }_{*i*} = $C((X_i - x); \theta)$, $\hat{\beta}^n = (\mathbf{1}^\top \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^\top \mathbf{C}_n^{-1} \mathbf{1})$ (WLS) and $\mathbf{1} = (1, \dots, 1)^\top$]

MSE (Mean-Squared Error) proportional to $\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^{\top}(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n \ \mathbf{1} \\ \mathbf{1}^{\top} \ \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$ [with $\{\mathbf{C}_n\}_{i,j} = C((X_i - X_j); \theta), \ \{\mathbf{c}_n(x)\}_i = C((X_i - x); \theta), \ \hat{\beta}^n = (\mathbf{1}^{\top} \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^{\top} \mathbf{C}_n^{-1} \mathbf{1})$ (WLS) and $\mathbf{1} = (1, \dots, 1)^{\top}$]

MSE (Mean-Squared Error) proportional to $\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^{\mathsf{T}}(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n & \mathbf{1} \\ \mathbf{1}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$ [with $\{\mathbf{C}_n\}_{i,j} = C((X_i - X_j); \theta), \{\mathbf{c}_n(x)\}_i = C((X_i - x); \theta), \hat{\beta}^n = (\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{1})$ (WLS) and $\mathbf{1} = (1, \dots, 1)^{\mathsf{T}}$]

MSE (Mean-Squared Error) proportional to $\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^{\mathsf{T}}(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n & \mathbf{1} \\ \mathbf{1}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$ [with $\{\mathbf{C}_n\}_{i,j} = C((X_i - X_j); \theta), \{\mathbf{c}_n(x)\}_i = C((X_i - x); \theta), \hat{\beta}^n = (\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{1})$ (WLS) and $\mathbf{1} = (1, \dots, 1)^{\mathsf{T}}$]

MSE (Mean-Squared Error) proportional to $\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^{\mathsf{T}}(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n & \mathbf{1} \\ \mathbf{1}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$ [with $\{\mathbf{C}_n\}_{i,j} = C((X_i - X_j); \theta), \{\mathbf{c}_n(x)\}_i = C((X_i - x); \theta), \hat{\beta}^n = (\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{1}) \text{ (WLS) and}$ $\mathbf{1} = (1, \dots, 1)^{\mathsf{T}}$]

MSE (Mean-Squared Error) proportional to $\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^{\mathsf{T}}(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n & \mathbf{1} \\ \mathbf{1}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$ [with $\{\mathbf{C}_n\}_{i,j} = C((X_i - X_j); \theta), \{\mathbf{c}_n(x)\}_i = C((X_i - x); \theta), \hat{\beta}^n = (\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^{\mathsf{T}} \mathbf{C}_n^{-1} \mathbf{1})$ (WLS) and $\mathbf{1} = (1, \dots, 1)^{\mathsf{T}}$]

1.2 Criteria based on MSE

A natural idea: minimize $\rho_n(\mathbf{x})$ for all \mathbf{x}

In practice:

- minimize $MMSE(\mathbf{X}_n) = \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$
- minimize $\mathsf{IMSE}(\mathbf{X}_n) = \int_{\mathscr{X}} \rho_n(\mathbf{x}) d\mu(\mathbf{x})$, with $\mu(\cdot)$ some measure of interest over \mathscr{X}

1.2 Criteria based on MSE

A natural idea: minimize $\rho_n(\mathbf{x})$ for all \mathbf{x}

In practice:

- minimize $MMSE(\mathbf{X}_n) = \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$
- minimize $\mathsf{IMSE}(\mathbf{X}_n) = \int_{\mathscr{X}} \rho_n(\mathbf{x}) d\mu(\mathbf{x})$, with $\mu(\cdot)$ some measure of interest over \mathscr{X}

Optimal designs are typically space-filling:

Johnson et al. (1990): if $C(\mathbf{x} - \mathbf{x}') = c(||\mathbf{x} - \mathbf{x}'||)$ with $c(\cdot)$ decreasing, then \mathbf{X}_n^* optimal for $\Phi_{mM}(\cdot)$ (miniMax optimal) tends to be optimal for MMSE(\mathbf{X}_n) with covariance $C_a(\mathbf{x} - \mathbf{x}') = [C(\mathbf{x} - \mathbf{x}')]^a$ when $a \to \infty$

 \blacksquare no point \mathbf{x}_i on the boundary of \mathscr{X}

 $\mathbf{X}_n = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$

Calculation of $MMSE(\mathbf{X}_n)$:

Compute $\rho_n(\mathbf{x}^{(k)})$ for a finite Q-points set $\mathscr{X}_Q = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}}$ (e.g., first Q point of a LDS in \mathscr{X}), then MMSE(\mathbf{X}_n) $\simeq \max_k \rho_n(\mathbf{x}^{(k)})$, to be minimized, for instance by simulated annealing $\mathbf{X}_n = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$

Calculation of $MMSE(\mathbf{X}_n)$:

Compute $\rho_n(\mathbf{x}^{(k)})$ for a finite Q-points set $\mathscr{X}_Q = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}}$ (e.g., first Q point of a LDS in \mathscr{X}), then MMSE(\mathbf{X}_n) $\simeq \max_k \rho_n(\mathbf{x}^{(k)})$, to be minimized, for instance by simulated annealing

Calculation of IMSE(X_n) = $\int_{\mathscr{X}} \rho_n(\mathbf{x}) d\mu(\mathbf{x})$ (Gauthier and P. 2014, 2016) :

Without trend
$$(\mathbf{r}(\mathbf{x}) = \mathbf{0} \ \forall \mathbf{x}) \implies \rho_n(\mathbf{x}) = 1 - \mathbf{c}_n^\top(\mathbf{x})\mathbf{C}_n^{-1}\mathbf{c}_n(\mathbf{x}),$$

where $\{\mathbf{c}_n(\mathbf{x})\}_i = C(\mathbf{x} - \mathbf{x}_i), \ \{\mathbf{C}_n\}_{ij} = C(\mathbf{x}_i - \mathbf{x}_j)$

$$\mathsf{IMSE}(\mathbf{X}_n) = 1 - \operatorname{trace} \left[\mathbf{C}_n^{-1} \int_{\mathscr{X}} \mathbf{c}_n(\mathbf{x}) \mathbf{c}_n^{\top}(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) \right]$$
$$= 1 - \operatorname{trace} \left[\mathbf{C}_n^{-1} \boldsymbol{\Sigma}_n \right]$$

Calculation for a finite *Q*-points set $\mathscr{X}_Q = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}}$:

$$\mathsf{IMSE}(\mathbf{X}_n) \simeq \widehat{\mathsf{IMSE}}(\mathbf{X}_n) = \sum_{k=1}^{Q} w_k \, \rho_n(\mathbf{x}^{(k)})$$
$$= 1 - \operatorname{trace} \left[\mathbf{C}_n^{-1} \widehat{\boldsymbol{\Sigma}}_n \right]$$

with $\sum_{k=1}^{Q} w_k = 1$ ($w_k = 1/Q$ when μ if uniform) and $\widehat{\Sigma}_n = \sum_{k=1}^{Q} w_k \mathbf{c}_n(\mathbf{x}^{(k)}) \mathbf{c}_n^{\top}(\mathbf{x}^{(k)})$ Calculation for a finite *Q*-points set $\mathscr{X}_{Q} = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}}$:

$$\mathsf{IMSE}(\mathbf{X}_n) \simeq \widehat{\mathsf{IMSE}}(\mathbf{X}_n) = \sum_{k=1}^Q w_k \, \rho_n(\mathbf{x}^{(k)})$$
$$= 1 - \operatorname{trace} \left[\mathbf{C}_n^{-1} \widehat{\boldsymbol{\Sigma}}_n \right]$$

with
$$\sum_{k=1}^{Q} w_k = 1$$
 ($w_k = 1/Q$ when μ if uniform)
and $\widehat{\Sigma}_n = \sum_{k=1}^{Q} w_k \mathbf{c}_n(\mathbf{x}^{(k)}) \mathbf{c}_n^{\top}(\mathbf{x}^{(k)})$

If, moreover, $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathscr{X}_Q$, with $\mathbf{x}_i = \mathbf{x}^{(k_i)}$, $i = 1, \ldots, n$, then $\widehat{\Sigma}_n = \{\mathbf{QWQ}\}_{\mathbb{I}_n\mathbb{I}_n}$ with $\{\mathbf{Q}\}_{k\ell} = C(\mathbf{x}^{(k)} - \mathbf{x}^{(\ell)}), \mathbf{W} = \text{diag}\{w_1, \dots, w_Q\}$ and $J_n = \{k_1, ..., k_n\}$ $\blacksquare \mathsf{IMSE}(\mathsf{X}_n) \simeq 1 - \mathrm{trace}\left[\mathsf{Q}_{\mathsf{J}_n\mathsf{J}_n}^{-1} \{\mathsf{QWQ}\}_{\mathsf{I}_n\mathsf{J}_n}\right]$ not expensive to compute once Q and QWQ have been calculated

(a bit more complicated with a trend $\mathbf{r}^{\top}(\mathbf{x})\beta$)

Minimization not obvious (for instance, by simulated annealing), see § 3.3 for another approach

Luc Pronzato (CNRS)

Ex. of IMSE-optimal design (Gauthier & P., 2014, 2016): $\mathscr{X} = \text{regular grid with } 37^2 = 1\,369 \text{ points}$ $C(\mathbf{x} - \mathbf{x}') = C_1(\{\mathbf{x}\}_1 - \{\mathbf{x}'\}_1) \times C_2(\{\mathbf{x}\}_2 - \{\mathbf{x}'\}_2),$ $C_i(x - x') = (1 + 25/\sqrt{3}|x - x'|) \exp[-25/\sqrt{3}|x - x'|]$ (Matérn 3/2)

Grid points
 Design points

33-point optimal design

(measure of interest μ)

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg\max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg\max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}(\{\mathbf{X}_n, \mathbf{x}\})$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ **w** take instead $|\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})|$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \blacksquare take instead $\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg\max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

12 / 62

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg\max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg\max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x}\in\mathscr{X}}\mathsf{IMSE}(\{\mathbf{X}_n, \mathbf{x}\})$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ **w** take instead $|\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})|$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

12 / 62

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg \min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

For IMSE: nothing special, at step n + 1, $\mathbf{X}_{n+1} = {\mathbf{X}_n, \mathbf{x}_{n+1}}$ with $\boxed{\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{IMSE}({\mathbf{X}_n, \mathbf{x}})}$

For MMSE : do not choose $\mathbf{x}_{n+1}^* = \arg\min_{\mathbf{x} \in \mathscr{X}} \mathsf{MMSE}(\{\mathbf{X}_n, \mathbf{x}\})!$ \implies take instead $\mathbf{x}_{n+1}^* = \arg\max_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x})$

Without trend
$$(\mathbf{r}(\mathbf{x}) = \mathbf{0} \ \forall \mathbf{x})$$
:
 $\mathbf{z}_Q \triangleq$ vector with components $Z(\mathbf{x}^{(k)}), \ \mathbf{x}^{(k)} \in \mathscr{X}_Q$
 $\mathbf{z}_n \triangleq$ vector with components $Z(\mathbf{x}_i), \ i = 1, ..., n$ (observations)
 $\mathbf{H}_1(\mathbf{z}) \triangleq -\int \varphi(\mathbf{z}) \log[\varphi(\mathbf{z})] d\mathbf{z}$ Shannon entropy of $\varphi(\mathbf{z})$
 $=$ measure of "dispersion"
 $H_1(\mathbf{z}_1|\mathbf{z}_2) \triangleq$ conditional entropy of \mathbf{z}_1 given \mathbf{z}_2
 $= \int \left[-\int \varphi(\mathbf{z}_1|\mathbf{z}_2) \log[\varphi(\mathbf{z}_1|\mathbf{z}_2)] d\mathbf{z}_1 \right] \varphi(\mathbf{z}_2) d(\mathbf{z}_2)$

Without trend
$$(\mathbf{r}(\mathbf{x}) = \mathbf{0} \ \forall \mathbf{x})$$
:
 $\mathbf{z}_Q \triangleq$ vector with components $Z(\mathbf{x}^{(k)}), \ \mathbf{x}^{(k)} \in \mathscr{X}_Q$
 $\mathbf{z}_n \triangleq$ vector with components $Z(\mathbf{x}_i), \ i = 1, ..., n$ (observations)
 $\mathbf{H}_1(\mathbf{z}) \triangleq -\int \varphi(\mathbf{z}) \log[\varphi(\mathbf{z})] d\mathbf{z}$ Shannon entropy of $\varphi(\mathbf{z})$
 $=$ measure of "dispersion"
 $H_1(\mathbf{z}_1|\mathbf{z}_2) \triangleq$ conditional entropy of \mathbf{z}_1 given \mathbf{z}_2
 $= \int \left[-\int \varphi(\mathbf{z}_1|\mathbf{z}_2) \log[\varphi(\mathbf{z}_1|\mathbf{z}_2)] d\mathbf{z}_1 \right] \varphi(\mathbf{z}_2) d(\mathbf{z}_2)$

We get
$$H_1(\mathbf{y}_Q) = H_1(\mathbf{y}_n) + \mathsf{E}\{H_1(\mathbf{y}_Q|\mathbf{y}_n)\}$$

Without trend
$$(\mathbf{r}(\mathbf{x}) = \mathbf{0} \ \forall \mathbf{x})$$
:
 $\mathbf{z}_Q \triangleq$ vector with components $Z(\mathbf{x}^{(k)}), \ \mathbf{x}^{(k)} \in \mathscr{X}_Q$
 $\mathbf{z}_n \triangleq$ vector with components $Z(\mathbf{x}_i), \ i = 1, ..., n$ (observations)
 $\mathbf{H}_1(\mathbf{z}) \triangleq -\int \varphi(\mathbf{z}) \log[\varphi(\mathbf{z})] d\mathbf{z}$ Shannon entropy of $\varphi(\mathbf{z})$
 $=$ measure of "dispersion"
 $H_1(\mathbf{z}_1 | \mathbf{z}_2) \triangleq$ conditional entropy of \mathbf{z}_1 given \mathbf{z}_2
 $= \int \left[-\int \varphi(\mathbf{z}_1 | \mathbf{z}_2) \log[\varphi(\mathbf{z}_1 | \mathbf{z}_2)] d\mathbf{z}_1 \right] \varphi(\mathbf{z}_2) d(\mathbf{z}_2)$
We get $\underbrace{H_1(\mathbf{y}_Q) = H_1(\mathbf{y}_n) + \underbrace{\mathsf{E}\{H_1(\mathbf{y}_Q | \mathbf{y}_n)\}}_{\text{to be minimized}}$

Without trend
$$(\mathbf{r}(\mathbf{x}) = \mathbf{0} \forall \mathbf{x})$$
:
> $\mathbf{z}_Q \triangleq$ vector with components $Z(\mathbf{x}^{(k)})$, $\mathbf{x}^{(k)} \in \mathscr{X}_Q$
> $\mathbf{z}_n \triangleq$ vector with components $Z(\mathbf{x}_i)$, $i = 1, ..., n$ (observations
> $H_1(\mathbf{z}) \triangleq -\int \varphi(\mathbf{z}) \log[\varphi(\mathbf{z})] d\mathbf{z}$ Shannon entropy of $\varphi(\mathbf{z})$
= measure of "dispersion"
 $H_1(\mathbf{z}_1|\mathbf{z}_2) \triangleq$ conditional entropy of \mathbf{z}_1 given \mathbf{z}_2
= $\int \left[-\int \varphi(\mathbf{z}_1|\mathbf{z}_2) \log[\varphi(\mathbf{z}_1|\mathbf{z}_2)] d\mathbf{z}_1 \right] \varphi(\mathbf{z}_2) d(\mathbf{z}_2)$
We get $\underbrace{H_1(\mathbf{y}_Q) = H_1(\mathbf{y}_n) + \underbrace{\mathsf{E}\{H_1(\mathbf{y}_Q|\mathbf{y}_n)\}}_{\text{to be minimized}}$
Minimize $\mathsf{E}\{H_1(\mathbf{y}_Q|\mathbf{y}_n)\}$ w.r.t. $\mathbf{X}_n \Leftrightarrow$ maximize $H_1(\mathbf{y}_n)$
 $Z(\mathbf{x})$ is Gaussian \blacksquare [maximize det[\mathbf{C}_n]

= intra-distances criterion

Sequential construction of an optimal design: $\mathbf{x}_{n+1} = \arg \max_{\mathbf{x} \in \mathscr{X}} \det[\mathbf{C}_{n+1}] = \arg \max_{\mathbf{x} \in \mathscr{X}} \underbrace{\det \begin{bmatrix} \mathbf{C}_n & \mathbf{c}_n(\mathbf{x}) \\ \mathbf{c}_n^\top(\mathbf{x}) & 1 \end{bmatrix}}_{=\det[\mathbf{C}_n]\underbrace{(1 - \mathbf{c}_n^\top(\mathbf{x})\mathbf{C}_n^{-1}\mathbf{c}_n(\mathbf{x}))}_{=\rho_n(\mathbf{x})}}_{=\rho_n(\mathbf{x})}$

Sequential construction of an optimal design: $\mathbf{x}_{n+1} = \arg \max_{\mathbf{x} \in \mathscr{X}} \det[\mathbf{C}_{n+1}] = \arg \max_{\mathbf{x} \in \mathscr{X}} \qquad \underbrace{\det \begin{bmatrix} \mathbf{C}_n & \mathbf{c}_n(\mathbf{x}) \\ \mathbf{c}_n^\top(\mathbf{x}) & 1 \end{bmatrix}}_{=\det[\mathbf{C}_n]\underbrace{(1 - \mathbf{c}_n^\top(\mathbf{x})\mathbf{C}_n^{-1}\mathbf{c}_n(\mathbf{x}))}_{=\rho_n(\mathbf{x})}}_{=\rho_n(\mathbf{x})}$

The designs obtained are typically space-filling:

Johnson et al. (1990) : if $C(\mathbf{x} - \mathbf{x}') = c(||\mathbf{x} - \mathbf{x}'||)$ with $c(\cdot)$ decreasing, then \mathbf{X}_n^* optimal for $\Phi_{Mm}(\cdot)$ (Maximin optimal) tends to be optimal for det[\mathbf{C}_n] with covariance $C_a(\mathbf{x} - \mathbf{x}') = [C(\mathbf{x} - \mathbf{x}')]^a$ when $a \to \infty$

• there are design points \mathbf{x}_i on the boundary of \mathscr{X}

2 Optimal design for linear regression

2.1 Linear regression

$$\begin{array}{l} \text{Observations} \left[y_i = y(\mathbf{x}_i) = \mathbf{r}^{\top}(\mathbf{x}_i)\gamma + \varepsilon_i \right], & \gamma \in \mathbb{R}^p \\ \text{with} & (\varepsilon_i) \text{ i.i.d., } \mathsf{E}\{\varepsilon_i\} = \mathsf{0}, \, \mathsf{var}\{\varepsilon_i\} = \sigma^2 \, \forall i \end{array}$$

Estimation of γ by Least-Squares (LS)

$$\hat{\gamma}_n = (\mathbf{R}_n^{\top} \mathbf{R}_n)^{-1} \mathbf{R}_n^{\top} \mathbf{y}_n$$
, with $\mathbf{y}_n = (y_1, \dots, y_n)^{\top}$ and $\mathbf{R}_n = \begin{pmatrix} \mathbf{r}^{\top} (\mathbf{x}_1) \\ \vdots \\ \mathbf{r}^{\top} (\mathbf{x}_n) \end{pmatrix}$
 $\mathsf{E}\{\hat{\gamma}_n\} = \gamma \text{ (unbiased)}$

2 Optimal design for linear regression

2.1 Linear regression

$$\begin{array}{l} \text{Observations} \left[y_i = y(\mathbf{x}_i) = \mathbf{r}^{\top}(\mathbf{x}_i)\gamma + \varepsilon_i \right], & \gamma \in \mathbb{R}^p \\ \text{with} & (\varepsilon_i) \text{ i.i.d., } \mathsf{E}\{\varepsilon_i\} = \mathsf{0}, \, \mathsf{var}\{\varepsilon_i\} = \sigma^2 \; \forall i \end{array}$$

Estimation of γ by Least-Squares (LS)

$$\hat{\gamma}_n = (\mathbf{R}_n^{\top} \mathbf{R}_n)^{-1} \mathbf{R}_n^{\top} \mathbf{y}_n$$
, with $\mathbf{y}_n = (y_1, \dots, y_n)^{\top}$ and $\mathbf{R}_n = \begin{pmatrix} \mathbf{r}^{\top} (\mathbf{x}_1) \\ \vdots \\ \mathbf{r}^{\top} (\mathbf{x}_n) \end{pmatrix}$
 $\mathsf{E}\{\hat{\gamma}_n\} = \gamma$ (unbiased)

Covariance =
$$\operatorname{cov}(\hat{\gamma}_n) = \sigma^2 (\mathbf{R}_n^{\top} \mathbf{R}_n)^{-1} = \frac{\sigma^2}{n} \left[\underbrace{\frac{1}{n} \sum_{i=1}^n \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i)}_{\mathbf{M}_n} \right]^{-1}$$

 $\operatorname{cov}(\hat{\gamma}_n) = rac{\sigma^2}{n} \mathbf{M}_n^{-1}$, with

$$\begin{aligned} \mathbf{M}_n &= \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{r}(\mathbf{x}_i) \mathbf{r}^\top(\mathbf{x}_i) \\ &= \text{information matrix (per observation)} \end{aligned}$$

 $\operatorname{cov}(\hat{\gamma}_n) = \frac{\sigma^2}{n} \mathbf{M}_n^{-1}$, with

$$\frac{\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i)}{\text{= information matrix (per observation)}} \in \mathbb{R}^{p \times p}$$

Optimal design \mathbf{X}_n^* : maximizes a scalar function $\Phi(\cdot)$ of \mathbf{M}_n (with $\Phi(\cdot)$ Loewner increasing)

E-optimality: maximize λ_{min}(**M**_n) (minimize longest axis of confidence ellipsoids for γ) $\operatorname{cov}(\hat{\gamma}_n) = \frac{\sigma^2}{n} \mathbf{M}_n^{-1}$, with

$$\frac{\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i)}{\text{= information matrix (per observation)}} \in \mathbb{R}^{p \times p}$$

Optimal design \mathbf{X}_n^* : maximizes a scalar function $\Phi(\cdot)$ of \mathbf{M}_n (with $\Phi(\cdot)$ Loewner increasing)

- *E*-optimality: maximize λ_{min}(**M**_n) (minimize longest axis of confidence ellipsoids for γ)
- A-optimality: maximize $-\text{trace}[\mathbf{M}_n^{-1}] \Leftrightarrow \text{maximize } 1/\text{trace}[\mathbf{M}_n^{-1}]$ (minimize sum of squared lengths of axes of confidence ellipsoids for γ)

 $\operatorname{cov}(\hat{\gamma}_n) = \frac{\sigma^2}{n} \mathbf{M}_n^{-1}$, with

$$\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{r}(\mathbf{x}_i) \mathbf{r}^\top(\mathbf{x}_i)$$

= information matrix (per observation)

Optimal design \mathbf{X}_n^* : maximizes a scalar function $\Phi(\cdot)$ of \mathbf{M}_n (with $\Phi(\cdot)$ Loewner increasing)

- *E*-optimality: maximize λ_{min}(**M**_n) (minimize longest axis of confidence ellipsoids for γ)
- A-optimality: maximize $-\text{trace}[\mathbf{M}_n^{-1}] \Leftrightarrow \text{maximize } 1/\text{trace}[\mathbf{M}_n^{-1}]$ (minimize sum of squared lengths of axes of confidence ellipsoids for γ)
- more generally, *L*-optimality: maximize -trace[LM_n⁻¹] (we only consider the case L symmetric positive definite)

- *D*-optimality: maximize log det M_n (minimize volume of confidence ellipsoids for γ) Very much used:
 - a *D*-optimal design is invariant by reparametrization:

$$\det \mathsf{M}'_n(eta(\gamma)) = \det \mathsf{M}_n(\gamma) \det^{-2}\left(rac{\partialeta}{\partial\gamma^ op}
ight)$$

▶ Tensor-product models

2.2 Exact design

 $\begin{array}{l} \frac{n \text{ observations at } \mathbf{x}_1, \dots, \mathbf{x}_n, \ \mathbf{x}_i \in \mathbb{R}^d \\ \hline \mathsf{Maximize } \Phi(\mathsf{M}_n) \text{ w.r.t. } \mathbf{X}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^{n \times d} \\ \mathsf{with } \mathbf{M}_n = \mathsf{M}(\mathsf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathsf{r}(\mathsf{x}_i) \mathsf{r}^{\top}(\mathsf{x}_i) \end{array}$

2.2 Exact design

 $\frac{n \text{ observations at } \mathbf{x}_1, \dots, \mathbf{x}_n, \ \mathbf{x}_i \in \mathbb{R}^d}{\text{Maximize } \Phi(\mathsf{M}_n) \text{ w.r.t. } \mathbf{X}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^{n \times d} \\ \text{with } \mathsf{M}_n = \mathsf{M}(\mathsf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathsf{r}(\mathsf{x}_i) \mathsf{r}^\top(\mathsf{x}_i)$

▶ If problem dimension $n \times d$ is not too big

"standard" algorithm (but careful with constraints and local optimas!)

2.2 Exact design

 $\begin{array}{l} \underline{n \text{ observations at } \mathbf{x}_1, \dots, \mathbf{x}_n, \ \mathbf{x}_i \in \mathbb{R}^d \\ \hline \text{Maximize } \Phi(\mathsf{M}_n) \text{ w.r.t. } \mathbf{X}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^{n \times d} \\ \text{with } \mathbf{M}_n = \mathsf{M}(\mathsf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathsf{r}(\mathsf{x}_i) \mathsf{r}^\top(\mathsf{x}_i) \end{array}$

➤ If problem dimension n × d is not too big
 → "standard" algorithm (but careful with constraints and local optimas!)

➤ Otherwise, ➠ specific algorithm

Exchange method: at step k, exchange **one** support point \mathbf{x}_j with a better one \mathbf{x}^* in \mathscr{X} (better for $\Phi(\cdot)$)

$$\mathbf{X}_{n}^{k} = (\mathbf{x}_{1}, \dots, \boxed{\mathbf{x}_{j}}_{\mathbf{x}^{*}}, \dots, \mathbf{x}_{n})$$

➡ Approximate design

Fedorov (1972) algorithm:

At each iteration k, consider all n possible exchanges successively, each time starting from \mathbf{X}_n^k , retain the «best» one among these $n \to \mathbf{X}_n^{k+1} \longrightarrow \mathbf{X}_n^{k+1}$

$$\mathbf{X}_{n}^{k} = \left(\begin{array}{ccc} \mathbf{x}_{1} & \dots & \mathbf{x}_{j} & \dots & \mathbf{x}_{n} \end{array}\right)$$

$$\begin{array}{ccc} \uparrow & & \uparrow & \\ \mathbf{x}_{1}^{*} & \mathbf{x}_{j}^{*} & \mathbf{x}_{n}^{*} \end{array}$$

Fedorov (1972) algorithm:

At each iteration k, consider all n possible exchanges successively, each time starting from \mathbf{X}_n^k , retain the «best» one among these $n \to \mathbf{X}_n^{k+1} \longrightarrow \mathbf{X}_n^{k+1}$

$$\mathbf{X}_{n}^{k} = (\begin{array}{ccc} \mathbf{x}_{1} & \dots & \mathbf{x}_{j} & \dots & \mathbf{x}_{n} \end{array})$$

$$\begin{array}{ccc} \uparrow & & \uparrow \\ \mathbf{x}_{1}^{*} & \mathbf{x}_{j}^{*} & \mathbf{x}_{n}^{*} \end{array}$$

One iteration $\rightarrow n$ optimizations of dimension d followed by ranking n criterion values

DETMAX algorithm Mitchell (1974):

If one additional observation were allowed: optimal choice

$$\mathbf{X}_{n+1}^{k+} = (\mathbf{x}_1, \dots, \mathbf{x}_j, \dots, \mathbf{x}_n, \mathbf{x}_{n+1}^*)$$

Then, remove one support point to return to a *n*-points design:

→ consider all n + 1 possible cancellations, retain the less penalizing in the sense of $\Phi(\cdot)$

Luc Pronzato (CNRS)

DETMAX algorithm Mitchell (1974):

If one additional observation were allowed: optimal choice

$$\mathbf{X}_{n+1}^{k+} = (\mathbf{x}_1, \ldots, \mathbf{x}_j, \ldots, \mathbf{x}_n, \mathbf{x}_{n+1}^*)$$

Then, remove one support point to return to a *n*-points design:
 → consider all *n* + 1 possible cancellations, retain the less penalizing in the sense of Φ(·)

\rightarrow globally, exchange some \mathbf{x}_j with \mathbf{x}_{n+1}^*

[= excursion of length 1, longer excursions are possible...] One iteration \rightarrow 1 optimization of dimension *d* followed by ranking *n*+1 criterion values • DETMAX has simpler iterations than Fedorov, but usually requires more iterations

- DETMAX has simpler iterations than Fedorov, but usually requires more iterations
- dead ends are possible:
 - DETMAX: the point to be removed is \mathbf{x}_{n+1}
 - Fedorov: no possible improvement when optimizing **one** x_i at a time

- DETMAX has simpler iterations than Fedorov, but usually requires more iterations
- dead ends are possible:
 - DETMAX: the point to be removed is \mathbf{x}_{n+1}
 - Fedorov: no possible improvement when optimizing one x_i at a time
- \blacktriangle both give local optima only \blacktriangle

- DETMAX has simpler iterations than Fedorov, but usually requires more iterations
- dead ends are possible:
 - DETMAX: the point to be removed is \mathbf{x}_{n+1}
 - Fedorov: no possible improvement when optimizing **one** \mathbf{x}_i at a time
- \blacktriangle both give local optima only \blacktriangle
- Other methods:
 - Branch and bound: guaranteed convergence, but complicated [Welch 1982]

 Rounding an optimal design measure (support points x_i and associated weights w_i^{*}, i = 1,..., m, presented next in § 2.3): choose n integers r_i (r_i= nb. of replications of observations at x_i) such that ∑_{i=1}^m r_i = n and r_i/n ≈ w_i^{*} (e.g., maximize min_{i=1,...,m} r_i/w_i^{*} = Adams apportionment, see [Pukelsheim & Reider 1992])

2.3 Approximate design theory

(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980; Pukelsheim, 1993) ...

$$\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i)$$

(the additive form is essential — related to the independence of observations)

2.3 Approximate design theory

(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980; Pukelsheim, 1993) ...

$$\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i)$$

(the additive form is essential — related to the independence of observations)

If several \mathbf{x}_i coincide (repetitions), with only m < n different \mathbf{x}_i

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m \frac{\mathbf{r}_i}{n} \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i)$$

- $\frac{r_i}{r_i}$ = proportion of observations collected at \mathbf{x}_i
 - = «percentage of experimental effort» at \mathbf{x}_i
 - = weight w_i of support point \mathbf{x}_i

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m w_i \mathbf{r}(\mathbf{x}_i) \mathbf{r}^\top(\mathbf{x}_i)$$

$$\Rightarrow \text{ design } \mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{cc} \mathbf{x}_1 & \cdots & \mathbf{x}_m \\ \mathbf{w}_1 & \cdots & \mathbf{w}_m \end{array} \right\} \text{ with } \sum_{i=1}^m w_i = 1$$

$$\Rightarrow \text{ normalized discrete distribution on the } \mathbf{x}_i,$$

$$\text{ with constraints } \mathbf{w}_i = \mathbf{r}_i/n$$

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m w_i \mathbf{r}(\mathbf{x}_i) \mathbf{r}^\top(\mathbf{x}_i)$$

$$\Rightarrow \text{ design } \mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{cc} \mathbf{x}_1 & \cdots & \mathbf{x}_m \\ w_1 & \cdots & w_m \end{array} \right\} \text{ with } \sum_{i=1}^m w_i = 1$$

$$\Rightarrow \text{ normalized discrete distribution on the } \mathbf{x}_i,$$

$$\text{ with constraints } w_i = \mathbf{r}_i / \mathbf{n}$$

$$\Rightarrow \text{ Release the constraints: only enforce } w_i \ge 0 \text{ et } \sum_{i=1}^m w_i = 1$$

$$\Rightarrow \boldsymbol{\xi} = \text{ discrete probability measure on } \mathcal{X}$$

$$\text{ support points } \mathbf{x}_i \text{ and associated weights } w_i$$

= "approximate design"

 $\begin{aligned} \mathbf{M}(\mathbf{X}_n) &= \sum_{i=1}^m w_i \mathbf{r}(\mathbf{x}_i) \mathbf{r}^\top(\mathbf{x}_i) \\ & \bullet \text{ design } \mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{cc} \mathbf{x}_1 & \cdots & \mathbf{x}_m \\ w_1 & \cdots & w_m \end{array} \right\} \text{ with } \sum_{i=1}^m w_i = 1 \\ & \bullet \text{ normalized discrete distribution on the } \mathbf{x}_i, \\ & \text{ with constraints } w_i = r_i/n \end{aligned} \\ & \bullet \text{ Release the constraints: only enforce } w_i \geq 0 \text{ et } \sum_{i=1}^m w_i = 1 \\ & \bullet \boldsymbol{\xi} = \text{ discrete probability measure on } \mathscr{X} \\ & \text{ support points } \mathbf{x}_i \text{ and associated weights } w_i \\ & = \text{ "approximate design"} \\ & \text{ More general expression: } \boldsymbol{\xi} = \text{ any probability measure on } \mathscr{X} \end{aligned}$

$$\mathsf{M}(\boldsymbol{\xi}) = \int_{\mathscr{X}} \mathsf{r}(\mathsf{x}) \mathsf{r}^{\top}(\mathsf{x}) \, \boldsymbol{\xi}(\mathrm{d}\mathsf{x}) \, \text{ with } \int_{\mathscr{X}} \boldsymbol{\xi}(\mathrm{d}\mathsf{x}) = 1$$

 $\mathsf{M}(\xi) \in \text{convex closure of } \mathcal{M} = \text{set of rank 1 matrices}$ $\mathsf{M}(\delta_x) = \mathsf{r}(\mathsf{x})\mathsf{r}^{\top}(\mathsf{x})$

 $\mathsf{M}(\xi)$ is symmetric $p \times p \Rightarrow \in q$ -dimensional space, $q = rac{p(p+1)}{2}$

 $\mathbf{M}(\xi) \in \text{convex closure of } \mathcal{M} = \text{set of rank 1 matrices}$ $M(\delta_x) = r(x)r^{\top}(x)$ $\mathsf{M}(\xi)$ is symmetric $p imes p \Rightarrow \in q$ -dimensional space, $q = rac{p(p+1)}{2}$ M(dx2) $M(\delta_{X_1})$ $M(\xi)$ $M(\delta_{X_3})$ $\xi = w_1 \delta_{\mathbf{x}_1} + w_2 \delta_{\mathbf{x}_2} + w_3 \delta_{\mathbf{x}_3}$

(3 points are enough for q = 2)

Caratheodory Theorem:

 $\mathbf{M}(\xi)$ can be written as the linear combination of at most q + 1 elements of \mathcal{M} : $\mathbf{M}(\xi) = \sum_{i=1}^{m} w_i \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i), \quad m \leq \frac{p(p+1)}{2} + 1$

 $\Rightarrow \text{ consider discrete probability measures with } \frac{p(p+1)}{2} + 1 \text{ support points at most} \\ (\text{true in particular for the optimum design!})$

[Even better: for many criteria $\Phi(\cdot)$, if ξ^* is optimal (maximizes $\Phi[\mathbf{M}(\xi)]$) then $\mathbf{M}(\xi^*)$ is on the boundary of the convex closure of \mathcal{M} and $\frac{p(p+1)}{2}$ support points are enough]

Caratheodory Theorem:

 $\mathbf{M}(\xi)$ can be written as the linear combination of at most q + 1 elements of \mathcal{M} : $\mathbf{M}(\xi) = \sum_{i=1}^{m} w_i \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i), \quad m \leq \frac{p(p+1)}{2} + 1$

 $\Rightarrow \text{ consider discrete probability measures with } \frac{p(p+1)}{2} + 1 \text{ support points at most} \\ (\text{true in particular for the optimum design!}) \\ [Even better: for many criteria <math>\Phi(\cdot)$, if ξ^* is optimal (maximizes $\Phi[\mathbf{M}(\xi)]$) then $\mathbf{M}(\xi^*)$ is on the boundary of the convex closure of \mathcal{M} and $\frac{p(p+1)}{2}$ support points are enough]

Suppose we found an optimal $\xi^* = \sum_{i=1}^m w_i^* \delta_{\mathbf{x}_i}$ For a given *n*, choose the r_i so that $\frac{r_i}{n} \simeq w_i^*$ optimum \rightarrow rounding of an approximate design

Caratheodory Theorem:

 $\mathbf{M}(\xi)$ can be written as the linear combination of at most q + 1 elements of \mathcal{M} : $\mathbf{M}(\xi) = \sum_{i=1}^{m} w_i \mathbf{r}(\mathbf{x}_i) \mathbf{r}^{\top}(\mathbf{x}_i), \quad m \leq \frac{p(p+1)}{2} + 1$

 $\Rightarrow \text{ consider discrete probability measures with } \frac{p(p+1)}{2} + 1 \text{ support points at most} \\ (\text{true in particular for the optimum design!}) \\ [Even better: for many criteria <math>\Phi(\cdot)$, if ξ^* is optimal (maximizes $\Phi[\mathbf{M}(\xi)]$) then $\mathbf{M}(\xi^*)$ is on the boundary of the convex closure of \mathcal{M} and $\frac{p(p+1)}{2}$ support points are enough]

Suppose we found an optimal $\xi^* = \sum_{i=1}^m w_i^* \delta_{\mathbf{x}_i}$ For a given *n*, choose the r_i so that $\frac{r_i}{n} \simeq w_i^*$ optimum \rightarrow rounding of an approximate design

> Why design measures are interesting? How does it simplify the optimization problem?

■ Maximize $\Phi(\cdot)$ concave w.r.t. $\mathbf{M}(\xi)$ in a convex set Ex: *D*-optimality: $\forall \mathbf{M}_1 \succ \mathbf{O}, \mathbf{M}_2 \succeq \mathbf{O}$, with $\mathbf{M}_2 \notin \mathbf{M}_2, \forall \alpha, 0 < \alpha < 1$, $\log \det[(1 - \alpha)\mathbf{M}_1 + \alpha\mathbf{M}_2] > (1 - \alpha) \log \det \mathbf{M}_1 + \alpha \log \det \mathbf{M}_2$ $\Rightarrow \log \det[\cdot]$ is (strictly) concave convex set + concave criterion \Rightarrow one unique optimum!
• Maximize $\Phi(\cdot)$ concave w.r.t. $\mathbf{M}(\xi)$ in a <u>convex set</u> Ex: D-optimality: $\forall \mathbf{M}_1 \succ \mathbf{O}, \mathbf{M}_2 \succeq \mathbf{O}$, with $\mathbf{M}_2 \not \propto \mathbf{M}_2, \forall \alpha, 0 < \alpha < 1$, $\log \det[(1-\alpha)\mathbf{M}_1 + \alpha\mathbf{M}_2] > (1-\alpha)\log \det \mathbf{M}_1 + \alpha\log \det \mathbf{M}_2$ $\Rightarrow \log \det[\cdot]$ is (strictly) concave convex set + concave criterion \Rightarrow one unique optimum! MO ξ^* is optimal \Leftrightarrow directional derivative < 0 in all directions M(dx M(2*) мØх

 $\Rightarrow "Equivalence Theorem" [Kiefer & Wolfowitz 1960]$ $\Xi = set of probability measures on <math>\mathscr{X}$, $\Phi(\cdot)$ concave, $\phi(\xi) = \Phi[\mathbf{M}(\xi)]$ $F_{\phi}(\xi; \nu) = \lim_{\alpha \to 0^+} \frac{\phi[(1-\alpha)\xi + \alpha\nu] - \phi(\xi)}{\alpha}$ = directional derivative of $\phi(\cdot)$ at ξ in direction ν

Equivalence Theorem:

$$\xi^* \text{ maximizes } \phi(\xi) \Leftrightarrow \max_{\nu \in \Xi} F_{\phi}(\xi^*; \nu) \leq 0$$

 $\begin{array}{l} \Longrightarrow \text{``Equivalence Theorem'' [Kiefer & Wolfowitz 1960]} \\ \Xi = \text{set of probability measures on } \mathscr{X}, \ \Phi(\cdot) \ \text{concave, } \phi(\xi) = \Phi[\mathbf{M}(\xi)] \\ F_{\phi}(\xi; \nu) = \lim_{\alpha \to 0^+} \frac{\phi[(1-\alpha)\xi + \alpha\nu] - \phi(\xi)}{\alpha} \\ = \text{directional derivative of } \phi(\cdot) \ \text{at } \xi \text{ in direction } \nu \end{array}$

Equivalence Theorem: ξ^* maximizes $\phi(\xi) \Leftrightarrow \max_{\nu \in \Xi} F_{\phi}(\xi^*; \nu) \leq 0$

→ Takes a simple form when $\Phi(\cdot)$ is differentiable

 $\xi^* \text{ maximizes } \phi(\xi) \Leftrightarrow \max_{\mathbf{x} \in \mathscr{X}} F_{\phi}(\xi^*; \delta_{\mathbf{x}}) \leq 0$

Solution $F_{\phi}(\xi^*; \delta_x)$ Solution $\delta_{\phi}(\xi^*; \delta_x)$

Ex: D-optimal design

- ξ_D^* maximizes log det[$\mathbf{M}(\xi)$] w.r.t. $\xi \in \Xi$
- $\Leftrightarrow \max_{\mathbf{x} \in \mathscr{X}} d(\xi_D^*, \mathbf{x}) \leq p$
- $\Leftrightarrow \xi_D^*$ minimizes $\max_{\mathbf{x} \in \mathscr{X}} d(\xi, \mathbf{x})$ w.r.t. $\xi \in \Xi$

where $d(\xi, \mathbf{x}) = \mathbf{r}^{\top}(\mathbf{x})\mathbf{M}^{-1}(\xi)\mathbf{r}(\mathbf{x})$

Moreover, $d(\xi_D^*, \mathbf{x}_i) = p = \dim(\theta)$ for any $\mathbf{x}_i =$ support point of ξ_D^*

<u>Ex.</u>: $\mathbf{r}(x) = (1 \times x^2)^\top$ (p = 3) i.i.d. erreurs, $\mathscr{X} = [0, 2]$ $\longrightarrow d(\xi, x)$ as a function of x

$$\underline{\mathsf{Ex.}} : \mathbf{r}(x) = (1 \times x^2)^\top (p = 3) \text{ i.i.d. erreurs, } \mathscr{X} = [0, 2] \\
\overset{\bullet\bullet}{\longrightarrow} d(\xi, x) \text{ as a function of } x \\
\xi_D^* = \left\{ \begin{array}{cc} 0 & 1 & 2 \\ 1/3 & 1/3 & 1/3 \end{array} \right\}$$

$$\underline{\mathsf{Ex.}} : \mathbf{r}(x) = (1 \ x \ x^2)^\top \ (p = 3) \text{ i.i.d. erreurs, } \mathscr{X} = [0, 2]$$

$$\xrightarrow{\mathsf{m}} d(\xi, x) \text{ as a function of } x$$

$$\xi_D^* = \left\{ \begin{array}{cc} 0 & 1 & 2 \\ 1/3 & 1/3 & 1/3 \end{array} \right\} \qquad \qquad \xi = \left\{ \begin{array}{cc} 0 & 1.5 & 2 \\ 1/3 & 1/2 & 1/6 \end{array} \right\}$$

KW Eq. Th. relates optimality in γ space (parameters) to optimality in y space (observations) $n \operatorname{var}[\mathbf{r}^{\top}(\mathbf{x})\hat{\gamma}^{n})] = \sigma^{2} \mathbf{r}^{\top}(\mathbf{x})\mathbf{M}^{-1}(\xi)\mathbf{r}(\mathbf{x}) = \sigma^{2} d(\xi, \mathbf{x})$ (i.i.d. errors)

D-optimality \Leftrightarrow G-optimality

• $|\xi_D^*$ minimizes the maximum value of prediction variance over \mathscr{X}

KW Eq. Th. relates optimality in γ space (parameters) to optimality in y space (observations) nvar $[\mathbf{r}^{\top}(\mathbf{x})\hat{\gamma}^{n})] = \sigma^{2} \mathbf{r}^{\top}(\mathbf{x})\mathbf{M}^{-1}(\xi)\mathbf{r}(\mathbf{x}) = \sigma^{2} d(\xi, \mathbf{x})$ (i.i.d. errors)

D-optimality \Leftrightarrow G-optimality

• $|\xi^*_D$ minimizes the maximum value of prediction variance over \mathscr{X}

Construction of an optimal design measure

Central idea (\blacktriangle for a differentiable $\Phi(\cdot)$ \bigstar): use steepest-ascent direction **Fedorov–Wynn** :

• 1 : Choose ξ^1 non degenerate $(\det \mathbf{M}(\xi^1) > 0)$

• 3 :
$$\xi^{k+1} = (1 - \alpha_k)\xi^k + \alpha_k \delta_{\mathbf{x}_k^*}$$
 (delta measure at \mathbf{x}_k^*)
[Vertex Direction]

 $k \rightarrow k + 1$, return to step 2

Construction of an optimal design measure

Central idea (\blacktriangle for a differentiable $\Phi(\cdot)$ \bigstar): use steepest-ascent direction **Fedorov–Wynn** :

• 1 : Choose ξ^1 non degenerate $(\det \mathbf{M}(\xi^1) > 0)$

• 3 :
$$\xi^{k+1} = (1 - \alpha_k)\xi^k + \alpha_k \delta_{\mathbf{x}_k^*}$$
 (delta measure at \mathbf{x}_k^*)
[Vertex Direction]

 $k \rightarrow k + 1$, return to step 2

Step size
$$\alpha_k$$
?

 $\Rightarrow \alpha_k = \arg \max \phi(\xi^{k+1})$

 $= \frac{d(\xi^k, \mathbf{x}_k^*) - p}{p[d(\xi^k, \mathbf{x}_k^*) - 1]} \text{ for } D\text{-optimality (Fedorov, 1972)}$

 \rightarrow monotone convergence

••
$$\alpha_k > 0$$
, $\lim_{k \to \infty} \alpha_k = 0$, $\sum_{i=1}^{\infty} \alpha_k = \infty$
((Wynn, 1970) for *D*-optimality)

Remarks:

• Sequential design, one
$$\mathbf{x}_i$$
 at at a time enters $\mathbf{M}(\mathbf{X})$:
 $\mathbf{M}(\mathbf{X}_{k+1}) = \frac{k}{k+1} \mathbf{M}(\mathbf{X}_k) + \frac{1}{k+1} \mathbf{r}(\mathbf{x}_{k+1}) \mathbf{r}^{\top}(\mathbf{x}_{k+1})$
with $\mathbf{x}_{k+1} = \arg \max_{\mathbf{x} \in \mathscr{X}} F_{\phi}(\xi^k; \delta_{\mathbf{x}})$
 \Leftrightarrow Wynn's algorithm with $\alpha_k = \frac{1}{k+1}$

Remarks:

• Sequential design, one
$$\mathbf{x}_i$$
 at at a time enters $\mathbf{M}(\mathbf{X})$:
 $\mathbf{M}(\mathbf{X}_{k+1}) = \frac{k}{k+1} \mathbf{M}(\mathbf{X}_k) + \frac{1}{k+1} \mathbf{r}(\mathbf{x}_{k+1}) \mathbf{r}^{\top}(\mathbf{x}_{k+1})$
with $\mathbf{x}_{k+1} = \arg \max_{\mathbf{x} \in \mathscr{X}} F_{\phi}(\xi^k; \delta_{\mathbf{x}})$
 \Leftrightarrow Wynn's algorithm with $\alpha_k = \frac{1}{k+1}$

• Guaranteed convergence to the optimum

Remarks:

• Sequential design, one
$$\mathbf{x}_i$$
 at at a time enters $\mathbf{M}(\mathbf{X})$:
 $\mathbf{M}(\mathbf{X}_{k+1}) = \frac{k}{k+1} \mathbf{M}(\mathbf{X}_k) + \frac{1}{k+1} \mathbf{r}(\mathbf{x}_{k+1}) \mathbf{r}^{\top}(\mathbf{x}_{k+1})$
with $\mathbf{x}_{k+1} = \arg \max_{\mathbf{x} \in \mathscr{X}} F_{\phi}(\xi^k; \delta_{\mathbf{x}})$
 \Leftrightarrow Wynn's algorithm with $\alpha_k = \frac{1}{k+1}$

- Guaranteed convergence to the optimum
- There exist faster methods:
 - remove support points from ξ^k (\approx allow α_k to be < 0) (Atwood, 1973; Böhning, 1985, 1986)
 - combine with gradient projection (or a second-order method) (Wu, 1978)
 - use a multiplicative algorithm (Titterington, 1976; Torsney, 1983, 2009; Yu, 2010) (for A and D optimality, far from the optimum)
 - combine different methods (Yu, 2011)
 - Still an active topic especially for non differentiable $\Phi(\cdot)$...

2.4 Tensor-product models

<u>D</u>-optimality (also true for A-optimality under some conditions (Schwabe, 1996)) $[\mathbf{r}^{(k)}(x)]^{\top}\theta^{(k)} \triangleq \sum_{i=1}^{d_k} \theta_i^{(k)} x^i \text{ polynomial with degree } d_k, \dim(\theta^{(k)}) = p_k = 1 + d_k$

Global model for
$$\mathbf{x} = (\{\mathbf{x}\}_1, \{\mathbf{x}\}_2, \dots, \{\mathbf{x}\}_d)^\top$$
:
 $\mathbf{r}^\top(\mathbf{x})\gamma = \prod_{k=1}^d [\mathbf{r}^{(k)}(x)]^\top \theta^{(k)},$
total degree $\sum_{k=1}^d d_k$, dim $(\gamma) = \prod_{k=1}^d p_k$

2.4 Tensor-product models

<u>D</u>-optimality (also true for A-optimality under some conditions (Schwabe, 1996)) $[\mathbf{r}^{(k)}(x)]^{\top}\theta^{(k)} \triangleq \sum_{i=1}^{d_k} \theta_i^{(k)} x^i$ polynomial with degree d_k , $\dim(\theta^{(k)}) = p_k = 1 + d_k$

Global model for
$$\mathbf{x} = (\{\mathbf{x}\}_1, \{\mathbf{x}\}_2, \dots, \{\mathbf{x}\}_d)^\top$$
:
 $\mathbf{r}^\top(\mathbf{x})\gamma = \prod_{k=1}^d [\mathbf{r}^{(k)}(\mathbf{x})]^\top \theta^{(k)},$
total degree $\sum_{k=1}^d d_k$, dim $(\gamma) = \prod_{k=1}^d p_k$

Example:

$$\mathbf{r}^{\top}(\mathbf{x})\gamma = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) \times (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2)$$

= $\gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{12}\{\mathbf{x}\}_1\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2$
 $+ \gamma_{112}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2 + \gamma_{122}\{\mathbf{x}\}_1\{\mathbf{x}\}_2^2 + \gamma_{1122}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2^2$

2.4 Tensor-product models

D-optimality (also true for A-optimality under some conditions (Schwabe, 1996)) $[\mathbf{r}^{(k)}(x)]^{\top} \theta^{(k)} \triangleq \sum_{i=1}^{d_k} \theta_i^{(k)} x^i$ polynomial with degree d_k , $\dim(\theta^{(k)}) = p_k = 1 + d_k$

Global model for
$$\mathbf{x} = (\{\mathbf{x}\}_1, \{\mathbf{x}\}_2, \dots, \{\mathbf{x}\}_d)^\top$$
:
 $\mathbf{r}^\top(\mathbf{x})\gamma = \prod_{k=1}^d [\mathbf{r}^{(k)}(x)]^\top \theta^{(k)},$
total degree $\sum_{k=1}^d d_k$, dim $(\gamma) = \prod_{k=1}^d p_k$

Example:

$$\mathbf{r}^{\top}(\mathbf{x})\gamma = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) \times (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2)$$

= $\gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{12}\{\mathbf{x}\}_1\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2$
 $+ \gamma_{112}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2 + \gamma_{122}\{\mathbf{x}\}_1\{\mathbf{x}\}_2^2 + \gamma_{1122}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2^2$

D-optimal design (approximate theory) = tensor product of d one-dimensional D-optimal designs (true for any type of model, not only polynomials)

Luc Pronzato (CNRS)

Sum of polynomials? $\mathbf{r}^{\top}(\mathbf{x})\gamma = \sum_{k=1}^{d} [\mathbf{r}^{(k)}(\mathbf{x})]^{\top} \theta^{(k)},$ total degree max^d_{k=1} d_k, dim(γ) = ($\sum_{k=1}^{d} p_k$) - 1 = $\sum_{k=1}^{d} d_k + d - 1$ Sum of polynomials? $\mathbf{r}^{\top}(\mathbf{x})\gamma = \sum_{k=1}^{d} [\mathbf{r}^{(k)}(x)]^{\top} \theta^{(k)},$ total degree max^d_{k=1} d_k , dim $(\gamma) = (\sum_{k=1}^{d} p_k) - 1 = \sum_{k=1}^{d} d_k + d - 1$

Example:

$$\mathbf{r}^{\mathsf{T}}(\mathbf{x})\gamma = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) + (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2)$$

= $\gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2$

(no interaction term)

Again, *D*-optimal design (approximate theory) = tensor product of d one-dimensional *D*-optimal designs (Schwabe, 1996)

Sum of polynomials? $\mathbf{r}^{\top}(\mathbf{x})\gamma = \sum_{k=1}^{d} [\mathbf{r}^{(k)}(x)]^{\top} \theta^{(k)},$ total degree max^d_{k=1} d_k , dim $(\gamma) = (\sum_{k=1}^{d} p_k) - 1 = \sum_{k=1}^{d} d_k + d - 1$

Example:

$$\mathbf{r}^{\mathsf{T}}(\mathbf{x})\gamma = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) + (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2)$$

= $\gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2$

(no interaction term)

Again, *D*-optimal design (approximate theory) = tensor product of d one-dimensional *D*-optimal designs (Schwabe, 1996)

Difficult to apply in big dimension:

d polynomials of degree $k \twoheadrightarrow (k+1)^d$ support points!

but a general lesson, and possible extension towards Gaussian process models and kriging

2.5 Consequences for space-filling design

D-optimality + polynomials \blacksquare more points close to the boundary as degree increases

Erdös-Turan theorem: roots *r* of orthonormal polynomials on [0, 1] are asymptotically distributed with the arcsine law, with density $\varphi_0(r) = \frac{1}{\pi \sqrt{r(1-r)}}$

Should we put more points close to the boundary ?

2.5 Consequences for space-filling design

D-optimality + polynomials **m** more points close to the boundary as degree increases

Erdös-Turan theorem: roots *r* of orthonormal polynomials on [0, 1] are asymptotically distributed with the arcsine law, with density $\varphi_0(r) = \frac{1}{\pi \sqrt{r(1-r)}}$

Should we put more points close to the boundary ?

In order to counter the boundary effect Dette and Pepelyshev (2010):

- Take a "standard" space-filling design (e.g., Maximin, Lh Maximin, LDS),
- for each j = 1, ..., d, transform j-th coordinates $\{\mathbf{x}_i\}_j$ with $T : x \mapsto z = T(x) = \frac{1 + \cos(\pi x)}{2}$ $(x \sim \text{uniform} \rightarrow z \sim \text{arcsine}),$
- Use the transformed design $Z_n = (z_1, \dots, z_n)$

Illustration of boundary effect: d = 1, n = 11 observations in [0, 1], ordinary kriging with covariance $C(t) = \exp(-50 t^2) \implies \text{plot of } \rho_n(x)$

<u>Illustration of boundary effect</u>: d = 1, n = 11 observations in [0, 1], ordinary kriging with covariance $C(t) = \exp(-50 t^2)$ \implies plot of $\rho_n(x)$

Uniform distribution of design points

- \Rightarrow prediction near boundaries relies on less points
- \Rightarrow precision is worse close to boundaries

<u>Illustration of boundary effect</u>: d = 1, n = 11 observations in [0, 1], ordinary kriging with covariance $C(t) = \exp(-50 t^2)$ \implies plot of $\rho_n(x)$

Uniform distribution of design points

- \Rightarrow prediction near boundaries relies on less points
- \Rightarrow precision is worse close to boundaries

... But transformation $T: x \mapsto z = T(x) = \frac{1 + \cos(\pi x)}{2}$ may be too "strong"

... But transformation $T: x \mapsto z = T(x) = \frac{1 + \cos(\pi x)}{2}$ may be too "strong"

... But transformation $T: x \mapsto z = T(x) = \frac{1 + \cos(\pi x)}{2}$ may be too "strong"

Arcsine distribution: maximizes $\tilde{\Phi}_{[0]}(\xi) = \exp\left[\int_0^1 \int_0^1 \log ||x - y|| \, \xi(dx) \, \xi(dy)\right]$ (continuous version of $\overline{\phi}_{[0]}(\mathbf{X}) = \exp\left[\sum_{i < j} \mu_{ij} \log(d_{ij})\right]$, see § I-1.6)
Arcsine distribution: maximizes $\tilde{\Phi}_{[0]}(\xi) = \exp\left[\int_0^1 \int_0^1 \log \|x - y\| \xi(dx) \xi(dy)\right]$ (continuous version of $\overline{\phi}_{[0]}(\mathbf{X}) = \exp\left[\sum_{i < j} \mu_{ij} \log(d_{ij})\right]$, see § I-1.6)

Maximization of

$$ilde{\Phi}_{[q]}(\xi) = \left[\int_0^1 \int_0^1 \|x-y\|^{-q}\,\xi(dx)\,\xi(dy)
ight]^{-1/q}\,,\; 0 < q < 1$$

(continuous version of $\overline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} \mu_{ij} d_{ij}^{-q}\right]^{-1/q}$, see § I-1.6) yields a measure ξ with density $\varphi_q(x) = \frac{x^{(q-1)/2}(1-x)^{(q-1)/2}}{B(\frac{q+1}{2},\frac{q+1}{2})}$ (Beta distribution) (Zhigljavsky et al., 2010) (tends to arcsine when $q \to 0$, to uniform when $q \to 1$)

- Take a "standard" space-filling design (e.g., Maximin, Lh Maximin, LDS),
- for each j = 1, ..., d, transform *j*-th coordinates $\{\mathbf{x}_i\}_j$ with $T: x \mapsto z = T(x)$ such that $x = \int_0^z \varphi_q(t) dt$ ($x \sim$ uniform $\rightarrow z \sim \varphi_q$),
- Use the transformed design $Z_n = (z_1, \ldots, z_n)$

- Take a "standard" space-filling design (e.g., Maximin, Lh Maximin, LDS),
- for each j = 1, ..., d, transform *j*-th coordinates $\{\mathbf{x}_i\}_j$ with $T: x \mapsto z = T(x)$ such that $x = \int_0^z \varphi_q(t) dt$ ($x \sim$ uniform $\rightarrow z \sim \varphi_q$),
- Use the transformed design $Z_n = (z_1, \dots, z_n)$

- Take a "standard" space-filling design (e.g., Maximin, Lh Maximin, LDS),
- for each j = 1, ..., d, transform *j*-th coordinates $\{\mathbf{x}_i\}_j$ with $T: x \mapsto z = T(x)$ such that $x = \int_0^z \varphi_q(t) dt$ ($x \sim$ uniform $\rightarrow z \sim \varphi_q$),
- Use the transformed design $Z_n = (z_1, \ldots, z_n)$

- Take a "standard" space-filling design (e.g., Maximin, Lh Maximin, LDS),
- for each j = 1, ..., d, transform *j*-th coordinates $\{\mathbf{x}_i\}_j$ with $T: x \mapsto z = T(x)$ such that $x = \int_0^z \varphi_q(t) dt$ ($x \sim$ uniform $\rightarrow z \sim \varphi_q$),

• Use the transformed design $Z_n = (z_1, \ldots, z_n)$

... For a suitably chosen Beta-transformation (q = 0.84)

... For a suitably chosen Beta-transformation (q = 0.84)

... For a suitably chosen Beta-transformation (q = 0.84)

Maximin + transformed Maximin

Choice of a suitable q?

Optimize a precision criterion based on ρ_n(x) (depends on covariance C(·))

 \blacktriangle requires \mathscr{X} = hypercube \blacktriangle

 \blacktriangle if d is big, many points are on the boundary (or at the vertices!) of \mathscr{X}

3 Optimal design for Bayesian prediction

3.1 Karhunen-Loève decomposition of a Gaussian process

Model without trend: $f(\mathbf{x}) = Z(\mathbf{x})$, Gaussian process E $\{Z(\mathbf{x})\} = 0$, E $\{Z(\mathbf{x})Z(\mathbf{x}')\} = C(\mathbf{x}, \mathbf{x}') (= C(\mathbf{x} - \mathbf{x}')$ if stationary)

$$\mathsf{IMSE}_{\mu}(\mathbf{X}_n) \triangleq \int_{\mathscr{X}} \mathsf{E}\left\{ \left[Z(\mathbf{x}) - \mathsf{E}\{Z(\mathbf{x})|\mathbf{y}_n\} \right]^2 \right\} \, \mathrm{d}\mu(\mathbf{x}) \$$

3 Optimal design for Bayesian prediction

3.1 Karhunen-Loève decomposition of a Gaussian process

Model without trend: $f(\mathbf{x}) = Z(\mathbf{x})$, Gaussian process E $\{Z(\mathbf{x})\} = 0$, E $\{Z(\mathbf{x})Z(\mathbf{x}')\} = C(\mathbf{x}, \mathbf{x}') (= C(\mathbf{x} - \mathbf{x}')$ if stationary)

$$\mathsf{IMSE}_{\mu}(\mathbf{X}_n) \triangleq \int_{\mathscr{X}} \mathsf{E}\left\{ \left[Z(\mathbf{x}) - \mathsf{E}\{Z(\mathbf{x})|\mathbf{y}_n\} \right]^2 \right\} \, \mathrm{d}\mu(\mathbf{x})$$

The integral operator T_{μ} defined by $\forall f \in L^{2}(\mathscr{X}, \mu), \ \forall \mathbf{x} \in \mathscr{X}, \ T_{\mu}[f](\mathbf{x}) = \int_{\mathscr{X}} f(\mathbf{x}') \mathcal{K}(\mathbf{x}, \mathbf{x}') d\mu(\mathbf{x}')$ is diagonalisable:

eigenvalues
$$\lambda_i$$
, $i = 1, 2, 3...$ (in \searrow order)
associated eigenfunctions $\varphi_i(\cdot)$ (extended over \mathscr{X}), with
 $\int_{\mathscr{X}} \varphi_i(\mathbf{x}) \varphi_j(\mathbf{x}) d\mu(\mathbf{x}) = \delta_{ij}$

$$Z'(\mathbf{x}) \triangleq P_{\mathbb{H}_{\mu}}[Z_{\mathbf{x}}] = \sum_{i} \zeta_{i} \sqrt{\lambda_{i}} \varphi_{i}(\mathbf{x})$$

with all ζ_i i.i.d. $\mathcal{N}(0,1)$

 ${\it P}_{\mathbb{H}_{\mu}}=$ projection \perp on the space "which contributes to IMSE $_{\mu}$ "

 $Z'(\mathbf{x}) = \sum_i \gamma_i \varphi_i(\mathbf{x})$ where the r.v. γ_i are independent $\mathcal{N}(\mathbf{0}, \lambda_i)$

$$Z'(\mathbf{x}) \triangleq P_{\mathbb{H}_{\mu}}[Z_{\mathbf{x}}] = \sum_{i} \zeta_{i} \sqrt{\lambda_{i}} \varphi_{i}(\mathbf{x})$$

with all ζ_i i.i.d. $\mathcal{N}(0, 1)$ $\mathcal{P}_{\mathbb{H}_{\mu}} = \text{projection } \perp \text{ on the space "which contributes to IMSE}_{\mu}$ "

$$Z'({f x}) = \sum_i \gamma_i arphi_i({f x})$$
 where the r.v. γ_i are independent $\mathcal{N}(0,\lambda_i)$

For a given truncation level m,

$$Z'(\mathbf{x}) = \sum_{i=1}^{m} \gamma_i \varphi_i(\mathbf{x}) + \sum_{i>m} \gamma_i \varphi_i(\mathbf{x})$$
$$\simeq \overline{Z''(\mathbf{x}) = \sum_{i=1}^{m} \gamma_i \varphi_i(\mathbf{x}) + \varepsilon(\mathbf{x})}$$

with $\mathsf{E}\{\varepsilon(\mathbf{x}_i)\} = 0$, $\mathsf{E}\{\varepsilon(\mathbf{x}_i)\varepsilon(\mathbf{x}_j)\} = \sigma^2 \delta_{ij}$ et $\sigma^2 = \sum_{i>m} \lambda_i$

 $\begin{aligned} \overline{Z''(\mathbf{x}_i)} &= \phi^{\top}(\mathbf{x}_i)\gamma + \varepsilon_i \\ &= \text{linear regression model (as in § 2.1)} \\ &\text{(with eigenfunctions } \varphi_i(\cdot), \ i = 1, \dots, m, \text{ instead of polynomials)} \end{aligned}$

(Fedorov, 1996) - construct an optimal design for this model

3.2 Bayesian prediction for $Z''(\mathbf{x}_i) = \phi^{\top}(\mathbf{x}_i)\gamma + \varepsilon_i$

LS estimation:

$$\hat{\gamma}_n = (\Phi_n^{\top} \Phi_n)^{-1} \Phi_n^{\top} \mathbf{y}_n, \text{ with } \mathbf{y}_n = (y_1, \dots, y_n)^{\top} \text{ and } \Phi_n = \begin{pmatrix} \phi^{\top}(\mathbf{x}_1) \\ \vdots \\ \phi^{\top}(\mathbf{x}_n) \end{pmatrix}$$
$$\operatorname{cov}(\hat{\gamma}_n) = \sigma^2 (\Phi_n^{\top} \Phi_n)^{-1} = \frac{\sigma^2}{n} \left[\underbrace{\frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x}_i) \phi^{\top}(\mathbf{x}_i)}_{\mathbf{M}_n} \right]^{-1}$$

3.2 Bayesian prediction for $Z''(\mathbf{x}_i) = \phi^{\top}(\mathbf{x}_i)\gamma + \varepsilon_i$

LS estimation:

$$\hat{\gamma}_n = (\Phi_n^{\top} \Phi_n)^{-1} \Phi_n^{\top} \mathbf{y}_n, \text{ with } \mathbf{y}_n = (y_1, \dots, y_n)^{\top} \text{ and } \Phi_n = \begin{pmatrix} \phi^{\top}(\mathbf{x}_1) \\ \vdots \\ \phi^{\top}(\mathbf{x}_n) \end{pmatrix}$$
$$\operatorname{cov}(\hat{\gamma}_n) = \sigma^2 (\Phi_n^{\top} \Phi_n)^{-1} = \frac{\sigma^2}{n} \left[\underbrace{\frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x}_i) \phi^{\top}(\mathbf{x}_i)}_{\mathbf{M}_n} \right]^{-1}$$

Prediction at \mathbf{x} : $\eta_n(\mathbf{x}) = \phi^\top(\mathbf{x})\hat{\gamma}_n$

$$\begin{aligned} \mathsf{IMSE}(\mathbf{X}_n) &= \int_{\mathscr{X}} \phi^\top(\mathbf{x}) \mathrm{cov}(\hat{\gamma}_n) \phi(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) = \frac{\sigma^2}{n} \mathrm{trace}[\mathbf{M}_n^{-1}] \\ &= A \text{-optimality criterion} \\ (\text{requires } n \geq m \text{ to have a full rank } \mathbf{M}_n) \end{aligned}$$

Bayesian estimation: prior distribution $\mathcal{N}(\mathbf{0}, \Lambda_m)$ for γ , with $\Lambda_m = \text{diag}\{\lambda_1, \ldots, \lambda_m\}$ $\hat{\gamma}_n = [\Phi_n^\top \Phi_n / \sigma^2 + \Lambda_m^{-1}]^{-1} [\Phi_n^\top \mathbf{y}_n / \sigma^2]$ $\operatorname{cov}(\hat{\gamma}_n) = [\Phi_n^{\top} \Phi_n / \sigma^2 + \Lambda_m^{-1}]^{-1} = \frac{\sigma^2}{n} \left[\underbrace{\frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x}_i) \phi^{\top}(\mathbf{x}_i)}_{i=1} + \frac{\sigma^2}{n} \Lambda_m^{-1} \right]$ M $M_B(x_n)$

Bayesian estimation: prior distribution $\mathcal{N}(\mathbf{0}, \Lambda_m)$ for γ , with $\Lambda_m = \text{diag}\{\lambda_1, \ldots, \lambda_m\}$ $\hat{\gamma}_n = [\Phi_n^\top \Phi_n / \sigma^2 + \Lambda_m^{-1}]^{-1} [\Phi_n^\top \mathbf{y}_n / \sigma^2]$ $\operatorname{cov}(\hat{\gamma}_n) = [\Phi_n^{\top} \Phi_n / \sigma^2 + \Lambda_m^{-1}]^{-1} = \frac{\sigma^2}{n} \left[\underbrace{\frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x}_i) \phi^{\top}(\mathbf{x}_i)}_{i=1} + \frac{\sigma^2}{n} \Lambda_m^{-1} \right]$ $M_B(x_n)$

Prediction at \mathbf{x} : $\eta_n(\mathbf{x}) = \phi^{\top}(\mathbf{x})\hat{\gamma}_n$

$$\begin{aligned} \mathsf{IMSE}(\mathbf{X}_n) &= \int_{\mathscr{X}} \phi^{\top}(\mathbf{x}) \mathrm{cov}(\hat{\gamma}_n) \phi(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) = \frac{\sigma^2}{n} \mathrm{trace}[\mathbf{M}_B^{-1}(\mathbf{X}_n)] \\ &= A \text{-optimality criterion applied to } \mathbf{M}_B(\mathbf{X}_n) \\ &\quad (\mathbf{M}_B(\mathbf{X}_n) \text{ has full rank for any } m!) \end{aligned}$$

3.3 IMSE-optimal design

All the machinery of optimal design for parametric models is available (Pilz, 1983)

Exact design: Spöck and Pilz (2010) for prediction of spatial random fields (but no guaranteed convergence to the optimum)

3.3 IMSE-optimal design

All the machinery of optimal design for parametric models is available (Pilz, 1983)

Exact design: Spöck and Pilz (2010) for prediction of spatial random fields (but no guaranteed convergence to the optimum)

<u>Approximate design</u>: minimize $\Psi(\xi) = \text{trace}[\mathsf{M}_B^{-1}(\xi)]$, with ξ a probability measure over \mathscr{X} and

$$\mathbf{M}_{B}(\xi) = \int \phi(\mathbf{x})\phi^{\top}(\mathbf{x})\,\xi(\mathrm{d}\mathbf{x}) + \frac{\sigma^{2}}{n}\Lambda_{m}^{-1}$$

> guaranteed convergence towards an optimal ξ^* , with N^* support points

In practice: eigen-decomposition

> use a finite Q-point set X_Q = {x^(k),..., x^(Q)}
 > diagonalize QW where
 {Q}_{kℓ} = C(x^(k), x^(ℓ)), W = diag{w₁,..., w_Q}
 (w_k = 1/Q when µ uniform)
 → QW = P∧P⁻¹ with P^TWP = I_Q and
 ∧ = diag{λ₁,...,λ_Q} with λ₁ ≥ ··· ≥ λ_Q

In practice: eigen-decomposition

> use a finite Q-point set X_Q = {x^(k),...,x^(Q)}
> diagonalize QW where
{Q}_{kℓ} = C(x^(k), x^(ℓ)), W = diag{w₁,...,w_Q}
(w_k = 1/Q when µ uniform)

→ QW = P∧P⁻¹ with P^TWP = I_Q and
Λ = diag{λ₁,...,λ_Q} with λ₁ ≥ ··· ≥ λ_Q

$$\mathbf{M}_{B}(\xi) = \sum_{k=1}^{m} p_{k} \phi(\mathbf{x}_{k}) \phi^{\top}(\mathbf{x}_{k}) + \frac{\sum_{i=m+1}^{Q} \lambda_{i}}{n} \operatorname{diag}\{\lambda_{1}^{-1}, \dots, \lambda_{m}^{-1}\}, \ m < Q$$

where $p_{k} = \xi\{\mathbf{x}_{k}\}$ and $\{\phi(\mathbf{x}_{k})\}_{j} = \varphi_{j}(\mathbf{x}_{k}) = \mathbf{P}_{kj}, \ k = 1, \dots, m, \ j = 1, \dots, m$

In practice: eigen-decomposition

> use a finite Q-point set X_Q = {x^(k),...,x^(Q)}
> diagonalize QW where
{Q}_{kℓ} = C(x^(k), x^(ℓ)), W = diag{w₁,...,w_Q}
(w_k = 1/Q when µ uniform)

→ QW = P∧P⁻¹ with P^TWP = I_Q and
∧ = diag{λ₁,...,λ_Q} with λ₁ ≥ ··· ≥ λ_Q

$$\mathsf{M}_B(\xi) = \sum_{k=1}^m p_k \phi(\mathbf{x}_k) \phi^\top(\mathbf{x}_k) + \frac{\sum_{i=m+1}^Q \lambda_i}{n} \operatorname{diag}\{\lambda_1^{-1}, \dots, \lambda_m^{-1}\}, \ m < Q$$

where $p_k = \xi\{\mathbf{x}_k\}$ and $\{\phi(\mathbf{x}_k)\}_j = \varphi_j(\mathbf{x}_k) = \mathbf{P}_{kj}$, $k = 1, \dots, m$, $j = 1, \dots, m$

- minimization of trace[M_B⁻¹(ξ)] → ξ*
 p_k^{*} = 0 for many k, but some p_k^{*} > 0 are very small, there may exist clusters of points, etc.
 → aggregate support points of ξ*
 - → remove some points (transfer their weights on others, optimally) (Gauthier & P., 2016)

The number N of points is not totally controlled, but 2 tuning parameters are available: m (truncation level) and n (take $m \approx n \approx N$)

N points \blacksquare initialization for optimization of the <u>true</u> IMSE(X_N) by any standard algorithm (optimal points remain in the convex hull of \mathscr{X})

Example :

$$\overline{d = 2, C}(\mathbf{x}, \mathbf{x}') = (1 + 10 \|\mathbf{x} - \mathbf{x}'\|) \exp(-10 \|\mathbf{x} - \mathbf{x}'\|)$$
(Matérn 3/2)
$$\mathscr{X}_Q = \text{regular grid with } Q = 33 \times 33 = 1 089 \text{ points, } \sigma^2 = \sum_{i>m} \lambda_i$$

Example :

$$\overline{d} = 2, C(\mathbf{x}, \mathbf{x}') = (1 + 10 \|\mathbf{x} - \mathbf{x}'\|) \exp(-10 \|\mathbf{x} - \mathbf{x}'\|) \text{ (Matérn 3/2)}$$

 $\mathscr{X}_Q = \text{regular grid with } Q = 33 \times 33 = 1\,089 \text{ points, } \sigma^2 = \sum_{i>m} \lambda_i$

Can be used for any $\mathscr X$ if d not too big: use a finite $\mathscr X_Q$ given by first Q points of a LDS in $\mathscr X$

Can be used for any $\mathscr X$ if d not too big: use a finite $\mathscr X_Q$ given by first Q points of a LDS in $\mathscr X$

With trend, $f(\mathbf{x}) = Z(\mathbf{x}) + \mathbf{r}^{\top}(\mathbf{x})\beta$? Same thing (Spöck and Pilz, 2010), with slightly more complicated expressions Can be used for any $\mathscr X$ if d not too big: use a finite $\mathscr X_Q$ given by first Q points of a LDS in $\mathscr X$

With trend, $f(\mathbf{x}) = Z(\mathbf{x}) + \mathbf{r}^{\top}(\mathbf{x})\beta$? Same thing (Spöck and Pilz, 2010), with slightly more complicated expressions

More advanced: avoid mixing eigenfunctions $\varphi_i(\cdot)$ with trend components $\{\mathbf{r}\}_j(\cdot)$ (Gauthier & P., 2016)

▶ Conclusions part (2)

4 Beyond space filling

Optimal design for kriging: there is a hidden difficulty the value of θ in covariance $C(\cdot; \theta)$ is unknown

where use the same observations to estimate θ and then construct $\eta_n(x)$ with $\hat{\theta}^n$ estimated (plug-in method)

4 Beyond space filling

Optimal design for kriging: there is a hidden difficulty the value of θ in covariance $C(\cdot; \theta)$ is unknown

 \blacksquare use the same observations to estimate θ and then construct $\eta_n(x)$ with $\hat{\theta}^n$ estimated (plug-in method)

In particular, we may use $\hat{\theta}^n = Maximum$ Likelihood Estimator (MLE) $(Z(\mathbf{x})$ is supposed to be Gaussian)

there is a corrective term (Harville and Jeske, 1992; Abt, 1999) :

 $\hat{\rho}_n(\mathbf{x};\theta) = \rho_n(\mathbf{x};\theta) + \operatorname{trace}\{\mathbf{M}_{\theta}^{-1} \frac{\partial \mathbf{v}_n(\mathbf{x};\theta)}{\partial \theta} \mathbf{C}_n \frac{\partial \mathbf{v}_n(\mathbf{x};\theta)}{\partial \theta^{\top}}\}$

(= Empirical Kriging (EK) variance)

avec :

$$\mathbf{v}_n(\mathbf{x}; \theta)$$
 such that $\eta_n(\mathbf{x}) = \mathbf{v}_n^{\top}(\mathbf{x}; \theta)\mathbf{y}_n$
 $\mathbf{M}_{\theta} = \text{Fisher Information Matrix (FIM) for } \theta$

Example (Zimmerman, 2006): $\overline{E\{Z(\mathbf{x})Z(\mathbf{x}')\}} = \theta^{||\mathbf{x}-\mathbf{x}'||}, \ \theta = 0.3$ \mathscr{X} = regular grid 5 × 5, optimal designs for:

prediction for θ known

estimation of $\boldsymbol{\theta}$

prediction with θ estimated

> prediction with known θ : X_4 minimizes $\max_{\mathbf{x} \in \mathscr{X}} \rho_4(\mathbf{x})$ estimation of θ : X_4 maximizes det \mathbf{M}_{θ} prediction with θ estimated: X_4 minimizes MEK= $\max_{\mathbf{x} \in \mathscr{X}} \hat{\rho}_4(\mathbf{x}; \theta)$

Example (Müller et al., 2015): NH4 concentration in north sea (collaboration with MUMM, Belgium) simulated data, kriging with Matérn 3/2 kernel

 $\hat{\rho}_{14}(\mathbf{x}; \theta)$ for miniMax-optimal design $\mathbf{X}^*_{mM,n=14}$

 $\hat{\rho}_{14}(\mathbf{x};\theta)$ for \mathbf{X}_{14}^* minimizing MEK=max_{x \in \mathscr{X}} $\hat{\rho}_{14}(\mathbf{x};\theta)$

Choosing \mathbf{X}_n that minimizes MEK=max_{x \in \mathscr{X}} $\hat{\rho}_n(\mathbf{x}; \theta)$ is difficult

Choosing \mathbf{X}_n that minimizes MEK=max_{x \in X} $\hat{\rho}_n(\mathbf{x}; \theta)$ is difficult

→ Use a compromise criterion between space filling and "aggregation of points" for instance, take X_n that maximizes $\gamma \log \det(M_\beta) + (1 - \gamma) \log \det(M_\theta)$ (Müller et al., 2011, 2015), with

- M_{β} = FIM for trend parameters β (maximization \rightarrow space filling design)
- M_{θ} = FIM for correlation parameters θ (maximization \rightarrow aggregation)

Example: n = 7, d = 2, $C(\mathbf{x} - \mathbf{x}'; \theta) = \exp(-\theta \|\mathbf{x} - \mathbf{x}'\|)$, $\theta = 0.7$, $\overline{1000 \text{ Lh}}$ (999 random $+ \diamondsuit$ for a Maximin optimal design) MKV=max_{x $\in \mathscr{X}$} $\hat{\rho}_n(\mathbf{x}; \theta)$, $J_\alpha = \det^\alpha(\mathsf{M}_\beta) + \det^{1-\alpha}(\mathsf{M}_\theta)$ ($\alpha = 0.8$)

Example: n = 7, d = 2, $C(\mathbf{x} - \mathbf{x}'; \theta) = \exp(-\theta \|\mathbf{x} - \mathbf{x}'\|)$, $\theta = 0.7$, $\overline{1000}$ Lh (999 random $+ \diamondsuit$ for a Maximin optimal design) MKV=max_{x \in X} $\hat{\rho}_n(\mathbf{x}; \theta)$, $J_\alpha = \det^\alpha(\mathsf{M}_\beta) + \det^{1-\alpha}(\mathsf{M}_\theta)$ ($\alpha = 0.8$)

However, the effet of corrective term in $\hat{\rho}_n(\mathbf{x}; \theta) = \rho_n(\mathbf{x}; \theta) + \operatorname{trace} \{ \mathbf{M}_{\theta}^{-1} \frac{\partial \mathbf{v}_n(\mathbf{x}; \theta)}{\partial \theta} \mathbf{C}_n \frac{\partial \mathbf{v}_n(\mathbf{x}; \theta)}{\partial \theta^{\top}} \}$ quickly vanishes as *n* increases

Luc Pronzato (CNRS)

5 Conclusions part (2) — with model

► Design criteria relying on a Gaussian-process model (entropy, MMSE, IMSE) depend on the chosen covariance (and on θ in $C(\cdot, \theta)$)

- \blacksquare expectation w.r.t. θ (Joseph et al., 2015) \rightarrow entropy
- worst case w.r.t. θ (Spöck and Pilz, 2010) \rightarrow IMSE

However, the model is often just a tool to generate a space-filling design: the value of θ is not critical (choose a small enough correlation length to spread the points in \mathscr{X})
5 Conclusions part (2) — with model

► Design criteria relying on a Gaussian-process model (entropy, MMSE, IMSE) depend on the chosen covariance (and on θ in $C(\cdot, \theta)$)

- \blacksquare expectation w.r.t. θ (Joseph et al., 2015) \rightarrow entropy
- worst case w.r.t. θ (Spöck and Pilz, 2010) \rightarrow IMSE

However, the model is often just a tool to generate a space-filling design: the value of θ is not critical (choose a small enough correlation length to spread the points in \mathscr{X})

 \blacktriangleright Put more points near the boundaries than in the central part of $\mathscr X$

(but be careful ➡ in high dimension almost all the volume is near the boundaries!)
Put a few points close to each other to help estimation of θ

5 Conclusions part (2) — with model

► Design criteria relying on a Gaussian-process model (entropy, MMSE, IMSE) depend on the chosen covariance (and on θ in $C(\cdot, \theta)$)

- \blacksquare expectation w.r.t. θ (Joseph et al., 2015) \rightarrow entropy
- worst case w.r.t. θ (Spöck and Pilz, 2010) \rightarrow IMSE

However, the model is often just a tool to generate a space-filling design: the value of θ is not critical (choose a small enough correlation length to spread the points in \mathscr{X})

 \blacktriangleright Put more points near the boundaries than in the central part of $\mathscr X$

(but be careful ➡ in high dimension almost all the volume is near the boundaries!)
Put a few points close to each other to help estimation of θ

Test several methods (none is perfect) by comparing values of different criteria

Références

Références I

- Abt, M., 1999. Estimating the prediction mean squared error in gaussian stochastic processes with exponential correlation structure. Scandinavian Journal of Statistics 26 (4), 563–578.
- Atwood, C., 1973. Sequences converging to *D*-optimal designs of experiments. Annals of Statistics 1 (2), 342–352.
- Böhning, D., 1985. Numerical estimation of a probability measure. Journal of Statistical Planning and Inference 11, 57–69.
- Böhning, D., 1986. A vertex-exchange-method in D-optimal design theory. Metrika 33, 337-347.
- Chernoff, H., 1953. Locally optimal designs for estimating parameters. Annals of Math. Stat. 24, 586-602.
- Dette, H., Pepelyshev, A., 2010. Generalized latin hypercube design for computer experiments. Technometrics 52 (4), 421–429.
- Fedorov, V., 1972. Theory of Optimal Experiments. Academic Press, New York.
- Fedorov, V., 1996. Design of spatial experiments: model fitting and prediction. In: Gosh, S., Rao, C. (Eds.), Handbook of Statistics, vol. 13. Elsevier, Amsterdam, Ch. 16, pp. 515–553.
- Gauthier, B., Pronzato, L., 2014. Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models. SIAM/ASA J. Uncertainty Quantification 2, 805–825, DOI 10.1137/130928534.
- Gauthier, B., Pronzato, L., 2016. Approximation of IMSE-optimal designs via quadrature rules and spectral decomposition. Communications in Statistics – Simulation and Computation 45 (5), 1600–1612.
- Gauthier, B., Pronzato, L., 2017. Convex relaxation for IMSE optimal design in random field models. Computational Statistics and Data Analysis 113, 375–394.

Références

Références II

- Harville, D., Jeske, D., 1992. Mean squared error of estimation or prediction under a general linear model. Journal of the American Statistical Association 87 (419), 724–731.
- Johnson, M., Moore, L., Ylvisaker, D., 1990. Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26, 131–148.
- Joseph, V., Gul, E., Ba, S., 2015. Maximum projection designs for computer experiments. Biometrika 102 (2), 371–380.
- Kiefer, J., Wolfowitz, J., 1960. The equivalence of two extremum problems. Canadian Journal of Mathematics 12, 363–366.
- Mitchell, T., 1974. An algorithm for the construction of "D-optimal" experimental designs. Technometrics 16, 203–210.
- Müller, W., Pronzato, L., Rendas, J., Waldl, H., 2015. Efficient prediction designs for random fields. Applied Stochastic Models in Business and Industry 31 (2), 178–194 (+ discussion pages 195–203).
- Müller, W., Pronzato, L., Waldl, H., 2011. Beyond space-filling: An illustrative case. Procedia Environmental Sciences 7, 14–19, dOI 10.1016/j.proenv.2011.07.004.
- Pilz, J., 1983. Bayesian Estimation and Experimental Design in Linear Regression Models. Vol. 55. Teubner-Texte zur Mathematik, Leipzig, (also Wiley, New York, 1991).
- Pukelsheim, F., 1993. Optimal Experimental Design. Wiley, New York.
- Pukelsheim, F., Reider, S., 1992. Efficient rounding of approximate designs. Biometrika 79 (4), 763-770.
- Sacks, J., Welch, W., Mitchell, T., Wynn, H., 1989. Design and analysis of computer experiments. Statistical Science 4 (4), 409–435.
- Schwabe, R., 1996. Optimum Designs for Multi-Factor Models. Springer, New York.

Références

Références III

- Shewry, M., Wynn, H., 1987. Maximum entropy sampling. Applied Statistics 14, 165-170.
- Silvey, S., 1980. Optimal Design. Chapman & Hall, London.
- Spöck, G., Pilz, J., 2010. Spatial sampling design and covariance-robust minimax prediction based on convex design ideas. Stochastic Environmental Research and Risk Assessment 24 (3), 463–482.
- Titterington, D., 1976. Algorithms for computing *D*-optimal designs on a finite design space. In: Proc. of the 1976 Conference on Information Science and Systems. Dept. of Electronic Engineering, John Hopkins University, Baltimore, pp. 213–216.
- Torsney, B., 1983. A moment inequality and monotonicity of an algorithm. In: Kortanek, K., Fiacco, A. (Eds.), Proc. Int. Symp. on Semi-infinite Programming and Applications. Springer, Heidelberg, pp. 249–260.
- Torsney, B., 2009. W-iterations and ripples therefrom. In: Pronzato, L., Zhigljavsky, A. (Eds.), Optimal Design and Related Areas in Optimization and Statistics. Springer, Ch. 1, pp. 1–12.
- Welch, W., 1982. Branch-and-bound search for experimental designs based on *D*-optimality and other criteria. Technometrics 24 (1), 41–28.
- Wu, C., 1978. Some algorithmic aspects of the theory of optimal designs. Annals of Statistics 6 (6), 1286–1301.
- Wynn, H., 1970. The sequential generation of *D*-optimum experimental designs. Annals of Math. Stat. 41, 1655–1664.
- Yu, Y., 2010. Strict monotonicity and convergence rate of Titterington's algorithm for computing *D*-optimal designs. Comput. Statist. Data Anal. 54, 1419–1425.
- Yu, Y., 2011. D-optimal designs via a cocktail algorithm. Stat. Comput. 21, 475-481.
- Zhigljavsky, A., Dette, H., Pepelyshev, A., 2010. A new approach to optimal design for linear models with correlated observations. Journal of the American Statistical Association 105 (491), 1093–1103.
- Zimmerman, D., 2006. Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics 17 (6), 635–652.