


Plan I

1 Optimal design for Gaussian process models & kriging
1.1 Gaussian processes and kriging
1.2 Criteria based on MSE
1.3 Maximum Entropy Sampling

2 Optimal design for linear regression
2.1 Linear regression
2.2 Exact design
2.3 Approximate design theory
2.4 Tensor-product models
2.5 Consequences for space-filling design

3 Optimal design for Bayesian prediction
3.1 Karhunen-Loève decomposition
3.2 Bayesian prediction
3.3 IMSE-optimal design

4 Beyond space filling

5 Conclusions part (2)

Luc Pronzato (CNRS) Design of Computer Experiments (2) École ETICS, Porquerolles, 06/10/2017 2 / 62



Objectives (same as part (1))

Computer experiments: based on simulations

➤ Usually, x ∈ Rd
➠ observation Y (x) (physical experiment)

➤ here, numerical simulation: Y (x) = f (x), observation = evaluation of an
unknown function f (·)
(no measurement error)

Luc Pronzato (CNRS) Design of Computer Experiments (2) École ETICS, Porquerolles, 06/10/2017 3 / 62



Objectives (same as part (1))

Computer experiments: based on simulations

➤ Usually, x ∈ Rd
➠ observation Y (x) (physical experiment)

➤ here, numerical simulation: Y (x) = f (x), observation = evaluation of an
unknown function f (·)
(no measurement error)

from pairs (xi , f (xi)), i = 1, 2, . . . , n

optimization: find x∗ = arg maxx∈X f (x)

inversion: construct {x ∈ X : f (x) = T}
estimation of a probability of failure: Prob{f (x) > C} when x ∼ probability
density ϕ(·)
sensitivity analysis

approximation/interpolation of f (·) by a predictor ηn(·), to be constructed
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1 Optimal design for Gaussian process models & kriging 1.1 Gaussian processes and kriging

1 Optimal design for Gaussian process models & kriging

1.1 Gaussian processes and kriging

Model for f (·): Gaussian process

f (x) = r⊤(x)β + Z (x), with
r(x) a vector of known functions of x (the trend)
Z (x) = realization of a random process (random field), second-order stationary,
typically supposed to be Gaussian)
E{Z (x)} = 0, E{Z (x)Z (x′)} = σ2 C(x − x′; θ)
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1 Optimal design for Gaussian process models & kriging

1.1 Gaussian processes and kriging

Model for f (·): Gaussian process

f (x) = r⊤(x)β + Z (x), with
r(x) a vector of known functions of x (the trend)
Z (x) = realization of a random process (random field), second-order stationary,
typically supposed to be Gaussian)
E{Z (x)} = 0, E{Z (x)Z (x′)} = σ2 C(x − x′; θ)

Computer experiments

Following (Sacks et al., 1989), choose C(δ; θ) continuous at δ = 0, C(0; θ) = 1
➠ 2 repetitions at the same x yield the same f (x)

(no measurement error)

Luc Pronzato (CNRS) Design of Computer Experiments (2) École ETICS, Porquerolles, 06/10/2017 4 / 62



1 Optimal design for Gaussian process models & kriging 1.1 Gaussian processes and kriging

Objective = interpolation (or extrapolation): build a predictor ηn(x) based on a
single realization of Z (·)
much different from prediction of other realizations of Z (·) (➠ simply estimate β)
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1 Optimal design for Gaussian process models & kriging 1.1 Gaussian processes and kriging

Objective = interpolation (or extrapolation): build a predictor ηn(x) based on a
single realization of Z (·)
much different from prediction of other realizations of Z (·) (➠ simply estimate β)

ordinary kriging

(expression for universal kriging with trend r⊤(x)β, β ∈ Rp, p > 1, are slightly
more complicated):
f (x) = β + Z (x) → ηn(x) = ηn[f ](x)

BLUP (Best Linear Unbiased Predictor) at x: ηn(x) = v⊤
n (x)yn with

yn = (f (x1), . . . , f (xn))⊤

vn(x) minimizes E{(v⊤
n yn − [β + Z (x)])2}

with the constraint E{v⊤
n yn} = β

∑n
i=1{vn}i = E{f (x)} = β, i.e.,∑n

i=1{vn}i = 1
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1 Optimal design for Gaussian process models & kriging 1.1 Gaussian processes and kriging

Prediction: ηn(x) = β̂n + c⊤
n (x)C−1

n (yn − β̂n1)

MSE (Mean-Squared Error) proportional to

ρn(x) =

(
1 −

[
c⊤

n (x) 1
] [ Cn 1

1⊤ 0

]−1 [
cn(x)

1

])

[with {Cn}i,j = C((Xi − Xj ); θ), {cn(x)}i = C((Xi − x); θ), β̂n = (1⊤C−1
n yn)/(1⊤C−1

n 1) (WLS) and

1 = (1, . . . , 1)⊤]
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n (x)C−1

n (yn − β̂n1)

MSE (Mean-Squared Error) proportional to

ρn(x) =

(
1 −

[
c⊤

n (x) 1
] [ Cn 1

1⊤ 0

]−1 [
cn(x)

1

])

[with {Cn}i,j = C((Xi − Xj ); θ), {cn(x)}i = C((Xi − x); θ), β̂n = (1⊤C−1
n yn)/(1⊤C−1

n 1) (WLS) and

1 = (1, . . . , 1)⊤]

Ex. with d = 1, n = 5
(note that ρn(xi) = 0
— no measurement error)
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Prediction: ηn(x) = β̂n + c⊤
n (x)C−1

n (yn − β̂n1)

MSE (Mean-Squared Error) proportional to

ρn(x) =

(
1 −

[
c⊤

n (x) 1
] [ Cn 1

1⊤ 0

]−1 [
cn(x)

1

])

[with {Cn}i,j = C((Xi − Xj ); θ), {cn(x)}i = C((Xi − x); θ), β̂n = (1⊤C−1
n yn)/(1⊤C−1

n 1) (WLS) and

1 = (1, . . . , 1)⊤]

Ex. with d = 2, n = 20
(Xn = random Lh)
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n 1) (WLS) and
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Ex. with d = 2, n = 20
(Xn = random Lh)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

1.2 Criteria based on MSE

A natural idea: minimize ρn(x) for all x

In practice:

minimize MMSE(Xn) = maxx∈X ρn(x)

minimize IMSE(Xn) =
∫

X
ρn(x)dµ(x), with µ(·) some measure of interest

over X
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1.2 Criteria based on MSE

A natural idea: minimize ρn(x) for all x

In practice:

minimize MMSE(Xn) = maxx∈X ρn(x)

minimize IMSE(Xn) =
∫

X
ρn(x)dµ(x), with µ(·) some measure of interest

over X

Optimal designs are typically space-filling:

Johnson et al. (1990): if C(x − x′) = c(‖x − x′‖) with c(·) decreasing, then X∗
n

optimal for ΦmM(·) (miniMax optimal) tends to be optimal for MMSE(Xn) with
covariance Ca(x − x′) = [C(x − x′)]a when a → ∞

➠ no point xi on the boundary of X
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Xn = {x1, . . . , xn}

Calculation of MMSE(Xn):

Compute ρn(x(k)) for a finite Q-points set XQ = {x(1), . . . , x(Q)}
(e.g., first Q point of a LDS in X ),

then MMSE(Xn) ≃ maxk ρn(x(k)),
to be minimized, for instance by simulated annealing
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Xn = {x1, . . . , xn}

Calculation of MMSE(Xn):

Compute ρn(x(k)) for a finite Q-points set XQ = {x(1), . . . , x(Q)}
(e.g., first Q point of a LDS in X ),

then MMSE(Xn) ≃ maxk ρn(x(k)),
to be minimized, for instance by simulated annealing

Calculation of IMSE(Xn) =
∫

X
ρn(x)dµ(x) (Gauthier and P. 2014, 2016) :

Without trend (r(x) = 0 ∀x) ➠ ρn(x) = 1 − c⊤
n (x)C−1

n cn(x),
where {cn(x)}i = C(x − xi), {Cn}ij = C(xi − xj)

IMSE(Xn) = 1 − trace

[
C−1

n

∫

X

cn(x)c⊤
n (x)dµ(x)

]

= 1 − trace
[
C−1

n Σn

]
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Calculation for a finite Q-points set XQ = {x(1), . . . , x(Q)}:

IMSE(Xn) ≃ ÎMSE(Xn) =

Q∑

k=1

wk ρn(x(k))

= 1 − trace
[
C−1

n Σ̂n

]

with
∑Q

k=1 wk = 1 (wk = 1/Q when µ if uniform)

and Σ̂n =
∑Q

k=1 wkcn(x(k))c⊤
n (x(k))
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Calculation for a finite Q-points set XQ = {x(1), . . . , x(Q)}:

IMSE(Xn) ≃ ÎMSE(Xn) =

Q∑

k=1

wk ρn(x(k))

= 1 − trace
[
C−1

n Σ̂n

]

with
∑Q

k=1 wk = 1 (wk = 1/Q when µ if uniform)

and Σ̂n =
∑Q

k=1 wkcn(x(k))c⊤
n (x(k))

If, moreover, x1, . . . , xn ∈ XQ , with xi = x(ki ), i = 1, . . . , n,

then Σ̂n = {QWQ}JnJn

with {Q}kℓ = C(x(k) − x(ℓ)), W = diag{w1, . . . , wQ}
and Jn = {k1, . . . , kn}

➠ IMSE(Xn) ≃ 1 − trace
[
QJnJn

−1{QWQ}JnJn

]

not expensive to compute once Q and QWQ have been calculated

(a bit more complicated with a trend r⊤(x)β)

Minimization not obvious (for instance, by simulated annealing),
see § 3.3 for another approach
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})
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Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ5(x)
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Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ6(x)
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Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ7(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Luc Pronzato (CNRS) Design of Computer Experiments (2) École ETICS, Porquerolles, 06/10/2017 12 / 62
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Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ8(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ9(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ10(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ11(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ12(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ13(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ14(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ15(x)
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1 Optimal design for Gaussian process models & kriging 1.2 Criteria based on MSE

Sequential construction of an optimal design:

For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ16(x)
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For IMSE: nothing special, at step n + 1, Xn+1 = {Xn, xn+1} with

x∗
n+1 = arg minx∈X IMSE({Xn, x})

For MMSE : do not choose x∗
n+1 = arg minx∈X MMSE({Xn, x})!

➠ take instead x∗
n+1 = arg maxx∈X ρn(x)

ρ17(x)
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1 Optimal design for Gaussian process models & kriging 1.3 Maximum Entropy Sampling

1.3 Maximum Entropy Sampling (Shewry and Wynn, 1987)

Without trend (r(x) = 0 ∀x) :
➤ zQ , vector with components Z (x(k)), x(k) ∈ XQ

➤ zn , vector with components Z (xi), i = 1, . . . , n (observations)
➤ H1(z) , −

∫
ϕ(z) log[ϕ(z)] dz Shannon entropy of ϕ(z)

= measure of “dispersion”
H1(z1|z2) , conditional entropy of z1 given z2

=
∫ [

−
∫

ϕ(z1|z2) log[ϕ(z1|z2)] dz1
]

ϕ(z2) d(z2)
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1.3 Maximum Entropy Sampling (Shewry and Wynn, 1987)

Without trend (r(x) = 0 ∀x) :
➤ zQ , vector with components Z (x(k)), x(k) ∈ XQ

➤ zn , vector with components Z (xi), i = 1, . . . , n (observations)
➤ H1(z) , −

∫
ϕ(z) log[ϕ(z)] dz Shannon entropy of ϕ(z)

= measure of “dispersion”
H1(z1|z2) , conditional entropy of z1 given z2

=
∫ [

−
∫

ϕ(z1|z2) log[ϕ(z1|z2)] dz1
]

ϕ(z2) d(z2)

We get H1(yQ) = H1(yn) + E{H1(yQ |yn)}
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1.3 Maximum Entropy Sampling (Shewry and Wynn, 1987)

Without trend (r(x) = 0 ∀x) :
➤ zQ , vector with components Z (x(k)), x(k) ∈ XQ

➤ zn , vector with components Z (xi), i = 1, . . . , n (observations)
➤ H1(z) , −

∫
ϕ(z) log[ϕ(z)] dz Shannon entropy of ϕ(z)

= measure of “dispersion”
H1(z1|z2) , conditional entropy of z1 given z2

=
∫ [

−
∫

ϕ(z1|z2) log[ϕ(z1|z2)] dz1
]

ϕ(z2) d(z2)

We get H1(yQ)︸ ︷︷ ︸
=constant

= H1(yn) + E{H1(yQ |yn)}︸ ︷︷ ︸
to be minimized
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1.3 Maximum Entropy Sampling (Shewry and Wynn, 1987)

Without trend (r(x) = 0 ∀x) :
➤ zQ , vector with components Z (x(k)), x(k) ∈ XQ

➤ zn , vector with components Z (xi), i = 1, . . . , n (observations)
➤ H1(z) , −

∫
ϕ(z) log[ϕ(z)] dz Shannon entropy of ϕ(z)

= measure of “dispersion”
H1(z1|z2) , conditional entropy of z1 given z2

=
∫ [

−
∫

ϕ(z1|z2) log[ϕ(z1|z2)] dz1
]

ϕ(z2) d(z2)

We get H1(yQ)︸ ︷︷ ︸
=constant

= H1(yn) + E{H1(yQ |yn)}︸ ︷︷ ︸
to be minimized

Minimize E{H1(yQ |yn)} w.r.t. Xn ⇔ maximize H1(yn)

Z (x) is Gaussian ➠ maximize det[Cn]

= intra-distances criterion
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1 Optimal design for Gaussian process models & kriging 1.3 Maximum Entropy Sampling

Sequential construction of an optimal design:

xn+1 = arg maxx∈X det[Cn+1] = arg maxx∈X det

[
Cn cn(x)

c⊤
n (x) 1

]

︸ ︷︷ ︸
=det[Cn] (1 − c⊤

n (x)C−1
n cn(x))︸ ︷︷ ︸

=ρn(x)

➠ xn+1 = arg maxx∈X ρn(x)
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1 Optimal design for Gaussian process models & kriging 1.3 Maximum Entropy Sampling

Sequential construction of an optimal design:

xn+1 = arg maxx∈X det[Cn+1] = arg maxx∈X det

[
Cn cn(x)

c⊤
n (x) 1

]

︸ ︷︷ ︸
=det[Cn] (1 − c⊤

n (x)C−1
n cn(x))︸ ︷︷ ︸

=ρn(x)

➠ xn+1 = arg maxx∈X ρn(x)

The designs obtained are typically space-filling:

Johnson et al. (1990) : if C(x − x′) = c(‖x − x′‖) with c(·) decreasing, then X∗
n

optimal for ΦMm(·) (Maximin optimal) tends to be optimal for det[Cn] with
covariance Ca(x − x′) = [C(x − x′)]a when a → ∞

➠ there are design points xi on the boundary of X

Luc Pronzato (CNRS) Design of Computer Experiments (2) École ETICS, Porquerolles, 06/10/2017 14 / 62





2 Optimal design for linear regression 2.1 Linear regression

2 Optimal design for linear regression

2.1 Linear regression

Observations yi = y(xi) = r⊤(xi)γ + εi , γ ∈ Rp

with (εi) i.i.d., E{εi} = 0, var{εi} = σ2 ∀i

Estimation of γ by Least-Squares (LS)

γ̂n = (R⊤
n Rn)−1R⊤

n yn, with yn = (y1, . . . , yn)⊤ and Rn =




r⊤(x1)
...

r⊤(xn)




E{γ̂n} = γ (unbiased)
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2 Optimal design for linear regression

2.1 Linear regression

Observations yi = y(xi) = r⊤(xi)γ + εi , γ ∈ Rp

with (εi) i.i.d., E{εi} = 0, var{εi} = σ2 ∀i

Estimation of γ by Least-Squares (LS)

γ̂n = (R⊤
n Rn)−1R⊤

n yn, with yn = (y1, . . . , yn)⊤ and Rn =




r⊤(x1)
...

r⊤(xn)




E{γ̂n} = γ (unbiased)

Covariance = cov(γ̂n) = σ2(R⊤
n Rn)−1 = σ2

n




1

n

n∑

i=1

r(xi)r
⊤(xi)

︸ ︷︷ ︸
Mn




−1
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2 Optimal design for linear regression 2.1 Linear regression

cov(γ̂n) = σ2

n
M−1

n , with

Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi) ∈ Rp×p

= information matrix (per observation)
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2 Optimal design for linear regression 2.1 Linear regression

cov(γ̂n) = σ2

n
M−1

n , with

Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi) ∈ Rp×p

= information matrix (per observation)

Optimal design X∗
n: maximizes a scalar function Φ(·) of Mn (with Φ(·) Loewner

increasing)

E -optimality: maximize λmin(Mn)
(minimize longest axis of confidence ellipsoids for γ)
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2 Optimal design for linear regression 2.1 Linear regression

cov(γ̂n) = σ2

n
M−1

n , with

Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi) ∈ Rp×p

= information matrix (per observation)

Optimal design X∗
n: maximizes a scalar function Φ(·) of Mn (with Φ(·) Loewner

increasing)

E -optimality: maximize λmin(Mn)
(minimize longest axis of confidence ellipsoids for γ)

A-optimality: maximize −trace[M−1
n ] ⇔ maximize 1/trace[M−1

n ]
(minimize sum of squared lengths of axes of confidence ellipsoids for γ)
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2 Optimal design for linear regression 2.1 Linear regression

cov(γ̂n) = σ2

n
M−1

n , with

Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi) ∈ Rp×p

= information matrix (per observation)

Optimal design X∗
n: maximizes a scalar function Φ(·) of Mn (with Φ(·) Loewner

increasing)

E -optimality: maximize λmin(Mn)
(minimize longest axis of confidence ellipsoids for γ)

A-optimality: maximize −trace[M−1
n ] ⇔ maximize 1/trace[M−1

n ]
(minimize sum of squared lengths of axes of confidence ellipsoids for γ)

more generally, L-optimality: maximize −trace[LM−1
n ]

(we only consider the case L symmetric positive definite)
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2 Optimal design for linear regression 2.1 Linear regression

D-optimality: maximize log det Mn

(minimize volume of confidence ellipsoids for γ)
Very much used:

a D-optimal design is invariant by reparametrization:

det M′

n(β(γ)) = det Mn(γ) det−2

(
∂β

∂γ⊤

)

➠ often leads to repeat the same experimental conditions (replications)
(we assumed i.i.d. errors εi ⇒ several observations at the same xi carry
information)

Tensor-product models
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2 Optimal design for linear regression 2.2 Exact design

2.2 Exact design

n observations at x1, . . . , xn, xi ∈ Rd

Maximize Φ(Mn) w.r.t. Xn = {x1, . . . , xn} ∈ Rn×d

with Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi)
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2.2 Exact design

n observations at x1, . . . , xn, xi ∈ Rd

Maximize Φ(Mn) w.r.t. Xn = {x1, . . . , xn} ∈ Rn×d

with Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi)

➤ If problem dimension n × d is not too big
➠ “standard” algorithm (but careful with constraints and local optimas!)
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2.2 Exact design

n observations at x1, . . . , xn, xi ∈ Rd

Maximize Φ(Mn) w.r.t. Xn = {x1, . . . , xn} ∈ Rn×d

with Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi)

➤ If problem dimension n × d is not too big
➠ “standard” algorithm (but careful with constraints and local optimas!)

➤ Otherwise, ➠ specific algorithm

Exchange method: at step k, exchange one support point xj with a better one x∗

in X (better for Φ(·))

Xk
n = (x1, . . . , xj

l
x∗

, . . . , xn)

Approximate design
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2 Optimal design for linear regression 2.2 Exact design

Fedorov (1972) algorithm:

At each iteration k, consider all n possible exchanges successively, each time
starting from Xk

n , retain the «best» one among these n → Xk+1
n ➠ Xk+1

n

Xk
n = ( x1

l
x∗

1

, . . . , xj

l
x∗

j

, . . . , xn

l
x∗

n

)
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2 Optimal design for linear regression 2.2 Exact design

Fedorov (1972) algorithm:

At each iteration k, consider all n possible exchanges successively, each time
starting from Xk

n , retain the «best» one among these n → Xk+1
n ➠ Xk+1

n

Xk
n = ( x1

l
x∗

1

, . . . , xj

l
x∗

j

, . . . , xn

l
x∗

n

)

One iteration → n optimizations of dimension d followed by ranking n criterion
values
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2 Optimal design for linear regression 2.2 Exact design

DETMAX algorithm Mitchell (1974):

If one additional observation were allowed: optimal choice

Xk+
n+1 = (x1, . . . , xj , . . . , xn, x∗

n+1)

Then, remove one support point to return to a n-points design:
➔ consider all n + 1 possible cancellations,
retain the less penalizing in the sense of Φ(·)
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2 Optimal design for linear regression 2.2 Exact design

DETMAX algorithm Mitchell (1974):

If one additional observation were allowed: optimal choice

Xk+
n+1 = (x1, . . . , xj , . . . , xn, x∗

n+1)

Then, remove one support point to return to a n-points design:
➔ consider all n + 1 possible cancellations,
retain the less penalizing in the sense of Φ(·)

➔ globally, exchange some xj with x∗
n+1

[= excursion of length 1, longer excursions are possible. . . ]
One iteration → 1 optimization of dimension d followed by ranking n + 1 criterion
values
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2 Optimal design for linear regression 2.2 Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations
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2 Optimal design for linear regression 2.2 Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations

dead ends are possible:
• DETMAX: the point to be removed is xn+1

• Fedorov: no possible improvement when optimizing one xi at a time
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2 Optimal design for linear regression 2.2 Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations

dead ends are possible:
• DETMAX: the point to be removed is xn+1

• Fedorov: no possible improvement when optimizing one xi at a time

▲ both give local optima only ▲
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2 Optimal design for linear regression 2.2 Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations

dead ends are possible:
• DETMAX: the point to be removed is xn+1

• Fedorov: no possible improvement when optimizing one xi at a time

▲ both give local optima only ▲

Other methods:

Branch and bound: guaranteed convergence, but complicated [Welch 1982]
Rounding an optimal design measure (support points xi and associated
weights w∗

i , i = 1, . . . , m, presented next in § 2.3):
choose n integers ri (ri = nb. of replications of observations at xi ) such that∑m

i=1 ri = n and ri /n ≈ w∗

i

(e.g., maximize mini=1,...,m ri /w∗

i = Adams apportionment, see [Pukelsheim &
Reider 1992])
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2 Optimal design for linear regression 2.3 Approximate design theory

2.3 Approximate design theory

(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980;
Pukelsheim, 1993) . . .

Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi)

(the additive form is essential — related to the independence of observations)
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2 Optimal design for linear regression 2.3 Approximate design theory

2.3 Approximate design theory

(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980;
Pukelsheim, 1993) . . .

Mn = M(Xn) = 1
n

∑n
i=1 r(xi)r

⊤(xi)

(the additive form is essential — related to the independence of observations)

If several xi coincide (repetitions), with only m < n different xi

M(Xn) =
∑m

i=1
ri

n
r(xi)r

⊤(xi)

ri

n
= proportion of observations collected at xi

= «percentage of experimental effort» at xi

= weight wi of support point xi
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2 Optimal design for linear regression 2.3 Approximate design theory

M(Xn) =
∑m

i=1 wi r(xi)r
⊤(xi)

➠ design Xn ⇔
{

x1 · · · xm

w1 · · · wm

}
with

∑m
i=1 wi = 1

➠ normalized discrete distribution on the xi ,

with constraints wi = ri/n
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2 Optimal design for linear regression 2.3 Approximate design theory

M(Xn) =
∑m

i=1 wi r(xi)r
⊤(xi)

➠ design Xn ⇔
{

x1 · · · xm

w1 · · · wm

}
with

∑m
i=1 wi = 1

➠ normalized discrete distribution on the xi ,

with constraints wi = ri/n

➠ Release the constraints: only enforce wi ≥ 0 et
∑m

i=1 wi = 1
➠ ξ = discrete probability measure on X

support points xi and associated weights wi

= “approximate design”
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2 Optimal design for linear regression 2.3 Approximate design theory

M(Xn) =
∑m

i=1 wi r(xi)r
⊤(xi)

➠ design Xn ⇔
{

x1 · · · xm

w1 · · · wm

}
with

∑m
i=1 wi = 1

➠ normalized discrete distribution on the xi ,

with constraints wi = ri/n

➠ Release the constraints: only enforce wi ≥ 0 et
∑m

i=1 wi = 1
➠ ξ = discrete probability measure on X

support points xi and associated weights wi

= “approximate design”
More general expression: ξ = any probability measure on X

M(ξ) =

∫

X

r(x)r⊤(x) ξ(dx) with

∫

X

ξ(dx) = 1
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2 Optimal design for linear regression 2.3 Approximate design theory

Caratheodory Theorem:

M(ξ) can be written as the linear combination of at most q + 1 elements of M:

M(ξ) =
∑m

i=1 wi r(xi)r
⊤(xi) , m ≤ p(p+1)

2 + 1

⇒ consider discrete probability measures with p(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria Φ(·), if ξ∗ is optimal (maximizes Φ[M(ξ)]) then M(ξ∗) is

on the boundary of the convex closure of M and p(p+1)
2 support points are enough]
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2 Optimal design for linear regression 2.3 Approximate design theory

Caratheodory Theorem:

M(ξ) can be written as the linear combination of at most q + 1 elements of M:

M(ξ) =
∑m

i=1 wi r(xi)r
⊤(xi) , m ≤ p(p+1)

2 + 1

⇒ consider discrete probability measures with p(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria Φ(·), if ξ∗ is optimal (maximizes Φ[M(ξ)]) then M(ξ∗) is

on the boundary of the convex closure of M and p(p+1)
2 support points are enough]

Suppose we found an optimal ξ∗ =
∑m

i=1 w∗
i δxi

☞ for a given n, choose the ri so that ri

n
≃ w∗

i optimum
→ rounding of an approximate design
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2 Optimal design for linear regression 2.3 Approximate design theory

Caratheodory Theorem:

M(ξ) can be written as the linear combination of at most q + 1 elements of M:

M(ξ) =
∑m

i=1 wi r(xi)r
⊤(xi) , m ≤ p(p+1)

2 + 1

⇒ consider discrete probability measures with p(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria Φ(·), if ξ∗ is optimal (maximizes Φ[M(ξ)]) then M(ξ∗) is

on the boundary of the convex closure of M and p(p+1)
2 support points are enough]

Suppose we found an optimal ξ∗ =
∑m

i=1 w∗
i δxi

☞ for a given n, choose the ri so that ri

n
≃ w∗

i optimum
→ rounding of an approximate design

Why design measures are interesting?
How does it simplify the optimization problem?
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2 Optimal design for linear regression 2.3 Approximate design theory

=⇒ “Equivalence Theorem” [Kiefer & Wolfowitz 1960]
Ξ = set of probability measures on X , Φ(·) concave, φ(ξ) = Φ[M(ξ)]

Fφ(ξ; ν) = limα→0+
φ[(1−α)ξ+αν]−φ(ξ)

α
= directional derivative of φ(·) at ξ in direction ν

Equivalence Theorem: ξ∗ maximizes φ(ξ) ⇔ maxν∈Ξ Fφ(ξ∗; ν) ≤ 0
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2 Optimal design for linear regression 2.3 Approximate design theory

=⇒ “Equivalence Theorem” [Kiefer & Wolfowitz 1960]
Ξ = set of probability measures on X , Φ(·) concave, φ(ξ) = Φ[M(ξ)]

Fφ(ξ; ν) = limα→0+
φ[(1−α)ξ+αν]−φ(ξ)

α
= directional derivative of φ(·) at ξ in direction ν

Equivalence Theorem: ξ∗ maximizes φ(ξ) ⇔ maxν∈Ξ Fφ(ξ∗; ν) ≤ 0

➔ Takes a simple form when Φ(·) is differentiable

ξ∗ maximizes φ(ξ) ⇔ maxx∈X Fφ(ξ∗; δx) ≤ 0

☞ Check optimality of ξ∗ by plotting Fφ(ξ∗; δx)
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2 Optimal design for linear regression 2.3 Approximate design theory

Ex: D-optimal design

ξ∗
D maximizes log det[M(ξ)] w.r.t. ξ ∈ Ξ

⇔ maxx∈X d(ξ∗
D , x) ≤ p

⇔ ξ∗
D minimizes maxx∈X d(ξ, x) w.r.t. ξ ∈ Ξ

where d(ξ, x) = r⊤(x)M−1(ξ)r(x)
Moreover, d(ξ∗

D , xi) = p = dim(θ) for any xi = support point of ξ∗
D
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2 Optimal design for linear regression 2.3 Approximate design theory

Ex. : r(x) = (1 x x2)⊤ (p = 3) i.i.d. erreurs, X = [0, 2]
➠ d(ξ, x) as a function of x
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2 Optimal design for linear regression 2.3 Approximate design theory

Ex. : r(x) = (1 x x2)⊤ (p = 3) i.i.d. erreurs, X = [0, 2]
➠ d(ξ, x) as a function of x

ξ∗
D =

{
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2 Optimal design for linear regression 2.3 Approximate design theory

Ex. : r(x) = (1 x x2)⊤ (p = 3) i.i.d. erreurs, X = [0, 2]
➠ d(ξ, x) as a function of x

ξ∗
D =

{
0 1 2

1/3 1/3 1/3

}
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2 Optimal design for linear regression 2.3 Approximate design theory

KW Eq. Th. relates optimality in γ space (parameters)
to optimality in y space (observations)

nvar[r⊤(x)γ̂n)] = σ2 r⊤(x)M−1(ξ)r(x) = σ2 d(ξ, x) (i.i.d. errors)

D-optimality ⇔ G-optimality

➠ ξ∗
D minimizes the maximum value of prediction variance over X
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2 Optimal design for linear regression 2.3 Approximate design theory

KW Eq. Th. relates optimality in γ space (parameters)
to optimality in y space (observations)

nvar[r⊤(x)γ̂n)] = σ2 r⊤(x)M−1(ξ)r(x) = σ2 d(ξ, x) (i.i.d. errors)

D-optimality ⇔ G-optimality

➠ ξ∗
D minimizes the maximum value of prediction variance over X

η(x, γ̂n)
η(x, γ̂n)± 2 standard deviations

➠ put next observation where d(ξ, x) is
large
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Tensor-product models
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2 Optimal design for linear regression 2.3 Approximate design theory

Construction of an optimal design measure

Central idea (▲ for a differentiable Φ(·) ▲): use steepest-ascent direction
Fedorov–Wynn :

1 : Choose ξ1 non degenerate (det M(ξ1) > 0)

2 : Compute x∗
k = arg maxX Fφ(ξk ; δx)

If Fφ(ξk ; δx+
k
) < ǫ, stop: ξk is ǫ-optimal

3 : ξk+1 = (1 − αk)ξk + αkδx∗

k
(delta measure at x∗

k)
[Vertex Direction]

k → k + 1, return to step 2
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2 Optimal design for linear regression 2.3 Approximate design theory

Construction of an optimal design measure

Central idea (▲ for a differentiable Φ(·) ▲): use steepest-ascent direction
Fedorov–Wynn :

1 : Choose ξ1 non degenerate (det M(ξ1) > 0)

2 : Compute x∗
k = arg maxX Fφ(ξk ; δx)

If Fφ(ξk ; δx+
k
) < ǫ, stop: ξk is ǫ-optimal

3 : ξk+1 = (1 − αk)ξk + αkδx∗

k
(delta measure at x∗

k)
[Vertex Direction]

k → k + 1, return to step 2

Step size αk?
➠ αk = arg max φ(ξk+1)

=
d(ξk ,x∗

k )−p

p[d(ξk ,x∗

k
)−1] for D-optimality (Fedorov, 1972)

→ monotone convergence
➠ αk > 0 , limk→∞ αk = 0 ,

∑∞
i=1 αk = ∞

((Wynn, 1970) for D-optimality)
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2 Optimal design for linear regression 2.3 Approximate design theory

Remarks:

Sequential design, one xi at at a time enters M(X) :
M(Xk+1) = k

k+1 M(Xk) + 1
k+1 r(xk+1)r⊤(xk+1)

with xk+1 = arg maxx∈X Fφ(ξk ; δx)
⇔ Wynn’s algorithm with αk = 1

k+1
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2 Optimal design for linear regression 2.3 Approximate design theory

Remarks:

Sequential design, one xi at at a time enters M(X) :
M(Xk+1) = k

k+1 M(Xk) + 1
k+1 r(xk+1)r⊤(xk+1)

with xk+1 = arg maxx∈X Fφ(ξk ; δx)
⇔ Wynn’s algorithm with αk = 1

k+1

Guaranteed convergence to the optimum
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2 Optimal design for linear regression 2.3 Approximate design theory

Remarks:

Sequential design, one xi at at a time enters M(X) :
M(Xk+1) = k

k+1 M(Xk) + 1
k+1 r(xk+1)r⊤(xk+1)

with xk+1 = arg maxx∈X Fφ(ξk ; δx)
⇔ Wynn’s algorithm with αk = 1

k+1

Guaranteed convergence to the optimum

There exist faster methods:

remove support points from ξk (≈ allow αk to be < 0) (Atwood, 1973;
Böhning, 1985, 1986)
combine with gradient projection (or a second-order method) (Wu, 1978)
use a multiplicative algorithm (Titterington, 1976; Torsney, 1983, 2009; Yu,
2010) (for A and D optimality, far from the optimum)
combine different methods (Yu, 2011)
Still an active topic — especially for non differentiable Φ(·). . .

Luc Pronzato (CNRS) Design of Computer Experiments (2) École ETICS, Porquerolles, 06/10/2017 33 / 62



2 Optimal design for linear regression 2.4 Tensor-product models

2.4 Tensor-product models

D-optimality (also true for A-optimality under some conditions (Schwabe, 1996))

[r(k)(x)]⊤θ(k) ,
∑dk

i=1 θ
(k)
i x i polynomial with degree dk , dim(θ(k)) = pk = 1 + dk

Global model for x = ({x}1, {x}2, . . . , {x}d)⊤:

r⊤(x)γ =
∏d

k=1[r(k)(x)]⊤θ(k),

total degree
∑d

k=1 dk , dim(γ) =
∏d

k=1 pk
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2 Optimal design for linear regression 2.4 Tensor-product models

2.4 Tensor-product models

D-optimality (also true for A-optimality under some conditions (Schwabe, 1996))

[r(k)(x)]⊤θ(k) ,
∑dk

i=1 θ
(k)
i x i polynomial with degree dk , dim(θ(k)) = pk = 1 + dk

Global model for x = ({x}1, {x}2, . . . , {x}d)⊤:

r⊤(x)γ =
∏d

k=1[r(k)(x)]⊤θ(k),

total degree
∑d

k=1 dk , dim(γ) =
∏d

k=1 pk

Example:

r⊤(x)γ = (θ
(1)
0 + θ

(1)
1 {x}1 + θ

(1)
2 {x}2

1) × (θ
(2)
0 + θ

(2)
1 {x}2 + θ

(2)
2 {x}2

2)

= γ0 + γ1{x}1 + γ2{x}2 + γ12{x}1{x}2 + γ11{x}1
2 + γ22{x}2

2

+γ112{x}1
2{x}2 + γ122{x}1{x}2

2 + γ1122{x}1
2{x}2

2
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2 Optimal design for linear regression 2.4 Tensor-product models

2.4 Tensor-product models

D-optimality (also true for A-optimality under some conditions (Schwabe, 1996))

[r(k)(x)]⊤θ(k) ,
∑dk

i=1 θ
(k)
i x i polynomial with degree dk , dim(θ(k)) = pk = 1 + dk

Global model for x = ({x}1, {x}2, . . . , {x}d)⊤:

r⊤(x)γ =
∏d

k=1[r(k)(x)]⊤θ(k),

total degree
∑d

k=1 dk , dim(γ) =
∏d

k=1 pk

Example:

r⊤(x)γ = (θ
(1)
0 + θ

(1)
1 {x}1 + θ

(1)
2 {x}2

1) × (θ
(2)
0 + θ

(2)
1 {x}2 + θ

(2)
2 {x}2

2)

= γ0 + γ1{x}1 + γ2{x}2 + γ12{x}1{x}2 + γ11{x}1
2 + γ22{x}2

2

+γ112{x}1
2{x}2 + γ122{x}1{x}2

2 + γ1122{x}1
2{x}2

2

D-optimal design (approximate theory) = tensor product of d one-dimensional
D-optimal designs
(true for any type of model, not only polynomials)
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2 Optimal design for linear regression 2.4 Tensor-product models

Polynomial of degree k: D-optimal design supported on k + 1 points,
(on [−1, 1], roots of (1 − t2)P ′

k(t), with Pk(t) , k-th Legendre polynomial)
all with equal weight 1/(k + 1)
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2 Optimal design for linear regression 2.4 Tensor-product models

Polynomial of degree k: D-optimal design supported on k + 1 points,
(on [−1, 1], roots of (1 − t2)P ′

k(t), with Pk(t) , k-th Legendre polynomial)
all with equal weight 1/(k + 1)

dimension 2, d1 = d2 = 2
9 points, weights =1/9
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2 Optimal design for linear regression 2.4 Tensor-product models

Polynomial of degree k: D-optimal design supported on k + 1 points,
(on [−1, 1], roots of (1 − t2)P ′

k(t), with Pk(t) , k-th Legendre polynomial)
all with equal weight 1/(k + 1)

dimension 2, d1 = d2 = 3
16 points, weights =1/16
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2 Optimal design for linear regression 2.4 Tensor-product models

Polynomial of degree k: D-optimal design supported on k + 1 points,
(on [−1, 1], roots of (1 − t2)P ′

k(t), with Pk(t) , k-th Legendre polynomial)
all with equal weight 1/(k + 1)

dimension 2, d1 = d2 = 4
25 points, weights =1/25
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2 Optimal design for linear regression 2.4 Tensor-product models

Polynomial of degree k: D-optimal design supported on k + 1 points,
(on [−1, 1], roots of (1 − t2)P ′

k(t), with Pk(t) , k-th Legendre polynomial)
all with equal weight 1/(k + 1)

dimension 2, d1 = d2 = 5
36 points, weights =1/36
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2 Optimal design for linear regression 2.4 Tensor-product models

Sum of polynomials?
r⊤(x)γ =

∑d
k=1[r(k)(x)]⊤θ(k),

total degree maxd
k=1 dk , dim(γ) = (

∑d
k=1 pk) − 1 =

∑d
k=1 dk + d − 1
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2 Optimal design for linear regression 2.4 Tensor-product models

Sum of polynomials?
r⊤(x)γ =

∑d
k=1[r(k)(x)]⊤θ(k),

total degree maxd
k=1 dk , dim(γ) = (

∑d
k=1 pk) − 1 =

∑d
k=1 dk + d − 1

Example:

r⊤(x)γ = (θ
(1)
0 + θ

(1)
1 {x}1 + θ

(1)
2 {x}2

1) + (θ
(2)
0 + θ

(2)
1 {x}2 + θ

(2)
2 {x}2

2)

= γ0 + γ1{x}1 + γ2{x}2 + γ11{x}1
2 + γ22{x}2

2

(no interaction term)

Again, D-optimal design (approximate theory) = tensor product of d

one-dimensional D-optimal designs (Schwabe, 1996)
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2 Optimal design for linear regression 2.4 Tensor-product models

Sum of polynomials?
r⊤(x)γ =

∑d
k=1[r(k)(x)]⊤θ(k),

total degree maxd
k=1 dk , dim(γ) = (

∑d
k=1 pk) − 1 =

∑d
k=1 dk + d − 1

Example:

r⊤(x)γ = (θ
(1)
0 + θ

(1)
1 {x}1 + θ

(1)
2 {x}2

1) + (θ
(2)
0 + θ

(2)
1 {x}2 + θ

(2)
2 {x}2

2)

= γ0 + γ1{x}1 + γ2{x}2 + γ11{x}1
2 + γ22{x}2

2

(no interaction term)

Again, D-optimal design (approximate theory) = tensor product of d

one-dimensional D-optimal designs (Schwabe, 1996)

Difficult to apply in big dimension:
d polynomials of degree k ➠ (k + 1)d support points!

but a general lesson, and possible extension towards Gaussian process models and
kriging
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

2.5 Consequences for space-filling design

D-optimality + polynomials ➠ more points close to the boundary as degree
increases
Erdös-Turan theorem: roots r of orthonormal polynomials on [0, 1] are
asymptotically distributed with the arcsine law, with density ϕ0(r) = 1

π
√

r (1−r)

➠ Should we put more points close to the boundary ?
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

2.5 Consequences for space-filling design

D-optimality + polynomials ➠ more points close to the boundary as degree
increases
Erdös-Turan theorem: roots r of orthonormal polynomials on [0, 1] are
asymptotically distributed with the arcsine law, with density ϕ0(r) = 1

π
√

r (1−r)

➠ Should we put more points close to the boundary ?

In order to counter the boundary effect Dette and Pepelyshev (2010):

Take a “standard” space-filling design (e.g., Maximin, Lh Maximin, LDS),

for each j = 1, . . . , d , transform j-th coordinates {xi}j with

T : x 7→ z = T (x) = 1+cos(π x)
2

(x ∼ uniform → z ∼ arcsine),

Use the transformed design Zn = (z1, . . . , zn)
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

dimension 2, 5-degree polynomials:
D-optimal design has 36 points, weights =1/36
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

dimension 2, n = 36
Transformed (arcsine) Maximin-optimal design
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

Illustration of boundary effect: d = 1, n = 11 observations in [0, 1], ordinary

kriging with covariance C(t) = exp(−50 t2) ➠ plot of ρn(x)

Xn Maximin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

Illustration of boundary effect: d = 1, n = 11 observations in [0, 1], ordinary

kriging with covariance C(t) = exp(−50 t2) ➠ plot of ρn(x)

Xn Maximin
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Uniform distribution of design points
⇒ prediction near boundaries relies on less points
⇒ precision is worse close to boundaries
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

Illustration of boundary effect: d = 1, n = 11 observations in [0, 1], ordinary

kriging with covariance C(t) = exp(−50 t2) ➠ plot of ρn(x)
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Uniform distribution of design points
⇒ prediction near boundaries relies on less points
⇒ precision is worse close to boundaries
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

. . . But transformation T : x 7→ z = T (x) = 1+cos(π x)
2 may be too “strong”

Maximin
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. . . But transformation T : x 7→ z = T (x) = 1+cos(π x)
2 may be too “strong”
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

. . . But transformation T : x 7→ z = T (x) = 1+cos(π x)
2 may be too “strong”
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

Arcsine distribution: maximizes Φ̃[0](ξ) = exp
[∫ 1

0

∫ 1
0 log ‖x − y‖ ξ(dx) ξ(dy)

]

(continuous version of φ[0](X) = exp
[∑

i<j µij log(dij)
]
, see § I-1.6)
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

Arcsine distribution: maximizes Φ̃[0](ξ) = exp
[∫ 1

0

∫ 1
0 log ‖x − y‖ ξ(dx) ξ(dy)

]

(continuous version of φ[0](X) = exp
[∑

i<j µij log(dij)
]
, see § I-1.6)

➤ Maximization of

Φ̃[q](ξ) =

[∫ 1

0

∫ 1

0
‖x − y‖−q ξ(dx) ξ(dy)

]−1/q

, 0 < q < 1

(continuous version of φ[q](X) =
[∑

i<j µij d
−q
ij

]−1/q

, see § I-1.6) yields a

measure ξ with density ϕq(x) = x (q−1)/2(1−x)(q−1)/2

B( q+1
2 , q+1

2 )
(Beta distribution) (Zhigljavsky

et al., 2010)
(tends to arcsine when q → 0, to uniform when q → 1)
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

In order to counter the boundary effect (Dette and Pepelyshev, 2010) :

Take a “standard” space-filling design (e.g., Maximin, Lh Maximin, LDS),

for each j = 1, . . . , d , transform j-th coordinates {xi}j with
T : x 7→ z = T (x) such that x =

∫ z

0 ϕq(t) dt (x ∼ uniform → z ∼ ϕq),

Use the transformed design Zn = (z1, . . . , zn)
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

In order to counter the boundary effect (Dette and Pepelyshev, 2010) :

Take a “standard” space-filling design (e.g., Maximin, Lh Maximin, LDS),

for each j = 1, . . . , d , transform j-th coordinates {xi}j with
T : x 7→ z = T (x) such that x =

∫ z

0 ϕq(t) dt (x ∼ uniform → z ∼ ϕq),

Use the transformed design Zn = (z1, . . . , zn)

dimension 2, 5-degree polynomials
D-optimal design:

36 points, weights =1/36
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

In order to counter the boundary effect (Dette and Pepelyshev, 2010) :

Take a “standard” space-filling design (e.g., Maximin, Lh Maximin, LDS),

for each j = 1, . . . , d , transform j-th coordinates {xi}j with
T : x 7→ z = T (x) such that x =

∫ z

0 ϕq(t) dt (x ∼ uniform → z ∼ ϕq),

Use the transformed design Zn = (z1, . . . , zn)

dimension 2, 5-degree polynomials
D-optimal design:

36 points, weights =1/36

dimension 2, n = 36
Transformed (arcsine)

Maximin-optimal design
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

In order to counter the boundary effect (Dette and Pepelyshev, 2010) :

Take a “standard” space-filling design (e.g., Maximin, Lh Maximin, LDS),

for each j = 1, . . . , d , transform j-th coordinates {xi}j with
T : x 7→ z = T (x) such that x =

∫ z

0 ϕq(t) dt (x ∼ uniform → z ∼ ϕq),

Use the transformed design Zn = (z1, . . . , zn)

dimension 2, 5-degree polynomials
D-optimal design:

36 points, weights =1/36

dimension 2, n = 36
Transformed (Beta, q = 0.4)

Maximin-optimal design
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

. . . For a suitably chosen Beta-transformation (q = 0.84)

Maximin
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2 Optimal design for linear regression 2.5 Consequences for space-filling design

. . . For a suitably chosen Beta-transformation (q = 0.84)

Maximin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Maximin + transformed Maximin
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Choice of a suitable q?
➠ Optimize a precision criterion based on ρn(x)

(depends on covariance C(·))

▲ requires X = hypercube ▲

▲ if d is big, many points are on the boundary (or at the vertices!) of X ▲
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3 Optimal design for Bayesian prediction 3.1 Karhunen-Loève decomposition

3 Optimal design for Bayesian prediction

3.1 Karhunen-Loève decomposition of a Gaussian process

Model without trend: f (x) = Z (x), Gaussian process
E{Z (x)} = 0, E{Z (x)Z (x′)} = C(x, x′) (= C(x − x′) if stationary)

IMSEµ(Xn) ,
∫

X
E
{

[Z (x) − E{Z (x)|yn}]
2
}

dµ(x)
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3 Optimal design for Bayesian prediction

3.1 Karhunen-Loève decomposition of a Gaussian process

Model without trend: f (x) = Z (x), Gaussian process
E{Z (x)} = 0, E{Z (x)Z (x′)} = C(x, x′) (= C(x − x′) if stationary)

IMSEµ(Xn) ,
∫

X
E
{

[Z (x) − E{Z (x)|yn}]
2
}

dµ(x)

The integral operator Tµ defined by
∀f ∈ L2(X , µ), ∀x ∈ X , Tµ [f ] (x) =

∫
X

f (x′)K (x, x′)dµ(x′)
is diagonalisable:

eigenvalues λi , i = 1, 2, 3 . . . (in ց order)
associated eigenfunctions ϕi(·) (extended over X ), with∫

X
ϕi(x)ϕj(x)dµ(x) = δij
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3 Optimal design for Bayesian prediction 3.1 Karhunen-Loève decomposition

Z ′(x) , PHµ
[Zx] =

∑
i ζi

√
λiϕi(x)

with all ζi i.i.d. N (0, 1)
PHµ = projection ⊥ on the space “which contributes to IMSEµ”

Z ′(x) =
∑

i γiϕi(x) where the r.v. γi are independent N (0, λi)
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3 Optimal design for Bayesian prediction 3.1 Karhunen-Loève decomposition

Z ′(x) , PHµ
[Zx] =

∑
i ζi

√
λiϕi(x)

with all ζi i.i.d. N (0, 1)
PHµ = projection ⊥ on the space “which contributes to IMSEµ”

Z ′(x) =
∑

i γiϕi(x) where the r.v. γi are independent N (0, λi)

For a given truncation level m,

Z ′(x) =

m∑

i=1

γiϕi(x) +
∑

i>m

γiϕi(x)

≃ Z ′′(x) =
∑m

i=1 γiϕi(x) + ε(x)

with E{ε(xi)} = 0, E{ε(xi)ε(xj)} = σ2δij et σ2 =
∑

i>m λi

Z ′′(xi) = φ⊤(xi)γ + εi

= linear regression model (as in § 2.1)
(with eigenfunctions ϕi(·), i = 1, . . . , m, instead of polynomials)

(Fedorov, 1996) ➠ construct an optimal design for this model
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3 Optimal design for Bayesian prediction 3.2 Bayesian prediction

3.2 Bayesian prediction for Z ′′(xi) = φ⊤(xi)γ + εi

LS estimation:

γ̂n = (Φ⊤
n Φn)−1Φ⊤

n yn, with yn = (y1, . . . , yn)⊤ and Φn =




φ⊤(x1)
...

φ⊤(xn)




cov(γ̂n) = σ2(Φ⊤
n Φn)−1 = σ2

n




1

n

n∑

i=1

φ(xi)φ
⊤(xi)

︸ ︷︷ ︸
Mn




−1
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3 Optimal design for Bayesian prediction 3.2 Bayesian prediction

3.2 Bayesian prediction for Z ′′(xi) = φ⊤(xi)γ + εi

LS estimation:

γ̂n = (Φ⊤
n Φn)−1Φ⊤

n yn, with yn = (y1, . . . , yn)⊤ and Φn =




φ⊤(x1)
...

φ⊤(xn)




cov(γ̂n) = σ2(Φ⊤
n Φn)−1 = σ2

n




1

n

n∑

i=1

φ(xi)φ
⊤(xi)

︸ ︷︷ ︸
Mn




−1

Prediction at x : ηn(x) = φ⊤(x)γ̂n

IMSE(Xn) =
∫

X
φ⊤(x)cov(γ̂n)φ(x) dµ(x) = σ2

n
trace[M−1

n ]
= A-optimality criterion
(requires n ≥ m to have a full rank Mn)
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3 Optimal design for Bayesian prediction 3.2 Bayesian prediction

Bayesian estimation: prior distribution N (0, Λm) for γ,
with Λm = diag{λ1, . . . , λm}

γ̂n = [Φ⊤
n Φn/σ2 + Λ−1

m ]−1[Φ⊤
n yn/σ2]

cov(γ̂n) = [Φ⊤
n Φn/σ2 + Λ−1

m ]−1 = σ2

n




1

n

n∑

i=1

φ(xi)φ
⊤(xi)

︸ ︷︷ ︸
Mn

+
σ2

n
Λ−1

m

︸ ︷︷ ︸
MB(xn)




−1
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3 Optimal design for Bayesian prediction 3.2 Bayesian prediction

Bayesian estimation: prior distribution N (0, Λm) for γ,
with Λm = diag{λ1, . . . , λm}

γ̂n = [Φ⊤
n Φn/σ2 + Λ−1

m ]−1[Φ⊤
n yn/σ2]

cov(γ̂n) = [Φ⊤
n Φn/σ2 + Λ−1

m ]−1 = σ2

n




1

n

n∑

i=1

φ(xi)φ
⊤(xi)

︸ ︷︷ ︸
Mn

+
σ2

n
Λ−1

m

︸ ︷︷ ︸
MB(xn)




−1

Prediction at x : ηn(x) = φ⊤(x)γ̂n

IMSE(Xn) =
∫

X
φ⊤(x)cov(γ̂n)φ(x) dµ(x) = σ2

n
trace[M−1

B (Xn)]
= A-optimality criterion applied to MB(Xn)
(MB(Xn) has full rank for any m!)
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

3.3 IMSE-optimal design

All the machinery of optimal design for parametric models is available (Pilz, 1983)

Exact design: Spöck and Pilz (2010) for prediction of spatial random fields (but
no guaranteed convergence to the optimum)
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

3.3 IMSE-optimal design

All the machinery of optimal design for parametric models is available (Pilz, 1983)

Exact design: Spöck and Pilz (2010) for prediction of spatial random fields (but
no guaranteed convergence to the optimum)

Approximate design: minimize Ψ(ξ) = trace[M−1
B (ξ)],

with ξ a probability measure over X and

MB(ξ) =

∫
φ(x)φ⊤(x) ξ(dx) +

σ2

n
Λ−1

m

➤ guaranteed convergence towards an optimal ξ∗, with N∗ support points
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

In practice: eigen-decomposition

➤ use a finite Q-point set XQ = {x(k), . . . , x(Q)}
➤ diagonalize QW where

{Q}kℓ = C(x(k), x(ℓ)), W = diag{w1, . . . , wQ}
(wk = 1/Q when µ uniform)

➔ QW = PΛP−1 with P⊤WP = IQ and
Λ = diag{λ1, . . . , λQ} with λ1 ≥ · · · ≥ λQ
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

In practice: eigen-decomposition

➤ use a finite Q-point set XQ = {x(k), . . . , x(Q)}
➤ diagonalize QW where

{Q}kℓ = C(x(k), x(ℓ)), W = diag{w1, . . . , wQ}
(wk = 1/Q when µ uniform)

➔ QW = PΛP−1 with P⊤WP = IQ and
Λ = diag{λ1, . . . , λQ} with λ1 ≥ · · · ≥ λQ

MB(ξ) =

m∑

k=1

pkφ(xk)φ⊤(xk) +

∑Q
i=m+1 λi

n
diag{λ−1

1 , . . . , λ−1
m } , m < Q

where pk = ξ{xk} and {φ(xk)}j = ϕj(xk) = Pkj , k = 1, . . . , m, j = 1, . . . , m
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

In practice: eigen-decomposition

➤ use a finite Q-point set XQ = {x(k), . . . , x(Q)}
➤ diagonalize QW where

{Q}kℓ = C(x(k), x(ℓ)), W = diag{w1, . . . , wQ}
(wk = 1/Q when µ uniform)

➔ QW = PΛP−1 with P⊤WP = IQ and
Λ = diag{λ1, . . . , λQ} with λ1 ≥ · · · ≥ λQ

MB(ξ) =

m∑

k=1

pkφ(xk)φ⊤(xk) +

∑Q
i=m+1 λi

n
diag{λ−1

1 , . . . , λ−1
m } , m < Q

where pk = ξ{xk} and {φ(xk)}j = ϕj(xk) = Pkj , k = 1, . . . , m, j = 1, . . . , m

➤ minimization of trace[M−1
B (ξ)] ➔ ξ∗

p∗
k = 0 for many k, but some p∗

k > 0 are very small,
there may exist clusters of points, etc.
➔ aggregate support points of ξ∗

➔ remove some points (transfer their weights on others, optimally)
(Gauthier & P., 2016)
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

The number N of points is not totally controlled, but 2 tuning parameters are
available: m (truncation level) and n (take m ≈ n ≈ N)

N points ➠ initialization for optimization of the true IMSE(XN) by any standard
algorithm (optimal points remain in the convex hull of X )
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

Example :
d = 2, C(x, x′) = (1 + 10‖x − x′‖) exp(−10‖x − x′‖) (Matérn 3/2)
XQ = regular grid with Q = 33 × 33 = 1 089 points, σ2 =

∑
i>m λi

m = n = 10
aggregation of support of ξ∗
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m = n = 10
➠ N = 12
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

Example :
d = 2, C(x, x′) = (1 + 10‖x − x′‖) exp(−10‖x − x′‖) (Matérn 3/2)
XQ = regular grid with Q = 33 × 33 = 1 089 points, σ2 =

∑
i>m λi

m = 30, n = 10 ➠ N = 36 X36 miniMax optimal
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

Can be used for any X if d not too big: use a finite XQ given by first Q points
of a LDS in X
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

Can be used for any X if d not too big: use a finite XQ given by first Q points
of a LDS in X

With trend, f (x) = Z (x) + r⊤(x)β?
Same thing (Spöck and Pilz, 2010), with slightly more complicated expressions
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3 Optimal design for Bayesian prediction 3.3 IMSE-optimal design

Can be used for any X if d not too big: use a finite XQ given by first Q points
of a LDS in X

With trend, f (x) = Z (x) + r⊤(x)β?
Same thing (Spöck and Pilz, 2010), with slightly more complicated expressions

More advanced: avoid mixing eigenfunctions ϕi(·) with trend components {r}j(·)
(Gauthier & P., 2016)

Conclusions part (2)
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4 Beyond space filling

4 Beyond space filling

Optimal design for kriging: there is a hidden difficulty
the value of θ in covariance C(·; θ) is unknown

➠ use the same observations to estimate θ and then construct ηn(x) with θ̂n

estimated (plug-in method)
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4 Beyond space filling

Optimal design for kriging: there is a hidden difficulty
the value of θ in covariance C(·; θ) is unknown

➠ use the same observations to estimate θ and then construct ηn(x) with θ̂n

estimated (plug-in method)

➠ In particular, we may use θ̂n = Maximum Likelihood Estimator (MLE)
(Z (x) is supposed to be Gaussian)

➠ there is a corrective term (Harville and Jeske, 1992; Abt, 1999) :

ρ̂n(x; θ) = ρn(x; θ) + trace{M−1
θ

∂vn(x;θ)
∂θ Cn

∂vn(x;θ)
∂θ⊤ }

( = Empirical Kriging (EK) variance)
avec :

vn(x; θ) such that ηn(x) = v⊤
n (x; θ)yn

Mθ = Fisher Information Matrix (FIM) for θ
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4 Beyond space filling

Example (Zimmerman, 2006):

E{Z (x)Z (x′)} = θ‖x−x′‖, θ = 0.3
X = regular grid 5 × 5, optimal designs for:

0 2 4 6
0
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6

prediction for θ known

0 2 4 6
0

1
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estimation of θ

0 2 4 6
0

1

2

3
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6

prediction with θ estimated
prediction with known θ:
X4 minimizes maxx∈X ρ4(x)
estimation of θ:
X4 maximizes det Mθ

prediction with θ estimated:
X4 minimizes MEK=maxx∈X ρ̂4(x; θ)
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4 Beyond space filling

Example (Müller et al., 2015):
NH4 concentration in north sea (collaboration with MUMM, Belgium) —
simulated data, kriging with Matérn 3/2 kernel

ρ̂14(x; θ) for miniMax-optimal design
X∗

mM,n=14

ρ̂14(x; θ) for X∗
14 minimizing

MEK=maxx∈X ρ̂14(x; θ)
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4 Beyond space filling

Choosing Xn that minimizes MEK=maxx∈X ρ̂n(x; θ) is difficult
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4 Beyond space filling

Choosing Xn that minimizes MEK=maxx∈X ρ̂n(x; θ) is difficult

➠ Use a compromise criterion between space filling and “aggregation of points”

for instance, take Xn that maximizes γ log det(Mβ) + (1 − γ) log det(Mθ) (Müller
et al., 2011, 2015), with

Mβ= FIM for trend parameters β (maximization → space filling design)

Mθ= FIM for correlation parameters θ (maximization → aggregation)
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4 Beyond space filling

Example: n = 7, d = 2, C(x − x′; θ) = exp(−θ‖x − x′‖), θ = 0.7,
1000 Lh (999 random + ♦ for a Maximin optimal design)
MKV=maxx∈X ρ̂n(x; θ), Jα = detα(Mβ) + det1−α(Mθ) (α = 0.8)
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4 Beyond space filling

Example: n = 7, d = 2, C(x − x′; θ) = exp(−θ‖x − x′‖), θ = 0.7,
1000 Lh (999 random + ♦ for a Maximin optimal design)
MKV=maxx∈X ρ̂n(x; θ), Jα = detα(Mβ) + det1−α(Mθ) (α = 0.8)
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g
(J

α
)

However, the effet of corrective term in
ρ̂n(x; θ) = ρn(x; θ) + trace{M−1

θ
∂vn(x;θ)

∂θ Cn
∂vn(x;θ)

∂θ⊤ }
quickly vanishes as n increases
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5 Conclusions part (2)

5 Conclusions part (2) — with model

➤ Design criteria relying on a Gaussian-process model (entropy, MMSE, IMSE)
depend on the chosen covariance (and on θ in C(·, θ))

➠ expectation w.r.t. θ (Joseph et al., 2015) → entropy
➠ worst case w.r.t. θ (Spöck and Pilz, 2010) → IMSE
➠ However, the model is often just a tool to generate a space-filling

design: the value of θ is not critical (choose a small enough correlation length to
spread the points in X )
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5 Conclusions part (2)

5 Conclusions part (2) — with model

➤ Design criteria relying on a Gaussian-process model (entropy, MMSE, IMSE)
depend on the chosen covariance (and on θ in C(·, θ))

➠ expectation w.r.t. θ (Joseph et al., 2015) → entropy
➠ worst case w.r.t. θ (Spöck and Pilz, 2010) → IMSE
➠ However, the model is often just a tool to generate a space-filling

design: the value of θ is not critical (choose a small enough correlation length to
spread the points in X )
➤ Put more points near the boundaries than in the central part of X

(but be careful ➠ in high dimension almost all the volume is near the boundaries!)
➤ Put a few points close to each other to help estimation of θ
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5 Conclusions part (2)

5 Conclusions part (2) — with model

➤ Design criteria relying on a Gaussian-process model (entropy, MMSE, IMSE)
depend on the chosen covariance (and on θ in C(·, θ))

➠ expectation w.r.t. θ (Joseph et al., 2015) → entropy
➠ worst case w.r.t. θ (Spöck and Pilz, 2010) → IMSE
➠ However, the model is often just a tool to generate a space-filling

design: the value of θ is not critical (choose a small enough correlation length to
spread the points in X )
➤ Put more points near the boundaries than in the central part of X

(but be careful ➠ in high dimension almost all the volume is near the boundaries!)
➤ Put a few points close to each other to help estimation of θ

Test several methods (none is perfect) by comparing values of different criteria
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