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Bayesian networks : definition

➽ Definition (Bayesian Network (BN))

A Bayesian network is a joint distribution over a set of random (discrete) variables.
A Bayesian network is represented by a directed acyclic graph (DAG) and by a
conditional probability table (CPT) for each node P(Xi |parentsi )
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Bayesian networks : definition

➽ Definition (Bayesian Network (BN))

A Bayesian network is a joint distribution over a set of random (discrete) variables.
A Bayesian network is represented by a directed acyclic graph (DAG) and by a
conditional probability table (CPT) for each node P(Xi |parentsi )

Factorization of the joint distribution in a BN

P(X1, · · · ,Xn) =

n∏

i=1

P (Xi |parents(Xi ))

P(A,S ,T , L,O,B ,X ,D)

(28 = 256 parameters)

P(A) · P(S) · P(T |A) ·
P(L|S)·P(O |T , L)·P(B |S)·
P(X |O) · P(D |O,B)

(2+2+4+4+8+4+4+8 =

32 parameters)
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Bayesian networks : definition

➽ Definition (Bayesian Network (BN))

A Bayesian network is represented by a directed acyclic graph (DAG) and by a
conditional probability table (CPT) for each node P(Xi |parentsi )

Inference : P(dyspnoea) ?
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Bayesian networks : definition

➽ Definition (Bayesian Network (BN))

A Bayesian network is represented by a directed acyclic graph (DAG) and by a
conditional probability table (CPT) for each node P(Xi |parentsi )

Inference : P(dyspnoea|smoking) ?
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BN and probabilistic inference

A B

D

GFE

C

p(A) p(B)

p(C | A, B)
p(D | B)

p(G | C ,D)p(f | A, C)p(E | F)

diagnostic : P(A|F )

diagnostic

reliability

classification

prediction P(E |B ,A)

Process simulation (modelisation)

forecasting (dynamics, etc.)

Behavioral analysis (bot, intelligent
tutoring system)Others tasks

Most Probable Case : argmaxP(X|D)

Sensitivity analysis, Informational analysis (mutual information), etc.

Decision process, Troubleshooting : argmax
P(.)

C(.)
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Application 1 : diagnostic
Diagnostic @ NASA

NASA :
using a BN
to monitor
the boosters
of the
space shuttle

He P1 Fail He leak

He P1 trend

He pressure 1

He P1 meas

He Ox valve

Ox tank leak

Ox tank P

He P2 fail

He pressure 2

He P2 trend

He P2 meas

Fu tank P

He Fu valve

Fu tank leak

N valve fail

Engine Fail

Ox inlet P Fu inlet P

N P1 fail

N tank P1

Combust P

Comb press

N tank leak

N tank pres
N P2 fail

N tank P2

N accum P
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Application 2 : medical diagnosis
the Great Ormond Street hospital for sick children

Diagnosis of the causes of cyanosis or heart attack in the child just after birth.

Duct FlowLVH mixing
Cardiac lung

parenchyma lung flow

Hypoxia
distribution CO2

chest
X−ray

report
LVH lower

body O2
X−ray
report

CO2
report

grunting
report

grunting

sick

age at
presentationdisease

birth
asphyxia

hypoxia
in O2

right up
quad O2
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Application 3 : risk analysis

Risk modelisation using BN : modular approach.
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Application 4 : Bayesian classification

X (dimension d , features) and Y (dimension 1, often binary but not necessarily).
Using a database Πa = (x(k), y (k))k∈{1,··· ,N} (supervised learning), one can
estimate the joint distribution P(X ,Y ).

Classification

For a vector x , values of X , the goal is to predict the class (value of Y ) : ŷ .

1 Maximum of the likelihood (ML)

ŷ = argmax
y

P(x |y)

2 Maximum a posteriori (MAP)

ŷ = argmax
y

P(y |x) = argmax
y

P(y) · P(x |y)

Those distributions may be hard to estimate.
P(X |Y ) may induce more parameters than |Πa| ! !
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Bayesian classification (2) : naive Bayes

How to compute P(X |Y ) ?

Naive Bayes classifier

if we assume ∀k 6= l ,Xk |= Xl |Y then P(x , y) = P(y) ·
∏d

k=1 P(xk |y)

Very strong assumption ! In most cases, it is an approximation. However, this
approximation often gives good results.

Parameters estimation : trivial (if no missing values)

ML :
∏d

k=1 P(xk |y) ...
MAP : P(y |x1, · · · , xd) : inference in the BN !
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Bayesian classification (3) : more complex models

TAN : Tree-Augmented Naive Models

Every variable Xi can have Y and another parent
among X (only one !).

Complete Bayesian network

In a BN including Y and (Xi ), infer
P(Y |X1, · · · ,Xn).
Note : There is no need to all Xi :
Markov Blanket MB(.))

P(Y |X ) = P(Y |MB(Y ))
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Application 5 : dynamic Bayesian networks

dBN (dynamic BN)

A dynamic BN is a BN where variables are indexed by the time t and by i : X t = {X t
1 , · · · ,X

t
N} and verifies :

Markov order 1 : P(X t |X 0, · · · ,X t−1) = P(X t |X t−1),

Homogeneity : P(X t |X t−1) = · · · = P(X 1|X 0).
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X3

X4

X5 X5 X5 X5 X5

10 2 3 4 · · ·

X1
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t = 0 t | (t − 1)

X0
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X0
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X0
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X0
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X0
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Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

2-TBN
A dBN is characterized by :

initial conditions (P(X 0)

the relations between t − 1 and t (timeslice).

2TBN (2 timeslice BN) allows to specify a dBN of size T by starting with X 0 and copying T times the pattern

(t|t − 1).
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dBN and Markov chain

2

0.25

0.75

0.25

0.25

0.25
0.50.5

0.25

1 3

Markov chain
A state variable (X n) (at time n).

Parameters :

Initial condition : P(XO)

Transition model : P(X n |X n−1)

P(X n|X n−1) =




0.25 0 0.75
0.25 0.25 0.5
0.25 0.5 0.25




Equivalent dynamic Bayesian Network :

dBN : · · ·
X3X2X1X0

2TBN :
X0 Xn
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dBN and Hidden Markov Model

HMM

A state variable (X n) (at time n).

An observation variable (Y n)

Parameters :

Initial condition : P(XO)

Transition model : P(X n |X n−1)

Observation model : P(Y n |X n)

Equivalent dynamic Bayesian Network :

dBN :

X0

Y 0 Y 1 Y 2 Y 3

· · ·

X3X2X1

2TBN :
Yn

X0 Xn

Y 0
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Foundations
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Joint probability, Factorization, conditional independence

A joint probability is expensive in memory

K3 p(X ,Y ,Z )

A joint probability can be factorized (chain rule)

K3 p(X ,Y ,Z ) = p(X ) · p(Y | X ) · p(Z | X ,Y ) K + K2 + K3

Conditional independence is the key.
With X |= Y and Z |= X ,Y :

K3 p(X ,Y ,Z ) = p(X ) · p(Y ) · p(Z ) 3K

Goal : how to describe the list of all conditional independence in a joint
probability :

{U,V ,W ⊂ X with U |= V |W }
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Independence model

More generally, this ternary relation between subsets is called separability.

➽ Definition (Independence model and separability)

Let X be a finite set, let I ⊂ P(X )×P(X )×P(X ). i.e. a list of triplets of subsets of X .
I is called an independence model.
∀U,V ,W ⊂ X, U and V are separated by W (≪U ⊳⊲V |W ≫I) if and only if
(U,V ,W ) ∈ I.

i.e. I is the list of all ’separations’ found in X .

Relation between I and p

Ip = {(U,V ,W ) ∈⊂ P(X )× P(X )× P(X ),U |= V |W } is an independence model.

U |= V |W ⇐⇒≪U ⊳⊲V |W ≫Ip

Reciprocally, if I is an independence model for X set of random variables, can we
found P a distribution that verifies this list of conditional independence ?
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Semi-graphoid and graphoid

➽ Definition (semi-graphoid)

An independence model I is a semi-graphoid if and only if ∀A,B,S ,P ⊂ X :
1 trivial independence ≪A ⊳⊲∅ |S≫I

2 Symmetry ≪A ⊳⊲B |S≫I ⇒ ≪B ⊳⊲A |S≫I

3 Decomposition ≪A ⊳⊲ (B ∪ P) |S≫I ⇒ ≪A ⊳⊲B |S≫I

4 Weak union ≪A ⊳⊲ (B ∪ P) |S≫I ⇒ ≪A ⊳⊲B |(S ∪ P)≫I

5 Contraction

{
≪A ⊳⊲B |(S ∪ P)≫I

≪A ⊳⊲P |S≫I

}
⇒ ≪A ⊳⊲ (B ∪ P) |S≫I

➽ Definition (graphoid)

An independence model I is a graphoid if and only if ∀A,B,S ,P ⊂ X :
I is a semi-graphoid

6 Intersection

{
≪A ⊳⊲B |(S ∪ P)≫I

≪A ⊳⊲P |(S ∪ B)≫I

}
⇒ ≪A ⊳⊲ (B ∪ P) |S≫I

These axioms create a strong structure inside the independence model.
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Semi-graphoid and graphoid - representation of the axioms

3 Decomposition ≪A ⊳⊲ (B ∪ P) |S≫I ⇒ ≪A ⊳⊲B |S≫I

4 Weak union ≪A ⊳⊲ (B ∪ P) |S≫I ⇒ ≪A ⊳⊲B |(S ∪ P)≫I

5 Contraction

{
≪A ⊳⊲B |(S ∪ P)≫I

≪A ⊳⊲P |S≫I

}
⇒ ≪A ⊳⊲ (B ∪ P) |S≫I

6 Intersection

{
≪A ⊳⊲B |(S ∪ P)≫I

≪A ⊳⊲P |(S ∪ B)≫I

}
⇒ ≪A ⊳⊲ (B ∪ P) |S≫I

6 Intersection

⇒ A
B

SA S
B

P

⇒ A S
B

P

A S
B

A S
P

P

⇒A S
B

P
A S

B

P

⇒

A S
B

P

B

P
SA

A S
B

P

5 Contraction

3 Decomposition 4 Weak union
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Semi-graphoid and graphoid

Theorem (probability and graphoid)

Ip is a semi-graphoid.
If p positive then Ip is a graphoid.

Is there any other kind of ternary relation that is a graphoid ?

G

A B

C D

E F

Theorem (Undirected graph and graphoid)

Let G = (X ,E ) an undirected graph,
∀U,V ,W ⊂ X , 〈U |W |V 〉G if and only if every path from a node in U to a node in V
includes a node in W .

{〈U |W |V 〉G ,U,V ,W ⊂ X } is a graphoid.
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Graphical model

P(X ),. |= . | . ←→
I Independence model

←→
G = (X ,E ), 〈. | . | .〉G

➽ Definition (Graphical model)

A graphical model is a joint probability distribution P(X ) which uses a graph
G = (X ,E ) to represent its conditional independence using separation in the
graph.

P(X ),. |= . | . ← ?→
I Independence model

← ?→
G = (X ,E ), 〈. | . | .〉G

➽ Definition (I-map, D-map, P-map, graph-isomorphism)

let G = (X ,E ) a graph and a distribution p(X ).
G is a Dependency-map for p ⇔ (X |= Y |Z )p ⇒ 〈X |Z |Y 〉G .
G is a Independency-map for p ⇔ (X |= Y |Z )p ⇐ 〈X |Z |Y 〉G .
G is a Perfect-map for p ⇔ (X |= Y |Z )p ⇔ 〈X |Z |Y 〉G .

p(X ) is graph-isomorph if and only if ∃G = (X ,E ) P-map for p(X ).

The empty graph (X , ∅) is a D-map for all p(X).

The complete graph is a I-map for all distribution p(X).
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Undirected graphical model : example 1

example 1

Let p(D1,D2,S) be the joint probability distribution with D1 and D2 two (independent)

dice and S = D1 + D2.

(in)Dependence in example 1

D1 6 |= S and D2 6 |= S

D1 |= D2 but D1 6 |= D2 |S

D1 D2

S
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Undirected graphical model : example 2

example 2

In a database of users, a strong correlation has been found betweenL the ability to read
and P the size of the shoes.

This correlation is explained by the fact that a third variable A (the age) can be < 5.

(in)Dependence in example 2

L 6 |= A and P 6 |= A

L 6 |= P but L |= P |A

L

A

P
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Directed graphical model

example 1

D1 |= D2 but D1 6 |= D2 |S

D1 D2

S

example 2

L 6 |= P but L |= P |A

L

A

P

Giving more information on the graph by adding the orientation.

directed example 1

D1 |= D2 but D1 6 |= D2 |S

D1

S

D2

collider or V-structure

directed example 2

L 6 |= P but L |= P |A

A

P L

We need a separation criterion for directed graphs : d-separation.
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Directed graphical model and d-separation

Let C = (xi )i∈I be an undirected path in
−→
G = (X ,E ).

xi is a C -collider if C contains : xi−1 → xi ← xi+1.

➽ Definition (Active path)

Let Z ⊂ X. C is an active path wrt Z if ∀xi ∈ C :

If xi is a C-collider Then xi or one of its descendant belongs to Z.

Else xi does not belong to Z.

If a path is not active wrt Z , it is blocked by Z.

➽ Definition (d-separation)

Let
−→
G = (X ,E ) a directed graph,

∀(U,V ,W ) ⊂ X, U is d-separated from V by W in
−→
G (〈U |W | V 〉−→

G
) if and only if

every undirected path from U to V is blocked by W .
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Sampling some d-separation

G

A B

C D

E F
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Bayesian network and Markov properties

➽ Definition (Global Markov Property)
−→
G satisfies the GMP for p ⇔ ∀A,B ,S ⊂ X,

〈A |S | B〉−→
G
⇒ A |= B |S.

i.e.
−→
G is an I-map for p.

➽ Definition (Locale Markov Property)
−→
G satisfies the LMP for p ⇔ ∀Xi ∈ X,

{Xi } |= nd (Xi ) |ΠXi
.

where nd (Xi ) represents the non-descendant nodes of Xi
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Bayesian network and Markov properties (2)

Theorem
(when p(X) positive)

GMP ⇐⇒ LMP

➽ Definition (Bayesian network, graphical Factorization)

Let p(X ) be a directed graphical model with the graph
−→
G = (X ,E ). p(X ) is a

Bayesian network if and only if
−→
G is an I-map for p.

Theorem

Let p(X ) be a Bayesian network with the graph
−→
G = (X ,E ),

p(X ) =
∏

Xi∈X

p (Xi | ΠXi
)
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Causality

Independence models 35 / 94



Causality and probability

Conditional probabilities do not allow to deal with causality. They even create
paradox.

Simpson’s paradox

Impact analysis : does a certain drug help to cure the patients ?
With the values : c1 (cured) / d1 (with drug) / d0 (no drug) / M,W (man, woman).

P(c1|d1) = 0.575 > P(c1|d0) = 0.5 the drug helps . . .

P(c1|d1,M) = 0.7 < P(c1|d0,M) = 0.8 . . . except if the patient is a man . . .

P(c1|d1,W ) = 0.2 < P(c1|d0,W ) = 0.4 . . . or a woman.

The conditional probability P(c1|d1) is observational and is not relevant,

one wants to give the drug and not to observe : intervention on d : P(c1| →֒d1)

Conditioning by intervention

Let I be the state of the light switch, cause of L : ’is there light in the room ?’.

With observational conditioning P(L|I ) and P(I |L) (no distinction between cause

and effect),
P(L| →֒I ) = P(L|I ) P(I | →֒L) = P(I ).
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Causal Bayesian network

CancerSmoke

P(C |→֒S) = P(C | S)

Smoke

Genotype

Cancer

P(C |→֒S) = P(C)

Smoke

Genotype

Cancer

P(C |→֒S) unknown !
We do not know how to differentiate the

causal impact of the 2 causes from the

observation.

CancerSmoke

Genotype

Tar

P(C |→֒S) computable ! Do-
Calculus
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Markov equivalence class, essential graph

➽ Definition ( essential graph)

A Markov equivalence class can be represented by a partially directed acyclic
graph (PDAG) : the essential graph.
In an essential graph, an arc is directed if every Bayesian network in the
equivalence class have the same arc.

HH

A B

C
D

E
F

G

A B

C
D

E
F

G

The essential graph can be build from a BN by removing orientation of the arcs
that can be reversed without creating or removing a collider.

if the BN is causal, the essential graph indicates the causal arc that can be
learned from a dataset. Undirected arc is an indication for a (possible) latent
cause.
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Learning

Intervention 39 / 94



What can we learn ?

Learning in Bayesian network

The goal of a learning algorithm is to estimate from a dataset and from prior :

the structure of the Bayesian network (is X parent of Y ?)

the parameters of the Bayesian network (P(X = 0 | Y = 1) ?)
The dataset can be :

complete,

incomplete (missing values).

The prior knowledge can be for instance :

(part of) the structure of the BN,

The probability distribution for certain variables, etc.

Therefore 4 main classes of learning algorithms in BN :
“Learning of {parameters |structure} with {complete |incomplete} data”.
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Learning parameters with complete data

D :




dA
1 dB

1 dC
1 dE

1

· · · · · · · · · · · ·
V F F V
· · · · · · · · · · · ·
dA
M dB

M dC
M dE

M


 C

E B

A

Let Θ be the set of all parameters for the model and L(Θ : D) the likelihood :

L(Θ : D) = P(D | Θ)

=

M∏

m=1

P(dm | Θ) (iid)

=

M∏

m=1

P(E = d
E
m,B = d

B
m ,A = d

A
m,C = d

C
m | Θ)
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Learning parameters with complete data (2)

Let us rename E ,B,A,C with n = 4, (Xi)1≤i≤n,

L(Θ : D) =

M∏

m=1

P(X1 = d1
m,X2 = d2

m, · · · ,Xn = dn
m | Θ)

=

M∏

m=1

n∏

i=1

P(Xi | Pai , Θ)

=

n∏

i=1

M∏

m=1

P(Xi | Pai , Θi )

L(Θ : D)=
∏n

i=1 Li (Θi : D)

The estimation of the parameters can be decomposed into the estimation of the
different conditional probability table for each node.
No need for only one global dataset : heterogeneous learning.
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Maximization of the likelihood for a single variable

Let X be a binary variable. With θ = P(X = 1) :

Θ = {θ, 1 − θ}

D = (1, 0, 0, 1, 1)

L(Θ : D) =
∏

m

P(X = dm | Θ)

Here : L(Θ : D) = θ · (1 − θ) · (1 − θ) · θ · θ.

x*(1-x)*(1-x)*x*x
0.04

0 0.2 0.4 0.6 0.8 1

L
(
Θ

:
D
)

θ

0

θ̂ = argmaxθ

(
θ3 · (1 − θ)2

)

Generalization

For X random variable which can take the values (1, · · · , r),

with ΘX = (θ1, · · · , θr ) where θi = P(X = i),

and Ni = #D(X = i) number of occurrences of i in the dataset D,

L(ΘX : D) =

r∏

i=1

θNi

i and Θ̂X = argmaxΘX
(L(ΘX : D))
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Maximizing the likelihood in a Bayesian network

θijk = P(Xi = k | Pai = j) , Nijk = #D(Xi = k,Pai = j), k ∈ {1 · · · ri }, j ∈ {1 · · · qi }

L(Θ : D) =
∏n

i=1 Li(Θi : D) =
∏n

i=1

∏M
m=1 P(Xi = km | Pai = jm, Θi)

L(Θ : D) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk
ijk

LL(Θ : D) =
∑n

i=1

∑M
m=1 log P(Xi | Pai , Θi) =

∑n
i=1

∑qi
j=1

∑ri
k=1 Nijk log θijk

∑
k θijk = 1 then θijri

= 1 −
∑ri−1

k=1 θijk hence

LL(Θ : D) =
n∑

i=1

qi∑

j=1

(
ri−1∑

k

Nijk log θijk + Nijri
log

(

1 −
ri−1∑

k=1

θijk

))

We are looking for Θ̂ that maximizes L(Θ : D) and then LL(Θ : D) :

i.e. Θ̂ tel que ∀i, ∀j, ∀k,
∂LL(Θ : D)

∂θijk

(
Θ̂
)

=
Nijk

θ̂ijk

−
Nijri

1 −
ri−1∑

k=1

θ̂ijk

=
Nijk

θ̂ijk

−
Nijri

θ̂ijri

= 0

Finally,
Nijri
θ̂ijri

=
Nij1

θ̂ij1
= · · · =

Nij(ri−1)

θ̂ij(ri−1)
(and

∑
k θ̂ijk = 1) :

∀k ∈ {1, ..., ri }, θ̂ijk =
Nijk

Nij
With Nij =

∑ri
k=1

Nijk
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Bayesian prediction (2)

From : P(Θ | D) ∝ L(Θ : D) · P(Θ)

P(Θ) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk−1

ijk

L(Θ : D) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk
ijk

P(Θ | D) =

n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk+αijk−1
ijk

MAP : maximum a posteriori

Θ̂MAP = argmax
Θ

P(Θ | D)

θ̂MAP
ijk =

Nijk + αijk − 1
∑

k (Nijk + αijk − 1)

EAP : expectation a posteriori

Θ̂EAP =

∫

Θ

Θ · P(Θ | D) dΘ

θ̂EAPijk =
Nijk + αijk∑
k (Nijk + αijk)
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Parameters learning with complete data

With Nijk the count of occurrences in the dataset where variable Xi has the value k and its parents have the
values (t-uple) j , With αijk the parameters of a Dirichlet prior.

Parameters estimation
Two main solutions :

MLE (Maximum Likelihood Estimation)

θ̂ijk = θ̂{xi=k|pai=j} =
Nijk

Nij

Bayesian estimation (with Dirichlet prior)

θ̂MAP
ijk = θ̂{xi=k|pai=j} =

αijk + Nijk − 1

αij + Nij − ri

θ̂EAPijk = θ̂{xi=k|pai=j} =
αijk + Nijk

αij + Nij

Prior important when Nijk → 0 : no occurrence in the dataset.
All these estimations are equivalent when Nijk → ∞

αijk are often hard to find ⇒Laplace smoothing : αijk = constant(= 1)
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Learning parameters with missing values

D :





dA
1 dB

1 dC
1 dE

1
· · · · · · · · · · · ·
V F ? V
V F ? V
? F ? V
· · · · · · · · · · · ·
dA
M dB

M dC
M dE

M



 C

E B

A

D = Do ∪ Dh respectively observed data and unobserved.

Typology for incomplete dataset
With Mil = d i

l ∈ Dh

MCAR :P(M | D) = P(M) (Missing Completely At Random).

MAR : P(M | D) = P(M | Do) (Missing At Random).

NMAR :P(M | D) (Not Missing At Random).
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EM for BNs

Expectation-Maximization for BNs

Repeat until convergence

Step E : Estimate N
(t+1)
ijk from P(Xi |Pai , θ

t
ijk)

inference in the BN with parameters θtijk

Step M : θt+1
ijk =

N
(t+1)
ijk

N
(t+1)
ij

P S

P S
o ?
n ?
o n
n n
o o

Parameters
P(P) = [θP 1 − θP ]
P(S | P = o) = [θS|P=o 1 − θS|P=o ]
P(S | P = n) = [θS|P=n 1 − θS|P=n]

With MLE : θP = 3
5
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EM in a BN : example

0 Initialisation
We have to choose a initial value for each parameters : θ

(0)

S|P=o
= 0.3, θ

(0)

S|P=n
= 0.4

1 Step E using θ(0)

P(S | P = o) P(S | P = n)
P S S = o S = n S = o S=n

o ? 0.3 0.7 0 0
n ? 0 0 0.4 0.6
o n 0 1 0 0
n n 0 0 0 1
o o 1 0 0 0

N∗ 1.3 1.7 0.4 1.6

Step M

θ
(1)

S|P=o
= 1.3

1.3+1.7 = 0.433 and θ
(1)

S|P=n
= 0.4

0.4+1.6 = 0.2

2 Step E using θ(1)

P(S | P = o) P(S | P = n)
P S S = o S = n S = o S=n

o ? 0.433 0.567 0 0
n ? 0 0 0.2 0.8
o n 0 1 0 0
n n 0 0 0 1
o o 1 0 0 0

N∗ 1.433 1.567 0.2 1.8

Step M

θ
(2)

S|P=o
= 1.433

1.433+1.567 = 0.478 and θ
(2)

S|P=n
= 0.2

0.2+1.8 = 0.1

3 etc.

(θ
(t)

S|P=o
→ 0.5 and θ

(t)

S|P=n
→ 0)
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EM in BNs

C

E B

A

A B C E

· · ·
1325 ? 0 1 0
· · ·

What is the step E ?
Replace the ? by P(A | B = 0,C = 1,E = 0)
⇒inference in the BN with the parameters Θt

Learning parameters with missing values

EM converges to a local optimum,
Sensibility to initial parameters
Each step E can be expensive (as an inference in a complex BN)
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Structural learning with complete data

Goal : learning the arcs of the graph from data.

Theoretically : χ2 test plus enumeration of all the possible models : OK

In practice : many different problems but above all :

Set of Bayesian networks (Robinson, 1977)

The number of different possible structures for n random variables is
super-exponential.

NS(n) =






1 , n ≤ 1
n∑

i=1

(−1)i+1 · C n
i · 2i·(n−i) · NS(n − 1) , n > 1

Robinson (1977) Counting unlabelled acyclic digraphs. In Lecture Notes in Mathematics : Combinatorial Mathematics V

An algorithm ’brute-force’ is not feasible. The space of Bayesian networks it too large : NS(10) ≈ 4.2 · 1018 !
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Structural learning - introduction

General picture of structural learning

Identification of symmetrical relation (independence) + orientation

algorithm IC/PC
algorithm IC*/FCI

Important for causal models.

Local search

In the (very large) space of structures,
Greedy algorithms maximizing a score (entropy, AIC, BIC, MDL,BD, BDe,
BDeu, · · · ).
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Identification of symmetrical relation

Statistically, the relation that can be tested between variables are symmetrical :
correlation or independence.
However, once these symmetrical relations have been found, other tests
(conditional independence) can lead to the discovery of colliders which force some
orientation.

Main principle for (IC, IC*, PC, FCI)

1 Build an undirected graph based on symmetrical relation statistically found (χ2, correlation,

mutual information, etc.) :

Add edges from the empty graph.

Remove edges from the complete graph.

2 Identify colliders and add the implied orientations .

3 Finalize the orientations without creating any other colliders (in order to stay in the same

Markov equivalence class.

Major drawback : a very large number of statistic tests is needed. Each test is not robust in the size of the
dataset.
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Example : PC
We continue with χ2 conditioned on 2 variables.

we find : D |= S |(L, B), X |= O |(T, L), D |= O |(T, L).

Looking for colliders, propagation of orientation constraints, orientation of the last edges in the Markov
equivalence class.

We find : T 6 |= L and T |= L |O Orientation in the same Markov equivalence class.

Conclusion : with 5000 lines, PC has lost many information (noisy χ2 tests).
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Structural learning with local search

Local search
A local search is composed of :

a space of all possible solutions (search space),

a neighborhood defined by elementary transformations of a solution.The
neighbors of a solution are the solutions that can be obtained by the
application of an elementary transformation.

a score (heurisitic) that evaluates the quality of a solution.

From an initial solution, the local search then produces a sequence of solutions
such that every solution in the sequence has a better score than the precedent
solutions in the sequence (Greedy Search).

Local search in Bayesian networks

space of Bayesian networks (huge)

The score (see next slide)

The initial solution (empty Bayesian network for instance)

Elementary operations : add/remove/reverse an arc
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Scores

Properties for a score
Let D a dataset, T the graph of the current solution and Θ its parameters.A score must satissfy :

1 Likelihood : The solution must explain the data (max L(T , Θ : D)).

2 Occam’s razor : The score must prefer simple graphs for T rather than complex ones (min
Dim(T )).

3 Local consistency : Adding a useful arc should increase the score.

4 Score equivalence : Two Markov-equivalent Bayesian networks should have the same score.

➽ Definition (Dim(T ))

The dimension of a Bayesian network is its number of free parameters.
Dim(T ) =

∑
i ((ri − 1) · qi )

where ri is the size of the variable Xi and qi is the number of configurations for
the parents of Xi .

Maximizing the likelihood is not a good score : it leads to a complete graph :
overfitting.
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Some scores (1) : AIC/BIC

Key idea : Maximizing likelihood but minimizing the dimension of the Bayesian network.

score AIC (Akaike, 70)

Akaike Information Criterion

ScoreAIC(T ,D) = log2L(Θ
ML,T : D) − Dim(T )

score BIC (Schwartz, 78)

Bayesian Information Criterion

ScoreBIC(T ,D) = log2L(Θ
ML,T : D) −

1

2
· Dim(T ) · log2N
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Minimum Description Length (Rissanen,78)

The MDL score consists in consider the compacity of the representation as a good
indicator for the quality of the solution.

score MDL (Lam and Bacchus, 93)

Minimum Description Length

ScoreMDL(T ,D) = log2L(Θ
MV,T : D) − |arcsT | · log2N − c · Dim(T )

where arcsT is the set of arcs in T , c is the number of bits needed to represent a
parameter.
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Bayesian Dirichlet score Equivalent

With a Bayesian score, we want to maximize the joint probability of T and D :

P(T ,D) =

∫

Θ

P(D | Θ,T ) · P(Θ | T ) · P(T )dΘ

= P(T ) ·

∫

Θ

L(Θ,T : D) · P(Θ | T )dΘ

With some independence hypothesis and a Dirichlet prior :

score BDe

ScoreBDe(T ,D) = P(T )

n∏

i=1

qi∏

j=1

Γ(αi,j)

Γ(Ni,j + αi,j)

ri∏

k=1

Γ(Ni,j,k + αi,j,k)

Γ(αi,j,k)
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Recherche locale : Example

With the same dataset.

Major drawbacks : The algorithm may be trapped in zones where all the neighborhood has the same score.
The algorithm may stop in local minima.

Solutions
Meta-heuristic :

Random restart (not only from empty Bayesian networks)

TABU-search (force the algorithm to find new solutions)

Simulated annealing (accept from time to time structures with decreasing
score)
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Learning trees

In order to reduce the state space, this algorithm can find only one parent for each
random variables.
This may be an over-simplification of the model, but learning tree brings :

a mathematically beautiful solution (find the global optimum),

a small number of parameters (⇒minimize the risk of overfitting).

Basic idea : decomposition of the log-likelihood

LL(T ) =
∑

i

LLi (i , pa(i)) =
∑

X→Y

LL(Y ← X ) + K

With LL(Y ← X ) = LLY (Y ,X ) − LLY (Y , ∅)

Learning optimal tree

∀X ,Y , compute LL(Y ← X )

Find the tree (forest) that maximize LL(T ).
Max Spanning Tree Algorithm – O(n2 · log(n))
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Inference
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Inference in a Bayesian network

Elementary operations on a joint probability :

Marginalization
∑

y

P(x , y | z) = p(x | z)

Total sum
∑

y

P(y | z) = 1

Decomposition P(x , y | z) = P(x | y , z) · P(y | z)

Chain rule P(X1, · · · ,Xn) =

n∏

i=1

P (Xi | X1, · · · ,Xi−1)

Independence X |= Y |Z ⇒ P(x | y , z) = P(x | z)

Bayes rule P(x | y , z) ∝ P(y | x , z) · P(x | z)

In a Bayesian network :

Markov local P(X1, · · · ,Xn) =

n∏

i=1

P (Xi | parents(Xi ))
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Hard and soft evidence

Let P(X1, · · · ,Xn) be a Bayesian network, let ǫ be an event.

P(X1, · · · ,Xn|ǫ) ∝ P(ǫ|X1, · · · ,Xn) · P(X1, · · · ,Xn)

Evidence in a Bayesian network

Let assume that ∃(ǫi )I⊂{1,··· ,n} s.t. :

ǫ = ∩i∈Iǫi

∀i ∈ I , ǫi |= X1, · · · ,Xi−1,Xi+1, · · · ,Xn |Xi

then P(X1, · · · ,Xn, ǫ) =

n∏

i=1

P(xi |πi ) ·
∏

i∈I

P(ǫi |Xi )

if P(ǫi |Xi ) contains a 1 and many 0, ǫi is called a hard evidence. ǫi is the
event ”Xi takes a certain value”.

otherwise, ǫi is called a soft evidence.

ǫi acts like ’virtual child’ of Xi . Evidence will not appear in the following since
they belong to the general framework.
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Inference in a Bayesian network (1) : P(D) ?

A B

C

D

P(d) =
∑

a

∑

b

∑

c

P(a, b, c , d)

=
∑

a

∑

b

∑

c

P(a) · P(b | a) · P(c | b) · P(d | b)

=
∑

a

∑

b

P(a) · P(b | a) · P(d | b) ·

(
∑

c

P(c | b)

)

︸ ︷︷ ︸
=1

=
∑

b

P(d | b)
︸ ︷︷ ︸

in D

·


∑

a

P(a)
︸︷︷︸
in A

·P(b | a)
︸ ︷︷ ︸

in B
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Inference in a Bayesian network (2) : P(D | a) ?

A B

C

D

P(d | a) =
∑

a

∑

b

∑

c

P(a, b, c , d | a)

=
∑

a

∑

b

∑

c

P(a | a) · P(b | a, a) · P(c | b, a) · P(d | b, a)

=
∑

a

∑

b

P(a | a) · P(b | a, a)
︸ ︷︷ ︸

a |= B|A

·P(d | b, a)
︸ ︷︷ ︸

A |= D|B

·

(
∑

c

P(c | b, a)

)

︸ ︷︷ ︸
=1

=
∑

b

P(d | b)
︸ ︷︷ ︸

in D

·


∑

a

P(a | a)
︸ ︷︷ ︸

in A

·P(b | a)
︸ ︷︷ ︸

in B
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Inference in a Bayesian network (3) : P(C |d) ?

A B

C

D

P(c | d) =
∑

a

∑

b

∑

d

P(a | d) · P(b | a, d) · P(c | b, d) · P(d | b, d)

=
∑

b

P(c | b)
︸ ︷︷ ︸

in C

·
∑

a

P(a | d) · P(b | a, d)

︸ ︷︷ ︸
P(b|d)

Bayes rule for P(b | d)

P(b | d) ∝ P(d | b) · p(b)

∝ P(d | b)
︸ ︷︷ ︸

in D

·
∑

a

p(b | a)
︸ ︷︷ ︸

in B

·P(a)
︸︷︷︸
in A
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Inference in a Bayesian network (4) : P(A|d) ?

A B

C

D

P(a | d) ∝ P(d | a) · P(a)
︸︷︷︸
in A

P(d | a) =
∑

b

P(d | a, b) · P(b | a)
︸ ︷︷ ︸

in B

=
∑

b

P(d | b)
︸ ︷︷ ︸

in D

·P(b | a)
︸ ︷︷ ︸

in B
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Inference in a Bayesian network (5) : P(B | c , a) ?

A B

C

D

P(b | c , a) ∝ P(c | b, a) · P(b | a)

∝ P(c | b)
︸ ︷︷ ︸

in C

·
∑

a

p(b | a)
︸ ︷︷ ︸

in B

·P(a | a)
︸ ︷︷ ︸

in A
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Inference in polytree

X

Y

π(x) = P
(
x | e+

)

e+

e−

λ(x) = P
(
e− | x

)

X

· · · πX (Un)

λX (Un)

πYm
(X)

· · · λYm
(X)

U1

Ym

Un

Y1

λY1
(X)

πY1
(X)

λX (U1)

πX (U1)

If a node has n neighbors (parents or children), he must know n − 1 messages in
order to send its message to the last neighbor.

Once all messages have been sent (2 · |E |), every node knows all the information
received by the graph.

If a node has n neighbors (parents or children), he must know n messages in order
to compute its own posterior.
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A first algorithm for inference in polytree

Propagation : repeat
for all node N with n neighbors,

if N received n − 1 messages then N can send the message to the last neighbor.
if N received n messages then N can send all its messages.

until all messages have been sent

Every node can compute its posterior.

1a

1b

1c
1d

2a

2b

3a

4a

4b

4c

5a

5b

6a

6b

Complexity

O(|E |)
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Inference in polytree (2)

1a

1b

2a

2b
3a

4a

4b

5a

6a
6b

4c

5b

1d
1c

1a

1b

2a

2b
4a

5c

5d
5a

5b
1d

1c

3a

4b

6a

Centralized version
Selection of a root

Absorption

Each node send the message to the root (as soon as he can).

Intégration
The root has received all its messages from its neighbors and can send all the
messages to its neighbors.

Diffusion
When a node receives its message from the root, it sends all the remaining
messages.
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Problem with message passing algorithms in DAG

P(E ) =
∑

A,B,C ,D P(A) · P(B | A) · P(C | A) · P(D | B) · P(E | C ,D)

D

B

A

E

C

πE (D)

πC (A)

πE (C)

πB(A)

πD(B)

Message passing algorithm :

1 πB(A) = P(A)

2 πC (A) = P(A)

3 πD(B) =
∑

A P(B | A) · πB(A)

4 πE (D) =
∑

B P(D | B) | πD(B)

5 πE (C ) =
∑

A P(C | A) · πC (A)

6 P(E ) =
∑

D,C P(E | C ,D) · πE (C ) · πE (D)

P(E ) 6=
∑

A,B,C ,D,A ′

P(E | C ,D) · P(C | A) · P(A) · P(D | B) · P(B | A ′) · P(A ′)
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Inference in DAG

Message passing algorithms need a polytree.

From DAG to polytree

Conditioning : cutting arcs in the graph.

Clustering : Merging nodes in the graph.

ClusteringConditioning
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Conditioning

Conditioning a Bayesian network
G a Bayesian network over the set of random variables V , S ⊂ V and s an instantiation of S .

The conditioned Bayesian network G [S=s] is the Bayesian network obtained by :

removing arcs from every node in S

if the node Y has parent(s) in S then p(Y |ΠY ) is changed in p(Y |s, ΠY ).

A

F D

B

E C

G

A
0

P(E | A = 0)

P(F | E , G = 1) P(D | C , G = 1)

F D

B

E C

G
1

Graph G Conditioned graph G [A=0,G=1]

An inference in G with evidence S = s is equivalent to an inference in G [S=s] with
no evidence.

S is called a cutset.
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Inference by conditioning

∀S ⊂ V ,∀x ∈ V ,P(x) =
∑

s P(x | s).P(s)

Inference by conditioning

With G Bayesian network,

1 find S ⊂ V cutset such that G [S] is a polytree.
2 ∀s instantiation of S ,

Compute Ps(x) = P(x | s) in G [S].
Compute ps = P(s) (secondary result of the last inference).

3 P(x) =
∑

s (ps · Ps(x))

If #i is the size of Si , the inference computes
∏

i

#i inferences in G [S].

⇒ O(k |S| · |E [S]|)

Finding the minimal cutset is NP-complete.
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Clustering : Junction tree algorithm

L

F

S

D

V

P(s, l , d , f , v)
= P(s)·P(l | s)·P(d | s)·P(f | l)·P(v | d , l)
= f (s, l) · g(s, d) · h(l , f ) · k(d , l , v)
= j(s, l , d) · h(l , f ) · k(d , l , v)

L

L

S

D

SL SD

LDVLF

Junction graph

L

LD

SLD

LDVLF

Junction tree
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How to build a junction tree

Idea : create an undirected graph from the Bayesian network. The cliques of this
undirected graph will be the nodes of the junction tree.

The CPTs P(X | ParentX ) of the Bayesian network indicate necessary clusters.

Moralization
The moral graph of a BN is the undirected skeleton of the Bayesian network to
which edges between parents of the same node are added.

V

S T

L

F

D
L

S T

F V

D
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How to build a junction tree (2)

To insure the existence of the junction tree, the undirected graph must be triangulated : every cycle with

length> 3 must have be chordal.

Triangulation
To triangulate a graph : variables elimination :

Iteratively remove all nodes in the graphs.

When a node is removed, add edge between every pair of its neighbors

Start to eliminate nodes that will not create new edge (no neighbor, only one neighbor, neigbours
already connected).

V

S T

L

F

D
L

S T

F V

D L

S T

F V

D

Elimination order : F ,V ,T , S, L,D.

To find the best elimination order is NP-complete.
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How to build a junction tree (3)

The nodes of the junction tree are the cliques of the moralized and triangulated graph, what about its edges ?

Junction tree
Choose an order in the cliques (Ci).

for each Ci , find the clique Cj (j < i) that maximize |Ci ∪ Cj .

Add an edge between Ci and Cj .

Create the separator Sij = Ci ∪ Cj .

V

S T

L

F

D
L

S T

F V

D

LD

SD

L

LDV

SLD

STD

LF

The junction tree is not unique for a Bayesian network.
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Potentials

V

S T

L

F

D
L

S T

F V

D

LD

SD

L

LDV

SLD

STD

LF

Decomposition of P(V ) following the cliques :

P(v) = P(s) · P(l | s)
︸ ︷︷ ︸

φ1(d,l,s)

·P(t | s) · P(d | t)
︸ ︷︷ ︸

φ2(s,t,d)

·P(f | l)
︸ ︷︷ ︸
φ3(f ,l)

·P(v | l, d)
︸ ︷︷ ︸
φ4(v,l,d)

Another decomposition :

P(v) =
P(s, t, d) · P(s, l, d) · P(l, f ) · P(l, d, v)

P(s, d) · P(l) · P(l, d)

Factorization of P in a Junction Tree

P(v) =

∏
i ΦCi

(ci )∏
i<j ΦSij

(sij)

Inference 83 / 94



Propagation on potentials in the junction tree

goal : Transform the potential of all cliques (C) and separators (S) into joint probability of their variables.

Message passing in the Junction Tree
Initialization :
∀Ci ∈ C,

Ψ0
Ci

=
∏

X∈Ci ,X /∈Cj ,j<i

P(X | ΠX ) (and the evidence)

∀S ∈ S, Ψ0
S = 1 (constant function).

Root selection : choose a clique as a root for the propagation

Collect : send all messages from all cliques to the root (a clique can send a message if it receives all the
others).

Distribution : send all messages from the root to all cliques

Message from a clique Ci to a clique Cj : update Ψt
Cj

from Ψt+1
Ci

:

Ψt+1
Sij

(s) =
∑

Ci\Sij
Ψt+1

Ci
(c) and Ψt+1

Cj
= Ψt

Cj
·

Ψt+1
Sij

Ψt
Sij

There still is only a linear complexity in number of arcs, but the clique and the
ΨC may be very huge.
This algorithm is the most used for exact inference in Bayesian network.
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Copulas Bayesian Network
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Copulas

Let X = {X1, · · · ,Xn} be a set of continuous random variables,
its joint CDF F (x) = P(X ≤ x), its density of probability p(x) :
p(x) = ∂nF

∂x1···∂xn
(x1, · · · , xn).

Copula

C (u1, · · · , un) = CDF for the variable U1, · · · ,Un uniformally distributed on [0, 1]

Sklar,1959 ∀F , ∃C copula s.t. F (x1, · · · , xn) = C (F (x1), · · · ,F (xn)) :
C (u) = F (F−1

1 (u1), · · · ,F
−1
1 (un)).

Unicity if continuity and p > 0

For the density : p(x) = c(F1(x1), · · · ,Fn(xn))
∏n

i=1 pi (xi ).

C integrate the structural complexity of the relation between variables and do not
take into account their marginal behavior.

Copula C (X ) rarely used/computed/learned if n > 10
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Copula Bayesian Networks

Let G be a Bayesian network on the density of probability :

p(X1, · · · ,Xn) =

n∏

i=1

p(Xi |πi )

Let c be a copula for p, we define, for each node Xi ,

Rc(Xi , πi ) =
c(F (Xi ),F (P1), · · · ,F (Pki ))
∂ki

∂F(P1)···∂F(PKi
)
c(1,F (p1), · · · ,F (pKi

))

where ki = |πi | (if ki = 0,Rc(Xi , πi ) = 1).

p(X1, · · · ,Xn) =

n∏

i=1

Rci (Xi , πi ) · p(Xi )

Reciprocally, if {ci }
n
i=1 are copulas (> 0) for each (Xi , πc i), then

∏n
i=1 Rci (Xi , πi )

defines a copula for X .

c(F (X1), · · · ,F (Xn)) =

n∏

i=1

Rci (Xi , πi )
Copula Bayesian network 87 / 94



Copula Bayesian Network - Learning and inference

➽ Definition (Copula Bayesian Network)

A CBN is described by a triplet (G , ΘC , Θp) where G is a DAG over X , ΘC is a
set of copulas c(Xi , πi ), Θp is the set of marginals p(Xi ).
Then the CBN has a joint density of probability p(X ) factorised by :

p(X1, · · · ,Xn) =

n∏

i=1

Rci (Xi , πi ) · p(Xi )

The same properties of locality hold for CBN as for BN.

Large reduction of the number of parameters

Parameter learning can be made locally on Xi , πi

not the same dataset for each Rc .
not the same type of copula for each Xi , πi

Structural learning could use the same kind of algorithms than classical BN.

Inference is simpified : simulation, Rosenblatts’ transformation (etc)
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Copula Junction Tree

BI
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ABC BCI

BDIDE

EG

E E

p(X ) =

∏
C∈clique(G) p(C )

∏
S∈separator(G) p(S)

Let cS(S) be copula for all S ∈ Junction Tree (clique or separator, with some
restriction for consistency).

c(X ) =

∏
C∈clique(G) cC (C )

∏
S∈separator(G) cS(S)

is a copula for p(X )
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continuous-PC

Structural identification : increasing blocks, 10 variables, N=10000, 27
minutes.

Conclusion :

CBN proposes to explore the structure inside joint copulas,

CBN may increase the number of dimensions for a joint copula,

CBN may ease the different inference algorithms,

CBN can be automatically learned from data using a non parametric CI test.
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