
Deep Learning

A journey from feature extraction and
engineering to end-to-end pipelines

Part 1: Introduction, Computer Vision

Andrei Bursuc 

 

With slides from A. Karpathy, F. Fleuret, J. Johnson, S. Yeung, G. Louppe, Y. Avrithis ...
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Deep Learning - the hype?
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Deep Learning - the hype?

Evolution of ImageNet large scale visual recognition challenge

1.2 M training images with 1K object categories
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Deep Learning - the hype?

Conference attendance growth
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Deep Learning - the hype?

CVPR 2017 sponsors
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Deep Learning - the hype?

Industry participation
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Deep Learning - the hype?

1/2 parallel session at NIPS 2017
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Deep Learning - the hype?

Poster session at NIPS 2017
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Deep Learning - the hype?

Primary topic in submissions at NIPS 2017
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Deep Learning - the hype?

Other remarkable changes

Paper publishing is more intense: papers are released on arXiv

right after submission deadline

Results of papers can be already outperformed by the time of

the conference

Code and/or trained networks are released with paper most of

the times

High number of published datasets

Contributions arrive also from non computer vision / machine

learning classic domains: genomics, mechanics.
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Domain applications of Deep
Learning?

Speech-to-Text
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Domain applications of Deep
Learning?

Computer Vision
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Domain applications of Deep
Learning?

NLP
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Domain applications of Deep
Learning?

NLP
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Domain applications of Deep
Learning?

Vision + NLP
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Domain applications of Deep
Learning?

Generative models

  

Sampled celebrities [Nvidia 2017]
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Domain applications of Deep
Learning?

Generative models

StackGAN v2 [Zhang 2017]
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Domain applications of Deep
Learning?

Image translation
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Domain applications of Deep
Learning?

Generative models

  

Sound generation with WaveNet [DeepMind 2017]
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Domain applications of Deep
Learning?

Generative models

  

Sound generation with WaveNet [DeepMind 2017]

Guess which one is generated?

  



DL in other sciences
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DL for AI in games
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DL for AI in games

AlphaGo/Zero: Monte Carlo Tree Search, Deep Reinforcement Learning, self-play
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What is Deep Learning?

Neural Networks with more layers/modules

Non-linear, hierarchical, abstract representations of

data

Flexible models with any input/output size

Di!erentiable functional programming
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What is Deep Learning?

In other words: a graph of tensor operators taking advantage of:

the chain rule (back-propagation),

stochastic gradient descent,

convolutions,

parallel operations on GPU

We kind of had most of it in the networks from long ago
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Why going deep?

Traditional recognition: "shallow" architecture
Each block is designed and implemented individually

"Deep" architecture (Convolutional Neural Network)
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Why going deep?

Graph of tensors where blocks are trained and optimized jointly

1 - 140M trainable parameters
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Why Deep Learning works now?

Five decades of research in machine learning

Computing and storage power

Lots of (labelled) data from the internet

Tools and culture of collaborative and reproducible

science

Resources and e!orts from large companies



Why Deep Learning works now?

Five decades of research in ML provided:

a taxonomy of ML concepts (classi#cation, generative models,

clustering, kernels, linear embeddings, etc.),

a sound statistical formalization (Bayesian estimation, PAC),

a clear picture of fundamental issues (bias/variance dilemma, VC

dimension, generalization bounds, etc.),

a good understanding of optimization issues,

e$cient large-scale algorithms.
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Why Deep Learning works now?

From a practical perspective, deep learning:

lessens the need for a deep mathematical grasp,

makes the design of large learning architectures a

system/software development task,

allows to leverage modern hardware (clusters of GPUs),

does not plateau when using more data,

makes large trained networks a commodity.
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Why Deep Learning works now?

Evolution in computer vision datasets
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Why Deep Learning works now?

When more data is available
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Why Deep Learning works now?

Many deep learning frameworks freely available as open source

Frequent changes and updates (every few weeks)

Most frameworks supported by a large company
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Deep Learning - the hype?

Many deep learning frameworks freely available as open source

Frequent changes and updates (every few weeks)

Most frameworks supported by a GAFA company
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PyTorch

"PyTorch is a python package that provides two high-level features:

Tensor computation (like numpy) with strong GPU acceleration

Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy

and Cython to extend PyTorch when needed."
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PyTorch

MNIST dataset

 grayscale images,  train samples,  test samples
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a few seconds on a

low-end GPU,  test

error

class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 32, kernel_size=5) 
    self.conv2 = nn.Conv2d(32, 64, kernel_size=5) 
    self.fc1 = nn.Linear(256, 200)
    self.fc2 = nn.Linear(200, 10)

  def forward(self, x):
    x = F.relu(F.max_pool2d(self.conv1(x), kernel_siz
    x = F.relu(F.max_pool2d(self.conv2(x), kernel_siz
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x  

model = Net()

mu, std = train_input.data.mean(), train_input.data.s
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train

for e in range(10):
for b in range(0, nb_train_samples , bs):

    output = model(train_input.narrow(0, b, bs))
    loss = criterion(output , train_target.narrow(0, 
    model.zero_grad()
    loss.backward()
    optimizer.step() 44 / 112
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Computer Vision

The old-school way
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The problem with Computer Vision

The (human) brain is so good at interpreting visual information that

the gap between raw data and its semantic interpretation is di$cult

to assess intuitively:

 

This is a mushroom.
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This is a mushroom.
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This is a mushroom.
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This is known as the semantic gap. Extracting semantic information

requires models of high complexity.
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