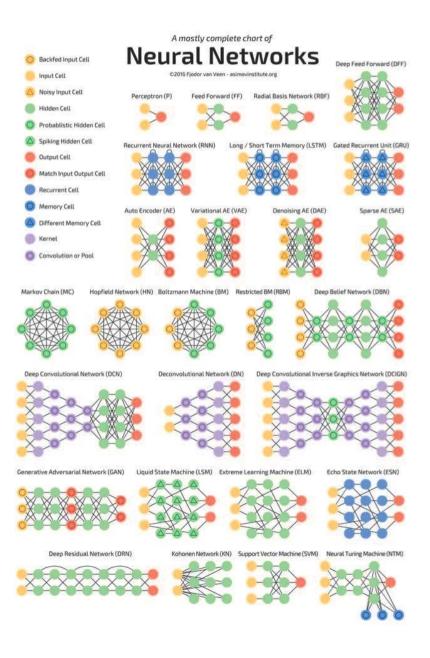
## Deep Learning

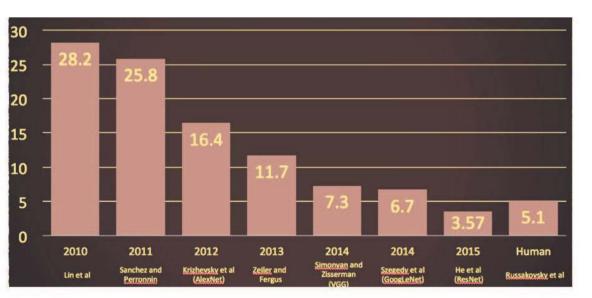
## A journey from feature extraction and engineering to end-to-end pipelines

Part 1: Introduction, Computer Vision

Andrei Bursuc



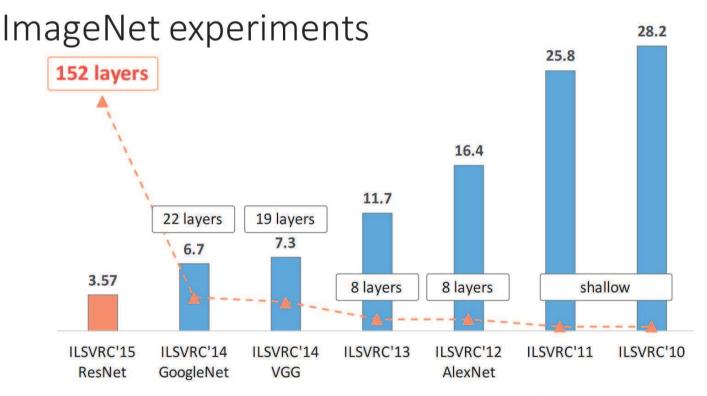
- Evolution of ImageNet large scale visual recognition challenge
- 1.2 M training images with 1K object categories



ImageNet top-5 error (%)

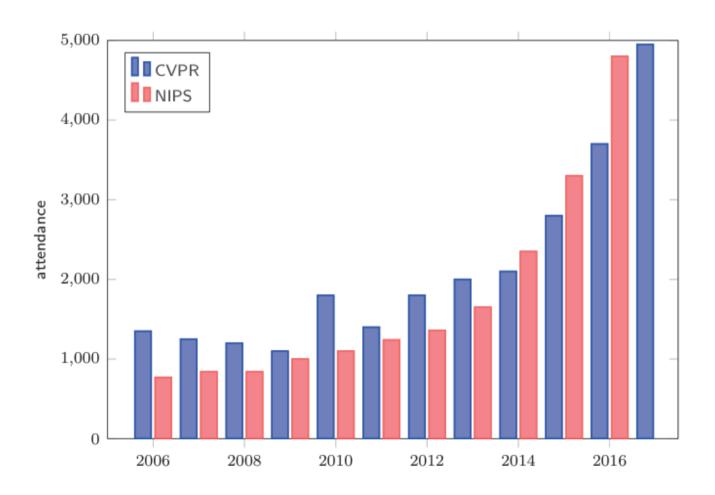


- Evolution of ImageNet large scale visual recognition challenge
- 1.2 M training images with 1K object categories

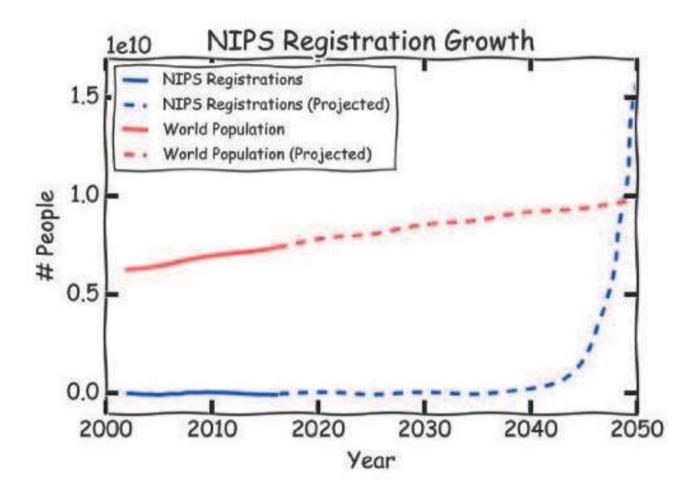


ImageNet Classification top-5 error (%)

#### Conference attendance growth



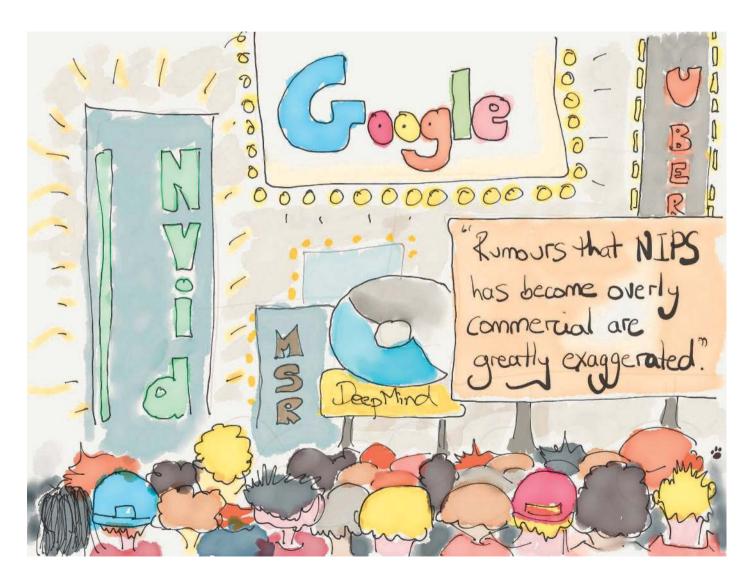
Conference attendance growth



CVPR 2017 sponsors



#### Industry participation



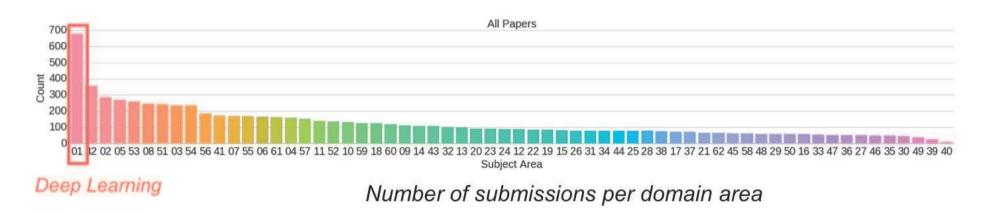
1/2 parallel session at NIPS 2017



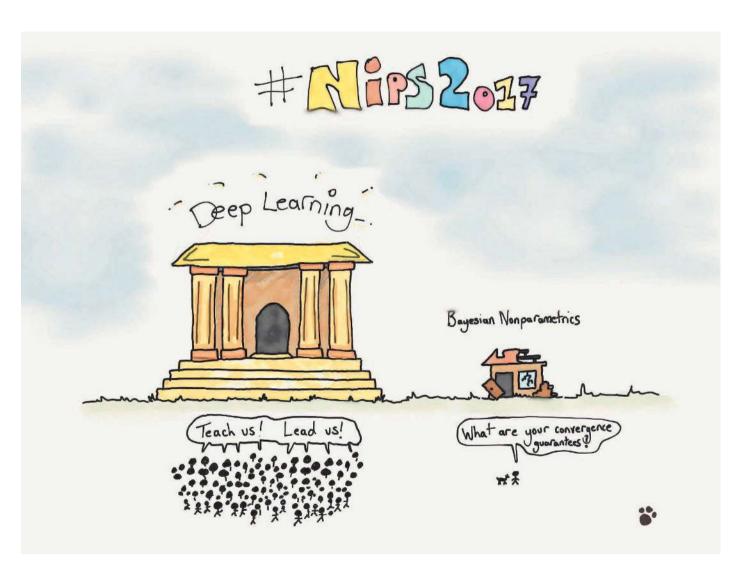
Poster session at NIPS 2017



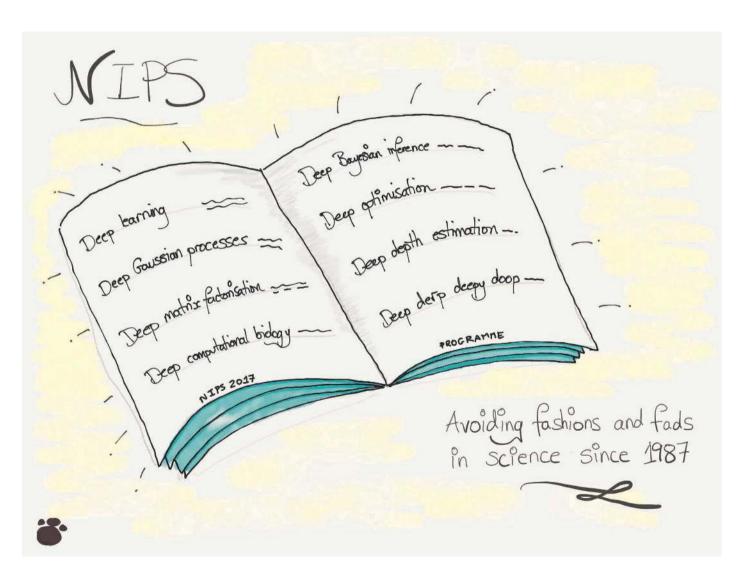
Primary topic in submissions at NIPS 2017



Primary topic in submissions at NIPS 2017



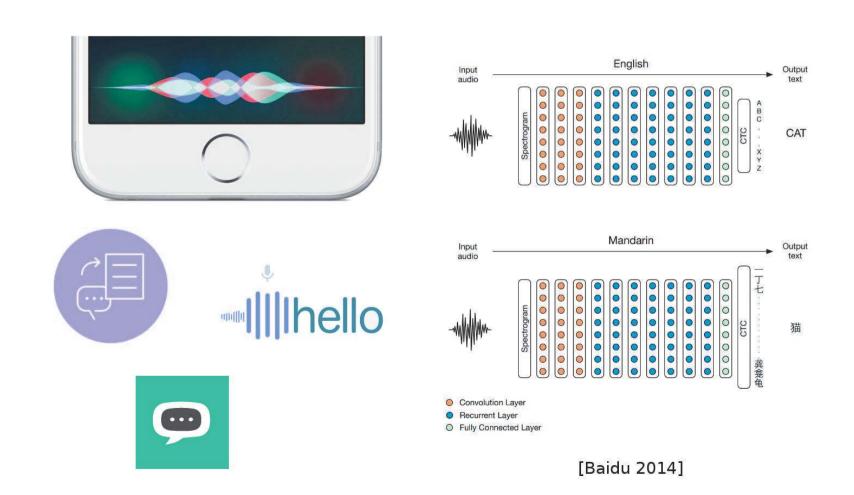
Primary topic in submissions at NIPS 2017



#### Other remarkable changes

- Paper publishing is more intense: papers are released on arXiv right after submission deadline
- Results of papers can be already outperformed by the time of the conference
- Code and/or trained networks are released with paper most of the times
- High number of published datasets
- Contributions arrive also from non computer vision / machine learning classic domains: genomics, mechanics.

#### Speech-to-Text

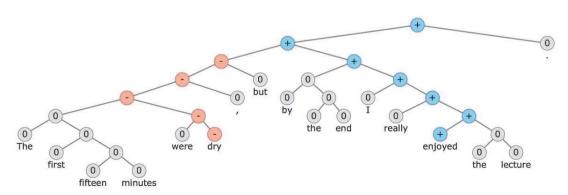


**Computer Vision** 

**Computer Vision** 

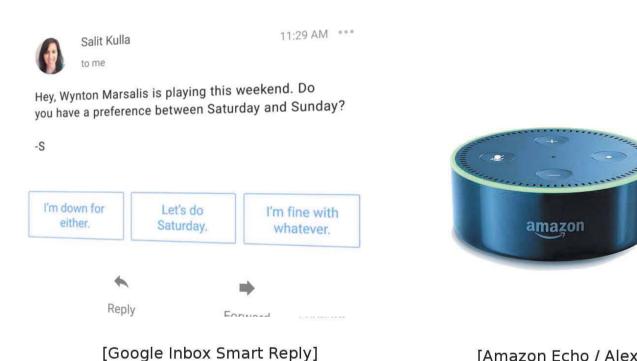
#### **NLP**





[Socher 2015] 18 / 112

#### **NLP**



[Amazon Echo / Alexa]

Vision + NLP

#### Generative models



Sampled celebrities [Nvidia 2017]

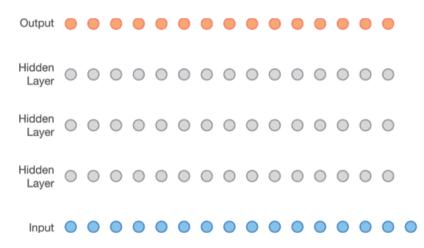
#### Generative models



StackGAN v2 [Zhang 2017]

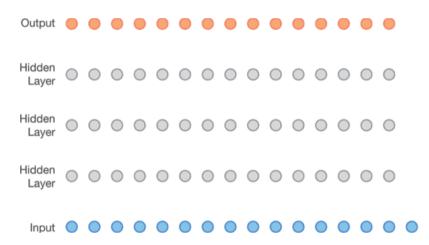
Image translation

#### Generative models



Sound generation with WaveNet [DeepMind 2017]

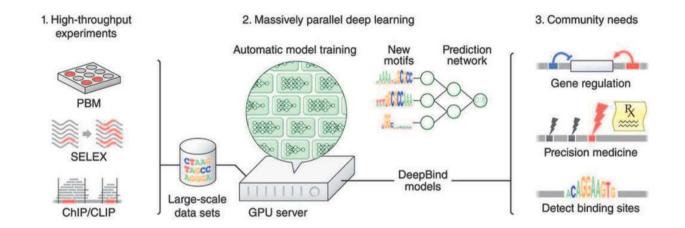
#### Generative models



Sound generation with WaveNet [DeepMind 2017]

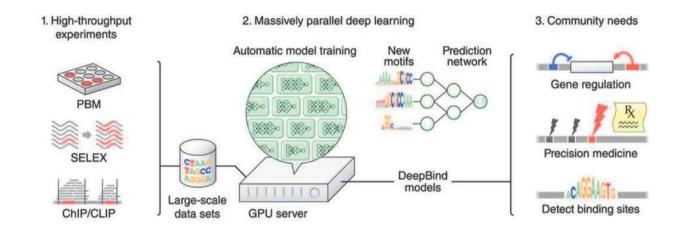
Guess which one is generated?

### DL in other sciences



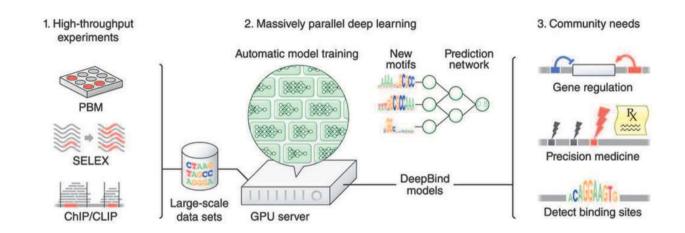
[Deep Genomics 2017]

### DL in other sciences



[Deep Genomics 2017]

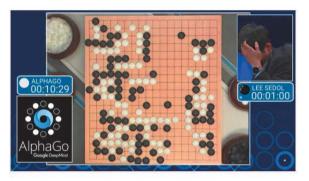
### DL in other sciences

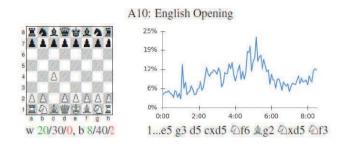


[Deep Genomics 2017]

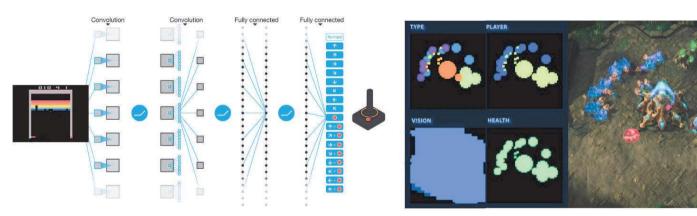


## DL for Al in games





[Deepmind AlphaGo / Zero 2017]



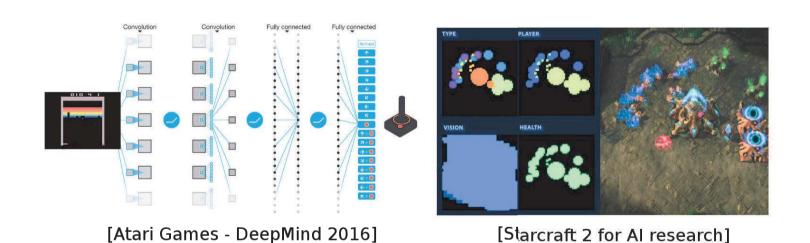
[Atari Games - DeepMind 2016]

[Starcraft 2 for AI research]

### DL for Al in games



[Deepmind AlphaGo / Zero 2017]



AlphaGo/Zero: Monte Carlo Tree Search, Deep Reinforcement Learning, self-play

## What is Deep Learning?

- Neural Networks with more layers/modules
- Non-linear, hierarchical, abstract representations of data
- Flexible models with any input/output size
- Differentiable functional programming

### What is Deep Learning?

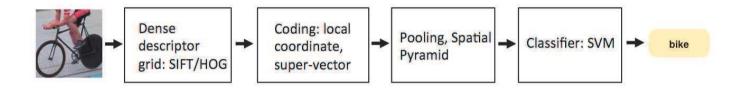
In other words: a graph of tensor operators taking advantage of:

- the chain rule (back-propagation),
- stochastic gradient descent,
- convolutions,
- parallel operations on GPU

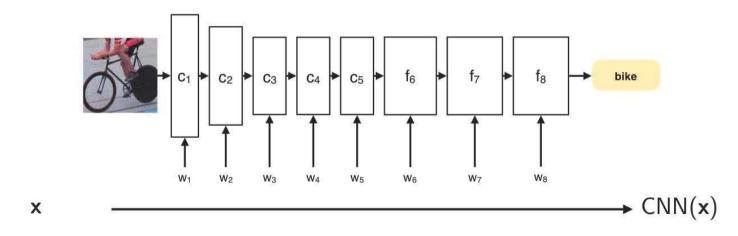
We kind of had most of it in the networks from long ago

## Why going deep?

- Traditional recognition: "shallow" architecture
  - Each block is designed and implemented individually



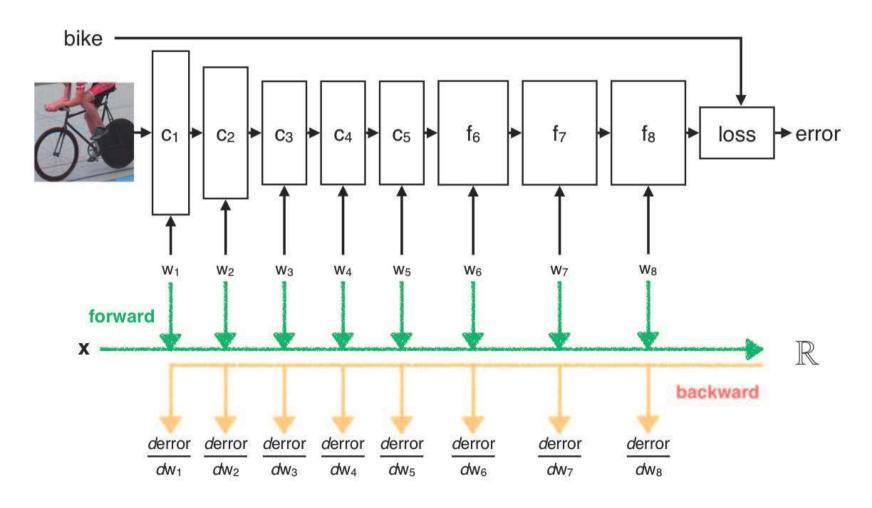
• "Deep" architecture (Convolutional Neural Network)



## Why going deep?

Graph of tensors where blocks are trained and optimized jointly

• 1 - 140M trainable parameters



## Why Deep Learning works now?

- Five decades of research in machine learning
- Computing and storage power
- Lots of (labelled) data from the internet
- Tools and culture of collaborative and reproducible science
- Resources and efforts from large companies

### Why Deep Learning works now?

Five decades of research in ML provided:

- a taxonomy of ML concepts (classification, generative models, clustering, kernels, linear embeddings, etc.),
- a sound statistical formalization (Bayesian estimation, PAC),
- a clear picture of fundamental issues (bias/variance dilemma, VC dimension, generalization bounds, etc.),
- a good understanding of optimization issues,
- efficient large-scale algorithms.

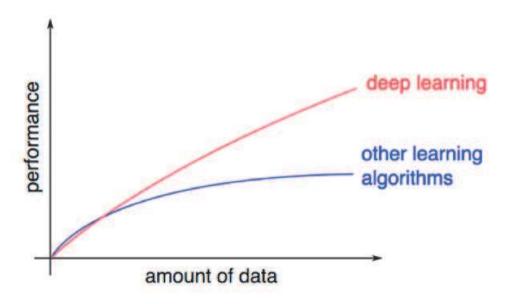
From a practical perspective, deep learning:

- lessens the need for a deep mathematical grasp,
- makes the design of large learning architectures a system/software development task,
- allows to leverage modern hardware (clusters of GPUs),
- does not plateau when using more data,
- makes large trained networks a commodity.

#### Evolution in computer vision datasets

| Data-set    | Year | Nb. images           | Resolution              | Nb. classes |
|-------------|------|----------------------|-------------------------|-------------|
| MNIST       | 1998 | $6.0 \times 10^{4}$  | 28 × 28                 | 10          |
| NORB        | 2004 | $4.8 \times 10^{4}$  | 96 × 96                 | 5           |
| Caltech 101 | 2003 | $9.1 \times 10^{3}$  | $\simeq 300 \times 200$ | 101         |
| Caltech 256 | 2007 | $3.0 \times 10^{4}$  | ~ 640 × 480             | 256         |
| LFW         | 2007 | $1.3 \times 10^4$    | 250 × 250               | -           |
| CIFAR10     | 2009 | $6.0 \times 10^{4}$  | $32 \times 32$          | 10          |
| PASCAL VOC  | 2012 | $2.1 \times 10^{4}$  | ≥ 500 × 400             | 20          |
| MS-COCO     | 2015 | $2.0 \times 10^{5}$  | ~ 640 × 480             | 91          |
| ImageNet    | 2016 | $14.2 \times 10^{6}$ | ≥ 500 × 400             | 21,841      |
| Cityscape   | 2016 | 25 × 103             | $2,000 \times 1000$     | 30          |

When more data is available



- Many deep learning frameworks freely available as open source
- Frequent changes and updates (every few weeks)
- Most frameworks supported by a large company



#### Deep Learning - the hype?

- Many deep learning frameworks freely available as open source
- Frequent changes and updates (every few weeks)
- Most frameworks supported by a GAFA company



#### PyTorch

#### O PyTorch

"PyTorch is a python package that provides two high-level features:

- Tensor computation (like numpy) with strong GPU acceleration
- Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed."

#### **PyTorch**

#### MNIST dataset

```
1/836/03/00/12730465
26471899307102035465
86375809103122336475
06279859211445641253
93905965741340480436
87609757211689415229
03967203543458954742
13489192879182413110
23949216847744925724
42197287692238665110
409/1243273869056076
26458315192744481589
56799370906623900548
094128012610:30118203
9405061778(920512273
54971839603/12635768
29585741131755525870
9775090089248/6/6518
34055834239211521328
73724697742811384065
```

 $28 \times 28$  grayscale images, 60k train samples, 10k test samples

```
class Net(nn.Module):
  def init (self):
    super(Net, self). init ()
    self.conv1 = nn.Conv2d(1, 32, kernel size=5)
    self.conv2 = nn.Conv2d(32, 64, kernel size=5)
    self.fc1 = nn.Linear(256, 200)
    self.fc2 = nn.Linear(200, 10)
  def forward(self, x):
    x = F.relu(F.max pool2d(self.conv1(x), kernel six
    x = F.relu(F.max pool2d(self.conv2(x), kernel size
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x
model = Net()
mu, std = train input.data.mean(), train_input.data.
train input.data.sub (mu).div (std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch size = nn.CrossEntropyLoss(), 100
model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_
for e in range(10):
  for b in range(0, nb train samples, bs):
    output = model(train input.narrow(0, b, bs))
    loss = criterion(output , train target.narrow(0,
    model.zero grad()
    loss.backward()
    optimizer.step()
```

a few seconds on a low-end GPU, 1% test error

```
class Net(nn.Module):
   def init (self):
     super(Net, self). init ()
     self.conv1 = nn.Conv2d(1, 32, kernel size=5)
     self.conv2 = nn.Conv2d(32, 64, kernel size=5)
     self.fc1 = nn.Linear(256, 200)
     self.fc2 = nn.Linear(200. 10)
  def forward(self, x):
    x = F.relu(F.max pool2d(self.conv1(x), kernel size
     x = F.relu(F.max pool2d(self.conv2(x), kernel size
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
     x = self.fc2(x)
     return x
model = Net()
mu, std = train input.data.mean(), train_input.data.stc
train input.data.sub (mu).div (std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch size = nn.CrossEntropyLoss(), 100
model.cuda()
criterion.cuda()
train input, train target = train input.cuda(), train 1
for e in range(10):
  for b in range(0, nb train samples, bs):
    output = model(train input.narrow(0, b, bs))
    loss = criterion(output , train target.narrow(0, b)
    model.zero grad()
    loss.backward()
    optimizer.step()
```

```
class Net(nn.Module):
  def init (self):
    super(Net. self). init ()
    self.conv1 = nn.Conv2d(1, 32, kernel size=5)
    self.conv2 = nn.Conv2d(32, 64, kernel size=5)
    self.fc1 = nn.Linear(256, 200)
    self.fc2 = nn.Linear(200. 10)
  def forward(self, x):
    x = F.relu(F.max pool2d(self.conv1(x), kernel size=
    x = F.relu(F.max pool2d(self.conv2(x), kernel size=
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x
model = Net()
mu, std = train input.data.mean(), train_input.data.stc
train input.data.sub (mu).div (std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch size = nn.CrossEntropyLoss(), 100
model.cuda()
criterion.cuda()
train input, train target = train input.cuda(), train 1
for e in range(10):
  for b in range(0, nb train samples, bs):
    output = model(train input.narrow(0, b, bs))
    loss = criterion(output , train target.narrow(0, b)
    model.zero grad()
    loss.backward()
    optimizer.step()
```

```
class Net(nn.Module):
  def init (self):
    super(Net. self). init ()
    self.conv1 = nn.Conv2d(1, 32, kernel size=5)
    self.conv2 = nn.Conv2d(32, 64, kernel size=5)
    self.fc1 = nn.Linear(256, 200)
    self.fc2 = nn.Linear(200. 10)
  def forward(self, x):
    x = F.relu(F.max pool2d(self.conv1(x), kernel size=
    x = F.relu(F.max pool2d(self.conv2(x), kernel size=
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x
model = Net()
mu, std = train input.data.mean(), train_input.data.stc
train input.data.sub (mu).div (std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch size = nn.CrossEntropyLoss(), 100
model.cuda()
criterion.cuda()
train input, train target = train input.cuda(), train 1
for e in range(10):
  for b in range(0, nb train samples, bs):
    output = model(train input.narrow(0, b, bs))
    loss = criterion(output , train target.narrow(0, b)
    model.zero grad()
    loss.backward()
    optimizer.step()
```

```
class Net(nn.Module):
  def init (self):
    super(Net. self). init ()
    self.conv1 = nn.Conv2d(1, 32, kernel size=5)
    self.conv2 = nn.Conv2d(32, 64, kernel size=5)
    self.fc1 = nn.Linear(256, 200)
    self.fc2 = nn.Linear(200. 10)
  def forward(self, x):
    x = F.relu(F.max pool2d(self.conv1(x), kernel size=
    x = F.relu(F.max pool2d(self.conv2(x), kernel size=
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x
model = Net()
mu, std = train input.data.mean(), train input.data.stc
train input.data.sub (mu).div (std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch size = nn.CrossEntropyLoss(), 100
model.cuda()
criterion.cuda()
train input, train target = train input.cuda(), train 1
for e in range(10):
  for b in range(0, nb train samples, bs):
    output = model(train input.narrow(0, b, bs))
    loss = criterion(output , train target.narrow(0, b)
    model.zero grad()
    loss.backward()
    optimizer.step()
```

```
class Net(nn.Module):
  def init (self):
    super(Net. self). init ()
    self.conv1 = nn.Conv2d(1.32. kernel size=5)
    self.conv2 = nn.Conv2d(32, 64, kernel size=5)
    self.fc1 = nn.Linear(256, 200)
    self.fc2 = nn.Linear(200. 10)
  def forward(self, x):
    x = F.relu(F.max pool2d(self.conv1(x), kernel size=
    x = F.relu(F.max pool2d(self.conv2(x), kernel size=
    x = x.view(-1, 256)
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x
model = Net()
mu, std = train input.data.mean(), train_input.data.stc
train input.data.sub (mu).div (std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch size = nn.CrossEntropyLoss(), 100
model.cuda()
criterion.cuda()
train input, train target = train input.cuda(), train 1
for e in range(10):
  for b in range(0, nb train samples, bs):
     output = model(train input.narrow(0, b, bs))
     loss = criterion(output , train target.narrow(0, t
     model.zero grad()
     loss.backward()
     optimizer.step()
```

# Computer Vision

The old-school way

#### The problem with Computer Vision

The (human) brain is so good at interpreting visual information that the gap between raw data and its semantic interpretation is difficult to assess intuitively:



This is a mushroom.



This is a mushroom.

```
In [1]: from matplotlib.pyplot import imread
         imread("mushroom-small.png")
Dut[1]: array([[[0.03921569, 0.03529412, 0.02352941, 1.
                 [0.2509804 , 0.1882353 , 0.20392157, 1.
                 [0.4117647 , 0.34117648, 0.37254903, 1.
                 [0.20392157, 0.23529412, 0.17254902, 1.
                 [0.16470589, 0.18039216, 0.12156863, 1.
                 [0.18039216, 0.18039216, 0.14117648, 1.
                [[0.1254902 , 0.11372549, 0.09411765, 1.
                 [0.2901961 , 0.2509804 , 0.24705882, 1.
                 [0.21176471, 0.2
                                        , 0.20392157, 1.
                 [0.1764706 , 0.24705882, 0.12156863, 1.
                 [0.10980392, 0.15686275, 0.07843138, 1.
                 [0.16470589, 0.20784314, 0.11764706, 1.
                [[0.14117648, 0.12941177, 0.10980392, 1.
                 [0.21176471, 0.1882353 , 0.16862746, 1.
                 [0.14117648, 0.13725491, 0.12941177, 1.
                 [0.10980392, 0.15686275, 0.08627451, 1.
                 [0.0627451 , 0.08235294, 0.05098039, 1.
                 [0.14117648, 0.2
                                       , 0.09803922, 1.
                ....
```

This is a mushroom.

This is known as the semantic gap. Extracting semantic information requires models of high complexity.