
Deep Learning

A journey from feature extraction and
engineering to end-to-end pipelines

Part 1: Introduction, Computer Vision

Andrei Bursuc

With slides from A. Karpathy, F. Fleuret, J. Johnson, S. Yeung, G. Louppe, Y. Avrithis ...

1 / 112

Deep Learning - the hype?

2 / 112

Deep Learning - the hype?

Evolution of ImageNet large scale visual recognition challenge

1.2 M training images with 1K object categories

3 / 112

Deep Learning - the hype?

Evolution of ImageNet large scale visual recognition challenge

1.2 M training images with 1K object categories

4 / 112

Deep Learning - the hype?

Conference attendance growth

5 / 112

Deep Learning - the hype?

Conference attendance growth

6 / 112

Deep Learning - the hype?

CVPR 2017 sponsors

7 / 112

Deep Learning - the hype?

Industry participation

8 / 112

Deep Learning - the hype?

1/2 parallel session at NIPS 2017

9 / 112

Deep Learning - the hype?

Poster session at NIPS 2017

10 / 112

Deep Learning - the hype?

Primary topic in submissions at NIPS 2017

11 / 112

Deep Learning - the hype?

Primary topic in submissions at NIPS 2017

12 / 112

Deep Learning - the hype?

Primary topic in submissions at NIPS 2017

13 / 112

Deep Learning - the hype?

Other remarkable changes

Paper publishing is more intense: papers are released on arXiv

right after submission deadline

Results of papers can be already outperformed by the time of

the conference

Code and/or trained networks are released with paper most of

the times

High number of published datasets

Contributions arrive also from non computer vision / machine

learning classic domains: genomics, mechanics.

14 / 112

Domain applications of Deep
Learning?

Speech-to-Text

15 / 112

Domain applications of Deep
Learning?

Computer Vision

16 / 112

Domain applications of Deep
Learning?

Computer Vision

17 / 112

Domain applications of Deep
Learning?

NLP

18 / 112

Domain applications of Deep
Learning?

NLP

19 / 112

Domain applications of Deep
Learning?

Vision + NLP

20 / 112

Domain applications of Deep
Learning?

Generative models

Sampled celebrities [Nvidia 2017]

21 / 112

Domain applications of Deep
Learning?

Generative models

StackGAN v2 [Zhang 2017]

22 / 112

Domain applications of Deep
Learning?

Image translation

23 / 112

Domain applications of Deep
Learning?

Generative models

Sound generation with WaveNet [DeepMind 2017]

24 / 112

Domain applications of Deep
Learning?

Generative models

Sound generation with WaveNet [DeepMind 2017]

Guess which one is generated?

DL in other sciences

26 / 112

DL in other sciences

27 / 112

DL in other sciences

28 / 112

DL for AI in games

29 / 112

DL for AI in games

AlphaGo/Zero: Monte Carlo Tree Search, Deep Reinforcement Learning, self-play

30 / 112

What is Deep Learning?

Neural Networks with more layers/modules

Non-linear, hierarchical, abstract representations of

data

Flexible models with any input/output size

Di!erentiable functional programming

31 / 112

What is Deep Learning?

In other words: a graph of tensor operators taking advantage of:

the chain rule (back-propagation),

stochastic gradient descent,

convolutions,

parallel operations on GPU

We kind of had most of it in the networks from long ago

32 / 112

Why going deep?

Traditional recognition: "shallow" architecture
Each block is designed and implemented individually

"Deep" architecture (Convolutional Neural Network)

33 / 112

Why going deep?

Graph of tensors where blocks are trained and optimized jointly

1 - 140M trainable parameters

34 / 112

Why Deep Learning works now?

Five decades of research in machine learning

Computing and storage power

Lots of (labelled) data from the internet

Tools and culture of collaborative and reproducible

science

Resources and e!orts from large companies

Why Deep Learning works now?

Five decades of research in ML provided:

a taxonomy of ML concepts (classi#cation, generative models,

clustering, kernels, linear embeddings, etc.),

a sound statistical formalization (Bayesian estimation, PAC),

a clear picture of fundamental issues (bias/variance dilemma, VC

dimension, generalization bounds, etc.),

a good understanding of optimization issues,

e$cient large-scale algorithms.

36 / 112

Why Deep Learning works now?

From a practical perspective, deep learning:

lessens the need for a deep mathematical grasp,

makes the design of large learning architectures a

system/software development task,

allows to leverage modern hardware (clusters of GPUs),

does not plateau when using more data,

makes large trained networks a commodity.

37 / 112

Why Deep Learning works now?

Evolution in computer vision datasets

38 / 112

Why Deep Learning works now?

When more data is available

39 / 112

Why Deep Learning works now?

Many deep learning frameworks freely available as open source

Frequent changes and updates (every few weeks)

Most frameworks supported by a large company

40 / 112

Deep Learning - the hype?

Many deep learning frameworks freely available as open source

Frequent changes and updates (every few weeks)

Most frameworks supported by a GAFA company

41 / 112

PyTorch

"PyTorch is a python package that provides two high-level features:

Tensor computation (like numpy) with strong GPU acceleration

Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy

and Cython to extend PyTorch when needed."

42 / 112

PyTorch

MNIST dataset

 grayscale images, train samples, test samples

43 / 112

a few seconds on a

low-end GPU, test

error

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
 self.fc1 = nn.Linear(256, 200)
 self.fc2 = nn.Linear(200, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), kernel_siz
 x = F.relu(F.max_pool2d(self.conv2(x), kernel_siz
 x = x.view(-1, 256)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

model = Net()

mu, std = train_input.data.mean(), train_input.data.s
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train

for e in range(10):
for b in range(0, nb_train_samples , bs):

 output = model(train_input.narrow(0, b, bs))
 loss = criterion(output , train_target.narrow(0,
 model.zero_grad()
 loss.backward()
 optimizer.step() 44 / 112

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
 self.fc1 = nn.Linear(256, 200)
 self.fc2 = nn.Linear(200, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), kernel_size
 x = F.relu(F.max_pool2d(self.conv2(x), kernel_size
 x = x.view(-1, 256)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

model = Net()

mu, std = train_input.data.mean(), train_input.data.std
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_t

for e in range(10):
for b in range(0, nb_train_samples , bs):

 output = model(train_input.narrow(0, b, bs))
 loss = criterion(output , train_target.narrow(0, b,
 model.zero_grad()
 loss.backward()
 optimizer.step() 45 / 112

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
 self.fc1 = nn.Linear(256, 200)
 self.fc2 = nn.Linear(200, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=
 x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=
 x = x.view(-1, 256)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

model = Net()

mu, std = train_input.data.mean(), train_input.data.std
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_t

for e in range(10):
for b in range(0, nb_train_samples , bs):

 output = model(train_input.narrow(0, b, bs))
 loss = criterion(output , train_target.narrow(0, b,
 model.zero_grad()
 loss.backward()
 optimizer.step() 46 / 112

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
 self.fc1 = nn.Linear(256, 200)
 self.fc2 = nn.Linear(200, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=
 x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=
 x = x.view(-1, 256)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

model = Net()

mu, std = train_input.data.mean(), train_input.data.std
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_t

for e in range(10):
for b in range(0, nb_train_samples , bs):

 output = model(train_input.narrow(0, b, bs))
 loss = criterion(output , train_target.narrow(0, b,
 model.zero_grad()
 loss.backward()
 optimizer.step() 47 / 112

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
 self.fc1 = nn.Linear(256, 200)
 self.fc2 = nn.Linear(200, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=
 x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=
 x = x.view(-1, 256)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

model = Net()

mu, std = train_input.data.mean(), train_input.data.std
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_t

for e in range(10):
for b in range(0, nb_train_samples , bs):

 output = model(train_input.narrow(0, b, bs))
 loss = criterion(output , train_target.narrow(0, b,
 model.zero_grad()
 loss.backward()
 optimizer.step() 48 / 112

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
 self.fc1 = nn.Linear(256, 200)
 self.fc2 = nn.Linear(200, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=
 x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=
 x = x.view(-1, 256)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

model = Net()

mu, std = train_input.data.mean(), train_input.data.std
train_input.data.sub_(mu).div_(std)
optimizer = optim.SGD(model.parameters, lr=1e-1)
criterion, batch_size = nn.CrossEntropyLoss(), 100

model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_t

for e in range(10):
for b in range(0, nb_train_samples , bs):

 output = model(train_input.narrow(0, b, bs))
 loss = criterion(output , train_target.narrow(0, b
 model.zero_grad()
 loss.backward()
 optimizer.step() 49 / 112

Computer Vision

The old-school way

50 / 112

The problem with Computer Vision

The (human) brain is so good at interpreting visual information that

the gap between raw data and its semantic interpretation is di$cult

to assess intuitively:

This is a mushroom.

51 / 112

This is a mushroom.

52 / 112

This is a mushroom.

53 / 112

This is known as the semantic gap. Extracting semantic information

requires models of high complexity.

54 / 112

