

Image retrieval challenges

Image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- distinctiveness
- distractors

Image classification challenges

Image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- number of instances
- texture/color
- pose
- deformability
- intra-class variability

Visual descriptors

Visual descriptors

Pre-deep pipeline

Visual descriptors

Concatenation of pixels into 1D descriptors

Concatenation of pixels into 1D descriptors

face recognition

digit recognition

Tiny images

• resize images to 32×32 pixels (3072d vectors)

- high speed, limited accuracy
- used for scene recognition

Color histogram

• Histogram is a summary of the data describing image statistics (here color)

Color histogram

• Histogram is a summary of the data describing image statistics (here color)

Color histogram

Color histogram

- sampling scheme adapted to power spectrum statistics
- filtering and global pooling in frequency domain

The gist descriptor

- apply filter bank to entire image in frequency domain
- partition image in 4×4 cells
- average pooling of filter responses per cell

gist pipeline

• 3-channel RGB input \rightarrow 1-channel gray-scale

gist pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at $4 \text{ scales} \times 8 \text{ orientations}$

gist pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 4 scales \times 8 orientations
- average pooling on 4×4 cells \rightarrow descriptor of length 512

scale-invariant feature transform (SIFT)

- detect a sparse set of "stable" features (rectangular patches)
 equivariant to translation, scale and rotation
- for each patch:
 - normalize with respect to scale and orientation
 - construct a histogram of gradient orientations

scale-invariant feature transform (SIFT)

- votes in 8—bin orientation histograms weighted by magnitude and by weighted by a Gaussian window,
- histograms pooled over 4×4 cells,
- 128-dimensional descriptor, normalized, clipped at 0.2, normalized

Histogram of Oriented Gradients (HoG)

- applied to person detection by sliding window and SVM
- classifier learns positive and negative weights on positions and orientations
- switch focus back to dense features for classification

HOG descriptor

- applied densely to adjacent cells of 8×8 pixels
- no scale or orientation normalization; only single-scale
- normalized by overlapping blocks of 3×3 cells -- redundant

SIFT/HOG pipeline

• 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale

SIFT/HOG pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude and orientation

SIFT/HOG pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude and orientation
- encode into b = 8 orientation bins

SIFT/HOG pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude and orientation
- encode into b = 8(9) orientation bins
- average pooling on $c = 4 \times 4$ cells
- descriptor of length $c \times b = 128$

matching everything with everything

Exhaustive matching

Step 0: get an image pair

Exhaustive matching

Step 1: detect local features f and extract descriptors d

Step 2: match each descriptor to its closets one

Step 3: reject ambiguous matches using the 2nd-nn test

Step 4: geometric verification

- the final step is to test whether matches are consistent with an overall image transformation
- inconsistent matches are rejected

From image matching to image search

- This matching strategry can be used to search a few images exhaustively
- However this is far too slow to search a large database
- Example:
- L images in the database
- N features per image (incl. query)
- D dimensional feature descriptor
- Exhaustive search cost: O(N² L D)
- Memory footprint: O(NLD)

```
e.g. 10<sup>6</sup> - 10<sup>10</sup> (FaceBook)
```

e.g. 10³ (~ SIFT detector)

e.g. 10² (~ SIFT descriptor)

 $10^{11} - 10^{15} \, \text{ops} = 100 \, \text{days} - 300 \, \text{years}$

1TB - 1PB

- Dictionary is typically learned using k-means
- Value of k depends on the task: from 8 to 16M

- Visual word examples: each row is an equivalence class of patches mapped to the same cluster by k-means
- Visual words = iconic image fragments

Quantization

• Two steps:

- Extraction: extract local features and compute corresponding descriptors
- Quantization: map the descriptors to k-means cluster centroids to obtain the corresponding visual words

Histogram of visual words

- A simple but efficient global image descriptor
- \bullet Vector of the number of occurrences of the k visual words in the image
- If there are k visual words, then $h \in \mathbb{R}^k$
- ullet The vector h is a global image descriptor

Histogram of visual words

- This is also called a bag of (visual) words BOW because it does not remember the relative positions of the features, just the number of occurrences
- h discards spatial information
- Pros: more invariant to viewpoint changes and other nuisance factors
- Cons: less discriminative

Histogram of visual words

Intuition

Bag-of-Words pipeline

• 3-channel patch RGB input \rightarrow 1-channel gray-scale

Bag-of-Words pipeline

- 3-channel patch RGB input \rightarrow 1-channel gray-scale
- set of ~1000 features \times 128-dim SIFT descriptors

Bag-of-Words pipeline

- 3-channel patch RGB input \rightarrow 1-channel gray-scale
- set of ~1000 features \times 128-dim SIFT descriptors
- element-wise encoding of $k = 10^4$ visual words

Bag-of-Words pipeline

- 3-channel patch RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features \times 128-dim SIFT descriptors
- element-wise encoding of $k = 10^4$ visual words
- global sum pooling, ℓ^2 normalization

Linear predictor

Data representations

A linear predictor can be used to classify vector data. The question is how such a predictor can be applied to images, text, videos, or sounds.

This is solved by an encoder, which maps the data to a vectorial representation

$$F(x) = \langle w, \Phi(x) \rangle$$

