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Empirical risk minimization

Consider a function f : X → Y produced by some learning algorithm.

The predictions of this function can be evaluated through a loss

ℓ : Y × Y → R

such that ℓ(y, f(x)) ≥ 0 measures how close is the prediction f(x) from 

y.

For example,

for classi!cation:

ℓ(y, f(x)) = 1y≠ f ( x )

for regression:

ℓ(y, f(x)) = (y − f(x))2
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Let us denote as F the hypothesis space, i.e. the set of all functions f

than can be produced by the chosen learning algorithm.

We are looking for a function f F with a small expected risk (or

generalization error)

R(f) = E ( x , y ) P (X ,Y ) [ℓ(y, f(x))].

This means that for a given data generating distribution and for a

given hypothesis space, the optimal model is

f = arg min
f F

R(f).
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Unfortunately, since P(X, Y) is unknown, the expected risk cannot be

evaluated and the optimal model cannot be determined.

However, given training data d = {(xi, yi) | i = 1, …, N}, we can

compute an estimate, the empirical risk (or training error)

R̂(f, d) =
1

N
∑

( xi , yi ) d

ℓ(yi, f(xi)).

This estimate can be used for !nding a good enough approximation

of f , giving rise to the empirical risk minimization principle:

f
d

= arg min
f F

R̂(f, d)
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Most machine learning algorithms, including neural networks,

implement empirical risk minimization.

Under regularity assumptions, empirical risk minimizers converge:

lim
N→ ∞

f
d

= f

This is why tuning the parameters of the model to make it work on

the training data is a reasonable thing to do.
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Neural Networks
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The neuron

Inspired by neuroscience and human brain, but resemblances do

not go too far

In fact there several types of neurons with di"erent functions

and the metaphor does not hold everywhere

Slide credit: A. Karpathy 7 / 149
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Neural Networks

Inspired by neuroscience and human brain, but resemblances do not

go too far
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Discovery of oriented cells in the
visual cortex

Find out more from video

Hubel& Wiesel, 1959
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Discovery of oriented cells in the
visual cortex

Hubel& Wiesel, 1959
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Mark I Perceptron

!rst implementation of the perceptron algorithm

the machine was connected to a camera that used 20x20

cadmium sul!de photocells to produce a 400-pixel image

it recognized letter of the alphabet

Rosenblatt, 1957
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Threshold Logic Unit

The Threshold Logic Unit (McCulloch and Pitts, 1943) was the !rst

mathematical model for a neuron. Assuming Boolean inputs and

outputs, it is de!ned as:

f(x) = 1 { ∑iwixi+b≥ 0 }

This unit can implement:

or(a, b) = 1 {a+b− 0.5 ≥ 0 }

and(a, b) = 1 {a+b− 1.5 ≥ 0 }

not(a) = 1 { −a+ 0.5 ≥ 0 }

Therefore, any Boolean function can be built which such units.

13 / 149



Perceptron

The perceptron (Rosenblatt, 1957) is very similar, except that the

inputs are real:

f(x) =
1 if ∑iwixi + b ≥ 0

0 otherwise

This model was originally motivated by biology, with wi being

synaptic weights and xi and f !ring rates.

This is a cartoonesque biological model.

{
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Let us de!ne the activation function:

σ(x) =
1 if x ≥ 0

0 otherwise

Therefore, the perceptron classi!cation rule can be rewritten as

f(x) = σ(wTx + b).

{
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Note that the sigmoid function

σ(x) =
1

1 + exp( − x)

looks like a soft heavyside:

Therefore, the overall model f(x; w, b) = σ(wTx + b) is very similar to

the perceptron.
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In terms of tensor operations, the computational graph of f can be

represented as:

where

white nodes correspond to inputs and outputs;

red nodes correspond to model parameters;

blue nodes correspond to intermediate operations, which

themselves produce intermediate output values (not

represented).

This unit is the core component all neural networks!
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Gradient descent

Let L(θ) denote a loss function de!ned over model parameters θ

(e.g., w and b).

To minimize L(θ), gradient descent uses local linear information to

iteratively move towards a (local) minimum.

For θ0 Rd, a !rst-order approximation around θ0 can be de!ned as

L̂(θ0 + ϵ) = L(θ0) + ϵT θL(θ0) +
1

2η
| | ϵ | | 2.
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A minimizer of the approximation L̂(θ0 + ϵ) is given for

ϵL̂(θ0 + ϵ) = 0

= θL(θ0) +
1

η
ϵ,

which results in the best improvement for the step ϵ = − η θL(θ0).

Therefore, model parameters can be updated iteratively using the

update rule:

θt+ 1 = θt − η θL(θt)

Notes:

θ0 are the initial parameters of the model;

η is the learning rate;

both are critical for the convergence of the update rule.
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Example 1: Convergence to a global minima
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Example 2: Convergence to a local minima
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Example 3: Divergence due to a too large learning rate
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Stochastic gradient descent

In the empirical risk minimization setup, L(θ) and its gradient

decompose as

L(θ) =
1

N
∑
xi , yi d

ℓ(yi, f(xi; θ))

L(θ) =
1

N
∑
xi , yi d

ℓ(yi, f(xi; θ)).

Therefore, in batch gradient descent the complexity of an update

grows linearly with the size N of the dataset.

More importantly, since the empirical risk is already an

approximation of the expected risk, it should not be necessary to

carry out the minimization with great accuracy.
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While it makes sense in principle to compute the gradient exactly, in

practice:

It takes a lot of time to compute
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It is an empirical estimation of an hidden quantity, and any

partial sum would similarly be an unbiased empirical estimate,

although more noisy.
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While it makes sense in principle to compute the gradient exactly, in

practice:

It takes a lot of time to compute

It is an empirical estimation of an hidden quantity, and any

partial sum would similarly be an unbiased empirical estimate,

although more noisy.

It is computed incrementally

L(θ) =
1

N
∑
xi , yi d

ℓ(yi, f(xi; θ)).
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Instead, stochastic gradient descent uses as update rule:

θt+ 1 = θt − η ℓ(yi ( t+ 1 ) , f(xi ( t+ 1 ) ; θt))

Iteration complexity is independent of N.

The stochastic process {θt | t = 1, . . . } depends on the examples 

i(t) picked randomly at each iteration.
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Batch gradient descent Stochastic gradient descent

Instead, stochastic gradient descent uses as update rule:

θt+ 1 = θt − η ℓ(yi ( t+ 1 ) , f(xi ( t+ 1 ) ; θt))

Iteration complexity is independent of N.

The stochastic process {θt | t = 1, . . . } depends on the examples 

i(t) picked randomly at each iteration.
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Why is stochastic gradient descent still a good idea?

Informally, averaging the update

θt+ 1 = θt − η ℓ(yi ( t+ 1 ) , f(xi ( t+ 1 ) ; θt))

over all choices i(t + 1) restores batch gradient descent.

Formally, if the gradient estimate is unbiased, e.g., if

Ei ( t+ 1 ) [ ℓ(yi ( t+ 1 ) , f(xi ( t+ 1 ) ; θt))] =
1

N
∑
xi , yi d

ℓ(yi, f(xi; θt))

= L(θt)

then the formal convergence of SGD can be proved, under

appropriate assumptions.
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The mini-batch stochastic gradient descent is the standard

procedure for deep learning. It consists of visiting the samples in

"mini-batches", each of a few tens of samples, and updating the

parameters each time.

θt+ 1 = θt − η

B

∑
b= 1

ℓ(yi ( t+ 1 ) , f(xi ( t+ 1 ) ; θt))

The order n(t, b) to visit the samples can either be sequential, or

uniform sampling, usually without replacement.
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The mini-batch stochastic gradient descent is the standard

procedure for deep learning. It consists of visiting the samples in

"mini-batches", each of a few tens of samples, and updating the

parameters each time.

θt+ 1 = θt − η

B

∑
b= 1

ℓ(yi ( t+ 1 ) , f(xi ( t+ 1 ) ; θt))

The order n(t, b) to visit the samples can either be sequential, or

uniform sampling, usually without replacement.

The stochastic behavior of this procedure helps evade local minima.
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Limitations of gradient descent

The gradient descent method makes a strong assumption about the

magnitude of the "local curvature" to !x the step size, and about its

isotropy so that the same step size makes sense in all directions.
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Some optimization methods leverage higher-order moments, in

particular second order to use a more accurate local model of the

functional to optimize.

However the resulting computational overhead reduces the number

of iterations for a !xed budget, and it is rarely at the advantage of

these methods.

Deep-learning generally relies on a smarter use of the gradient,

using statistics over its past values to make a "smarter step" with the

current one.
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Momentum and moment estimation

The "vanilla" mini-batch stochastic gradient descent (SGD) consists of

θt+ 1 = θt − ηgt

where

gt =

B

∑
b= 1

ℓn ( t , b ) (θt)

is the gradient summed over a mini-batch
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Momentum and moment estimation

The !rst improvement is the use of a "momentum" to add inertia in

the choice of the step direction

ut = γut− 1 + ηgt

θt+ 1 = θt − ut
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Momentum and moment estimation

The !rst improvement is the use of a "momentum" to add inertia in

the choice of the step direction

ut = γut− 1 + ηgt

θt+ 1 = θt − ut

With γ = 0, this is the same as vanilla SGD

With γ > 0, this update:

can go through local barriers

accelerate if the gradient does not change much

dampnes oscillations in narrow valleys

γ is typically set to 0.9

Rumelhart et al., 1986
50 / 149



51 / 149



52 / 149



Why Momentum Really Works

53 / 149



Why Momentum Really Works

54 / 149



Why Momentum Really Works

55 / 149



Why Momentum Really Works

56 / 149



Momentum and moment estimation

Another class of methods exploits the statistics over the previous

steps to compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and

its square to rescale each coordinate separately.
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Momentum and moment estimation

Another class of methods exploits the statistics over the previous

steps to compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and

its square to rescale each coordinate separately.

The update rule is, on each coordinate separately

Kingma and Ba, 2014
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Adam

mt = β1mt− 1 + (1 − β1)gt

^

mt =
mt

1 − β1

vt = β2vt− 1 + (1 − β2)g
2
t

^

vt =
vt

1 − β2

θt+ 1 = θt −
η

^

vt + ϵ

^

mt

This can be seen as a combination of momentum, with 
^

mt, and a per-

coordinate re-scaling with 
^

vt

√

Kingma and Ba, 2014
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Optimizers

SGD (with Nesterov momentum)

Simple to implement

Very sensitive to initial value of η

Need learning rate scheduling

Adam: adaptive learning rate scale for each param

Global η set to 0.001 often works well enough

Good default choice of optimizer (often)

But well-tuned SGD with LR scheduling can generalize

better than Adam...

Active area of research
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Optimizers

Many other derived optimizers readily available in most frameworks:

Nesterov's accelerated gradient,

Adagrad,

Adadelta,

RMSprop,

AdaMax,

Nadam ...
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Optimizers
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Layers

So far we considered the logistic unit h = σ wTx + b , where h R, 

x Rp, w Rp and b R.

These units can be composed in parallel to form a layer with q

outputs:

h = σ(WTx + b)

where h Rq, x Rp, W Rp×q, b Rq and where σ( ) is upgraded

to the element-wise sigmoid function.

( )
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Multi-layer perceptron

Similarly, layers can be composed in series, such that:

h0 = x

h1 = σ(W
T
1
h0 + b1)

. . .

hL = σ(W
T
L
hL− 1 + bL)

f(x; θ) = hL

where θ denotes the model parameters {Wk, bk, . . . | k = 1, . . . , L}.

This model is the multi-layer perceptron, also known as the fully

connected feedforward network.

Optionally, the last activation σ can be skipped to produce

unbounded output values ŷ R.

67 / 149



68 / 149



To minimize L(θ) with stochastic gradient descent, we need the

gradient θℓ(θt).

Therefore, we require the evaluation of the (total) derivatives

dℓ

dWk

,
dℓ

dbk

of the loss ℓ with respect to all model parametersWk, bk, for

k = 1, . . . , L.

These derivatives can be evaluated automatically from the

computational graph of ℓ using automatic di"erentiation.
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Automatic di"erentiation

Consider a 1-dimensional output composition f g, such that

y = f(u)

u = g(x) = (g1(x), . . . , gm(x)).

The chain rule of total derivatives states that

dy

dx
=

m

∑
k= 1

∂y

∂uk

duk

dx

recursive case

Since a neural network is a composition of di"erentiable

functions, the total derivatives of the loss can be evaluated by

applying the chain rule recursively over its computational graph.

The implementation of this procedure is called (reverse)

automatic di"erentiation (AD).

AD is not numerical di"erentiation, nor symbolic di"erentiation.70 / 149



As a guiding example, let us consider a simpli!ed 2-layer MLP and

the following loss function:

f(x;W1,W2) = σ W
T
2
σ W

T
1
x

ℓ(y, ŷ;W1,W2) = cross_entropy(y, ŷ) + λ | |W1 | | 2 + | |W2 | | 2

for x Rp, y R, W1 Rp×q and W2 Rq.

( ( ))

( )
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T
1
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The total derivative 
dℓ

dW
1

 can be computed backward, by walking

through all paths from ℓ toW1 in the computational graph and

accumulating the terms:

dℓ

dW1

=
∂ℓ

∂u8

du8

dW1

+
∂ℓ

∂u4

du4

dW1

du8

dW1

= . . .
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This algorithm is known as reverse-mode automatic

di"erentiation, also called backpropagation.

An equivalent procedure can be de!ned to evaluate the

derivatives in forward mode, from inputs to outputs.

Automatic di"erentiation generalizes to N inputs and M outputs.
if N M, reverse-mode automatic di"erentiation is computationally more

e%cient.

otherwise, if M N, forward automatic di"erentiation is better.

Since di"erentiation is a linear operator, AD can be implemented

e%ciently in terms of matrix operations.
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Backpropagation

Inside a single unit/neuron/function
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Backpropagation

Inside a single unit/neuron/function
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Vanishing gradients

Training deep MLPs with many layers has for long (pre-2011) been

very di%cult due to the vanishing gradient problem.

Small gradients slow down, and eventually block, stochastic

gradient descent.

This results in a limited capacity of learning.

Backpropagated gradients normalized histograms (Glorot and

Bengio, 2010).

Gradients for layers far from the output vanish to zero.
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Consider a simpli!ed 3-layer MLP, with x, w1, w2, w3 R, such that

f(x; w1, w2, w3) = σ w3σ w2σ w1x .

Under the hood, this would be evaluated as

u1 = w1x

u2 = σ(u1)

u3 = w2u2

u4 = σ(u3)

u5 = w3u4

ŷ = σ(u5)

and its derivative 
dŷ

dw
1

 as

( ( ( )))
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The derivative of the sigmoid activation function σ is:

dσ

dx
(x) = σ(x)(1 − σ(x))

Notice that 0 ≤
dσ

dx
(x) ≤

1

4
 for all x.
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Assume that weights w1, w2, w3 are initialized randomly from a

Gaussian with zero-mean and small variance, such that with high

probability −1 ≤ wi ≤ 1.

Then,

dŷ

dw1

=
∂σ(u5)

∂u5

≤
1

4

w3

≤ 1

∂σ(u3)

∂u3

≤
1

4

w2

≤ 1

σ(u1)

∂u1

≤
1

4

x

This implies that the gradient
dŷ

dw
1

exponentially shrinks to zero as

the number of layers in the network increases.

Hence the vanishing gradient problem.

In general, bounded activation functions (sigmoid, tanh, etc) are

prone to the vanishing gradient problem.

Note the importance of a proper initialization scheme. 84 / 149



Recti!ed linear units

Instead of the sigmoid activation function, modern neural networks

are for most based on recti!ed linear units (ReLU) (Glorot et al,

2011):

ReLU(x) = max (0, x)
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Note that the derivative of the ReLU function is

d

dx
ReLU(x) =

0 if x ≤ 0

1 otherwise

For x = 0, the derivative is unde!ned. In practice, it is set to zero.

{
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Therefore,

dŷ

dw1

=
∂σ(u5)

∂u5

= 1

w3

∂σ(u3)

∂u3

= 1

w2

∂σ(u1)

∂u1

= 1

x

This solves the vanishing gradient problem, even for deep networks!

(provided proper initialization)

Note that:

The ReLU unit dies when its input is negative, which might block

gradient descent.

This is actually a useful property to induce sparsity.

This issue can also be solved using leaky ReLUs, de!ned as

LeakyReLU(x) = max (αx, x)

for a small α R +  (e.g., α = 0.1).
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Universal approximation

Theorem. (Cybenko 1989; Hornik et al, 1991) Let σ( ) be a bounded,

non-constant continuous function. Let Ip denote the p-dimensional

hypercube, and C(Ip) denote the space of continuous functions on Ip.

Given any f C(Ip) and ϵ > 0, there exists q > 0 and 

vi, wi, bi, i = 1, . . . , q such that

F(x) = ∑
i≤ q

viσ(w
T
i
x + bi)

satis!es supx Ip
| f(x) − F(x) | < ϵ.

It guarantees that even a single hidden-layer network can

represent any classi!cation problem in which the boundary is

locally linear (smooth);

It does not inform about good/bad architectures, nor how they

relate to the optimization procedure.
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Theorem (Barron, 1992) The mean integrated square error between

the estimated network F̂ and the target function f is bounded by

O

C
2
f

q
+

qp

N
logN

where N is the number of training points, q is the number of neurons,

p is the input dimension, and Cf measures the global smoothness of f.

Combines approximation and estimation errors.

Provided enough data, it guarantees that adding more neurons

will result in a better approximation.

( )
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Consider the 1-layer MLP

f(x) = ∑wiReLU(x + bi).

This model can approximate any smooth 1D function, provided

enough hidden units.
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This model can approximate any smooth 1D function, provided

enough hidden units.

90 / 149



Neural Network for classi!cation

The neuron

Inspired by neuroscience and human brain, but resemblances do

not go too far

In fact there several types of neurons with di"erent functions

and the metaphor does not hold everywhere

Slide credit: A. Karpathy 91 / 149
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Inspired by neuroscience and human brain, but resemblances do not
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Arti!cial Neuron

Slide credit: C. Ollion & O. Grisel 4 / 149



Arti!cial Neuron

z(x) = wTx + b

f(x) = g(wTx + b)

x, f(x)  input and output

z(x) pre-activation

w, b  weights and bias

g activation function

Slide credit: C. Ollion & O. GriselSlide credit: C. Ollion & O. Grisel 95 / 149



More neurons -> more capacity
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Layer of Neurons

Slide credit: C. Ollion & O. Grisel 97 / 149



Layer of Neurons

f(x) = g(z(x)) = g(Wx + b)

W, b  now matrix and vector

Slide credit: C. Ollion & O. GriselSlide credit: C. Ollion & O. Grisel 98 / 149



One Hidden Layer Network

zh(x) = Whx + bh

h(x) = g(zh(x)) = g(Whx + bh)

zo(x) = Woh(x) + bo

f(x) = softmax(zo) = softmax(Woh(x) + bo)

Slide credit: C. Ollion & O. Grisel 9 / 149
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One Hidden Layer Network

zh(x) = Whx + bh

h(x) = g(zh(x)) = g(Whx + bh)

zo(x) = Woh(x) + bo

f(x) = softmax(zo) = softmax(Woh(x) + bo)

Slide credit: C. Ollion & O. Grisel 02 / 149



One Hidden Layer Network

Alternate representation

Slide credit: C. Ollion & O. Grisel 103 / 149



One Hidden Layer Network

PyTorch implementation

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),   # weight matrix dim [D_in x H]
    torch.nn.Tanh(),
    torch.nn.Linear(H, D_out),   # weight matrix dim [H x D_out]
    torch.nn.Softmax(),
)
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Element-wise activation functions

blue: activation function

green: derivative

Slide credit: C. Ollion & O. Grisel 105 / 149



Element-wise activation functions

Many other activation functions available:
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Softmax function

softmax(x) =
1

∑
n
i= 1

exi

ex1

ex2

exn

∂softmax(x)i

∂xj
=

softmax(x)i (1 − softmax(x)i) i = j

−softmax(x)i softmax(x)j i ≠ j

[ ]
{
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Softmax function

softmax(x) =
1

∑
n
i= 1

exi

ex1

ex2

exn

∂softmax(x)i

∂xj
=

softmax(x)i (1 − softmax(x)i) i = j

−softmax(x)i softmax(x)j i ≠ j

vector of values in (0, 1) that add up to 1

p(Y = c | X = x) = softmax(z((x))c

the pre-activation vector z(x) is often called "the logits"

[ ]
{

Slide credit: C. Ollion & O. Grisel 108 / 149



Training the network

Find parameters θ = (Wh; bh;Wo; bo) that minimize the negative log

likelihood (or cross entropy)
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Training the network

Find parameters θ = (Wh; bh;Wo; bo) that minimize the negative log

likelihood (or cross entropy)

The loss function for a given sample s S:

l(f(xs; θ), ys) = nll(θ; xs, ys) = − logf(xs; θ)ys

The cost function is the negative likelihood of the model computed

on the full training set (for i.i.d. samples):

LS(θ) = −
1

| S |
∑
s S

logf(xs; θ)ys + λΩ(θ)
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Training the network

Find parameters θ = (Wh; bh;Wo; bo) that minimize the negative log

likelihood (or cross entropy)

The loss function for a given sample s S:

l(f(xs; θ), ys) = nll(θ; xs, ys) = − logf(xs; θ)ys

The cost function is the negative likelihood of the model computed

on the full training set (for i.i.d. samples):

LS(θ) = −
1

| S |
∑
s S

logf(xs; θ)ys + λΩ(θ)

λΩ(θ) = λ( | | Wh | | 2 + | | Wo | | 2) is an optional regularization term.
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Stochastic Gradient Descent

Initialize θ randomly
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For E epochs perform:

Randomly select a small batch of samples (B S)

Compute gradients: Δ = θLB(θ)

Update parameters: θ ← θ − ηΔ

η > 0 is called the learning rate
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Stochastic Gradient Descent

Initialize θ randomly

For E epochs perform:

Randomly select a small batch of samples (B S)

Compute gradients: Δ = θLB(θ)

Update parameters: θ ← θ − ηΔ

η > 0 is called the learning rate

Stop when reaching criterion

nll stops decreasing when computed on validation set
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Loss functions
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Discrete output (classi!cation)

Binary classi!cation: y [0, 1]

Y |X = x Bernoulli(b = f(x; θ))

output function: logistic(x) =
1

1+ e − x

loss function: binary cross-entropy

Multiclass classi!cation: y [0, K − 1]

Y |X = x Multinoulli(p = f(x; θ))

output function: softmax

loss function: categorical cross-entropy
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Continuous output (regression)

Continuous output: y Rn

Y |X = x N(μ = f(x; θ), σ2I)

output function: Identity

loss function: square loss

Heteroschedastic if f(x; θ) predicts both μ and σ2

Mixture Density Network (multimodal output)

Y |X = x GMM
x

f(x; θ) predicts all the parameters: the means, covariance matrices and

mixture weights
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Going deeper
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Dropout

First "deep" regularization technique

Remove units at random during the forward pass on each sample

Put them all back during test

Dropout: A Simple Way to Prevent Neural Networks from Over!tting, Srivastava et al.,

JMLR 2014
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Dropout

Interpretation

Reduces the network dependency to individual neurons and

distributes representation

More redundant representation of data

Ensemble interpretation

Equivalent to training a large ensemble of shared-parameters,

binary-masked models

Each model is only trained on a single data point

A network with dropout can be interpreted as an ensemble of 2N

models with heavy weight sharing (Goodfellow et al., 2013)
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Dropout

 

One has to decide on which units/layers to use dropout, and with

what probability p units are dropped.

During training, for each sample, as many Bernoulli variables as

units are sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial

version of dropout was multiplying activations by p during test.

The standard variant is the "inverted dropout": multiply

activations by
1

1 −p
during training and keep the network

untouched during test.
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Dropout

Over!tting noise

 

Slide credit: C. Ollion & O. Grisel 126 / 149



Dropout

A bit of Dropout

 

Slide credit: C. Ollion & O. Grisel 127 / 149



Dropout

Too much: under!tting

 

Slide credit: C. Ollion & O. Grisel 128 / 149



Dropout

Features learned on MNIST with one hidded layer autoencoders

having 256 recti!ed linear units

Dropout: A Simple Way to Prevent Neural Networks from Over!tting, Srivastava et al.,

JMLR 2014
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Dropout

>>> x = Variable(torch.Tensor(3, 9).fill_ (1.0), requires_grad = True)
>>> x.data
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1
[torch.FloatTensor of size 3x9]

>>> dropout = nn.Dropout(p = 0.75)
>>> y = dropout(x)
>>> y.data
4 0 4 4 4 0 4 0 0 
4 0 0 0 0 0 0 0 0 
0 0 0 0 4 0 4 0 4
[torch.FloatTensor of size 3x9]

>>> l = y.norm(2, 1).sum() 
>>> l.backward()
>>> x.grad.data
1.7889 0.0000 1.7889 1.7889 0.0000 0.0000 1.7889 0.0000 0.0000 
4.0000 0.0000 0.0000 1.7889 0.0000 0.0000 0.0000 2.3094 0.0000
0.0000 0.0000 0.0000 0.0000 2.3094 0.0000 0.0000 0.0000 2.3094
[torch.FloatTensor of size 3x9]
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Dropout

For a given network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(), 
                      nn.Linear(100, 50), nn.ReLU(),
                      nn.Linear(50, 2));
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Dropout

For a given network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(), 
                      nn.Linear(100, 50), nn.ReLU(),
                      nn.Linear(50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(), 
                      nn.Dropout(),
                      nn.Linear(100, 50), nn.ReLU(), 
                      nn.Dropout(),
                      nn.Linear(50, 2));
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Dropout

A model using dropout has to be set in "train" or "test" mode
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Dropout

A model using dropout has to be set in "train" or "test" mode

The method nn.Module.train(mode) recursively sets the *ag

training to all sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3)) 
>>> dropout.training
True
>>> model.train(False)
Sequential (
(0): Linear (3 -> 10) (1): Dropout (p = 0.5) (2): Linear (10 -> 3)
)
>>> dropout.training 
False
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Spatial Dropout

As pointed out by Tompson et al. (2015), units in a 2d activation map

are generally locally correlated, and dropout has virtually no e"ect.

They proposed SpatialDropout, which drops channels instead of

individual units.

Slide credit: F. Fleuret 135 / 149



Spatial Dropout

>>> dropout2d = nn.Dropout2d()
>>> x = Variable(Tensor(2, 3, 2, 2).fill_(1.0)) 
>>> dropout2d(x)
Variable containing:
(0 ,0 ,.,.) =
0 0
0 0

(0 ,1 ,.,.) = 
0 0
0 0

(0 ,2 ,.,.) = 
2 2
2 2

(1 ,0 ,.,.) = 
2 2
2 2

(1 ,1 ,.,.) = 
0 0
0 0

(1 ,2 ,.,.) = 
2 2
2 2
[torch.FloatTensor of size 2x3x2x2]
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Batch normalization

We saw that maintaining proper statistics of the activations and

derivatives was a critical issue to allow the training of deep

architectures.

It is the main motivation behind weight initialization rules (we'll

cover them later).
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Batch normalization

We saw that maintaining proper statistics of the activations and

derivatives was a critical issue to allow the training of deep

architectures.

It is the main motivation behind weight initialization rules (we'll

cover them later).

A di"erent approach consists of explicitly forcing the activation

statistics during the forward pass by re-normalizing them.

Batch normalization proposed by Io"e and Szegedy (2015) was the

!rst method introducing this idea.
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Batch normalization

Normalize activations in each mini-batch before activation function:

speeds up and stabilizes training (less dependent on init)

Batch normalization forces the activation !rst and second order

moments, so that the following layers do not need to adapt to their

drift.

139 / 149



Batch normalization

Normalize activations in each mini-batch before activation function:

speeds up and stabilizes training (less dependent on init)

Batch normalization: Accelerating deep network training by reducing internal covariate

shift, Io"e and Szegedy, ICML 2015
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Batch normalization

During training batch normalization shifts and rescales according to

the mean and variance estimated on the batch.

As for dropout, the model behaves di"erently during train and test.
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Batch normalization

At inference time, use average and standard deviation computed on

the whole dataset instead of batch

Widely used in ConvNets, but requires the mini-batch to be large

enough to compute statistics in the minibatch.
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Batch normalization

As dropout, batch normalization is implemented as a separate

module torch.BatchNorm1d that processes the input components

separately.

>>> x = torch.Tensor(10000, 3).normal_()
>>> x = x * torch.Tensor([2, 5, 10]) + torch.Tensor([-10, 25, 3]) 
>>> x = Variable(x)
>>> x.data.mean(0)
-9.9898
24.9165
2.8945
[torch.FloatTensor of size 3] 

>>> x.data.std(0)
2.0006
5.0146 
9.9501
[torch.FloatTensor of size 3]
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Batch normalization

Since the module has internal variables to keep statistics, it must be

provided with the sample dimension at creation.

>>> bn = nn.BatchNorm1d(3)
>>> bn.bias.data = torch.Tensor([2, 4, 8])
>>> bn.weight.data = torch.Tensor([1, 2, 3])
>>> y = bn(x)
>>> y.data.mean(0)

2.0000 
4.0000 
8.0000
[torch.FloatTensor of size 3] 
>>> y.data.std(0)

1.0000 
2.0001 
3.0001
[torch.FloatTensor of size 3]
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Batch normalization

BatchNorm2d example

>>> x = Variable(torch.randn(20, 100, 35, 45))
>>> bn2d = nn.BatchNorm2d(100)
>>> y = bn2d(x)
>>> x.size()

torch.Size([20, 100, 35, 45])
>>> bn2d.weight.data.size()

torch.Size([100])
>>> bn2d.bias.data.size()

torch.Size([100])
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Batch normalization

Results on ImageNet LSVRC 2012:

Batch normalization: Accelerating deep network training by reducing internal covariate

shift, Io"e and Szegedy, ICML 2015
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Batch normalization

Results on ImageNet LSVRC 2012:

 

learning rate can be greater

dropout and local normalization are not necessary

L2 regularization in*uence should be reduced

Batch normalization: Accelerating deep network training by reducing internal covariate

shift, Io"e and Szegedy, ICML 2015
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Batch normalization

Deep MLP on a 2d "disc" toy example, with naive Gaussian weight

initialization, cross-entropy, standard SGD, η = 0.1.

def create_model(with_batchnorm, nc = 32, depth = 16): 
    modules = []

    modules.append(nn.Linear(2, nc))
    if with_batchnorm: modules.append(nn.BatchNorm1d(nc)) 
    modules.append(nn.ReLU())

    for d in range(depth):
        modules.append(nn.Linear(nc, nc))
        if with_batchnorm: modules.append(nn.BatchNorm1d(nc)) 
        modules.append(nn.ReLU())

    modules.append(nn.Linear(nc, 2)) 

    return nn.Sequential(*modules)
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Batch normalization
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