
Deep Learning

A journey from feature extraction and
engineering to end-to-end pipelines

Part 3: Convolutional Neural Networks

Andrei Bursuc

With slides from A. Karpathy, F. Fleuret, J. Johnson, S. Yeung, G. Louppe, Y. Avrithis ...

1 / 145

Convolutional layers

2 / 145

Why would we need them?

If they were handled as normal "unstructured" vectors, large-

dimension signals such as sound samples or images would require

models of intractable size.

For instance a linear layer taking a RGB image as input,

and producing an image of same size would require:

parameters, with the corresponding memory footprint (150Gb !),

and excess of capacity.

Slide credit: F. Fleuret 3 / 145

Why would we need them?

Moreover, this requirement is inconsistent with the intuition that

such large signals have some "invariance in translation". A

representation meaningful at a certain location can / should be used

everywhere.

Slide credit: F. Fleuret 4 / 145

Why would we need them?

Moreover, this requirement is inconsistent with the intuition that

such large signals have some "invariance in translation". A

representation meaningful at a certain location can / should be used

everywhere.

A convolutional layer embodies this idea. It applies the same linear

transformation locally, everywhere, and preserves the signal

structure.

Slide credit: F. Fleuret 5 / 145

Why would we need them?

One neuron gets specialized for detecting a full-image pattern,

while being sensible to translations

6 / 145

Why would we need them?

Each neuron gets specialized for detecting a full-image pattern.

Neurons from later layer work similarly

This is a big waste of parameters without good performance.

7 / 145

Fully connected layer

In a fully connected layer, each hidden unit is

connected to the entire image.

Looking for activations that depend on pixels that are spatially

far away is supposedly a waste of time and resources.

Long range correlations can be dealt with in the higher layers.

8 / 145

Locally connected layer

In a locally connected layer, each hidden unit is connected to only

a patch of the image.

Weights are specialized locally and functionally.

Reduce the number of parameters.

What if the object in the image shifts a little?

9 / 145

Convolutional layer

In a convolutional layer, each hidden unit is connected to only a

patch of the image, and share its weights with the other units .

Weights are specialized functionally, regardless of spatial

location.

Reduce the number of parameters.

10 / 145

Convolution

Discrete convolution (actually cross-correlation) between two

functions and :

11 / 145

Convolution

Discrete convolution (actually cross-correlation) between two

functions and :

In computer vision, we typically use 2D-convolutions (actually 2D

cross-correlation):

12 / 145

Convolution

Discrete convolution (actually cross-correlation) between two

functions and :

In computer vision, we typically use 2D-convolutions (actually 2D

cross-correlation):

is a convolution kernel applied to the 2-d map (think image)

Slide credit: C. Ollion & O. Grisel 3 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 1d

Slide credit: F. Fleuret 14 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

Convolution 2d

Slide credit: F. Fleuret 15 / 145

A convolution on an image

Image: of dimensions

Kernel: of dimensions

These slides extensively use convolution visualisation by V. Dumoulin available

at https://github.com/vdumoulin/conv_arithmetic

6 / 145

A convolution on an image

Image: of dimensions

Kernel: of dimensions

These slides extensively use convolution visualisation by V. Dumoulin available

at https://github.com/vdumoulin/conv_arithmetic

Slide credit: C. Ollion & O. Grisel 17 / 145

Kernels as neural networks

 is a chunk of the image

Each output neuron is parametrized with the kernel weights

18 / 145

Kernels as neural networks

 is a chunk of the image

Each output neuron is parametrized with the kernel weights

The activation obtained by sliding the window and computing:

Slide credit: C. Ollion & O. Grisel 19 / 145

Channels

Colored image = tensor of shape (height, width, channels)

0 / 145

Channels

Colored image = tensor of shape (height, width, channels)

Convolutions can be computed across channels:

5x5x3

28x28x3

24x24

21 / 145

Channels

Colored image = tensor of shape (height, width, channels)

Convolutions can be computed across channels:

5x5x3

28x28x3

24x24

22 / 145

Channels

For #rst layer, RGB channels of input image can be easily

visualized

Number of channels is typically increased at deeper levels of the

network

23 / 145

Multiple convolutions

Each #lter generates a one-channel feature map of responses.

Figure credit: C. Ollion & O. Grisel 24 / 145

Multiple convolutions

Each #lter generates a one-channel feature map of responses.

Figure credit: C. Ollion & O. Grisel 24 / 145

Multiple convolutions

Each #lter generates a one-channel feature map of responses.

Figure credit: C. Ollion & O. Grisel 4 / 145

Multiple convolutions

Each #lter generates a one-channel feature map of responses.

Figure credit: C. Ollion & O. Grisel 24 / 145

Multiple convolutions

Each #lter generates a one-channel feature map of responses.

5x5x3x4

28x28x3

24x24x4

24 / 145

Multiple convolutions

Each #lter generates a one-channel feature map of responses.

5x5x3x4

28x28x3

24x24x4

Kernel size aka receptive #eld (usually 1, 3, 5, 7, 11)

Ouput dimension: length - kernel_size + 1

Figure credit: C. Ollion & O. Grisel 25 / 145

Multiple convolutions

Since convolutions output one scalar at a time, they can be seen

as an individual neuron from a MLP with a receptive #eld limited

to the dimensions of the kernel

The same neuron is "#red" over multiple areas from the input.

26 / 145

Remember this?

Multiple convolutions

Since convolutions output one scalar at a time, they can be seen

as an individual neuron from a MLP with a receptive #eld limited

to the dimensions of the kernel

The same neuron is "#red" over multiple areas from the input.

27 / 145

Remember this?

Multiple convolutions

Since convolutions output one scalar at a time, they can be seen

as an individual neuron from a MLP with a receptive #eld limited

to the dimensions of the kernel

The same neuron is "#red" over multiple areas from the input.

28 / 145

Strides

Strides: increment step size for the convolution operator

Reduces the size of the ouput map

Example with kernel size and a stride of (image in blue)

29 / 145

Padding

Padding: arti#cally #ll borders of image

Useful to keep spatial dimension constant across #lters

Useful with strides and large receptive #elds

Usually: #ll with 0s

30 / 145

Padding

Example: input

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Figure credit: F. Fleuret 30 / 145

Padding

Example: input , padding of , a stride of ,

kernel of size

Pooling operations have a default stride equal to their kernel

size, and convolutions have a default stride of 1.

Padding can be useful to generate an output of same size as the

input.

Figure credit: F. Fleuret 30 / 145

 kernel size,

input channels

 output channels

5x5x3x4

Dealing with shapes

Kernel shape

31 / 145

 kernel size,

input channels

 output channels

5x5x3x4

Dealing with shapes

Kernel shape

Number of parameters:

32 / 145

 kernel size,

input channels

 output channels

5x5x3x4

Dealing with shapes

Kernel shape

Number of parameters:

Activation shapes:

Input

Output

33 / 145

 kernel size,

input channels

 output channels

5x5x3x4

Dealing with shapes

Kernel shape

Number of parameters:

Activation shapes:

Input

Output

Slide credit: C. Ollion & O. Grisel 34 / 145

Convolutions

1x1 convolution layers: aggregating pixel information from all

feature maps

35 / 145

Convolutions

A bank of 256 #lters (learned from data)

Each #lter is 1d (it applies to a grayscale image)

Each #lter is 16 x 16 pixels

36 / 145

Convolutions

A bank of 256 #lters (learned from data)

3D #lters for RGB inputs

37 / 145

Convolutions

Implementation

Arrange data for optimized matrix multiplication (using GEMM)

Makes life easier for backprop

38 / 145

Downsampling

Downsampling by a factor amount to keeping only one every

pixels, discarding others

Filter banks often incorporate or are followed by 2x output

downsampling

Downsampling is often matched with an increase in the number

of feature channels

Overall the volume of the tensors decreases slowly

39 / 145

Spatial pooling

40 / 145

Pooling

Spatial dimension reduction

Local invariance

No parameters: max or average of 2x2 units

41 / 145

Pooling

Spatial dimension reduction

Local invariance

No parameters: max or average of 2x2 units

28x28x3

14x14x3

no parameters!

42 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 1d

Slide credit: F. Fleuret 43 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Max-Pooling 2d

Slide credit: F. Fleuret 44 / 145

Translation invariance from pooling

Slide credit: F. Fleuret 45 / 145

Translation invariance from pooling

Slide credit: F. Fleuret 45 / 145

Translation invariance from pooling

Slide credit: F. Fleuret 45 / 145

Translation invariance from pooling

Slide credit: F. Fleuret 45 / 145

Translation invariance from pooling

Slide credit: F. Fleuret 45 / 145

Stochastic pooling

Random pooling mask at each pass

Fractional Max-Pooling, Graham, arXiv 2014
46 / 145

Spectral pooling

Pooling in the frequency domain

Spectral Representations for Convolutional Neural Networks, Rippel et al., NIPS 2015
47 / 145

Common way to visualize a CNN feature map.

Receptive #eld

The receptive #eld is de#ned as the region in the input space

that a particular CNN's feature is looking at (i.e. be a$ected by).

A receptive #eld of a feature can be fully described by its center

location and its size

Example:

48 / 145

Receptive #eld

The receptive #eld is de#ned as the region in the input space

that a particular CNN's feature is looking at (i.e. be a$ected by).

A receptive #eld of a feature can be fully described by its center

location and its size

Example:

49 / 145

Receptive #eld

The receptive #eld is de#ned as the region in the input space

that a particular CNN's feature is looking at (i.e. be a$ected by).

A receptive #eld of a feature can be fully described by its center

location and its size

Receptive #elds for convolutional and pooling layers of VGG-16

50 / 145

Dilated convolutions

Figure credit: F. Fleuret 51 / 145

Dilated convolutions

Figure credit: F. Fleuret 51 / 145

Dilated convolutions

Figure credit: F. Fleuret 51 / 145

Dilated convolutions

Figure credit: F. Fleuret 51 / 145

Dilated convolutions

Figure credit: F. Fleuret 51 / 145

Dilated convolutions

Figure credit: F. Fleuret 51 / 145

Dilated convolutions

Can we do better?

... Without adding parameters?

52 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

Figure credit: F. Fleuret 53 / 145

Dilated convolutions

also goes by the name convolutions à trous

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully
Connected CRFs; Chen et al., PAMI 2016

54 / 145

In parallel Stacked

More frequently used

Dilated convolutions

Usage

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous

Convolution, and Fully Connected CRFs; Chen et al., PAMI 2016

Multi-scale context aggregation by dilated convolutions; Yu and Koltun, ICLR 2016

55 / 145

Dilated convolutions

works for 1d as well

appealing alternative to recurrent neural networks

WaveNet: A Generative Model for Raw Audio, A. van den Oord et al., 2016
56 / 145

ConvNet

Neural network with specialized connectivity structure

Stack multiple stage of feature extractors

Higher stages compute more global, more invariant features

Classi#cation layer at the end

LeNet-5, LeCun, 1998
57 / 145

ConvNet

A convolutional layer is composed of convolution, activation and

downsampling layers.

58 / 145

ConvNet

Input

9 / 145

ConvNet

Input

Conv blocks

Convolution + activation (relu)

Convolution + activation (relu)

...

Maxpooling 2x2

60 / 145

ConvNet

Input

Conv blocks

Convolution + activation (relu)

Convolution + activation (relu)

...

Maxpooling 2x2

Output

Fully connected layers

Softmax

61 / 145

Motivations

Local connectivity

A neuron depends only on a few local neurons

Translation invariance

62 / 145

Motivations

Local connectivity

A neuron depends only on a few local neurons

Translation invariance

Comparison to Fully connected

Parameter sharing

Make use of spatial structure

63 / 145

Motivations

Local connectivity

A neuron depends only on a few local neurons

Translation invariance

Comparison to Fully connected

Parameter sharing

Make use of spatial structure

Some analogy to animal vision

Hubel & Wiesel, RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S

STRIATE CORTEX (1959)

64 / 145

Going deeper

65 / 145

For a #xed parameter budget deeper is better

On the number of linear regions of deep neural networks; Montufar et al., 2014
66 / 145

Dropout

First "deep" regularization technique

Remove units at random during the forward pass on each sample

Put them all back during test

Dropout: A Simple Way to Prevent Neural Networks from Over#tting, Srivastava et al.,

JMLR 2014

67 / 145

Dropout

Interpretation

Reduces the network dependency to individual neurons and

distributes representation

More redundant representation of data

Ensemble interpretation

Equivalent to training a large ensemble of shared-parameters,

binary-masked models

Each model is only trained on a single data point

A network with dropout can be interpreted as an ensemble of

models with heavy weight sharing (Goodfellow et al., 2013)

68 / 145

Dropout

One has to decide on which units/layers to use dropout, and with

what probability units are dropped.

During training, for each sample, as many Bernoulli variables as

units are sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial

version of dropout was multiplying activations by during test.

The standard variant is the "inverted dropout": multiply

activations by during training and keep the network

untouched during test.

69 / 145

Dropout

Over#tting noise

Slide credit: C. Ollion & O. Grisel 70 / 145

Dropout

A bit of Dropout

Slide credit: C. Ollion & O. Grisel 71 / 145

Dropout

Too much: under#tting

Slide credit: C. Ollion & O. Grisel 72 / 145

Dropout

Features learned on MNIST with one hidded layer autoencoders

having 256 recti#ed linear units

Dropout: A Simple Way to Prevent Neural Networks from Over#tting, Srivastava et al.,

JMLR 2014

73 / 145

Dropout

>>> x = Variable(torch.Tensor(3, 9).fill_ (1.0), requires_grad = True)
>>> x.data
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
[torch.FloatTensor of size 3x9]

>>> dropout = nn.Dropout(p = 0.75)
>>> y = dropout(x)
>>> y.data
4 0 4 4 4 0 4 0 0
4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 4 0 4
[torch.FloatTensor of size 3x9]

>>> l = y.norm(2, 1).sum()
>>> l.backward()
>>> x.grad.data
1.7889 0.0000 1.7889 1.7889 0.0000 0.0000 1.7889 0.0000 0.0000
4.0000 0.0000 0.0000 1.7889 0.0000 0.0000 0.0000 2.3094 0.0000
0.0000 0.0000 0.0000 0.0000 2.3094 0.0000 0.0000 0.0000 2.3094
[torch.FloatTensor of size 3x9]

74 / 145

Dropout

For a given network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
 nn.Linear(100, 50), nn.ReLU(),
 nn.Linear(50, 2));

75 / 145

Dropout

For a given network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
 nn.Linear(100, 50), nn.ReLU(),
 nn.Linear(50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
 nn.Dropout(),
 nn.Linear(100, 50), nn.ReLU(),
 nn.Dropout(),
 nn.Linear(50, 2));

76 / 145

Dropout

A model using dropout has to be set in "train" or "test" mode

77 / 145

Dropout

A model using dropout has to be set in "train" or "test" mode

The method nn.Module.train(mode) recursively sets the %ag

training to all sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3))
>>> dropout.training
True
>>> model.train(False)
Sequential (
(0): Linear (3 -> 10) (1): Dropout (p = 0.5) (2): Linear (10 -> 3)
)
>>> dropout.training
False

78 / 145

Spatial Dropout

As pointed out by Tompson et al. (2015), units in a 2d activation map

are generally locally correlated, and dropout has virtually no e$ect.

They proposed SpatialDropout, which drops channels instead of

individual units.

Slide credit: F. Fleuret 79 / 145

Spatial Dropout

>>> dropout2d = nn.Dropout2d()
>>> x = Variable(Tensor(2, 3, 2, 2).fill_(1.0))
>>> dropout2d(x)
Variable containing:
(0 ,0 ,.,.) =
0 0
0 0

(0 ,1 ,.,.) =
0 0
0 0

(0 ,2 ,.,.) =
2 2
2 2

(1 ,0 ,.,.) =
2 2
2 2

(1 ,1 ,.,.) =
0 0
0 0

(1 ,2 ,.,.) =
2 2
2 2
[torch.FloatTensor of size 2x3x2x2]

8800 / 145

Batch normalization

We saw that maintaining proper statistics of the activations and

derivatives was a critical issue to allow the training of deep

architectures.

It is the main motivation behind weight initialization rules (we'll

cover them later).

81 / 145

Batch normalization

We saw that maintaining proper statistics of the activations and

derivatives was a critical issue to allow the training of deep

architectures.

It is the main motivation behind weight initialization rules (we'll

cover them later).

A di$erent approach consists of explicitly forcing the activation

statistics during the forward pass by re-normalizing them.

Batch normalization proposed by Io$e and Szegedy (2015) was the

#rst method introducing this idea.

82 / 145

Batch normalization

Normalize activations in each mini-batch before activation function:

speeds up and stabilizes training (less dependent on init)

Batch normalization forces the activation #rst and second order

moments, so that the following layers do not need to adapt to their

drift.

83 / 145

Batch normalization

Normalize activations in each mini-batch before activation function:

speeds up and stabilizes training (less dependent on init)

Batch normalization: Accelerating deep network training by reducing internal covariate

shift, Io$e and Szegedy, ICML 2015

84 / 145

Batch normalization

During training batch normalization shifts and rescales according to

the mean and variance estimated on the batch.

As for dropout, the model behaves di$erently during train and test.

85 / 145

Batch normalization

At inference time, use average and standard deviation computed on

the whole dataset instead of batch

Widely used in ConvNets, but requires the mini-batch to be large

enough to compute statistics in the minibatch.

86 / 145

Batch normalization

As dropout, batch normalization is implemented as a separate

module torch.BatchNorm1d that processes the input components

separately.

>>> x = torch.Tensor(10000, 3).normal_()
>>> x = x * torch.Tensor([2, 5, 10]) + torch.Tensor([-10, 25, 3])
>>> x = Variable(x)
>>> x.data.mean(0)
-9.9898
24.9165
2.8945
[torch.FloatTensor of size 3]

>>> x.data.std(0)
2.0006
5.0146
9.9501
[torch.FloatTensor of size 3]

87 / 145

Batch normalization

Since the module has internal variables to keep statistics, it must be

provided with the sample dimension at creation.

>>> bn = nn.BatchNorm1d(3)
>>> bn.bias.data = torch.Tensor([2, 4, 8])
>>> bn.weight.data = torch.Tensor([1, 2, 3])
>>> y = bn(x)
>>> y.data.mean(0)

2.0000
4.0000
8.0000
[torch.FloatTensor of size 3]
>>> y.data.std(0)

1.0000
2.0001
3.0001
[torch.FloatTensor of size 3]

88 / 145

Batch normalization

BatchNorm2d example

>>> x = Variable(torch.randn(20, 100, 35, 45))
>>> bn2d = nn.BatchNorm2d(100)
>>> y = bn2d(x)
>>> x.size()

torch.Size([20, 100, 35, 45])
>>> bn2d.weight.data.size()

torch.Size([100])
>>> bn2d.bias.data.size()

torch.Size([100])

89 / 145

Batch normalization

Results on ImageNet LSVRC 2012:

Batch normalization: Accelerating deep network training by reducing internal covariate

shift, Io$e and Szegedy, ICML 2015

90 / 145

Batch normalization

Results on ImageNet LSVRC 2012:

learning rate can be greater

dropout and local normalization are not necessary

 regularization in%uence should be reduced

Batch normalization: Accelerating deep network training by reducing internal covariate

shift, Io$e and Szegedy, ICML 2015

91 / 145

Batch normalization

Deep MLP on a 2d "disc" toy example, with naive Gaussian weight

initialization, cross-entropy, standard SGD, .

def create_model(with_batchnorm, nc = 32, depth = 16):
 modules = []

 modules.append(nn.Linear(2, nc))
 if with_batchnorm: modules.append(nn.BatchNorm1d(nc))
 modules.append(nn.ReLU())

 for d in range(depth):
 modules.append(nn.Linear(nc, nc))
 if with_batchnorm: modules.append(nn.BatchNorm1d(nc))
 modules.append(nn.ReLU())

 modules.append(nn.Linear(nc, 2))

 return nn.Sequential(*modules)

Slide credit: F. Fleuret 92 / 145

Batch normalization

Slide credit: F. Fleuret 93 / 145

Layer Normalizations

Normalize on the statistics of the layer activations instead of mini-

batch.

Layer Normalization, Ba et al., 2016
94 / 145

Layer Normalizations

Normalize on the statistics of the layer activations instead of mini-

batch.

The algorithm is then similar as Batch Normalization

Layer Normalization, Ba et al., 2016
95 / 145

Layer Normalizations

Normalize on the statistics of the layer activations instead of mini-

batch.

The algorithm is then similar as Batch Normalization

Suited for RNNs, degrades performance of CNNs

Layer Normalization, Ba et al., 2016
96 / 145

Weight Normalization

Reparametrize weights of neurons, to decouple direction and norm

of the weight:

Weight normalization: A simple reparameterization to accelerate training of deep neural

networks, Salimans, NIPS 2016.

97 / 145

Weight Normalization

Reparametrize weights of neurons, to decouple direction and norm

of the weight:

One new parameter to learn per neuron

Weight normalization: A simple reparameterization to accelerate training of deep neural

networks, Salimans, NIPS 2016.

98 / 145

Weight Normalization

Reparametrize weights of neurons, to decouple direction and norm

of the weight:

One new parameter to learn per neuron

Careful data-based initialization of and neuron bias is better (not

applicable to RNNs)

Weight normalization: A simple reparameterization to accelerate training of deep neural

networks, Salimans, NIPS 2016.

99 / 145

Multiple variants

100 / 145

Architectures

01 / 145

Architectures

torchvision.models provides a collection of reference networks for

computer vision, e.g.:

import torchvision
alexnet = torchvision.models.alexnet()

The trained models can be obtained by passing pretrained = True to

the constructor(s). This may involve an heavy download given there

size.

102 / 145

LeNet5

10 classes, input 1 x 28 x 28

(features): Sequential (
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU (inplace)
(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)
(classifier): Sequential (
(0): Linear (400 -> 120)
(1): ReLU (inplace)
(2): Linear (120 -> 84)
(3): ReLU (inplace)
(4): Linear (84 -> 10))

103 / 145

AlexNet

Imagenet classi#cation with deep convolutional neural networks, Krizhevsky et al., NIPS

2012

104 / 145

AlexNet

First conv layer: kernel 11x11x3x96 stride 4

Imagenet classi#cation with deep convolutional neural networks, Krizhevsky et al., NIPS

2012

105 / 145

AlexNet

First conv layer: kernel 11x11x3x96 stride 4

Kernel shape: (11,11,3,96)

Output shape: (55,55,96)

Number of parameters: 34,944

Equivalent MLP parameters: 43.7 x 1e9

Imagenet classi#cation with deep convolutional neural networks, Krizhevsky et al., NIPS

2012

Slide credit: C. Ollion & O. Grisel 106 / 145

AlexNet

INPUT: [227x227x3]
CONV1: [55x55x96] 96 11x11 filters at stride 4, pad 0
MAX POOL1: [27x27x96] 3x3 filters at stride 2
CONV2: [27x27x256] 256 5x5 filters at stride 1, pad 2
MAX POOL2: [13x13x256] 3x3 filters at stride 2
CONV3: [13x13x384] 384 3x3 filters at stride 1, pad 1
CONV4: [13x13x384] 384 3x3 filters at stride 1, pad 1
CONV5: [13x13x256] 256 3x3 filters at stride 1, pad 1
MAX POOL3: [6x6x256] 3x3 filters at stride 2
FC6: [4096] 4096 neurons
FC7: [4096] 4096 neurons
FC8: [1000] 1000 neurons (softmax logits)

Slide credit: C. Ollion & O. Grisel 107 / 145

AlexNet

(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
)

(classifier): Sequential (
(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)
)

108 / 145

Hierarchical representation

109 / 145

VGG-16

Very deep convolutional networks for large-scale image recognition, Simonyan and

Zisserman, NIPS 2014

110 / 145

Memory and Parameters

 Activation maps Parameters
INPUT: [224x224x3] = 150K 0
CONV3-64: [224x224x64] = 3.2M (3x3x3)x64 = 1,728
CONV3-64: [224x224x64] = 3.2M (3x3x64)x64 = 36,864
POOL2: [112x112x64] = 800K 0
CONV3-128: [112x112x128] = 1.6M (3x3x64)x128 = 73,728
CONV3-128: [112x112x128] = 1.6M (3x3x128)x128 = 147,456
POOL2: [56x56x128] = 400K 0
CONV3-256: [56x56x256] = 800K (3x3x128)x256 = 294,912
CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824
CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824
POOL2: [28x28x256] = 200K 0
CONV3-512: [28x28x512] = 400K (3x3x256)x512 = 1,179,648
CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296
CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296
POOL2: [14x14x512] = 100K 0
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
POOL2: [7x7x512] = 25K 0
FC: [1x1x4096] = 4096 7x7x512x4096 = 102,760,448
FC: [1x1x4096] = 4096 4096x4096 = 16,777,216
FC: [1x1x1000] = 1000 4096x1000 = 4,096,000

TOTAL activations: 24M x 4 bytes ~= 93MB / image (x2 for backward)
TOTAL parameters: 138M x 4 bytes ~= 552MB (x2 for plain SGD, x4 for Adam)

Slide credit: C. Ollion & O. Grisel 111 / 145

Memory and Parameters

 Activation maps Parameters
INPUT: [224x224x3] = 150K 0
CONV3-64: [224x224x64] = 3.2M (3x3x3)x64 = 1,728
CONV3-64: [224x224x64] = 3.2M (3x3x64)x64 = 36,864
POOL2: [112x112x64] = 800K 0
CONV3-128: [112x112x128] = 1.6M (3x3x64)x128 = 73,728
CONV3-128: [112x112x128] = 1.6M (3x3x128)x128 = 147,456
POOL2: [56x56x128] = 400K 0
CONV3-256: [56x56x256] = 800K (3x3x128)x256 = 294,912
CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824
CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824
POOL2: [28x28x256] = 200K 0
CONV3-512: [28x28x512] = 400K (3x3x256)x512 = 1,179,648
CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296
CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296
POOL2: [14x14x512] = 100K 0
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
POOL2: [7x7x512] = 25K 0
FC: [1x1x4096] = 4096 7x7x512x4096 = 102,760,448
FC: [1x1x4096] = 4096 4096x4096 = 16,777,216
FC: [1x1x1000] = 1000 4096x1000 = 4,096,000

TOTAL activations: 24M x 4 bytes ~= 93MB / image (x2 for backward)
TOTAL parameters: 138M x 4 bytes ~= 552MB (x2 for plain SGD, x4 for Adam)

Slide credit: C. Ollion & O. Grisel 112 / 145

VGG-19

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU (inplace)
(4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU (inplace)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU (inplace)
(9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU (inplace)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU (inplace)
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU (inplace)
(18): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU (inplace)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU (inplace)
(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(24): ReLU (inplace)
(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(26): ReLU (inplace)
(27): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU (inplace)
...

1133 / 145

VGG-19

...

(30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(31): ReLU (inplace)
(32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(33): ReLU (inplace)
(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): ReLU (inplace)
(36): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(classifier): Sequential ((0): Linear (25088 -> 4096)
(1): ReLU (inplace)
(2): Dropout (p = 0.5)
(3): Linear (4096 -> 4096)
(4): ReLU (inplace)
(5): Dropout (p = 0.5) (6): Linear (4096 -> 1000)
)

114 / 145

GoogLeNet / Inception

Szegedy et al. (2015) also introduce the idea of "auxiliary classi#ers"

to help the propagation of the gradient in the early layers.

This is motivated by the reasonable performance of shallow

networks that indicates early layers already encode informative and

invariant features.

115 / 145

GoogLeNet / Inception

The resulting GoogLeNet has 12 times less parameters than AlexNet

and is more accurate on ILSVRC14 (Szegedy et al., 2015).

It was later extended with batch-normalization (Io$e and Szegedy,

2015) and pass-through a la resnet (Szegedy et al., 2016)

116 / 145

GoogLeNet / Inception

Slide credit: A. Karpathy 117 / 145

A saturation point

If we continue stacking more layers on a CNN:

18 / 145

A saturation point

If we continue stacking more layers on a CNN:

Deeper models are harder to optimize

Slide credit: J. Johnson 119 / 145

ResNet

A block learns the residual w.r.t.

identity

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

120 / 145

ResNet

A block learns the residual w.r.t.

identity

Good optimization properties

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

121 / 145

ResNet

Even deeper models:

34, 50, 101, 152 layers

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

122 / 145

ResNet

ResNet50 Compared to VGG:

Superior accuracy in all vision
tasks
5.25% top-5 error vs 7.1%

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

123 / 145

ResNet

ResNet50 Compared to VGG:

Superior accuracy in all vision
tasks
5.25% top-5 error vs 7.1%

Less parameters
25M vs 138M

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

124 / 145

ResNet

ResNet50 Compared to VGG:

Superior accuracy in all vision
tasks
5.25% top-5 error vs 7.1%

Less parameters
25M vs 138M

Computational complexity
3.8B Flops vs 15.3B Flops

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

125 / 145

ResNet

ResNet50 Compared to VGG:

Superior accuracy in all vision
tasks
5.25% top-5 error vs 7.1%

Less parameters
25M vs 138M

Computational complexity
3.8B Flops vs 15.3B Flops

Fully Convolutional until the last
layer

Deep residual learning for image

recognition, K. He et al., CVPR 2016.

126 / 145

ResNet

Performance on ImageNet

127 / 145

ResNet

The output of a residual network can be understood as an ensemble,

which explains in part its stability

Residual Networks Behave Like Ensembles of Relatively Shallow Networks, A. Veit et al., NIPS 2016
128 / 145

ResNet

Results

129 / 145

ResNet

Results

130 / 145

ResNet

In PyTorch:

def make_resnet_block(num_feature_maps , kernel_size = 3):

return nn.Sequential(

 nn.Conv2d(num_feature_maps , num_feature_maps ,
 kernel_size = kernel_size ,
 padding = (kernel_size - 1) // 2),

 nn.BatchNorm2d(num_feature_maps),

 nn.ReLU(inplace = True),
 nn.Conv2d(num_feature_maps , num_feature_maps ,
 kernel_size = kernel_size ,
 padding = (kernel_size - 1) // 2),

 nn.BatchNorm2d(num_feature_maps),
)

131 / 145

ResNet

In PyTorch:

def __init__(self, num_residual_blocks, num_feature_maps)
...

self.resnet_blocks = nn.ModuleList()
 for k in range(nb_residual_blocks):
 self.resnet_blocks.append(make_resnet_block(num_feature_maps , 3))
...

def forward(self,x):
...
 for b in self.resnet_blocks:
 x = x b(x)
...

return x

132 / 145

Deeper is better

from Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.

133 / 145

Inception-V4 / -ResNet-V2

Deep, modular and state-of-the-art

Achieves 3.1% top-5 classi#cation error on imagenet

Inception-v4, inception-resnet and the impact of residual connections on learning, C.

Szegedy et al., 2016

Slide credit: C. Ollion & O. Grisel 134 / 145

Resnet variants: Stochastic Depth
Networks

DropOut at layer level

Allows training up to 1K layers

Deep Networks with Stochastic Depth, Huang et al., ECCV 2016
135 / 145

Resnet variants: DenseNet

Copying feature maps to upper layers via skip-connections

Better reuse of parameters and redundancy avoidance

Densely Connected Convolutional Networks, Huang et al., CVPR 2017
136 / 145

Inception-V4 / -ResNet-V2

More building blocks engineering...

Inception-v4, inception-resnet and the impact of residual connections on learning, C.

Szegedy et al., 2016

Slide credit: C. Ollion & O. Grisel 137 / 145

Inception-V4 / -ResNet-V2

More building blocks engineering...

Active area or research

See also DenseNets, Wide ResNets, Fractal ResNets, ResNeXts,

Pyramidal ResNets...

Inception-v4, inception-resnet and the impact of residual connections on learning, C.

Szegedy et al., 2016

Slide credit: C. Ollion & O. Grisel 138 / 145

Comparison of models

Top 1-accuracy, performance and size on ImageNet

An Analysis of Deep Neural Network Models for Practical Applications, Canziani et al.,

2016

139 / 145

Comparison of models

Forward pass time and power consumption

An Analysis of Deep Neural Network Models for Practical Applications, Canziani et al.,

2016

140 / 145

Comparison of models

Slide credit: A. Vedaldi 141 / 145

Comparison of models

3 x more accurate in 3 years

101 ResNet Layers same size/speed as 16 VGG-VD layers

Slide credit: A. Vedaldi 142 / 145

Comparison of models

Number of parameters is about the same

Slide credit: A. Vedaldi 143 / 145

Comparison of models

5 x slower

Slide credit: A. Vedaldi 144 / 145

Comparison of models

145 / 145

