Deep Learning

A journey from feature extraction and
engineering to end-to-end pipelines

Part 4: Under the hood

Andrei Bursuc

With slides from A. Karpathy, F. Fleuret, J. Johnson, S. Yeung, G. Louppe, Y. Avrithis ...
1/129

Understanding and visualizing

CNNs

>
wld
L
1 4
= |
|
w
o

RELU RELU

RELU RELU
r

rTﬂ

CONV

ONV

CONV

— [V 1 KRR

What happens inside a CNN?

A G e & P f& > bike
L
w1 L W Wi W wr We

Visualize first layers
filters/weights

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 3/129

What happens inside a CNN?

Visualize first layers

Filters/weights -

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 4/129

What happens inside a CNN?

e Visualize behaviorin higher
layers

« We can visualize filters at — "
higher layers, but they are less
intuitive

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 57129

What happens inside a CNN?

Visualize first layers e A A
filters/weights SEsess & &

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 6/129

What happens inside a CNN?

Visualize first layers TTT 177
filters/weights el

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 77129

What happens inside a CNN?

Visualize First layers I

filters/weights) S

convi-4

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 8 /129

What happens inside a CNN?

Visualize First layers I

filters/weights) -

convi-5

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 9 /129

What happens inside a CNN?

e 4096d "signature" for an
image (layer right before the
classifier) A - nal

e Visualize with t-SNE: here

0o t——s =
i J
B

10/129

Feature evolution during training

o For a particular neuron (that generates a feature map)
e Pick the strongest activation during training
e Forepochs1, 2,5, 10, 20, 30, 40, 64

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 11 /129

Visualize layer activations/feature
maps

AlexNet

12/129

Figure credit: F. Fleuret

Visualize layer activations/feature
maps

AlexNet

13/129

Visualize layer activations/feature
maps

AlexNet

Visualize layer activations/feature
maps

AlexNet

'i.""h ' ‘ EL
¢ BE NP
SASOTE

Visualize layer activations/feature
maps

AlexNet
' ’ '
e+ \. e 9 Lt. .
e .
™ .
. . : '

» - . " “
-
Figure credit: F. Fleuret

— - 16 /129

Visualize layer activations/feature
maps

ResNet152

17 /129

Figure credit: F. Fleuret

Visualize layer activations/feature

maps

""’R % E%{E
‘~'.:f- LT
E! NS §

ResNet152

v
n\ ',..."

Visualize layer activations/feature
maps

ResNet152

L

19 /129

Occlusion sensitivity

(c) Layer 5, strongest (d) Classifier, probability (e) Classifier, most
(a) Input Image (b) Layer 5, strongest feature map feature map projections of correct class probable class

True Label: Afghan Hound
e

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014 20/129

Occlusion sensitivity

An approach to understand the behavior of a network is to look at
the output of the network "around" an image.

We can get a simple estimate of the importance of a part of the
input image by computing the difference between:

1. the value of the maximally responding output unit on the image,
and

2. the value of the same unit with that part occluded.

21/129

Occlusion sensitivity

An approach to understand the behavior of a network is to look at
the output of the network "around" an image.

We can get a simple estimate of the importance of a part of the
input image by computing the difference between:

1. the value of the maximally responding output unit on the image,
and

2. the value of the same unit with that part occluded.

This is computationally intensive since it requires as many forward

passes as there are locations of the occlusion mask, ideally the
number of pixels.

22 /129

Occlusion sensitivity

Original images

Figure credit: F. Fleuret

Occlusion sensitivity

Original images

24/129

Figure credit: F. Fleuret

Occlusion sensitivity

Occlusion sensitivity, mask 32 x 32, stride of 2, VGG16

» | L |

. o
Vel v ™.
: »t

L -

25/129

Figure credit: F. Fleuret

Occlusion sensitivity

26 /129

Figure credit: F. Fleuret

Visualize arbitrary neurons

DeepVis toolbox https://www.youtube.com/watch?v=AgkflQ41GaM

Deep Visualization Toolbox

Maximum response samples

What does a convolutional network see?

Convolutional networks can be inspected by looking for input
images x that maximize the activation h, 4(x) of a chosen

convolutional kernel u at layer £ and index d in the layer filter bank.

Such images can be found by gradient ascent on the input space:

Ly (x) = |lhysX)]]5
X ~ U[O, 1]C><H><W

Xi+1 = X; + Y VxLyra(Xs)

28 /129

Maximum response samples

VGG16, maximizing a channel of the 4th convolution layer

29/129

Maximum response samples

VGG16, maximizing a channel of the 7th convolution layer

' . @ L
. o, i
.‘I * = & - ! v
T] L = 1
E. ' ; , 5
i A . - 2
1 gy i ' .
% L ! i ;
- [i ' | 1
R vy s &
§. [& & . .) &
-.'.' . e] i
oy s il L . " =
2 Tk g " L}
L r 7 i 1 4 e kL
3 - 1]
- by - -
. L %
-y i - h kg
& » ' -
+ . i - i
. ; . LA s:
| ™ .
L " - h.
- . ®
! ! =l
I .

30/129

Maximum response samples

VGG16, maximizing a unit of the 10th convolution layer

31/129

Maximum response samples

VGG16, maximizing a unit of the 13th (and last) convolution layer

32/129

Maximum response samples

VGG16, maximizing a unit of the output layer

“King crab” “Samoyed” (that's a fluffy dog)

33/129

Maximum response samples

VGG16, maximizing a unit of the output layer

"Hourglass” "Paper towel"

34 /129

Maximum response samples

VGG16, maximizing a unit of the output layer

"Ping-pong ball" “Steel arch bridge”

35/129

Maximum response samples

VGG16, maximizing a unit of the output layer

“Sunglass” “Geyser"

36 /129

Many more visualization techniques

37 /129

Other resources

DrawNet
http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.ht

ml

drawNet

Eorvd

Other resources

Basic CNNs http://scs.ryerson.ca/~aharley/vis/

Other resources

Keras-JS https://transcranial.github.io/keras-js/

Basic Convnet for MNIST

Interactive demo of a simple convnet trained on MNIST (see 1 i eomputation performed entirely in your browser. Toggling GPU on/off shouldn't reveal any significant speed differences, as this is
a fairly small network. in the architecture diagram below, intermediate ouiputs at each layer are also visualized,

X CLOSE

Drtw turty dipit (0-1) here

N use GPU

H_Lass?as

X CLEAR

'
21 21l 2 [2 1 20 el 2 e 2 R B 2 P 2 A e L
220 {21210 [2]7])

) "
el

21212,

[-3

21212 [QPN212|2] 2122 |22 |2
“ \

/_
/2
~
<

(% |
r
£

A\

>~
/-P-v—n

40 /129

Other resources

TensorFlow playground http://playground.tensorflow.org

Q-

DATA

Which dataset do
you want to use?

Aatio of raining o
tesl data; 50%:
—_—

Noise: 0
e

Batch size: 10
—e

REGENERATE

zrations

000,000

FEATURES

Which propertias do
you want 1o feed in?

XX
sin{x.)

Bin{x,)

Leaming rate Antivation Regulanzation

0.03 v Tanh * Nene

+ — 2 HIDDEN LAYERS

=5
B ‘nevem
/:’__/ miad willy varping
’_-:_‘,r weights, shown
Iy by tha thicknass
P b
This.is iha oupLt
froem ong peuroR,
Hover io see it
Lmrgaarr.

Regularization rate

Problem type
- Classification ¥
OUTPUT
Test loss 0.508
Training loss 0.488
g
f & :
I et
L -l K -
L2 ... Y 0
e Semgp :
) - .
i
. ae * &t
]
L]
Colors shows e
data, neuron and IT- J' i

we'rgrﬂ values

[showtestdata [] Discretize output

41 /129

Adversarial attacks

42 /129

Locality assumption

"The deep stack of non-linear layers are a way for the model to
encode a non-local generalization prior over the input space. In other
words, it is assumed that is possible for the output unit to assign
probabilities to regions of the input space that contain no training
examples in their vicinity.

It is implicit in such arguments that local generalization---in the very
proximity of the training examples---works as expected. And that in
particular, for a small enough radius ¢ > 0 in the vicinity of a given
training input X, an X + r satisfying ||r|| < ¢ will get assigned a
high probability of the correct class by the model."

(Szegedy et al, 2013)

43 /129

Adversarial examples

min ||r||,

s.t. f(x+r1) =y
x+rel0l1p

where

o v is some target label, different from the original label y
associated to X,
o fis atrained neural network.

44 /129

(Left) Original images X. (Middle) Noise r. (Right) Modified images
X+ r.
All are classified as 'Ostrich’. (Szegedy et al, 2013)

45 /129

Even simpler, take a step along the direction of the sign of the
gradient at each pixel:

r = e sign(Vx2(, f(X)))

where € is the magnitude of the perturbation.

46 /129

Even simpler, take a step along the direction of the sign of the
gradient at each pixel:

r = esign(Vi2(y', f(x)))

where € is the magnitude of the perturbation.

+.007 x

The panda on the right is classified as a 'Gibbon'. (Goodfellow et al,
2014)

47 /129

------- Task decision boundary

Model decision boundary

$8 Test point for class 1

$8 Adversarial example for class 1

Credits: Breaking_things easy (Papernot and Goodfellow, 2016)

83 Training points for class 1

Training points for class 2

@ Test point for class 2

@ Adversarial example for class 2

48 /129

Not just For neural networks

Many other machine learning models are subject to adversarial
examples, including:

e Linear models

o Logistic regression
o Softmax regression
o Support vector machines

e Decision trees
e Nearest neighbors

49 /129

ooling neural networks

State-of-the-art DNNs can recognize 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects

Input |
| | Fiiness Evatuation A
Evolved images ﬁ
D]

Guitar Penguin
i —_——
99.99% 99.99% ‘A

g x
s
=
¢ :
- E Evolutionary § — Crossover
2 Algorithm
o
$
-

Guitar li‘m:_gu in

98.90% 99.99% Label and Score

Selection
Figure 2. Although state-of-the-art deep neural networks can increasingly recognize natural images (left panel), they also are easily

fooled into declaring with near-certainty that unrecognizable images are familiar objects (center). Images that fool DNNs are produced by
evolutionary algorithms (right panel) that optimize images to generate high-confidence DNN predictions for each class in the dataset the

DNN is trained on (here, ImageNet).

(Nguyen et al, 2014)

50/129

=

obelisk comic book car wheel computer hand blower dial

chest keyboard telephone
e —— S—
P e & f?" - et
P RCD = @ il
| ;
- - - 3
Al T ; je_o__4 i
assault rifle stethoscope digital clock soccer ball bagel pinwheel crossword punching bac

puzzle
Fiaa™\ LAABRELL "7 &
o O ke
{ 0O O e
Nee? PPN ==
gt | 4 - 0 © Qe >
paddie vacuum accordion screwdriver photocopier strawberry tile roof ski mask

\:1117‘"’ L | ‘ "
Bl m I,I'

four-poster African sea snake hair slide nematode school bus panpipe traffic

chameleon light
/ (, "‘ m
i
> = 7 n
- S JL‘ s 5 "
projector pole spotlight green snake trifle volcano chainlink monarch
fence

Figure 8. Evolving images to match DNN classes produces a
tremendous diversity of images. Shown are images selected to
showcase diversity from 5 evolutionary runs. The diversity sug-
gests that the images are non-random, but that instead evolutions
producing discriminative features of each target class. The mean
DNN confidence scores for these images is 99.12%.

(Nguyen et al, 2014)

51/129

One pixel attacks

AllConv NiN

SHIP HORSE DEER
CAR(99.7%) FROG(99.9%) AIRPLANE(85.3%)

™ X
HORSE DoG BIRD
DOG(70.7%) CAT(75.5%) FROG(86.5%)

DEER CAT
AIRPLANE(82.4%) DOG(86.4%) BIRD(66.2%)

DEER BIRD SHIP
AIRPLANE(49.8%) FROG(88.8%) AIRPLANE(B8.2%)

(Su et al, 2017)

52/129

Universal adversarial perturbations

(Moosavi-Dezfooli et al, 2016)

53/129

Fooling deep structured prediction
models

original semantic segmentation framework adwversarial attack compromised tic seg tation fr k

Figure 1: We cause the network to generate a minion as segmentation for the adversarially perturbed
version of the original image. Note that the original and the perturbed image are indistinguishable.

(Cisse et al, 2017)

54 /129

perceptibility perceptibility
£ 0.211

1 pel‘u_‘.(_‘pt.i?ity e . y perceptibility

0:210
A

!

Figure 4: Examples of successful targetted attacks on a pose estimation system. Despite the important
difference between the images selected., it is possible to make the network predict the wrong pose by
adding an imperceptible perturbation.

(Cisse et al, 2017)

55/129

(a) a great saint saint francis zaviour {b) 1 great sinkt shink t frimsuss avir

Figure 7: The model models’ output for each of the spectrograms is located at the bottom of each
spectrogram. The target transcription is: A Great Saint Saint Francis Xavier.

(Cisse et al, 2017)

56 /129

Attacks in the real world

57 /129

Attacks in the real world

58 /129

G R b WL AL LU L BB R R b

CPU vs GPU

CPU

GPU

60/129

CPU vs GPU

« CPU: e GPU:
o fewer cores; each core is faster o more cores; each core is slower
and more powerful and weaker
o useful for sequential tasks o great for parallel tasks

61/129

CPU vs GPU

e« CPU: e GPU:
o fewer cores; each core is faster o more cores; each core is slower
and more powerful and weaker
o useful for sequential tasks o great for parallel tasks
Cores Clock Speed Memory Price
CPU 4 4.4 GHz Shared with system $339

(l ntel Core | (8 threads with
: hyperthreading
7-7700K))

CPU 10 3.5 GHz Shared with system $1723
(Intel Core ﬁf‘h“‘reads
i?-ﬁQSUX) hyperthreading

)

GPU 3840 1.6 GHz 12 GB GDDR5X $1200
(NVIDIA
Titan Xp)

GPU 1920 1.68 GHz 8 GB GDDRS $399

(NVIDIA

GTX 1070)

Figure credit: J. Johnson ' : : g 62 / 1 29

CPU vs GPU

e SP =single precision, 32 bits / 4 bytes
o« DP =double precision, 64 bits / 8 bytes

11000 A
10000 -
9000 -

8000 -

GeForce GTX

GeForce GTX 680

Theoretical peak (GFLOPS)

GeFaorce GTX 580
GeForce GTX 480

GeForce GTX 280

1000 - y
0 ’ GeForce 8800 GTX Tesla C2075
Tesla C1060
%r&town

GeForce GTX 780 T

Tesla K20X

GTX TITAN X (Pascal)
Nvidia GPU SP

GTX TITAN X (Maxwell)

TITAN

Tesla P100 (PCI-E)
Nvidia GPU DP

Tesla K40

Intel CPU SP

Intel CPU DP

GeForce 7800 GTX
rce 6800 Ultra
T
2000 2002 2004 2006 2008 2010 2012
Release date

63/129

CPU vs GPU

TABLE 7. COMPARATIVE EXPERIMENT RESULTS (TIME PER MINI-BATCH IN SECOND)

Desktop CPU (Threads used) Server CPU (Threads used) Single GPU
1 2 4 8 | 2 4 8 16 32 G 1080 | K80
Calfe 1.324 0790 | 0.578 15444 || 1.355 0.997 0.745 0573 | 0.608 | 1.T130 0.041 | 0.030 0.071
CNTK 1.227 0.660 0.435 - 1,340 0.909 0.634 0.488 0.441 1.000 0.045 | 0.033 0.074
FCN-8 TF 7.062 4,789 2,648 1.938 9.571 6,569 3.399 1,710 0.946 0.630 0.060 | 0.048 0.109
MXNet || 4.621 2,607 2,162 1,831 5.824 3.356 2,393 2.040 1.945 2,670 - 0.106 0.216
Torch 1,329 0.710 0.423 - 1,279 1.131 0.593 0433 0.382 1.034 0.040 | 0,031 0.070
Caffe 1.606 0.999 0.719 - 1,533 1.045 0.797 0.850 0.903 1.124 0.034 | 0.021 0.073
CNTK 3.761 1.974 1.276 - 3,852 2.600 1.567 1.347 1.168 1.579 0.045 | 0.032 0.091
AlexNet-S | TF 6.525 2936 1.749 1.535 5741 4216 2202 1.160 0.701 0.962 0.059 | 0.042 0.130
MXNet || 2.977 2.340 2,250 2.163 3518 3.203 2926 | 2.828 2.827 2.887 0.020 | 0.014 0.042
Torch 4.645 2429 1.424 - 4,336 2.468 1,543 1.248 1.090 1.214 0.033 | 0.023 0.070
Calfe 11.554 | 7.671 5.652 - 10.643 | 8.600 6.723 6.019 6.654 8.220 - 0.254 0.766
CNTK - - - - - - - - - 0.240 | 0.168 0.638
RenNet-50 | TF 23905 | 16435 | 10206 | 7.816 29960 | 21.846 | 11.512 | 6.294 4,130 4.351 0.327 | 0.227 0.702
MXNet || 48.000 | 46,154 | 44444 | 43,243 || 57.831 | 57,143 | 54545 | 54,545 | 53,333 | 55.172 || 0.207 | 0.136 0.449
Torch 13.178 | 7.500 4.736 4.948 12807 | 8.301 5471 4.164 3.683 4,422 0208 | 0.144 0.523
Caffe 2476 1.499 1.149 - 2282 1,748 1.403 1211 1,127 1.127 0.025 | 0.017 0.055
CNTK 1.845 0.970 0.661 0.571 1.592 0.857 0.501 0,323 0.252 0.280 0.025 | 0.017 0.053
FCN-R TF 2.647 1.913 1.157 0.919 3410 2.54] 1,297 0.661 0.361 0.325 0.033 7 0.020 0.063
MXNet || 1914 1.072 0.719 0.702 1.609 1.065 0.731 0.534 0451 | 0447 0.029 | 0.019 0.060
Torch 1.670 0.926 0.565 0.611 1.379 0.915 0.662 0.440 0.402 0.366 0.025 | 0.016 0.051
Calffe 3.558 2.587 2.157 2.963 4,270 a514 3.381 3.364 4,139 4.930 0.041 | 0.027 0.137
CNTK 9.956 7.263 5.519 6.015 9,381 6.078 4,984 4.765 6.256 | 6.199 0.045 | 0.031 0.108
AlexNet-R | TF 4,535 3,225 1911 1.565 6.124 4,229 2.200 1.396 1.036 0.971 0.227 | 0.317 0.385
MXNet ([13401 | 12305 | 12.278 | 11.950 17994 | 17.128 | 16,764 | 16471 | 17.471 | 17.770 || 0.060 | 0.032 0.122
Torch 5.352 3.866 3.162 3.259 6.554 5288 4.365 3940 4.157 4.165 0.069 | 0.043 0.141
Caffe 6.741 5451 4,989 6.691 7.513 6.119 6.232 6.689 7.313 9.302 - 0.116 0.378
CNTK - - - - - - - - - - 0.206 | 0.138 0.562
RenNet-56 | TF - - - - - - - - - 0225 | 0,152 0.523
MXNet || 34.409 | 31.255 | 30.069 | 31.388 || 44.878 | 43.775 | 42.299 | 42.965 | 43.854 | 44.367 || 0.105 | 0.074 0.270
Torch 5.758 3,222 2.368 2.475 8,691 4.965 3.040 2.560 2,573 2811 0.150 | 0.101 0.301
Calfe || - - - - i - ” i - . - - -
CNTK 0.186 0.120 0.090 0.118 0.211 0.139 0.117 0,114 0.114 0.198 0.018 | 0,017 0.043
LST™M TF 4.662 3.385 1,935 1.532 6,449 4,351 2.238 1,183 0.702 0.598 0.133 | 0.065 0.140
MXNet || - . - - - - - - - - 0,089 | 0.079 0.149
Torch 6.921 3.831 2.682 3127 7471 4.641 3.580 3.260 5.148 5.851 0.399 | 0.324 0.560

Note: The mini-batch sizes for FCN-S, AlexNet-S, ResNet-50, FCN-R, AlexNet-R, ResNet-56 and LSTM are 64, 16, 16, 1024, 1024, 128 and 128 respectively,

Benchmarking State-of-the-Art Deep Learning Software Tools, Shi et al., 2016

64 /129

CPU vs GPU

« more benchmarks available at https://github.com/jcjohnson/cnn-
benchmarks

I intel E5-2620v3 [Pascal Titan X (no cuDNN) B Pascal Titan X (cuDNN 5.1)
24000

) \

= BOX B7X 71X 64x

ml/\ I/l _/l I.tl 7?’(

0
VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

N=16 Forward + Backward time (ms)

65/129

Figure credit: J. Johnson

CPU vs GPU

« more benchmarks available at https://github.com/jcjohnson/cnn-
benchmarks

B ntel E5-2620v3 [Pascal Titan X (no cuDNN) B Pascal Titan X (cuDNN 5.1)
24000

18000

o —— X 3.1x 3.4x 2 8x

i o i K

esNei-18 Res-Nei-50 ResNet-200

N=16 Forward + Backward time (ms)

66 /129

Figure credit: J. Johnson

System

67 /129

Figure credit: F. Fleuret

System

68 /129

Figure credit: F. Fleuret

System

Figure credit: F. Fleuret

69 /129

System

. B
!
&=

70/129

Figure credit: F. Fleuret

System

- -
'y Y -
= = >
1: L — =
= E

71/129

Figure credit: F. Fleuret

System

72/129

Figure credit: F. Fleuret

73/129

GPU

« NVIDIA GPUs are programmed through CUDA
(Compute Unified Device Architecture)

. The alternative is OpenCL, supported by several
manufacturers but with significant less investments
than Nvidia

. Nvidia and CUDA are dominating the field by far,
though some alternatives start emerging: Google
TPUs, embedded devices.

74 /129

Libraries

« BLAS (Basic Linear Algebra Subprograms):
vector/matrix products, and the cuBLAS
implementation for NVIDIA GPUs

« LAPACK (Linear Algebra Package): linear system
solving, Eigen-decomposition, etc.

« cuDNN (NVIDIA CUDA Deep Neural Network library)
computations specific to deep-learning on NVIDIA
GPUs.

75/129

GPU usage in pytorch

 Tensors of torch.cuda types are in the GPU memory.
Operations on them are done by the GPU and
resulting tensors are stored in its memory.

. Operations cannot mix different tensor types (CPU vs.
GPU, or different numerical types); except copy_()

- Moving data between the CPU and the GPU memories
is Far slower than moving it inside the GPU memory.

76 /129

GPU usage in pytorch

« The Tensor method cuda() returns a clone on the GPU

if the tensor is not already there or returns the tensor
itselF if it was already there, keeping the bit precision.

« The method cpu() makes a clone on the CPU if
needed.

. They both keep the original tensor unchanged

77 /129

Training deep networks

Tricks of the trade

78 /129

Data pre-processing

 Input variables should be as decorrelated as possible

o Inputvariables are "more independent”
o Network is Forced to find non-trivial correlations between inputs
o Decorrelated inputs — better optimization

 Input variables follow a more of less Gaussian distribution

e In practice:

o compute mean and standard deviation

= per pixel: (4, 6%)
= per color channel:

10

-10 }

=15 }

20 20 — L L L L L -20

79/129

Data pre-processing

Code from torchvision/transforms/functional.py

def normalize(tensor, mean, std):

for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)

return tensor

80/129

Data augmentation

e Changing the pixels without changing the label
e Train on transformed data
o Widely used

Flip Random crop

oOriginal

Cownkrast Tint

81/129

Figure credit: E. Gavves

Data augmentation

Horizontal flips

82 /129

Figure credit: A. Karpathy

Data augmentation

Random crops/scales

83/129

Figure credit: A. Karpathy

Data augmentation

Random crops/scales

e Training: sample random crops/scales

o Testing: average a fixed set of crops
Figure credit: A. Karpathy 84 / 1 29

Data augmentation

Color jitter

f“b Yoo

o randomly jitter color, brightness, contrast, etc.
e other more complex alternatives exist (PCA-jittering)

Figure credit: A. Karpathy 85 / 129

Data augmentation

e Various techniques can be mixed

 Domain knowledge helps in finding new data augmentation
techniques

o Very useful for small datasets

86 /129

Data augmentation

from torchvision import transforms

data_transforms = {

"train': transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, stauration=0.2, hue=0
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

1),

'val': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

D,

no need for data augmentation on validation set

87 /129

Weight initialization

There are a few contradictory requirements:

e Weights need to be small enough
o around origin for symmetric activation Functions (tanh, sigmoid) — stimulate
activation functions near their linear regime
o larger gradients — faster training
e Weights need to be large enough

o otherwise signal is too weak for any serious learning

_ 1 _ b e
R tanh(z) = T
sigm’(z) = sigm(z)(1 — sigm(z)) tanh’(z) = 1 — tanh(x)? relu’(z) = 1,59

88 /129

Weight initialization

« Weights should evolve at the same rate across layers
during training, and no layer should reach a saturation
behavior before others.

« Weights must be initialized to preserve the variance
of the activations during the forward and backward
computations

o neurons will operate in their full capacity

. Initialize weights to be asymmetric

o if all weights are 0, neurons generate same gradient

. Initialization depends on non-linearities and data
normalization 89 /129

Weight initialization

From torch/nn/modules/1linear.py

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))

self.weight.data.uniform_(-stdv, stdv)

if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)

90 /129

Weight initialization

From torch/nn/modules/1linear.py

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)

When used with tanh almost all neurons get completely either -1 and
1. Gradients will be zero

91/129

Xavier initialization

o We get a better compromise with "Xavier initialization"
e From torch/nn/init.py:

def xavier_normal(tensor, gain=1):
if isinstance(tensor, Variable):
xavier_normal(tensor.data, gain=gain)

return tensor
fan_in, fan_out = calculate_fan_in_and fan_out(tensor)

std = gain * math.sqrt(2.0 / (fan_in + fan_out))
return tensor.normal (0, std)

fan_in = num neurons in the input

fan_out = num neurons at the output

Understanding the difficulty of training deep feedforward neural networks, Glorot & Bengio, 2010 92 /129

Xavier initialization

o We get a better compromise with "Xavier initialization"
e From torch/nn/init.py:

def xavier_normal(tensor, gain=1):
if isinstance(tensor, Variable):
xavier_normal(tensor.data, gain=gain)
return tensor

fan_in, fan_out = calculate_fan_in_and fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
return tensor.normal (0, std)

Unlike sigmoids, ReLUs ground to O the linear activation about half
the time

Understanding the difficulty of training deep feedforward neural networks, Glorot & Bengio, 2010 93 / 129

Kaiming He initialization

« Double weight variance (i.e. multiply with 4/2) in order to:

o compensate for the zero flat area — input and output maintain same
variance

o very similar to Xavier initialization
e From torch/nn/init.py:

def kaiming_normal(tensor, a=0, mode='fan_1in'):
if isinstance(tensor, Variable):

kaiming_normal(tensor.data, a=a, mode=mode)
return tensor

fan = _calculate _correct_fan(tensor, mode)
gain = calculate gain('leaky relu', a)

std = gain / math.sqrt(fan)

return tensor.normal (0, std)

gain = /2

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, He et al., 2015

94 /129

Kaiming He initialization
The same type of reasoning can be applied to other activation
functions

From torch/nn/init.py:

def calculate_gain(nonlinearity, param=None):
linear_fns = ['linear', 'convid', 'conv2d', 'conv3d', 'conv_transposeld', 'conv_

if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1

elif nonlinearity == 'tanh':
return 5.0 / 3

elif nonlinearity == 'relu':
return math.sqrt(2.0)

elif nonlinearity == 'leaky relu':

if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstanc
True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param
return math.sqrt(2.0 / (1 + negative_slope ** 2))
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))

95 /129

Weight initialization

Does it actually matter that much?

96 /129

Weight initialization

Does it actually matter that much?

% Anton Osokin
@aosokin_ml

Following v

Initialization in deep learning matters a lot! In
a simple @PyTorch code for seg2seq NMT,
changing the init of embeddings from default
to kaiming (Gaussian vs uniform is not
important, but rescaling is!) and regularizing
more boosts results by 2 BLEU. How to tune

these things?

. rt———

o4

BLUE: default pytorch init for embeddings
(GREEN: using nn.init kaiming_uniform(self. weight,
‘mode="fan_in') to init embeddings

1 : adding dropout on top of embeddings

02

BLEU on the training set

01

training iterations
o 50K 100 150% 209k

03

BLUE: default pytorch embeddings

mode="fan_in') to initialize embeddings
AE 0 adding dropout 0.3 on top of embeddings

a2

BLEU score on the validation set

\: using nn.init.kaiming_uniform(self.weight,

015
ot
005
Training steps
0 S0k 100K 150k

97 /129

Hyper-parameter search

Coarse — fine cross validation stage

First stage: only a few epochs to get rough idea of what params
work

Second stage: longer running time, finer search

Usually there are some typical values for:

o Learning rate: [1e-1,1e-5] (log space steps)
o weight-decay: 0.0005
o momentum: 0.5, 0.9, 0.99

Learning rate:

o For learning rate use log scale when checking values
o |floss == NaN, learning rate is too big
o |f loss stagnates, learning rate is too small

98 /129

Architecture hyperparamenters

There is no silver bullet.

e Re-use something well known that works and start from there

o Modulate the capacity until it overfits a small subset, but does
not overfit / underfit the full set

o Capacity increases with more layers, more channels, larger
receptive fields, or more units

o Regularization to reduce the capacity or induce sparsity

o Use prior knowledge about the "scale of meaningful context" to
size Filters / combinations of filters (e.g. knowing the size of
objects in a scene, the max duration of a sound snippet that
matters)

o Grid-search all the variations that come to mind (if you can afford
to)

99 /129

Slide credit: F. Fleuret

Architecture hyperparamenters

« Number of hidden layers

o start small (a few layers) and increase complexity gradually
o add more layers — check if performance (on validation set) improves
o add more neurons — check if performance (on validation set) improves

100/129

Architecture hyperparamenters

« Number of hidden layers

o start small (a few layers) and increase complexity gradually
o add more layers — check if performance (on validation set) improves
o add more neurons — check if performance (on validation set) improves

« Activation function

o start with ReLU then check out others: LeakyRelLU, PReLU, etc.

101/129

Architecture hyperparamenters

« Number of hidden layers

o start small (a few layers) and increase complexity gradually
o add more layers — check if performance (on validation set) improves
o add more neurons — check if performance (on validation set) improves

« Activation function

o start with ReLU then check out others: LeakyRelLU, PReLU, etc.

. Type and amount of regularization

o use [, even if network is deep or wide
o weight decay=5¢ — 5
o you can set weight decay to 0 is learning rate is very small.

102 /129

Learning rate

Th
e most tweaked hyperparameter

nce is

Artificial Intelligence 15 Artificial Intellige
the New Electricity the New Alchemy
Andrew Ng - Ben Recht

Ben Recht
103 /129

Learning rate

-
he most tweaked hyperparameter

Artificial Intelligence 15 Artificial Intelligence IS
the New Electricity the New Alchemy
Andrew Ng - Ben Recht

Ben Recht v .
ery active area of research!

104 /129

Learning rate

The appropriate learning rate will lead to faster convergence by:

e reducing the loss quickly — large learning rate

e not be trapped in bad minimum — large learning rate

e not bounce around in narrow valleys — small learning rate
e not oscillate around a minimum — small learning rate

Slide credit: F. Fleuret 1 05 / 1 29

Learning rate

The appropriate learning rate will lead to faster convergence by:

e reducing the loss quickly — large learning rate

e not be trapped in bad minimum — large learning rate

e not bounce around in narrow valleys — small learning rate
e not oscillate around a minimum — small learning rate

So learning rate should be larger at the beginning and smaller in the
end.

The practical strategy is to look at the losses and error rates across
epochs and pick a learning rate and learning rate adaptation.

Slide credit: F. Fleuret 1 06 / 1 29

Learning rate

CIFAR10 dataset

- E g - PR
o i e .3 s o
YRk = H A .
Tt LSS [~ [RS
EREl wwive B S EE
DR T A a0
AURSe® IS
R e B o TR A S TS
P e o e
e baaW. el

32 x 32 color images, 50k train samples, 10k test samples, 10 classes

107 /129

Learning rate

Small CNN on CIFAR10, cross-entropy, batch size 100, = 1e-1

Loss

1

Train loss
Test accuracy
001 | | | | |
0 5 10 15 20 25
Nb. epochs

Figure credit: F. Fleuret

30

35

40

45

50

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Accuracy

108 /129

Learning rate

Small CNN on CIFAR10, cross-entropy, batch size 100

Loss

0.1 -

0.01 1 | | 1 1 L | ! 1
0 5 10 15 20 25 30 35 40 45 50

Nb. epochs

109 /129

Figure credit: F. Fleuret

Learning rate

Using n=1e-1 for 25 epochs, then reducing it.

|
Ir2=2e-1

Ir2=1e-2
1L Ir2=5e-3 |l
7
S
0.1 | -
001 | | |] | | | | |
0 5 10 15 20 25 30 35 40 45
Nb. epochs

Figure credit: F. Fleuret

50

110/ 129

Learning rate

Using n=1e-1 for 25 epochs, then reducing reducing it to 1e-2

| | | | | | I | I 075
4 0.7
1 E
- 0.65
- >
g 0-6 (Lé
o = |
| 3
01 L 4 055 <«
=4 05
4 045
Train loss
Test accuracy
001 | | | | | 1 | | | 04

0 5 10 15 20 25 30 35 40 45 50
Nb. epochs

111 /129

Figure credit: F. Fleuret

Learning rate

The test loss is a poor performance indicator, as it may increase even
more on misclassified examples, and decrease less on the ones
getting fixed.

| | | | | | | | | 0.75

0.7

0.65

0.6

Loss
Accuracy

0.55

0.5

Test loss 4 0.45
Train loss)
Tealr.t acculracy

! | | ! I | ! 0.4
0 5 10 15 20 256 30 35 40 45 &0

Nb. epochs

0.01

112 /129

Figure credit: F. Fleuret

Learning rate schedules

Decay learning rate over time:

. constant: learning rate remains constant for all
epochs (not a good idea)

. step decay: decay learning by fixed amount (e.g. half)
every few epochs

. exponential decay: 77 = fge ™~

Ho
1+kt

. inverse decay:y =
In many cases, step decay is preferred.

113 /129

Learning rate schedules

& Loss

Learning rate decay!

Epoch

Decay is more common for SGD+momentum and less for Adam.

114 /129

Learning rate schedules

Cyclic learning rates

Use multiple snapshots of a single model.

05+ Single Model ,9\ 57 Snapshot |
04/ Standard LR Schedule |/ 044 Cyclic LR:
0.3 /“ \ : 0.3+
0.2+ 024
w
0.1 4 0.1 §
o
04 0+ =
~01 - 014 .g
-0.24 o2 '
-0.3 4 034
-0.4) 04
50 50 50 \
40 40 40
30
2

Snapshoht ensembles: train 1, get M free, Huang et al., ICLR 2017

10!

10°

1072

Cifar10 (L=100,k=24, B=300 epochs)

- Standard Ir scheduling
== (Cosine annealing with restart Ir 0.1

1
|

2
|

| |
Model ; Model § Model ; Model | Model | Model
| IR -

5 6
l l

50

100

150
Epochs

200 250 300

115 /129

Learning rate schedules

Using torch.optim.1lr_scheduler:

Vanilla variants: StepLR, MultiStepLR, ExponentialLR

Assuming optimizer uses lr = 0.5 for all groups

lr = 0.05 if epoch < 30

lr = 0.005 if 30 <= epoch < 60
lr = 0.0005 if 60 <= epoch < 90
#

scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(100):

scheduler.step()

train(...)

validate(...)

Assuming optimizer uses lr = 0.5 for all groups

lr = 0.05 if epoch < 30
lr = 0.005 if 30 <= epoch < 80
lr = 0.0005 1if epoch >= 80

scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1)

for epoch in range(100):
scheduler.step()
train(...)
validate(...)

116 /129

Learning rate schedules

Using torch.optim.1lr_scheduler:
Novel variants: ReduceLROnPlateau

optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
scheduler = ReducelLROnPlateau(optimizer, 'min')
for epoch in range(10):
train(...)
val_loss = validate(...)
Note that step should be called after validate()
scheduler.step(val_loss)

117 /129

Early stopping

To avoid overfitting another popular technique is early stopping
Monitor performance on validation set

Training the network will decrease training error, as well
validation error (although with a slower rate usually)

Stop when validation error starts increasing

o most likely the network starts to overfit
o use a patience term to let it degrade for a while and then stop

Error

Training cycles

118 /129

Loss functions

. Typically training is easier for classification than for
regression to a scalar

. However many Computer Vision papers rely on
regression losses (MSE, L1, Huber,etc.) with good

results

» Multiple losses can be considered:

o on the same output
o by adding multiple heads to the network (e.g. classification + localization)

. pytorch has already many loss functions/criterions
readily available

119/129

Summary

Preprocess data to be centered on zero

Initialize weights based on activation functions

Always use L, regularization and dropout

Use batch normalization generously

o Start with Adam, but switch to SGD once more
Familiar with the data and the problem

120/ 129

Babysitting your network

Lots of curve monitoring

good learning rate

g lossfunctions

They are a window to your model's heart.

Contribute loss functions to @karpathy. It doesn't matter if your loss functions are flat, converge, diverge, step or oscillate
combination of the above). All loss functions are computed beautiful in their own way and are sought after with equal ten

Discover more bizarre looking
curves
https://lossfunctions.tumblr.com/

121/129

Babysitting your network

. Always check gradients if not computed automatically
« Check that in the First steps you get a random loss

« Check network with few samples

o turn off regularization. You should predictably overfit and have a 0 loss ©
o turn or regularization. The loss should increase

. Have a separate validation set

o Compare the curve between training and validation sets
o There should be a gap, but not too large

122 /129

Other common pitfalls

inputs in range [0, 255] instead of [0, 1]

different pre-processing between train, valid, test

non-shuffled dataset

class imbalance

. too much data augmentation

too much reqularization

123/129

Other common pitfalls

too much/too little capacity

bugs in the loss function: wrong input, wrong
gradients

wrong dimensions of the layers

exploding/vanishing gradients

given too little time for training

forgot in-appropriate .train()/.eval() flag on

124 /129

Transfer learning

« Assume two datasets Sand T

. Dataset § is Fully annotated, plenty of images and we
can train a model CNNg oniit

. Dataset 7 is not as much annotated and/or with fewer
Images

o annotations of 7" do not necessarily overlap with S

. We can use the model CNNy to learn a better CNN7

. This is transfer learning

125/129

Transfer learning

. Even if our dataset 7 is not large, we can train a CNN
forit

« Pre-train a CNN on the dataset S

« The we can do:

o fine-tuning
o use CNN as feature extractor

126 /129

Fine-tuning

« Assume the parameters of CNNy are already a good
start near our final local optimum

. Use them as the initial parameters for our new CNN
fFor the target dataset

. This is a good solution when the dataset 7 is relatively
big

o e.g.for Imagenet .S with 1M images, T" with a few thousands images

127 /129

Fine-tuning

[) Lots of data

(\ Some data

f—l—\ Few data

CiPlcoPlcaPlcaPles fo P 7 P fg > bike

aEEEEEN

W1 W2 W3 Wa Ws Ws W7z Wsg

e Depending on the size of 7" decide which layer to freeze and
which to finetune/replace
o Use lower learning rate when fine-tuning: about % of original

learning rate
o for new layers use agressive learning rate

e IFS and T are very similar,fine-tune only fully-connected layers

128/129

Transfer learning

MULTIPLE Multi-Task Across Categories Transfer Learning
SIMULTANEOUS Di,....Dy S it PS(X) ~ PHX
PROBLEMS T, 1y Vo#£Y (X) (X)
symmetric advantage
by joint learning

Distribution Domain

Mismatch D ={Xx,P(X)}
P(X.Y)

Domain Adaptation
P5(Y|X) ~ PY(Y|X)

Same Categories

8=yt

Different Sample
Distribution

PS(X) # PH(X)

Task

res T = (3, P¥|X)}

Ye)y

Sample Selection Bias
sub-selected
train samples

Covariate Shift v 1 d
- PS(Y|X,0)

SOURCE — TARGET
PROBLEMS

kmis-specified model) n

Heterogeneous Transfer
—

Different Elephants | ..
Featurest are large
XS £ X and gray...

(Tommasi, PhD thesis, 2012)

129/129

