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Terminology
According to The American Society of Mechanical Engineers (2006) :

Verification : the process of determining that a computational model
accurately represents the underlying mathematical model and its solution.

- Solve the equations right -

Validation : the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the
intended uses of the model.

- Solve the right equations -

Calibration : the process of adjusting physical modeling parameters in the
computational model to improve agreement with experimental data.

Remark. Possible distinction between code verification (unitary tests, check of the
numerical scheme convergence, etc.) and solution verification (ensuring that the mesh
is thin enough, check of the input data, etc.).

The American Institute of Aeronautics and Astronautics (1998) provides the following
definition :

Prediction : use of a computational model to foretell the state of a
physical system under conditions for which the computational model has
not been validated.
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Concepts and notation

SRQ = System Reponse Quantity (Oberkampf and Roy, 2010) : physical
quantity of interest considered during the validation

U ⊂ R
L où L ≤ 4 spatio-temporal domain, e.g. U = S × [0 ; T ] where S ⊂ R

3

is a physical domain and T is a duration

x ∈ X ⊂ R
d : d scalars on which the SRQ depends (features of the system of of

its environment), that is the experimental conditions

Real SRQ : r(x , u)

Measured SRQ : m(x , u) ; m(x , u) − r(x , u) unknown measurement error

Theoretical SRQ (mathematical model) : v(x , u)

Numerical SRQ (numerical model) : y(x , u)

Possible natural randomness : R(ω ∈ Ω, x , u), hence V (ω ∈ Ω, x , u)...
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Example of an ambitious approach

Standard of The American Society of Mechanical Engineers
(2009)

v(x)−r(x) = [y(x + δx ) − m(x)]
︸ ︷︷ ︸

observed gap

d(x) between

measurement and simulation
(no uncertainty)

− [y(x + δx ) − v(x)]
︸ ︷︷ ︸

uncertain numerical
errors

εy + εx

+ [m(x) − r(x)]
︸ ︷︷ ︸

uncertain measurement
errors

εm

εy = y(x) − v(x) : subject of the verification ;

εx = y(x + δx ) − y(x) : uncertainty to propagate through y .

Principle : modelling the uncertainty about (εy , εx , εm) by a joint distribution in order
to estimate a confidence interval of a given level α for v(x) − r(x).
Assumption of independent gaussian errors :

[

d(x) − β
√

σy
2 + σx

2 + σm
2; d(x) + β

√

σy
2 + σx

2 + σm
2

]

where β is the quantile of order 1 − (α/2) of N (0; 1).
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Calibration-validation : formalization

Assumption of a verified numerical model : Y ∼ V (e.g. y = v).

Model of R(x) (by abuse of notation) :

Y : (x , θy )
︸ ︷︷ ︸

numerical model
inputs

7→ Y (ω ∈ Ω, u ∈ U , x , θy )
︸ ︷︷ ︸

multivariate distribution

where θy are uncertain parameters assumed invariant from an experiment to
another one.

N data (measurements) associated to conditions xn, 1 ≤ n ≤ N :
mn(u ∈ U) realizations of M(xn, u ∈ U) such that M(xn, u ∈ U) − R(xn, u ∈ U)
is the measurement error.

The exact conditions xn are generally unknown ! This leads to group the
experiments which are supposed to share the same conditions (repetitions) and
to associate each of the K groups with some best-estimate conditions x̂k

(arbitrary indeed) and a prior on the discrepancy between x̂k and the true
conditions.
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Calibration-validation : formalization

Example of statistical model

Model of mψ(k,l) : Zψ(k,l) = Yψ(k,l) + εψ(k,l)

with Yψ(k,l)|θk , θy ∼ Y (x̂k + θk , θy )

θ = (θy , θε, θ1, . . . , θK ) ∼ πθ (bayesian prior)

θy

(Yψ(k,l)(u))u∈U

(εψ(k,l)(u))u∈Uθε

θk

x̂k

1 ≤ l ≤ Lk

1 ≤ k ≤ K
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Pure validation

Calibration already done

θ = θ̂ : pure validation.

θ ∈ Θ or θ ∼ πθ (non-Dirac prior) : validation-calibration.

Pure validation in theory
Let V ∈ X be the domain of validation :

∀x ∈ V
(

R(x , u)
)

u∈U
∼

(
Y (x̂ , u, θ̂y )

)

u∈U

Pure validation in practice

∀k ∈ {1, · · · , K}
(

M1(xψ(k,1)), · · · , MP(xψ(k,1))
)

︸ ︷︷ ︸

Lk -sample available

∼
(

Z1(x̂k , θ̂), · · · , ZP(x̂k , θ̂)
)

︸ ︷︷ ︸

may incorporate a
CPU-consuming

black-box model...

Un jour, j’irai vivre en Théorie, car, en Théorie, tout se passe bien !

La différence entre théorie et pratique ? En théorie c’est pareil.
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Pure validation

Pure validation in practice

∀k ∈ {1, · · · , K}
(

M1(xψ(k,1)), · · · , MP(xψ(k,1))
)

︸ ︷︷ ︸

Lk -sample available

∼
(

Z1(x̂k , θ̂), · · · , ZP(x̂k , θ̂)
)

︸ ︷︷ ︸

may incorporate a
CPU-consuming

black-box model...
data (H0)

Statistical tools

Hypothesis statistical testing (e.g. p-value),

Estimation of discrepancy/divergence between distributions (can be used as a
test statistic),

Detection of outliers,

graphics (qqplot).
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Pure validation

Pure validation in practice

∀k ∈ {1, · · · , K}
(

M1(xψ(k,1)), · · · , MP(xψ(k,1))
)

︸ ︷︷ ︸

Lk -sample available

∼
(

Z1(x̂k , θ̂), · · · , ZP(x̂k , θ̂)
)

︸ ︷︷ ︸

may incorporate a
CPU-consuming

black-box model...
M Z

Statistical tools

Hypothesis statistical testing (e.g. p-value),

Estimation of discrepancy/divergence between distributions (can be used as a
test statistic),

D(M, Z) ≈ 0?

Detection of outliers,

graphics (qqplot).
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Designing the experiments

How to choose the experimental conditions ?

Two interesting approaches

Classical screening designs for physical experiments :

Objective : identifying the conditions xi (components of x) whose
variations have a significant impact on the SRQ.

A solution : fractorial factorial designs.

Space filling designs

Objective : « covering » the domain V.

A solution : optimized Latin Hypercube Designs.

Another approach

Carrying out a sensitivity analysis of the (non validated !) numerical model.
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Designing the experiments

The following figure illustrates two-dimensional Simple Random Sampling
(SRS), Latin Hypercube Sampling (LHS) and discrepancy-optimised LHS with
n = 10.
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Figure: Left : SRS. Middle : LHS. Right : discrepancy-optimised LHS
based on the previous LHS (design at the middle).
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A simple situation

Hypothesis
Scalar deterministic SRQ r and unbiased measurements.

A well-known result
Let (M1, . . . , Mn) be a sample of size n > 1 of iid variables such that

µM = E

[
Mk

]
< +∞ and V

[
Mk

]
< +∞ and

Mn =
1

n

n∑

k=1

Mk and Sn
2 =

1

n

n∑

k=1

(Mk)
2 − Mn

2
,

then a confidence interval of level α of µM is

In = [Mn − u1−α/2
Sn√

n
; Mn + u1−α/2

Sn√
n

]

where u1−α/2 is the quantile of order 1 − α
2

of the distribution N (0 ; 1) and this confidence interval is asymptotic (large n)

of the distribution t(n − 1) (Student distribution with n − 1 degrees of freedom)
if the distribution of the Mi is gaussian.
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A simple situation

Hypothesis

n measurements Mk(x), 1 ≤ k ≤ n, of r(x) such that E

[
Mk(x)

]
= r(x).

Indicators proposed by Oberkampf and Barone (2006)

Since P(r(x) − y(x) ∈ In(x)) = 1 − α : Mn(x) − y(x) and

|In(x)| = 2 u1−α/2
Sn(x)√

n
.

Estimation by regression in V :

global indicators :

Volume(V)−1

∫

V

∣
∣
∣
E [M(x)] − y(x)

E [M(x)]

∣
∣
∣ dx et Volume(V)−1

u1−α/2√
n

∫

V

∣
∣
∣
∣

Sn(x)

M̂(x)

∣
∣
∣
∣

;

maximal error indicators :
∣
∣
∣

r(x∗) − y(x∗)

r(x∗)

∣
∣
∣ =

∣
∣
∣
E [M(x∗)] − y(x∗)

E [M(x∗)]

∣
∣
∣ and

u1−α/2√
n

∣
∣
∣
∣

Sn(x∗)

M̂(x∗)

∣
∣
∣
∣

where x∗ = arg maxx∈V

∣
∣ r(x)−y(x)

r(x)

∣
∣.
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Comparison of distributions
Examples of indicators
Let FR and FY be two Cumulative Density Functions (CDF) ; the corresponding
Probability Density Functions (PDF) are fR and fY if they exist.

Area metric
[Ferson et al., 2008]

‖FR −FY ‖L1 =

∫

R

|FR−FY |

Easy to estimate
from empirical CDF

Always well-defined
and robust

Same physical unit
than r (scale
variant)

Relative entropy
(divergence of

Kullback-Leibler)

K(FR , FY )=

∫

R

fR log(
fR

fY
)

K(FR , FY )=0⇒FR =FY

Not symmetric
(notion of reference
FR)

Issues : estimation
of PDF and cases
where
K(FR , FY ) = +∞

Distance of Hellinger
H(FR , FY )

=

∫

R

(
√

fR −
√

fY )
2

H(FR , FY )=0⇒FR =FY

H(FR , FY ) ≤ 1

Minor issue :
estimation of PDF

Undimensional
overlap indicator
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Comparison of distributions

Area metric (Ferson et al., 2008)

Ferson et al. (2008) propose a technique called u-pooling to aggregate

several couples of samples to get a global indicator :

for different experimental conditions x

or for different times t i , points ui , etc.

however this technique is dangerous : multivariate two-sample test of
Székely and Rizzo (2004) better for example.

All indicators of distribution comparison are not equivalent.
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Indices of Tversky
Figure of Merit in Space (FMS)

Prediction of the location of a plume of pollutant (concentration > threshold) :

IGN 2012 - Licence ouverte : produced from a map provided by the Institut National de l’information Géographique

et forestière under the Etalab Open Licence (http://www.etalab.gouv.fr/licence-ouverte-open-licence)

FMS =
observed area

⋂
predicted area

observed area
⋃

predicted area

Generalization (Warner et al., 2004)

Let R be a set of interest of the SRQ.

T =
1(r,y)∈R2 (r , y)

1r∈R ou y∈R(r , y)
=

1(r,y)∈R2 (r , y)

1(r,y)∈R2 (r , y) + 1(r,y)∈R×R̄(r , y) + 1(r,y)∈R̄×R(r,y)
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ROCOM

Experimental data from project OCDE PKL2 (HZDR, Helmholtz
Zentrum Dresden Rossendorf).

Simulation performed with Code_Saturne by Arnaud Barthet (EDF).
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ROCOM

Experimental data from project OCDE PKL2 (HZDR, Helmholtz
Zentrum Dresden Rossendorf).

Simulation performed with Code_Saturne by Arnaud Barthet (EDF).
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more
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Principle of the analysis

Complete spatio-temporal domain :

D = ((Si ∪ Se) × [0 ; T ]) ∪ (Sc × [T0 ; T ])

where

Se is the downcomer external surface,
Si is the downcomer internal surface,
et Sc is the core entrance surface.

Definition of a subdomain W ⊂ D and a random variable U ∼ U(W).

Analysis of scalar random variables (five repetitions of the physical experience,
one numerical simulation) : (r1(U), r2(U), r3(U), r4(U), r5(U), y(U)).
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Indices de Tversky

Definition based on a set R of interest (R ⊂ R) :

AOV (v,w) = E

[
1R×R(v(U),w(U))

]
(overlapping area) ;

AFP (v,w) = E

[
1

R̄×R
(v(U),w(U))

]
(false positive area) ;

AFN (v,w) = E

[
1

R×R̄
(v(U),w(U))

]
(false negative area) †.

Let b(u) = min(v(u), w(u)) for all u ∈ W, second definition based on :

AOV (v,w) = E [b(U)] ;
AFP (v,w) = E [max(w(U) − b(U), 0)] (the more w over-predicts v on W, the greater) ;
AFN (v,w) = E [max(v(U) − b(U), 0)] (the more w under-predicts v on W, the greater).

Index de Tversky :

T (v,w) =
AOV (v,w)

AOV (v,w) + AFN (v,w) + AFP (v,w)
.

Over-prediction index :

T+(v,w) = 1 −
AFP (v,w)

AOV (v,w) + AFP (v,w)
.

Under-prediction index :

T−(v,w) = 1 −
AFN (v,w)

AOV (v,w) + AFN (v,w)
.
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Statistical depth

Band depth (López-Pintado and Romo, 2007)

Functional data : yn(t) for t ∈ [0 ; T ], 1 ≤ n ≤ N

Graph of y : G(y) = {(t, y(t)) : t ∈ [0 ; T ]}
Band of yn1 , . . . , ynj :
B(yn1 , . . . , ynj ) = {(t, y) : t ∈ [0 ; T ], min

k=1,...,j
ynk (t) ≤ y ≤ max

k=1,...,j
ynk (t)}

A band defined by three curves
(López-Pintado and Romo, 2007)

Band depth of y (J = 2 or 3 in practice) :

SN, J (y) =

J∑

j=2

(
N
j

)−1 ∑

1≤n1<...<nj ≤N

1(G(y) ⊂ B(yn1 , . . . , ynj ))

︸ ︷︷ ︸

proportion of bands given by j curves containing G(y)
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Statistical depth

Generalized/modified band depth (López-Pintado and Romo,
2007)

Set where y is inside B(yn1 , . . . , ynj ) :
A(y ; yn1 , . . . , ynj ) = {t ∈ [0 ; T ] : min

k=1,...,j
ynk (t) ≤ y ≤ max

k=1,...,K
ynk (t)}

Generalized band depth of y (J = 2 or 3 in practice) :

GSN, J (y) =

J∑

j=2

(
N
j

)−1 ∑

1≤n1<...<nj ≤N

λ(A(y ; yn1 , . . . , ynj ))/T
︸ ︷︷ ︸

proportion of time during which

y is inside B(yn1 , . . . , y
nj )

(Sun and Genton, 2011)
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High-density zone

Minimum volume of a given confidence level

Vβ = arg min
E∈B(RK )
P(C∈E)=β

λ(E)

There is a density threshold dβ such that

Vβ = {x ∈ R
K / fC (x) ≥ dβ}.
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Perspectives

Bayesian model of Bayarri et al. (2007) (following Kennedy
and O’Hagan (2001))

Measurement error : M(x) − r(x) ∼ N (0, 1/λm) with a unknown precision λm.

Biased numerical model : r(x) = y(x , θ) + bθ(x)

Independent priors on θ (uniform) and b.

Kriging of the unknown bias : b(x) ∼ GP(µ(x), c(δx)) where : †

a systematic bias : E [b(x)] = µ(x) = µb ;

Cov [b(x), b(x ′)] = c(x − x ′) = 1
λb cgecf

αb ,βb (x − x ′) with a

smoothing/regularity parameter αb and some unknown precision and scale
parameters. λb and βb .

†. cgecf : generalized exponential correlation function

Bayes factor (Rebba et al., 2006; Damblin, 2015)
P(Z |m)
P(Z ′|m)

with Z without bias and Z ′ with bias. Ask Merlin !

Validation of numerical models by statistics 04/06/2018 49/52



Perspectives

The multifidelity approach

Objective : building a predictive model of the finest fidelity y1 (e.g. fine mesh)
from evaluations of y1 together with some of a lower fidelity model y0 (e.g.
coarse mesh).

Le Gratiet (2013) :

y1(x) = ρ(x) y0(x) + b(x) with y0(.), b(.) ∼ GP

and ρ(x) = θT f (x) with β unknown.

Zertuche (2015) :

y1(x) = ϕ(y0(x)) + b(x) with y0(.), b(.) ∼ GP

and ϕ estimated by (one-dimensional) locally linear polynomial regression.

Replace y1 by r and y0 by y .
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Last words : evaluation, not validation

Chang and Hanna (2004) :

However, according to Oreske et al. (1994), verification and validation
of numerical models of natural systems are impossible, because natural
systems are never closed and because model solutions are always
non-unique. The random nature of the process leads to a certain
irreductible inherent uncertainty. Oreske et al. (1994) suggest that models
can only be confirmed or evaluated by the demonstration of good
agreement between several sets of observations and predictions. Following
this guidance, the term evaluation is used instead of verification
throughout this paper.

Validation of numerical models by statistics 04/06/2018 51/52



Références
American Institute of Aeronautics and Astronautics (1998). Guide for the verification and validation of

computational fluid dynamics simulations.
Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., Lin, C.-H., and Tu, J. (2007). A

framework for validation of computer models. Technometrics, 49(2) :138–154.
Chang, J. C. and Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric

Physics, 87(1-3).
Damblin, G. (2015). Contributions statistiques au calage et à la validation des codes de calcul. PhD thesis,

Université Paris-Saclay.
Ferson, S., Oberkampf, W. L., and Ginzburg, L. (2008). Model validation and predictive capability for the thermal

challenge problem. Computer Methods in Applied Mechanics and Engineering, 197(29–32) :2408 – 2430.
Validation Challenge Workshop.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical
Society : Series B (Statistical Methodology), 63(3) :425–464.

Le Gratiet, L. (2013). Multi-fidelity Gaussian process regression for computer experiments. PhD thesis, Université
Paris-Diderot.

López-Pintado, S. and Romo, J. (2007). Depth-based inference for functional data. Computational Statistics &
Data Analysis, 51 :4957–4968.

Oberkampf, W. L. and Barone, M. F. (2006). Measures of agreement between computation and experiment :
Validation metrics. Journal of Computational Physics, 217(1) :5 – 36. Uncertainty Quantification in Simulation
Science.

Oberkampf, W. L. and Roy, C. J. (2010). Verification and Validation in Scientific Computing. Cambridge
University Press.

Rebba, R., Mahadevan, S., and Huang, S. (2006). Validation and error estimation of computational models.
Reliability Engineering and System Safety, 91(10–11) :1390––1397.

Sun, Y. and Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graphical Statistics,
20(2) :316––334.

Székely, G. J. and Rizzo, M. L. (2004). Testing for equal distributions in high dimension. InterStat.
The American Society of Mechanical Engineers (2006). Guide for verification and validation in computational solid

mechanics.
The American Society of Mechanical Engineers (2009). Standard for verification and validation in computational

fluid dynamics and heat transfer. ISBN : 9780791832097.
Warner, S., Platt, N., and Heagy, J. F. (2004). User-oriented two-dimensional measure of effectiveness for the

evaluation of transport and dispersion models. Journal of Applied Meteorology, 43(1) :58–73.
Zertuche, F. (2015). Utilisation de simulateurs multi-fidélite pour les études d’incertitudes dans les codes de calcul.Validation of numerical models by statistics 04/06/2018 52/52


	Generalities
	First practical application: ROCOM
	Second practical application: loss of coolant accident (LOCA)
	Perspectives

