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According to The American Society of Mechanical Engineers (2006) :

Verification : the process of determining that a computational model
accurately represents the underlying mathematical model and its solution.

- Solve the equations right -

Validation : the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the
intended uses of the model.

- Solve the right equations -

Calibration : the process of adjusting physical modeling parameters in the
computational model to improve agreement with experimental data.

Remark. Possible distinction between code verification (unitary tests, check of the
numerical scheme convergence, etc.) and solution verification (ensuring that the mesh
is thin enough, check of the input data, etc.).

The American Institute of Aeronautics and Astronautics (1998) provides the following
definition :

Prediction : use of a computational model to foretell the state of a

physical system under conditions for which the computational model has

not been validated.

€DF
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@ SRQ = System Reponse Quantity (Oberkampf and Roy, 2010) : physical
quantity of interest considered during the validation

@ U C RL ot L < 4 spatio-temporal domain, e.g. U =S x [0 ; T] where S C R3
is a physical domain and T is a duration

@ x € X C R? : d scalars on which the SRQ depends (features of the system of of
its environment), that is the experimental conditions

@ Real SRQ : r(x, u)

@ Measured SRQ : m(x, u) ; m(x, u) — r(x, u) unknown measurement error
@ Theoretical SRQ (mathematical model) : v(x, u)

@ Numerical SRQ (numerical model) : y(x, u)

@ Possible T R( ,x, u), hence V( S X, U)..

=~ @DF
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Standard of The American Society of Mechanical Engineers
(2009)

v(x)—r(x) = (x+6)—m(x)] = x+&)—vix)] +  [m(x) = r(x)]
observed gap uncertain numerical uncertain measurement
errors errors

d(x) between

measurement and simulation
(no uncertainty)

ey +éex Em

@ &, = y(x) — v(x) : subject of the verification ;
@ & = y(x + dx) — y(x) : uncertainty to propagate through y.
Principle : modelling the uncertainty about (ey,ex,em) by a joint distribution in order
to estimate a confidence interval of a given level o for v(x) — r(x).
Assumption of independent gaussian errors :
{d(x) — B/ oy +ox2+om?; d(x)+ B+ o,2+ 02+ 0',,,2}
where 3 is the quantile of order 1 — («/2) of N(0; 1).

¢
e
Y €DF Validation of numerical models by statistics 04/06/2018 6/52



CALIBRATION-VALIDATION : FORMALIZATION
@ Assumption of a verified numerical model : Y ~ V (e.g. y = v).

@ Model of R(x) (by abuse of notation) :

Y: (x,0,) — Y(we Quel,x,0,)
N——"

numerical model multivariate distribution
Inputs

where 6, are uncertain parameters assumed invariant from an experiment to
another one.

@ NN data (measurements) associated to conditions x”, 1 < n < N :
m"(u € U) realizations of M(x", u € U) such that M(x",u e U) — R(x",u € U)
is the measurement error.

@ The exact conditions x" are generally unknown ! This leads to group the
experiments which are supposed to share the same conditions (repetitions) and
to associate each of the K groups with some best-estimate conditions X*
(arbitrary indeed) and a prior on the discrepancy between %k and the true
conditions.
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CALIBRATION-VALIDATION : FORMALIZATION

Example of statistical model
Model of m¥(k0) . z¥(kI) — yo(kD) 4 g(k.])
with Y¥kD|gk 0, ~ V(XX + 04, 6y)

0 =(0y,0,01,...,0k) ~ g (bayesian prior)

(%)
/

gk
() (0D @) s
1<k<K
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PURE VALIDATION

Calibration already done
@ 0=20: pure validation.

@ 0 € O or b~ my (non-Dirac prior) : validation-calibration.

Pure validation in theory
Let V € X be the domain of validation :

vxev  (Reou),., o~ (Y u,8)), .,
Pure validation in practice

Vke{l, -, Ky (M) o Mp(P D)) (Zi(R5, 0), -, Zp(RK, 0))

Ly-sample available may incorporate a
CPU-consuming
black-box model...

Un jour, j'irai vivre en Théorie, car, en Théorie, tout se passe bien!

La différence entre théorie et pratique ? En théorie c'est pareil.
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PURE VALIDATION

Pure validation in practice

Vhe{l, -, Ky (MGt EN), e MUY (255, B), -, Zp(55, B))

Li-sample available may incorporate a
CPU-consuming
black-box model...
data (Ho)

Statistical tools

@ Hypothesis statistical testing (e.g. p-value),

@ Estimation of discrepancy/divergence between distributions (can be used as a
test statistic),

@ Detection of outliers,

@ graphics (qgplot).
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PURE VALIDATION

Pure validation in practice

Vee{l, -, Ky (MGPn), e M)~ (255, B), -, Zp(55, B))

Li-sample available may incorporate a
CPU-consuming
black-box model...

M Z

Statistical tools

@ Hypothesis statistical testing (e.g. p-value),

@ Estimation of discrepancy/divergence between distributions (can be used as a
test statistic),
D(M, Z) ~ 07

@ Detection of outliers,

@ graphics (qqplot).
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How to choose the experimental conditions?

Two interesting approaches

@ Classical screening designs for physical experiments :

@ Objective : identifying the conditions x; (components of x) whose
variations have a significant impact on the SRQ.

@ A solution : fractorial factorial designs.
@ Space filling designs
o Objective : « covering » the domain V.

o A solution : optimized Latin Hypercube Designs.

Another approach

Carrying out a sensitivity analysis of the (non validated !) numerical model.

¢
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The following figure illustrates two-dimensional Simple Random Sampling
(SRS), Latin Hypercube Sampling (LHS) and discrepancy-optimised LHS with
n=10.

F1GURE: Left : SRS. Middle : LHS. Right : discrepancy-optimised LHS
based on the previous LHS (design at the middle).

€DF
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Hypothesis

Scalar deterministic SRQ r and unbiased measurements.

A well-known result
Let (M, ..., M") be a sample of size n > 1 of iid variables such that
uy =E [M“] < 400 and V [/Vlk] < 400 and
1 o 1 o
T+ k 2 L K\2 g 2
MnfnZM and S, 7nZ(M) M, %,
k=1 k=1

then a confidence interval of level a of pp is

n  —

Sn
In=[Mn—th_q) Nk Mn+ u1_a2 ﬁ]

where u;_ /> is the quantile of order 1 — %

@ of the distribution N'(0 ;1) and this confidence interval is asymptotic (large n)

@ of the distribution t(n — 1) (Student distribution with n — 1 degrees of freedom)
if the distribution of the M; is gaussian.
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A SIMPLE SITUATION
Hypothesis
n measurements M*(x), 1 < k < n, of r(x) such that E [I\/Ik(x)] = r(x).
Indicators proposed by Oberkampf and Barone (2006)

@ Since P(r(x) — y(x) € Zn(x)) =1 — o : My(x) — y(x) and
L) = 2002 2.

@ Estimation by regression in V :

@ global indicators :

Volume(1)-1 / EIMOL =0 | 4 or vorume(w)-1Umer2 [ [Sa)].
olume(V) s E[MGO] et Volume(V) NG e
@ maximal error indicators :
1) )| [EMOI )y e | i)
() E[M(x")] N

where x* = arg maxy¢cy

x|

r(x)

[
b
Y €DF Validation of numerical models by statistics 04/06/2018 14/52



[IYPOTHESIS TESTING (P-VALUE)

Different situations (monovariate case)

Wish to reject the model Mo particular wish
e Mod 2 e Mot T

g A bt on T

Strong wish to reject the model Wish to accept the model
~'~eDF
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I

Let W be a test statistic ;

p-value =  proba. to wrongly reject the model

{small value = wish of rejection)

= (W2, ZVYe I(m', - "))
— ro—

\

Shallow data

—_—
[1

LR — set of values

« less extreme n
than wim',-- .m"y

\

€DF

Deep data

— Wudels

s Left :
@ pvalue =3(Z > m'} (W(Z) = Z)

@ The p-value carresponds to the order o
of the quantile g2 = m! : could be
generalized to multivariate/functional
data thanks to the notion of depth
(Lépez-Pintado and Romo, 2007).
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Examples of indicators

Let Fg and Fy be two Cumulative Density Functions (CDF); the corresponding
Probability Density Functions (PDF) are fg and fy if they exist.

Area metric
[Ferson et al., 2008]

|IFr—Fyll 1 :/
R

|Fr—Fy]|

@ Easy to estimate
from empirical CDF

@ Always well-defined
and robust

@ Same physical unit
than r (scale
variant)

€DF

Relative entropy
(divergence of
Kullback-Leibler)

K(Fr. FY):/fR m}j)

R
’C(FR7 Fy):0:> FR: Fy

@ Not symmetric
(notion of reference
Fr)

@ lIssues : estimation
of PDF and cases
where
’C(FR, Fy) = 400

Distance of Hellinger
H(FRz FY)

- [/ VY
R
H(FR, Fy):0:>FR:Fy

@ H(Fr,Fy)<1

@ Minor issue :
estimation of PDF

@ Undimensional
overlap indicator

Validation of numerical models by statistics
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Area metric {Ferson et al., 2008)

-~ fied dum coOr
— cemprathes COF

agE aan (5D [T [ o et

field data: 6 measurements

area Metric = grey anea surface

] O 38 1 I 14
computations: 100 sinulations with varying inouts

Illustration for n = 6 real responses and m = 100 simulations.
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Area metric (Ferson et al., 2008)
@ Ferson et al. (2008) propose a technique called u-pooling to aggregate
several couples of samples to get a global indicator :

o for different experimental conditions x
e or for different times t', points u', etc.

however this technique is dangerous : multivariate two-sample test of
Székely and Rizzo (2004) better for example.

@ All indicators of distribution comparison are not equivalent.

Validation of numerical models by statistics 04/06/2018
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® Comparison with the Hellinger distance {H(Fi. Fy) = [ (v — VE)

sawi o
LLEr Tt
- mdiue - adiu
I |
ta- | ; - o] K
; y A
w I ) o
I |
o L o ;
¥ W g g

H(Case 1) > H(Case 2) and A(Case 1) < A{Case 2)
S e’

1 (no overlapping) #1
Cy 1
ta ! o] i
| |
| n |
e o
! : I
we | - wl
I ; | :
w4 = me LE [

‘H{Case 3) = H(Case 4) = 1 and A(Case 3) < A(Case 4)
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COMPARISON OTF DISTRIBUTIONS
[llustration of the u-pooling procedure

— srodatans|
A — held datn

— aknuktions

—_ ban sample |b=1)

n siangi =)
f

t

Tap : data r*{), 1224 <030, and ' (¢4}, 17100, with ¢/ = 0.06 x j, 1<, < 100.

Bottom : u pooling only applied to r"‘(:-';) and _\";I:rj] for j& {20, 80} I:l‘20 — 1 and 8% — 4.

L J
- -
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[llustration of the u-pooling procedure

— cmpifcal CO7 af tae 15t Arvlation sampiz
transormation of b L5z ek det sampke
=

= —  emplcel TF ot the 2nd srulation samgie It
1t -- 19° he 2nd Hek data ssmake it

il <

B [ [ a [E] B [ [ a

Top : transformation of the field samples according to the ampirical CDF of the simulation samples
[Glx} = x for any 0= x <11

Bottom : u-pooled area metric {left} and area metric restricted to the transformed data at ¢ — 1 (right].
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9 First practical application : ROCOM
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INDICES OF TVERSKY
Figure of Merit in Space (FMS)

Prediction of the location of a plume of pollutant (concentration > threshold) :

IGN 2012 - Licence ouverte : produced from a map provided by the Institut National de I'information Géographique

et forestiére under the Etalab Open Licence (http://www.etalab.gouv.fr/licence-ouverte-open-licence)

observed area redicted area
FMS = Ne

observed area U predicted area
Generalization (Warner et al., 2004)
Let R be a set of interest of the SRQ.

7 tewera(ny) Liryer2(ry)
S~ epr Lrer ouyer(rY) L yer2(hy) + 1 perxr(HY) T 1 erxR(ry)
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~ EDF

Indices of Tversky : extensions (Warner et al., 2004)

ACY {averlap)

T - AV AFN {false negative) + AFF (false positive)

. . . ALY (eueriag)
@ Risk-weighted FMS : RWFMS = ATV | AFW (false megative] | 5 AFP |false posicive)

AUV AOV AFN AFP
@ Measure Of Effectiveness : MOE — (W, PR — {1- ot 1-— ﬁ)

avec ATE = AOY L AFN (ophserved) et APR = APV 1 AFF (predicted).

@ Definitions not based on a set & of interest :

o5
® % sirulations

o AZY — AV where =« firld rar
! L |- gositive siea
A0V — min(r,- :_VJ') B [l negalive area
! B cverlasping ares

o AN = max(r; APV ;0]

e AP _ max{y; —AJ.OV :0)
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ROCOM

@ Experimental data from project OCDE PKL2 (HZDR, Helmholtz
Zentrum Dresden Rossendorf).

@ Simulation performed with Code_Saturne by Arnaud Barthet (EDF).

““EDF
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ROCOM

@ Experimental data from project OCDE PKL2 (HZDR, Helmholtz
Zentrum Dresden Rossendorf).

@ Simulation performed with Code_Saturne by Arnaud Barthet (EDF).

[
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PROPOSITION

Because of the randomness of the physics, it may appear relevant only to check that
the distribution of the fluid temperature in space and/or time is invariant (without
consideration for the specific localizations of volume of fluid at a given temperature).

Graphical tool : Q-Q plot

Tie d drka

Left : real data over a spatial demain (r{u € If)). Middle : simulation {y{u € I{)).
Right : corresponding Q-G plot.

VWe look for a synthetic indicator rather than plotting dozens of @-Q plots,
q
- -
iy eDF
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=~ @DF

@ Complete spatio-temporal domain :
D=((SiUSe) X [0;TNU(Se x[To: T])

where

@ Se is the downcomer external surface,
@ S, is the downcomer internal surface,
@ et S¢ is the core entrance surface.

@ Definition of a subdomain W C D and a random variable U ~ U(W).

@ Analysis of scalar random variables (five repetitions of the physical experience,
one numerical simulation) : (r*(U), r2(U), r3(U), r*(U), r*(U), y(U)).

Validation of numerical models by statistics 04/06/2018
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INDICES DE TVERSKY

@ Definition based on a set R of interest (R C R) :
® Aoy (v, w) = E [ x (V(U), w(U))] (overlapping area)
@ App(v,w)=E I:]l‘lixR(V(U)’ W(U))] (false positive area) ;
@ Apy(v,w)=E [11

rx(V(U), W(U))} (false negative area) T.

@ Let b(u) = min(v(u), w(u)) for all u € W, second definition based on :

@ Aoy (v,w) = E[bU)];

@ App(v,w) = E[max(w(U) — b(U), 0)] (the more w over-predicts v on W, the greater) ;
@ Apy(v, w) = E[max(v(U) — b(U), 0)] (the more w under-predicts v on W, the greater).
]

Index de Tversky :

A v, w
T(v,w) = ov(v, w) )
Aov (v, w) + Apn(v, w) + App(v, w)
@ Over-prediction index :
Aep(v, w
Ti(v,w) =1— #A
Aov (v, w) + Agp(v, w)
@ Under-prediction index :
A v, w
T (v,w)=1— #

Aov (v, w) + Apy(v, w)

[
b
Y €DF Validation of numerical models by statistics 04/06/2018 24 /52



(GLOBAL ANALYSIS :

L
~ SeDF

0.14 4

0.12 4

0.10 4

0.08 4

0.06 1

0.04 4

0.02 1

0.00 1

DOWNCOMER

—— Les cing expériences confondues
=== La simulation numérigue
- Chacune des cing expériences

L |

160

180 200 220 240
TG
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(GLOBAL ANALYSIS : DOWNCOMER

—— Alr, ), 1=i=j=5 {couples expérimentaux}
=== Alr, ¥) {tauples mixtes)

L
~ SeDF

—— Bir', ), 1=i<j=5 {couples expérimantaux)

-== B{r', y) (couples mixtes)

Walidation of numerical models by statistics

0.02

084 .96

04/06/2018

0.98 1.00
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(GLOBAL ANALYSIS : DOWNCOMER

—— Couples expérimentaux
=== Cguples mixtes

951 052 093 054 0D5 095 097 093 089 190

L]
- -
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(GLOBAL ANALYSIS : CORE ENTRANCE

.18
—— Les clng expérences confondues
——- La slmulatlen numérlque
------ Chacune des clng expérlences
.08

.06
0.04

.02

}I:

170 1e0 130 200 210 228 230 249
T

.00

L]
- -
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(GLOBAL ANALYSIS : CORE ENTRANCE

AR, P 1w e Aranples axpdrinarkan) SN, 1 5 (CnLpies pxperimetaL]
e AT ) G ri el o gl deouples wisies)

H | | i H | | |
Pl i i Pl i
i i i H i i i

i i i P H i i i
i i i H i i i

o 1 A A 4 o -] ’ " o oia [EE:11) s LEH) (R 1o

— Gy pepinml o
- fouaks mibtes

il |\

1] 208 100

L]
- -
s €DF Walidation of numerical models by statistics 04/06/2018 20752



ANALYSIS

L
~ SeDF

0§27

nsa-

nEs-

055

IN TIME : DOWNCOMER

4 poLrla pasod Intericare

[ET R "
P —

9 20 £E 07 BCO 1000 1Z3U 1400 GG

benpes i

Tpuur b pari

i,
— Couplzs exsde maRcion

—= Ler cougle misze
== cucde rinke

== 3 zcush rint L
(R
PR ——— (2]

o 200 20C &01 B0 100G 1200 1400 1600

A neLrla perdl extér cur

T W ML cu

i
Cougizs o momans
—= lercwpeme
== bk ek

e tousdy sl
== vz

S rearzdn mishn

4 200 20C GO0 8GO 1000 1340 1400 1RGO
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ANALYSIS IN TIME : CORE ENTRANCE

L]
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s €DF Walidation of numerical models by statistics 04/06/2018 31782



ANALYSIS IN SPACE : DOWNCOMER ([NTERI\'AL \?\-"AL-L\)

AFE Iy paint i Euene

i o st 1350 150 Lisn

) 1000
e e e o pas T 5 s et

3 pour la pard Ivedeur:

[ 20 500 Ti0 1000 1250 1300 1750
Fulvn ) 2l e B e | epacw

L)
o =
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ANALYSIS IN SPACE : CORE ENTRANCE

B prJr gntrée CoEgr

—— Caupks crpermentss

Lar coLple mibsh:

- Zacaupk i
= 3acaupk rlm
= o canphe il
- s nuple i

1850 1B75 18I 1925 1535

5 20D MRS

i il b pusitinn sy derra Preapas

L
~ SeDF

Faves R=0190; 2001 paur 'entrée: cour

== lof sLporiste
== e cauple miste if
== 2o couplz mixte

-~ 5ecouplz mikte:

Gouabes mspnmerrns

b A 8
,N,?.I.I. s

s

A cauple mizhe.

1875 1903 1225 1950 1975 2000 2025 2050
Inglez { &2 12 pestian 5 dans I'espace
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REMARK : BHATTACHARYYA COEFFICIENT
COMPUTATION
50 as to limit the CPU cost : estimation of PDF by histograms of fixed bins :

160 170 180 190 200 210 220 230

L)
- -
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Contents

e Second practical application : loss of coolant accident (LOCA)
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VALIDATION OF CATITARIE2

Données de presslon Cennédas de
4
1 === courbe expérirents < upa === Loure expErirrnme
'
11
Lo
1=z
(1]
]
a 500
& apa
+ Jud
? 200
o, ' ' ' ' ' ' ' '
] 101 200 E) 400 501 00 ] 101 20D E 400 501
teinps (=) e Is)

FiGurE: One experiment, A = 208 simulations.

Not a pure validation!
@ SRG r deterministic.
@ Measurement errors neglected.
® Sampling of Z(%,0) according to ff ~ mg.

L
= -
s €DF Walidation of numerical models by statistics 04/06/2018
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€DF

[}

¥}

2

[}

—— Dcnsi de prebabilité — T rAac aléztoire
— = Obganation wralsemblipbke® — = Waleyr relatvemant profonds
Dbezervation “abenante” Joatlie Waler o profonde

Fioure: llustration in the univariate case.
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STATISTICAL DEPTH

Band depth (Lépez-Pintado and Romo, 2007)

@ Functional data : y"(t) for t € [0;T], 1<n<N
@ Graphof y : G(y) ={(t,y(t)):t€[0;T]}

@ Band of y"l e,y
By™, .o, y") = {(t,y): t€[0; T1,  min y"k(t) <y< kzranJ_y”k(t)}
a0 [
zol A band defined by three curves
1ol (L6épez-Pintado and Romo, 2007)
-10 |
D 5 10 15 20 25 30 35 40 45 50

@ Band depth of y (J =2 or 3 in practice) :

J _
=3 (")" X uewecsun. v

j= 1<m<...<m<N

« proportion of bands given by j curves containing G(y)
- -
v < €DF

Validation of numerical models by statistics 04/06/2018
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STATISTICAL DEPTH

Generalized /modified band depth (Lépez-Pintado and Romo,

2007)

@ Set where y is inside B(y™,...,y"):

‘q
: 5 EDF

.....

@ Generalized band depth of y (J =2 or 3 in practice) :

-3 (1) %

with

j=2 1<m <...<m<N

¥a
¥1
——
= Ve
—_— 'h—h_hqq____}' R
—_— —
o o 04 o6 nz ]

Validation of numerical models by statistics

MA( sy™, oy T

proportion of time during which
y is inside B(y™, ..., vy

(Sun and Genton, 2011)

04/06/2018
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Profoadewn des couraes de wression

vk spm

. . nz A i A

Lo g

[ VDA

Tool : function fhplot of the R package fda.
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Donnees de prossion

Cennées do lemperaturs

15

| caube expErimertale yi aa caurbe eapdrimentale 5

1 —- cautbe méd anc ¥ —- caurbe micianc ¥

0
¥
L
4
z
a

u 101 2o 200 410 501 &0 u 101 2o 201 400 501 U0

temps 15 e 151

Fiaurii: Median curves (maximal depth).

€DF
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Disoribe tho s 2 400 15 ener: courbes ce presslon
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— Probability density function
059 —.- "Likely" observations
Deep outlier

0.3

0.2
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Idea : look whether the experimental curve 2% belongs to a high-density zone.
@ Reduce the curves to few latent variables C = (Cy,..., Cx) (dimension

reduction), e.g. by Principal Component Analysis.

@ Estimate the multivariate density of the latent variables C, e.g. by gaussian
mixture (Python module Pymixmod).
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T'raurE: Curves of pressure : matrix of the scatter plots of the five first
principal component.
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I'raurE: Curves of temperature : matrix of the scatter plots of the five
first principal component,
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HIGH-DENSITY ZONE

Minimum volume of a given confidence level

Vg = arg min X(E)
EcB(RX)
P(CEE)=p

There is a density threshold dg such that

Vs = {xeR" / fc(x)>ds}

[
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3 +

104

Points (cf, ¢f') pour 1 < n < N and some level curves of the marginal PDF of
{Ca. C1) (trais continus) and of the joint PDF of € = (1, ..., Cx) (dashed lines) in
the plane (3 = c?og,_ Oy = c‘fog, Co=c™

Tool : method Distribution.computeMinimumlLevelSet of OpenTURNS.
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PERSPECTIVES

Bayesian model of Bayarri et al. (2007) (following Kennedy
and O'Hagan (2001))

Measurement error : M(x) — r(x) ~ N(0,1/A™) with a unknown precision A\™.
Biased numerical model : r(x) = y(x, 0) 4+ by(x)

Independent priors on 0 (uniform) and b.

Kriging of the unknown bias : b(x) ~ GP(u(x), c(6x)) where : T
@ a systematic bias : E[b(x)] = p(x) = u?;

@ Cov[b(x),b(x")] = c(x —x") = ﬁ cieffﬁb(x — x") with a

smoothing/regularity parameter o® and some unknown precision and scale
parameters. AP and jb.

T. cgeef generalized exponential correlation function

Bayes factor (Rebba et al., 2006; Damblin, 2015)

n]fz(zzll\rs,)) with Z without bias and Z’ with bias. Ask Merlin |
= eDF
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The multifidelity approach

@ Objective : building a predictive model of the finest fidelity y! (e.g. fine mesh)
from evaluations of y; together with some of a lower fidelity model y° (e.g.
coarse mesh).

@ Le Gratiet (2013) :
Y1) = p(x) 0 (<) + b(x) with yO(), b(.) ~ GP
and p(x) = 07 f(x) with 8 unknown.
@ Zertuche (2015) :
¥ (x) = @(y°(x)) + b(x) with y°(.), b(.) ~ GP
and ¢ estimated by (one-dimensional) locally linear polynomial regression.

¢
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Chang and Hanna (2004) :

However, according to Oreske et al. (1994), verification and validation
of numerical models of natural systems are impossible, because natural
systems are never closed and because model solutions are always
non-unique. The random nature of the process leads to a certain
irreductible inherent uncertainty. Oreske et al. (1994) suggest that models
can only be confirmed or evaluated by the demonstration of good
agreement between several sets of observations and predictions. Following
this guidance, the term evaluation is used instead of verification
throughout this paper.
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