

Uncertainty Aggregation Variability, Statistical Uncertainty, and Model Uncertainty

Sankaran Mahadevan Vanderbilt University, Nashville, TN, USA

ETICS 2018 Roscoff, France; June 4, 2018

Sankaran	Mahadevan
Ourmaran	manaaovan

Sankaran Mahadevan

Sources of Uncertainty in Model Prediction

Natural Variability (Aleatory) Variation across

- Samples \rightarrow Random variables
- Time \rightarrow Random processes
 - Space \rightarrow Random fields
- Input uncertainty (Epistemic)
 - Sparse data
 - Imprecise and qualitative data
 - Measurement errors
 - Processing errors
- Model uncertainty (Epistemic)
 - Model parameters
 - Solution approximation
 - Model form

Multiple PDFs of input X

Uncertainty aggregation

- Information at multiple levels
 - Inputs
 - Parameters
 - Model errors
 - Outputs
- Heterogeneous information
 - Multiple types of sources, formats
 - models, tests, experts, field data
 - Multiple physics, scales, resolutions
 - Different levels of fidelity and cost
- How to fuse ALL available information to quantify uncertainty in system-level prediction?

A simple example

- Model for vertical deflection at free end (Euler-Bernoulli)
- Assume *L* and *I* have only aleatory variability
- *P* → random variable (aleatory), but we may not know its distribution type *D* and parameters θ_p, thus *P* ~ *D*(θ_p) could have both aleatory and epistemic uncertainty
- E → model parameter (could be only epistemic, only aleatory, or both)
- Model error → infer from tests
- Other issues
 - Boundary condition → degree of fixity → infer from tests
 - Spatial variability of $E \rightarrow$ random field
 - Temporal variability of $P \rightarrow$ random process
- Random field and random process parameters need to be inferred from data → could have both types of uncertainty

Cantilever beam

Sankaran Mahadevan

4

FI

Treatment of Epistemic Uncertainty

Calibration

Validation

Verification

$$Y = G(X, \theta_m) + \varepsilon_M$$
$$\varepsilon_M = \varepsilon_{mf} + \varepsilon_{num}$$

- Statistical Uncertainty
 - Distribution type D and parameters θ_p of $X \sim D(\theta_p)$
- Model Uncertainty
 - System model parameters θ_m
 - uncertainty represented by probability distributions (Bayesian)
 - Model form of G
 - Model form error \mathcal{E}_{mf} (quantified using validation data)
 - Numerical solution error \mathcal{E}_{num} in G
 - Discretization error (quantified using convergence study)
 - Surrogate model error (by-product of surrogate model building)
- <u>Bayesian Approach</u> → All uncertainty/error terms represented through probability distributions

BACKGROUND TOPICS

Quantities varying over space and time

• Quantities expressed as random processes/fields

- e.g., Loading at one location \rightarrow random process over time
- e.g., material properties \rightarrow random field over space
- Aleatory uncertainty alone
 - Random process/field parameters are deterministic
 - e.g., Gaussian process $w(x) \sim GP(m(x), C(x, x'))$
 - $m(x) = a + bx + cx^2 \cdots$

$$- C(x, x') = Cov(w(x), w(x')),$$

- e.g., Squared exponential (SE)

$$C(r, \mathbf{I}) = \sigma^2 \exp(-r^2/\mathbf{I}^2)$$

- With epistemic uncertainty
 - Random process/field parameters are uncertain

Surrogate Modeling

- Uncertainty quantification of the output
- Multiple runs of expensive system analysis
 - Unknown functional form

g

- Inexpensive to evaluate at any location
- Examples:

Data {x, f(x)}

Polynomial Chaos Expansions Radial Basis Functions Gaussian Process Models Support Vector Machines

> Surrogate model output has uncertainty

Surrogate Model

 $q(x, \Theta)$

Consistent Reconstruction $g(x_s) = f(x_s)$

Sankaran Mahadevan

 $f(x_s)$

Uncertainty Aggregation

Global Sensitivity Analysis

• Y = G(X)

- $X \rightarrow$ random variables
- $Y \rightarrow$ calculated through uncertainty propagation
- Apportion **variance** of Y to inputs **X**
- Analyze sensitivity of output over the entire domain rather than (1) suppressing a variable completely (2) using local derivatives
- Individual effects $S_{\rm I}\,$ & Total effects $S_{\rm T}$ (i.e., in combination with other variables)

$$S_{I} = \frac{V_{X_{i}}(E_{X_{\sim i}}(Y \mid X_{i}))}{V(Y)} \qquad S_{T} = \frac{E_{X_{\sim i}}(V_{X_{i}}(Y \mid X_{\sim i}))}{V(Y)}$$

- Single loop sampling approaches exist in literature to calculate $S_{\rm I}$ and $S_{\rm T}$

Parameter estimation: Least Squares

- Linear regression $Y = X\theta$
 - θ → model parameters (m by 1)
 - "n" ordered input output observations
 - Each input observation is a vector (1 by m)
 - Each output observation is a scalar
 - Construct $X \rightarrow$ matrix of inputs (n by m)
 - Construct $Y \rightarrow$ vector of outputs (n by 1)
- Non-linear model $Y = G(X, \theta)$
 - Simple least squares \rightarrow Minimize $S(\theta) = \sum_{i=1}^{n} (y_i G(x_i, \theta))^2$
 - α -level confidence intervals on θ using F-statistic $S(\theta) \leq S(\hat{\theta}) \{1 + \frac{m}{n-m}F_{m,n-m}^{\alpha}\}$
- Advanced methods \rightarrow weighted, generalized, moving, iterative
 - Unbiased, convergent estimates
 - Applicable to multiple output quantities
- Disadvantages
 - Based on assumption of normally distributed residuals
 - Difficult to include other types of uncertainty in input/output (imprecision, no ordered pairs)

 $\hat{\theta} = (X^T X)^{-1} (X^T Y)$

Coefficient of determination R² Proportion of variance explained by the linear regression model

High Value ≠ Accurate Prediction

Likelihood function

Likelihood \rightarrow Probability of observing the data, given specific values of parameters

Example

• Random variable X; Available data points x_i (i = 1 to n)

• Suppose we fit a normal distribution to X

$$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Likelihood function

 $L(\mu, \sigma) = P(\text{observing data } x_i | (\mu, \sigma)) \propto f_X(x_i)$

Considering all *n* data points,

$$L(\mu,\sigma) \propto \prod_{i=1}^{n} f_X(x_i)$$

Maximum likelihood estimate (MLE)

 \rightarrow Maximize likelihood function and estimate parameters (μ , σ)

Bayesian estimation

- Maximum Likelihood Estimate
 - Maximize $L(\theta) \rightarrow$ Point estimate of θ
- To account for uncertainty regarding θ
 - Bayesian approach \rightarrow probability distribution of θ
 - Assume a uniform prior over the domain of θ

$$f(\theta) = \frac{L(\theta)}{\int L(\theta)}$$

- Calculate marginal distributions of individual parameters
- PDF of $X \rightarrow f_X(X|\theta)$
 - Distribution of $\theta \rightarrow f(\theta)$
 - Each sample of $\theta \rightarrow PDF$ for X
 - Family of PDFs for X

Bayes' Theorem

• Theorem of Total Probability

- In terms of probability densities (continuous variables):
 - θ : parameter to be updated
 - D: experimental data
 - $\Pr(\mathbf{D}|\theta)$: likelihood function of θ
 - $-\pi(\theta)$: prior PDF of θ
 - $\pi(\theta|\mathbf{D})$: posterior PDF of θ

 $\pi(\theta \,|\, \mathbf{D}) = \frac{\Pr(\mathbf{D} \,|\, \theta) \pi(\theta)}{\int \Pr(\mathbf{D} \,|\, \theta) \pi(\theta) d\theta}$

Three examples of Bayesian inference

• Distribution parameters of a random variable \rightarrow Statistical uncertainty

Χ

 Distributions of model coefficients (Bayesian regression)

 $\mathsf{CD} = 0.05 - \mathsf{A}^*\mathsf{M} + \mathsf{B}^*\alpha - \mathsf{C}^*\mathsf{M}^*\alpha + \mathsf{D}^*\mathsf{M}^2 + \mathsf{E}^*\alpha^2$

 CD_{obs}

X_{obs}

Construction of posterior distribution

$$\pi(\theta \,|\, \mathbf{D}) = \frac{\Pr(\mathbf{D} \,|\, \theta) \pi(\theta)}{\int \Pr(\mathbf{D} \,|\, \theta) \pi(\theta) d\theta}$$

- Conjugate distributions \rightarrow Prior and posterior have same distribution type; only the parameters change.
- Sampling-based methods •
 - Markov Chain Monte Carlo methods
 - Metropolis
 - Metropolis-Hastings
 - Gibbs
 - Slice sampling
 - Adaptive improvements

Particle filter methods

- Sequential importance re-sampling (SIR)
- Rao-Blackwellization

Statistical Uncertainty: Bayesian Inference of Distribution Parameters

- An RV 'X' has a known 'pdf' type $\rightarrow X \sim f_X(x|\theta)$
- Unknown parameters **θ**
- Observe instances of 'X' through experiments
- Assume prior distributions for *θ* and update them

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i | \theta)$$

$X \sim N(\mu, \sigma)$ $\theta = {\mu, \sigma}$ Observed Values of $X = {12, 14}$

Parameter	Parameter	Prior Distribution			Posterior Distribution	
No.	Name	PDF Type	Mean	Moments	Mean	Variance
1	μ	Log Normal	10	4	10.57	2.19
2	σ	Johnson	3	0.085 -0.006 0.017	3.03	0.05

Sankaran Mahadevan

Uncertainty Aggregation

Comparison of densities

Sankaran Mahadevan

Uncertainty Aggregation

VANDERBILT

Model Uncertainty: Bayesian Inference of Model Inputs

- Consider a model $y = g(\mathbf{x}) + \varepsilon$
- Assume prior distributions for **x**
- Observe y through experiments $(y_i, i = 1 \text{ to } n)$
- Update distributions for **x**
- ε is assumed to be a normal random variable with zero mean and σ² variance, which is calculated from instances of y observed through experiments.

$$L(x) = \prod_{i=1}^{n} \exp(-\frac{(y_i - g(x))^2}{2\sigma^2})$$

Model Uncertainty: Bayesian Inference of Model Coefficients

- Consider a model $y = b0 + b1^*X1 + b2^*X2 \dots + \epsilon$
- The model coefficients **b** are unknown
- Model calibration data are collected (x_i, y_i) (i = 1 to n)
- Prior distributions are assumed for **b** and updated.
- ϵ is assumed to be a normal random variable with zero mean and σ^2 variance
- This method is applicable irrespective of whether the model is linear or not $\rightarrow y = g(\mathbf{x}, \mathbf{b})$

$$L(b) = \prod_{i=1}^{n} \exp(-\frac{(y_i - g(x_i, b))^2}{2\sigma^2})$$

Summary of Background Topics

- Aleatory vs. epistemic uncertainty
 - In random variables and random processes/fields
- Surrogate modeling
 - Adds to the uncertainty in prediction
- Sensitivity analysis
 - Variance-based
- Parameter estimation
 - Distribution parameters (statistical uncertainty)
 - Model parameters (model uncertainty)
 - Likelihood, Bayes' theorem, and MCMC

STATISTICAL UNCERTAINTY

Input uncertainty due to data inadequacy

- Sources of data inadequacy
 - Sparsity
 - Imprecision (i.e., interval)
 - Vagueness, ambiguity
 - Missing
 - Erroneous, conflicting
 - Measurement noise
 - Processing errors

Multiple PDFs of input X

- Data inadequacy leads to epistemic uncertainty in the quantification of model inputs and parameters
 - Value of a deterministic variable
 - Value of distribution parameter of a random variable
 - Values of parameters of random process or random field

Topics

- Parametric approach
 - Family of distributions
 - Model selection
 - Ensemble modeling
- Non-parametric approach
 - Kernel density
 - General approach with point and interval data
- Separating aleatory and epistemic uncertainty

Non-Probabilistic Methods to handle epistemic uncertainty

- Interval analysis
- Fuzzy sets / possibility theory
- Evidence theory
- Information gap theory

Probabilistic Methods

- Frequentist \rightarrow confidence bounds
- P-boxes, imprecise probabilities
- Family of distributions
- Bayesian approach

Statistical uncertainty

→ Distribution type
 → Distribution parameters

Family of distributions

- Johnson
- Pearson
- Beta
- Gamma

Four-parameter families

Johnson family of distributions

PDF: $f_x(x) = \frac{\delta}{\lambda\sqrt{2\pi}} g'\left(\frac{x-\xi}{\lambda}\right) \exp\left\{-\frac{1}{2}\left[\gamma + \delta \cdot g\left(\frac{x-\xi}{\lambda}\right)\right]^2\right\}$

CDF: $F(x) = \Phi\{\gamma + \delta g[(x - \xi)/\lambda]\}$

Inverse CDF: $Z = \gamma + \delta g[(x - \xi)/\lambda]$

Z - standard normal variate

$$g(y) = \ln(y), \text{ for lognormal } (S_L)$$

= $\ln\left[y + \sqrt{y^2 + 1}\right], \text{ for unbounded } (S_U)$
= $\ln\left[y/(1 - y)\right], \text{ for bounded } (S_B)$
= y, for normal (S_N)

Statistical uncertainty: Parametric approach Case 1: Known distribution type

- Estimate distribution parameters of X
- Assume distribution type is known $\rightarrow f_X(x|P)$
- Data D → m point data (x_i, i = 1 to m)

```
L(P) = \operatorname{Prob} (D | P) = \operatorname{Prob} (x_i | P)
= \int_{x_i - \frac{\varepsilon}{2}}^{x_i + \frac{\varepsilon}{2}} f_X(x | P) = \varepsilon f_X(x_i | P) \propto f_X(x_i | P)
L(P) \propto \prod_{i=1}^m f_X(x_i | P)
```

 Consider an interval (a, b) for X →

$$L(P) \propto \operatorname{Prob} (D | P)$$

= $\operatorname{Prob} (x \in [a, b] | P)$
= $\int_{a}^{b} f_{X}(x | P) dx$

 Likelihood can include both point data and interval data

$$L(P) \propto \left(\prod_{i=1}^{m} f_X(x_i \mid P)\right) \left(\prod_{i=1}^{n} \int_{a_i}^{b_i} f_X(x \mid P) dx\right)$$

Estimation of Parameters

- Maximum Likelihood Estimate
 Maximize L(P)
- To account for uncertainty in *P*
 - Bayesian updating \rightarrow Joint distribution of P
 - Assume a uniform prior over the domain of *P*

$$f(P) = \frac{L(P)}{\int L(P)}$$

- Calculate marginal distributions of individual parameters
- PDF of $X \rightarrow f_X(x/P) \rightarrow$ Two loops of sampling
 - Distribution of $P \rightarrow f(P)$
 - Each sample of $P \rightarrow PDF$ for X
 - Family of PDFs for X

Family vs. Single

Case 2: Uncertain Distribution Type Parametric Approach

- Distribution type \rightarrow T₁ or T₂
 - Uncertainty $\rightarrow P(T_1)$ and $P(T_2)$
- Given a distribution type, parameters are uncertain
 - Sample value of distribution parameter(s)
- Conditioned on the distribution type, value of parameters
 - Sample random values by inverting CDF
- Can collapse all three loops into a single loop for sampling

Example

• Variable X is either Lognormal or Weibull

Quantify distribution type uncertainty

- How to quantify uncertainty in a particular distribution type?
- Compare two possible distribution types
- Two approaches
 - Bayesian model averaging
 - Bayesian hypothesis testing \rightarrow Model selection
- \rightarrow Ensemble modeling

Sankararaman & Mahadevan, MSSP, 2013

Bayesian model averaging

- Suppose f^1 and f^2 are two competing PDF types for X
- The corresponding parameters are ϕ and θ
- BMA assigns weight to each PDF type

$$f_X(x \mid w, \phi, \theta) = w f_X^1(x \mid \phi) + (1 - w) f_X^2(x \mid \theta)$$

- Estimate PDFs of w, ϕ and θ simultaneously
 - Construct likelihood $\rightarrow L(w, \phi, \theta)$ using data (D)
 - Point values \rightarrow product of pdf's
 - Intervals \rightarrow product of ranges of cdf values over intervals
 - Bayesian inference $\rightarrow f(w, \phi, \theta | D)$

Uncertainty representation

• Physical variability \rightarrow Expressed through the PDF

 $f_X(x \mid w, \phi, \theta)$

- Distribution type uncertainty $\rightarrow w$
- Distribution parameter uncertainty $\rightarrow \phi$ and θ
- Unconditional distribution → collapsing into single loop

$$f_{X}(x) = \iiint f_{X}(x \mid w, \phi, \theta) f(w, \phi, \theta \mid D) dw d\phi d\theta$$

Bayesian Hypothesis Testing

Comparing two hypotheses

Bayes' Theorem
$$\longrightarrow \frac{P(H_0 \mid D)}{P(H_1 \mid D)} = \frac{P(D \mid H_0)P(H_0)}{P(D \mid H_1)P(H_1)}$$

Bayes Factor
$$\longrightarrow B = \frac{P(D \mid H_0)}{P(D \mid H_1)}$$
 Compute based on $f_Y(y \mid H_0) \& f_Y(y \mid H_1)$

Confidence in Model

 $P(H_0) + P(H_1) = 1$; No prior knowledge $\Rightarrow P(H_0) = P(H_1) = 0.5$ Probability(Model being correct) = $P(H_0|D) = B/B+1$
Two competing distribution types

Distribution type uncertainty

- M₁ with parameter Φ
- M_2 with parameter θ
- Straightforward to calculate
 - L(M₁, Φ) and L(M₂, θ)
- Necessary to calculate
 - L(M₁) and L(M₂)
 - By integrating out Φ and θ
- Simultaneously obtain posterior PDFs $f(\phi)$ and $f(\theta)$
- Inherently these PDFs are conditioned on $\rm M_1$ and $\rm M_2$ respectively

$$B = \frac{P(D \mid M_1)}{P(D \mid M_2)} = \frac{L(M_1)}{L(M_2)}$$

 $P(D \mid M_1) \propto \int P(D \mid M_1, \phi) f'(\phi) d\phi$ $P(D \mid M_2) \propto \int P(D \mid M_2, \theta) f'(\theta) d\theta$

Aleatory and epistemic uncertainty

Distribution parameter uncertainty

• Introduce auxiliary variable U \rightarrow CDF of X

$$U = \int_{-\infty}^{X} f_X(x \mid P) dx$$

Uncertainty propagation \rightarrow single loop sampling of aleatory and epistemic uncertainty

Sankararaman & Mahadevan, RESS, 2013

Distribution type uncertainty

For a given distribution type D

 $U \rightarrow auxiliary variable$

$$\begin{array}{cc} \mu_X, \sigma_X \to f_X(x), F_X(x) \\ & \text{PDF CDF} \end{array} \longrightarrow \begin{array}{c} X = F_X^{-1}(U \mid \mu_X, \sigma_X) \\ & = h(U, \mu_X, \sigma_X) \end{array}$$

Multiple competing distributions (D_k) each with parameters θ_k

 $X = h(U, D, \theta)$

Composite distribution

$$f_{X|\Theta}(x|\theta) = \sum_{k=1}^{N} w_k f_{X|\Theta_k}(x|\theta_k)$$

Sankararaman & Mahadevan, MSSP, 2013 Nannapaneni & Mahadevan, RESS, 2016

Uncertainty Aggregation

Sampling the input for uncertainty propagation

Inputs with aleatory + epistemic uncertainty

Brute force approach - Nested three-loop sampling

- Computationally expensive

Auxiliary variable approach \rightarrow single loop sampling

Sampling the multivariate input

- Data on correlation coefficients
- Construct a non-parametric distribution
- Likelihood

- Use MLE to construct PDF of correlation coefficient
- Sample the correlation coefficient from the non-parametric distribution
- Multivariate sampling ۲
 - Transform the correlated non-normal variables to uncorrelated normal variables
 - Sample the uncorrelated normals; then convert to original space

Summary of parametric approach

- Fitting parametric probability distributions to sparse and interval data
- Auxiliary variable
 - Distinguish aleatory and epistemic contributions
 - Facilitates sensitivity analysis
 - Supports resource allocation for further data collection

Case 2: Uncertain Distribution Type Kernel density estimation

- Non-parametric PDF
 - $-x_1, x_2, x_3 \dots x_n$ are i.i.d samples from a PDF to be determined

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

- $K \rightarrow$ kernel function \rightarrow symmetric and must integrate to unity
- − h → smoothing parameter → "bandwidth"

- Larger the h, smoother the PDF
- Optimal *h* for normal PDF $\rightarrow h = (\frac{4\hat{\sigma}^5}{3n})^{\frac{1}{5}}$
- MATLAB
 - [f, x] = ksdensity (samples)
 - plot (x, f) \rightarrow PDF
- Multi-variate kernel densities available

Case 2: Uncertain Distribution Type Likelihood-based Non-Parametric Approach

- Discretize the domain of $X \rightarrow \theta_i$, i = 1 to Q
- PDF values at each of these Q points known

- $f_X(x=\theta_i)=p_i$ for i=1 to Q

- Interpolation technique
 Evaluate *f(x)* over the domain
- Construct likelihood

$$L \propto \left(\prod_{i=1}^{n} \int_{a_{i}}^{b_{i}} f_{X}(x) dx\right) \left(\prod_{i=1}^{m} f_{X}(x_{i})\right)$$

• Maximize $L \rightarrow$ Find p_i

Sankararaman & Mahadevan, RESS, 2011

Pros/cons of non-parametric approach

- Flexible framework
 - Integrated treatment of point data and interval data
 - Fusion of multiple types of information
 - Probability distributions
 - Probability distributions of distribution parameters
 - Point data, interval data
- Results in a single distribution
 - Not a family, as in the parametric approach
 - Smaller number of function evaluations for uncertainty propagation
- Cannot distinguish aleatory and epistemic uncertainty

Statistical Uncertainty: Summary

- Epistemic uncertainty regarding parameters of stochastic inputs → represented by probability distributions → family of distributions
- Three options discussed
 - Use 4-parameter distributions (families of distributions)
 - Introduce auxiliary variable to separately capture aleatory uncertainty
 - Use non-parametric distributions
- Above discussion covered sparse and imprecise data

References

- 1. Huang, S., S. Mahadevan, and R. Rebba, "Collocation-Based Stochastic Finite Element Analysis for Random Field Problems," *Probabilistic Engineering Mechanics*, Vol. 22, No. 2, pp. 194-205, 2007.
- 2. Mahadevan, S., and A. Haldar, "Practical Random Field Discretization for Stochastic Finite Element Analysis," *Journal of Structural Safety*, Vol. 9, No. 4, pp. 283-302, July 1991.
- 3. Hombal, V., and Mahadevan, S., "Bias Minimization in Gaussian Process Surrogate Modeling for Uncertainty Quantification," *International Journal for Uncertainty Quantification*, Vol. 1, No. 4, pp. 321-349, 2011.
- 4. Bichon, B.J., M. S. Eldred, L. P. Swiler, S. Mahadevan, J. M. McFarland, "Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions," *AIAA Journal*, Vol. 46, No. 10, pp. 2459-2468, 2008.
- 5. Li, C., and Mahadevan, S., "An Efficient Modularized Sample-Based Method to Estimate the First-Order Sobol Index," *Reliability Engineering & System Safety*, Vol. 153, No. 9, pp 110-121, 2016.
- 6. Sparkman, D., Garza, J., Millwater, H., and Smarslok, B., "Importance Sampling-based Post-processing Method for Global Sensitivity Analysis," Proceedings, 15th AIAA Non-Deterministic Approaches Conference, San Diego, CA, 2016.
- 7. Zaman, K., McDonald, M., and S. Mahadevan, "A Probabilistic Approach for Representation of Interval Uncertainty," *Reliability Engineering and System Safety*, Vol. 96, No. 1, pp. 117-130, 2011.
- 8. Zaman, K., M. McDonald, and S. Mahadevan, "Inclusion of Correlation Effects in Model Prediction under Data Uncertainty," *Probabilistic Engineering Mechanics*, Vol. 34, pp. 58-66, 2013.
- 9. Zaman, K., M. McDonald, and S. Mahadevan, "Probabilistic Framework for Propagation of Aleatory and Epistemic Uncertainty," *ASME Journal of Mechanical Design*, Vol. 33, No. 2, pp. 021010-1 to 021010-14, 2011.
- 10. Sankararaman, S., and S. Mahadevan, "Likelihood-Based Representation of Epistemic Uncertainty due to Sparse Point Data and Interval Data," *Reliability Engineering and System Safety*, Vol. 96, No. 7, pp. 814-824, 2011.
- 11. Sankararaman, S, and Mahadevan, S., "Distribution Type Uncertainty due to Sparse and Imprecise Data," *Mechanical Systems and Signal Processing*, Vol. 37, No. 1, pp. 182-198, 2013.
- 12. Sankararaman, S., and Mahadevan, S., "Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions," *Reliability Engineering & System Safety*, Vol. 112, pp. 187-199, 2013.
- 13. Nannapaneni, S., and Mahadevan, S., "Reliability Analysis under Epistemic Uncertainty," *Reliability Engineering & System Safety*, Vol. 155, No. 11, pp. 9–20, 2016.

MODEL UNCERTAINTY

Activities to address model uncertainty

- Model Verification → Numerical Error
- Model Calibration \rightarrow Model parameters
- Model Selection \rightarrow Model form uncertainty
- Model Validation \rightarrow Model form uncertainty

Code to code comparisons

Method of manufactured solutions

Model Verification

Code verification

 \mathcal{E}_{mf}

Rebba, Huang & Mahadevan, RESS, 2006 Sankararaman, Ling & Mahadevan, EFM, 2011

Use Bayesian network for systematic aggregation of errors

- Deterministic error (bias) \rightarrow Correct where it occurs
- Stochastic error \rightarrow Sample and add to model prediction •

Model Calibration (Parameter estimation)

- 3 techniques
 - Least squares
 - Maximum likelihood
 - Bayesian

VANDERBIL

• Issues

- Identifiability, uniqueness
- Precise or Imprecise data
- Ordered or un-ordered input-output pairs
- Data at multiple levels of complexity
- Dynamic (time-varying) output
- Spatially varying parameters

Model discrepancy estimation

- Several formulations possible for model discrepancy:
 - *1.* δ_1 as Constant
 - 2. δ_2 as i.i.d. Gaussian random variable with fixed mean and variance
 - 3. δ_3 as independent Gaussian random variable with input dependent mean and variance $\delta_3 \sim N(\mu(x), \sigma(x))$
 - 4. δ_4 as a stationary Gaussian process
 - 5. δ_5 as a non-stationary Gaussian process
- Result depends on formulation

$$\delta \sim N\bigl(m(x),k(x,x')\bigr)$$

Ling, Mullins, Mahadevan, JCP, 2014

Discrepancy options with KOH

- Calibrate Young's modulus using Euler-Bernoulli beam model
- Synthetic deflection data generated using Timoshenko beam model with $P = 2.5 \ \mu N$

Calibration

Prediction at $P = 3.5 \ \mu N$

Discrepancy	MR	MR
No d	0.5	0.5
IID Gauss	0.66	0.65
Input-dep Gauss	0.55	0.6
Stationary GP	0.36	0.95
Non-stationary GP	0.34	0.93

Input-dependent

Multi-fidelity approach to calibration

(if models of different fidelities are available)

- Need surrogate models in Bayesian calibration
- High-fidelity (HF) model is expensive
- Build surrogate for Low-fidelity (LF) model
- Use HF runs to "correct" the LF surrogate

$$Y_{HF} = S_{I}(X + \varepsilon_{in}, \theta(X)) + \varepsilon_{surr} + \delta_{2,I}(X)$$

- Pre-calibration of model parameters \rightarrow Stronger priors
- Estimation of HF-LF discrepancy

$$LF_{corr} = S_{I}(X + \varepsilon_{in}, \theta'(X)) + \varepsilon_{surr} + \delta'_{2,I}(X)$$

• Use experimental data to calibrate model parameters and discrepancy

$$Y_{exp} = S_{l}(X + \varepsilon_{in}, \theta'(X)) + \varepsilon_{surr} + \delta'_{2,l}(X) + \varepsilon_{d}(X) + \varepsilon_{obs}(X)$$

ANDERBLU

Hypersonic panel

Absi & Mahadevan, MSSP, 2015 Absi & Mahadevan, MSSP, 2017

2. Bayesian hypothesis testing (equality and interval) 3. Reliability-based method (distance metric)

1. Classical hypothesis testing

Model Validation

4. Area metric

Quantitative Methods

5. K-L divergence

Bayesian hypothesis testing

- Comparison of two hypotheses (H₀ and H₁)
 H₀: model agrees with data, H₁: otherwise
- Validation metric → <u>Bayes factor</u>

$$B = \frac{P(D \mid H_0)}{P(D \mid H_1)}$$

 $D \rightarrow obs data$

P(model agrees with data) $Pr(H_0|D) = B / B+1$

Useful in Uncertainty Aggregation

Probability measures

Model reliability metric

- Pred \rightarrow y Obs \rightarrow z
- $H_0 \rightarrow |y z| \le \delta$
- Compute P(H₀)
- $P(H_1) = 1 P(H_0)$

Rebba et al, RESS 2006; Rebba & Mahadevan, RESS 2008 Mullins et al, RESS, 2016.

Sankaran Mahadevan

55

Uncertainty Aggregation

Model reliability metric

• Multi-dimensional \rightarrow Mahalanobis distance

$$M_R = P\left(\sqrt{(\boldsymbol{z} - \boldsymbol{D}_i)^T \boldsymbol{\Sigma}_{\boldsymbol{z}}^{-1} (\boldsymbol{z} - \boldsymbol{D}_i)} < \sqrt{\boldsymbol{\lambda}^T \boldsymbol{\Sigma}_{\boldsymbol{z}}^{-1} \boldsymbol{\lambda}}\right)$$

- Input-dependent
 - Expected value
 - Random variable
 - Random field
- Time-dependent (dynamics problems)
 - Use time-dependent reliability methods
 - Instantaneous
 - First-passage
 - Cumulative

Uncertainty Aggregation

Prediction Uncertainty Quantification

VANDERBILT

From calibration to prediction

- Same configuration and QOI \rightarrow can estimate discrepancy
 - Create surrogate for discrepancy or observation
- Different configuration or QOI \rightarrow KOH discrepancy cannot be propagated
- Embedded discrepancy calibration + propagation $y_D = G(x; \theta + \delta(x)) + \varepsilon_{obs}$
- Combine calibration and validation results
 - Uncertainty aggregation across multiple levels
 - Able to include relevance

Bayesian state estimation

- Model form error directly quantified using state estimation
- Able to transfer to prediction
 - Estimation of discrepancy at unmeasured locations
 - Estimation of discrepancy for untested, dynamic inputs
 - Translation of model form errors to untested (prediction) configurations

Sankararaman & Mahadevan, RESS, 2015 Li & Mahadevan, RESS, 2016

Sankaran Mahadevan

Subramanian & Mahadevan, JCP, MSSP, submitted

Model Uncertainty: Summary

- Several activities to address model uncertainty
 - Calibration
 - Validation
 - Selection
 - Verification (Error quantification)
- Bayesian approach to calibration and validation highlighted
- Approaches to quantify various model errors
- Rigorous approach to error combination (differentiate stochastic and deterministic errors)
- Various error/uncertainty sources can be systematically included in a Bayesian network

UNCERTAINTY AGGREGATION

Error combination: rigorous approach

- Correct for deterministic errors; sample stochastic errors
- Surrogate model: e.g., 2nd order polynomial chaos expansion (PCE)
- Corrected model prediction: $\delta_{c} = PCE_{h}(P + \varepsilon_{P}, E, w) + \varepsilon_{su}$

VANDERBI

Multiple sources of uncertainty in crack growth prediction

- Physical variability
 - Loading
 - Material Properties
- Data uncertainty
 - Sparse input data
 - Output measurement
- Model uncertainty/errors
 - Finite element discretization error
 - Gaussian process surrogate model
 - Crack growth law
- Complicated interactions
 - Some errors deterministic, some stochastic
 - Combinations could be non-linear, nested, or iterative
 - Need systematic approach (e.g., Bayesian network) to aggregate uncertainty

Sankaran Mahadevan

Aggregation of Calibration, Verification and Validation Results

- Verification \rightarrow Numerical errors
 - "Correct" the model output
- Calibration data (D^C) \rightarrow PDF's of θ
- Validation data $(D^{V}) \rightarrow P(H_{0}|D^{V})$
- System-level prediction \rightarrow PDF of Z
- Sequential \rightarrow model output $\pi(y) = \Pr(H_0 \mid D^{\nu}) \pi_0(y) + [1 - \Pr(H_0 \mid D^{\nu})] \pi_1(y)$
- Non-sequential \rightarrow model parameter $\pi(\theta \mid D^{C}, D^{V}) = \pi(\theta \mid D^{C}, H_{0}) \operatorname{Pr}(H_{0} \mid D^{V})$ $+\pi(\theta)[1-\Pr(H_0 \mid D^V)]$

Sankararaman & Mahadevan, RESS, 2015

Uncertainty Aggregation

Tests at multiple levels of complexity

Multi-level integration

$$- f(\theta | D_1^{C,V}, D_2^{C,V}) = P(G_1)P(G_2)f(\theta | D_1^C, D_2^C) + P(G_1')P(G_2)f(\theta | D_2^C) + P(G_1)P(G_2')f(\theta | D_1^C) + P(G_1')P(G_2')f(\theta)$$

Sankararaman & Mahadevan, RESS, 2015

 k_1

Sandia Dynamics Challenge Problem (2006)

- Level 1
 - Subsystem of 3 mass-spring-damper components
 - Sinusoidal force input on m₁

- Level 2
 - Subsystem
 mounted on a
 beam
 - Sinusoidal force input on the beam

- System Level
 - Random load input on the beam

VANDERBILT UNIVERSITY

 <u>Output to predict</u>: Maximum acceleration at m₃

Inclusion of relevance of each level

- At each level
 - Global sensitivity analysis \rightarrow vector of sensitivity indices
 - Sensitivity vector combines physics + uncertainty
 - Comparison with system-level sensitivity vector quantifies the relevance
- Relevance

Li & Mahadevan, RESS, 2016

Integration

Uncertainty Aggregation Flow

Data uncertainty

Auxiliary Variable approach


```
Model uncertainty
```

 $F^{-1}(U, P)$

$$X \longrightarrow G(X) \longrightarrow Y$$

Stochastic mapping

Sankararaman & Mahadevan, RESS, 2013

Can include aleatory & epistemic sources at same level

U, P

- Uncertainty sensitivity analysis
 - Can include aleatory & epistemic sources at same level

X

 $x = F_X^{-1}(u_X | \boldsymbol{P}_X, \boldsymbol{D}_X)$

 $U = \int f_X(x \mid P) dx$

Global Sensitivity Analysis

- Deterministic function for GSA: – $Y = F(\boldsymbol{\theta}_X, \boldsymbol{U}_X, \boldsymbol{\theta}_m, \boldsymbol{U}_S, \boldsymbol{U}_{\epsilon_h}, \boldsymbol{U}_{\delta})$
- Auxiliary variables introduced for
 - Variability in input X
 - Model form error $\delta(X)$
 - Discretization error $\epsilon_h(X)$
 - Surrogate uncertainty in $S(\theta_m, X)$

Sobol indices

Li & Mahadevan, IJF, 2016

Sankaran Mahadevan

Uncertainty aggregation scenarios

Sankaran Mahadevan

Uncertainty Aggregation

Bayesian network

 a, b, \ldots component nodes (model inputs, outputs, parameters, errors) g – system-level output

U - set of all nodes { a, b, ..., g }

Joint PDF of all nodes $\pi(U) = \pi(a) \times \pi(b|a) \times \pi(c|a) \times \pi(d|c) \times \pi(e|b,d) \times \pi(f) \times \pi(g|e,f)$

PDF of final output g $\pi(g) = \int \pi(U) \, da \, db \dots df$

 $\frac{\text{With new observed data } m}{\pi(U, m)} = \pi(U) \times \pi(m \mid b)$

Bayesian network

Construction of BN

- Physics-based
 - Structure based on system knowledge
 - Learn probabilities using models & data
- Data-based
 - Learn both structure and probabilities from data
- Hybrid approach

Uses of BN

- Forward problem: UQ in overall system-level prediction
 - Integrate all available sources of information and results of modeling/testing activities
- Inverse problem: Decisionmaking at various stages of system life cycle
 - Model development
 - Test planning
 - System design
 - Health monitoring
 - Risk management

Data at multiple levels of complexity

Bayesian Network for Information Fusion (No system-level data)

Uncertainty Aggregation

Crack growth prediction -- Multiple models, time series data

Bayesian Network for MEMS UQ

Sankaran Mahadevan

76

Uncertainty Aggregation

DBN learning

Two stage learning

- Static BN learning: BN learning techniques (models, data, hybrid)
- Transitional BN learning: Models, Variable selection techniques (data)

DBN Inference

MCMC methods: Expensive

Particle filter methods

- Sequential Importance Sampling (SIS)
- Sequential Importance Resampling (SIR)
- Rao-Blackwellized filter

Analytical approximations

• Gaussian inputs/outputs → Kalman Filter, EKF, UKF

Bartram and Mahadevan, SCHM, 2014

Dynamic Bayesian network

Extension of Bayesian network for modeling timedependent systems

- Uncertainty aggregation over time
- Useful for probabilistic diagnosis and prognosis (SHM)

Static BN

VANDERBILT

 $Q^t = H(P^t)$

 $\boldsymbol{P}^{t+1} = \boldsymbol{G}(\boldsymbol{P}^t, \boldsymbol{v}^{t+1})$

Multi-disciplinary analysis

Hypersonic aircraft panel

Coupled fluid-thermal-structural analysis

Transient analysis

- Model error estimation in different disciplines
- Error accumulates across disciplinary models
 and over time
- Dynamic Bayesian network (DeCarlo et al, 2014)

Sankaran Mahadevan

Uncertainty Aggregation

Airframe Digital Twin

 M_{i+1}

 a_{i+1}^{0}

VANDERBILT

Li et al, AIAA J, 2016

Li & Mahadevan, RESS, 2018

Dynamic Bayesian Network → Fusion of multiple models and data sources

 P_{i+1}

 ΔK_{i+1}

 θ_{i+1}

 P_t

F

 $\left(a_{t}^{0}\right)$

10 hrs \rightarrow 2 hrs \rightarrow 1 sec

(TR)

Comprehensive framework for uncertainty aggregation and management

Information fusion

- Heterogeneous data of varying precision and cost
- Models of varying complexity, accuracy, cost
- Include calibration, verification and validation results at multiple levels

Facilitates

- Forward problem: Uncertainty aggregation in model prediction
 - Integrate all available sources of information and results of modeling/testing activities
- Inverse problem: Resource allocation for uncertainty reduction
 - Model development, test planning, simulation orchestration, system design, manufacturing, operations, health monitoring, inspection/maintenance/repair

References (1)

- 1. Kennedy, M.C.M., and O'Hagan, A., "Bayesian calibration of computer models," Journal of Royal Statistical Society., Series B: Stat. Methodology, Vol. 63 (3), pp. 425–464, 2001.
- 2. Ling, Y., J. Mullins, and S. Mahadevan, "Selection of Model Discrepancy Priors in Bayesian Calibration," *Journal of Computational Physics*, Vol. 276, No. 11, pp. 665-680, 2014.
- 3. Sankararaman, S., and S. Mahadevan, "Model Parameter Estimation with Imprecise Input/Output Data," *Inverse Problems in Science and Engineering*, Vol. 20, No. 7, pp. 1017-1041, 2012.
- 4. Nath, P., Hu, Z., and Mahadevan, S., "Sensor placement for calibration of spatially varying parameters," Journal of Computational Physics, Vol. 343, pp. 150-169, 2017.
- 5. DeCarlo, E. C., Mahadevan, S., and Smarslok, B. P., "Bayesian Calibration of Coupled Aerothermal Models Using Time-Dependent Data," *16th AIAA Non-Deterministic Approaches Conference at AIAA SciTech*, AIAA 2014-0123, 2014.
- 6. Absi, G. N., and S. Mahadevan, "Multi-Fidelity Approach to Dynamics Model Calibration," *Mechanical Systems and Signal Processing*, Vol. 68-69, pp. 189-206, 2016.
- 7. Rebba, R., and S. Mahadevan, "Computational Methods for Model Reliability Assessment," *Reliability Engineering and System Safety*, Vol. 93, No. 8, pp. 1197-1207, 2008.
- 8. Zhang, R., and S. Mahadevan, "Bayesian Methodology for Reliability Model Acceptance," *Reliability Engineering and System Safety*, Vol. 80, No. 1, pp. 95-103, 2003.
- 9. Rebba, R., S. Huang, and S. Mahadevan, "Validation and Error Estimation of Computational Models," *Reliability Engineering and System Safety*, Vol. 91, No. 10-11, pp. 1390-1397, 2006.
- 10. Jiang, X., and S. Mahadevan, "Bayesian Risk-Based Decision Method for Model Validation Under Uncertainty," *Reliability Engineering and System Safety*, Vol. 92, No. 6, pp. 707-718, 2007.
- 11. Mullins, J., Ling, Y., Mahadevan, S., Sun, L. and Strachan, A., "Separation of aleatory and epistemic uncertainty in probabilistic model validation," *Reliability Engineering & System Safety*, Vol. 147, pp. 49-59, 2016.
- 12. Li, C. and Mahadevan, S., "Role of calibration, validation, and relevance in multi-level uncertainty integration," *Reliability Engineering & System Safety*, Vol. 148, pp. 32-43, 2016.
- 13. Mullins, J., Mahadevan, S., Urbina, A., "Optimal test selection for prediction uncertainty reduction," ASME *Journal of Verification, Validation and Uncertainty Quantification*, Vol. 1, No. 4, pp. 041002 (10 pages), 2016.
- 14. Ao, D., Hu, Z., and Mahadevan, S., :"Dynamics model validation using time-domain metrics," ASME *Journal of Verification, Validation and Uncertainty Quantification,* Vol. 2, No. 1, pp. 011004, 2017.

References (2)

- 15. Sankararaman, S., and S. Mahadevan, "Model Validation Under Epistemic Uncertainty," *Reliability Engineering and System Safety*, Vol. 96, No. 9, pp. 1232-1241, 2011.
- 16. Hombal, V., and Mahadevan, S., "Model Selection Among Physics-Based Models," ASME Journal of Mechanical Design, Vol. 135, No. 2, pp. 021003 (1-15), 2013.
- 17. Liang, B., and S. Mahadevan, "Error and Uncertainty Quantification and Sensitivity Analysis of Mechanics Computational Models," *International Journal for Uncertainty Quantification*, Vol. 1, No.2, pp. 147-161, 2011.
- 18. Sankararaman, S., Y. Ling, and Mahadevan, S., "Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction," *Engineering Fracture Mechanics*, Vol. 78, No. 7, pp. 1487-1504, 2011.
- 19. Sankararaman, S., and Mahadevan, S., "Integration of calibration, verification and validation for uncertainty quantification in engineering systems," Reliability Engineering & System Safety, Vol. 138, pp. 194-209, 2015.
- 20. Li, C. and Mahadevan, S., "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering & System Safety, Vol. 148, pp. 32-43, 2016.
- 21. Urbina, A., S. Mahadevan, T. Paez, "Quantification of Margins and Uncertainties of Complex systems in the Presence of Aleatory and Epistemic Uncertainty," *Reliability Engineering and System Safety*, Vol. 96, No. 9, pp. 1114-1125, 2011.
- 22. Nannapaneni, S., and Mahadevan, S., "Reliability Analysis under Epistemic Uncertainty," *Reliability Engineering & System Safety*, Vol. 155, No. 11, pp. 9–20, 2016.
- 23. Sankararaman, S., and Mahadevan, S., "Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions," Reliability Engineering & System Safety, Vol. 112, pp. 187-199, 2013.
- 24. Li C., and Mahadevan, S., "Relative contributions of aleatory and epistemic uncertainty sources in time series prediction," International Journal of Fatigue, Vol. 82, pp. 474-486, 2016.
- 25. Li, C., and Mahadevan, S., "An Efficient Modularized Sample-Based Method to Estimate the First-Order Sobol Index," *Reliability Engineering & System Safety*, Vol. 153, No. 9, pp 110-121, 2016.
- 26. Li, C., and Mahadevan, S., "Sensitivity analysis of a Bayesian network," ASME Journal of Risk and Uncertainty in Engineering Systems (Part B: Mechanical Engineering), Vol. 4, No. 1, pp. 011003, 2018.
- 27. Li, C., Mahadevan, S., Ling, Y., Choze, S., and Wang, L., "Dynamic Bayesian Network for Aircraft Health Monitoring Digital Twin," *AIAA Journal*, Vol. 55, No.3, pp. 930-941, 2017.
- 28. Li, C., and Mahadevan, S., "Efficient approximate inference in Bayesian networks with continuous variables," Reliability Engineering & System Safety, Vol. 169, pp. 2690280, 2018.