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Sources of Uncertainty in Model Prediction

• Natural Variability (Aleatory)
Variation across

– Samples  Random variables

– Time  Random processes 

– Space  Random fields

• Input uncertainty (Epistemic)
– Sparse data

– Imprecise and qualitative data

– Measurement errors

– Processing errors

• Model uncertainty (Epistemic)
– Model parameters

– Solution approximation

– Model form
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Uncertainty aggregation

• Information at multiple levels

– Inputs

– Parameters

– Model errors

– Outputs

• Heterogeneous information

– Multiple types of sources, formats

– models, tests, experts, field data

– Multiple physics, scales, resolutions

– Different levels of fidelity and cost

• How to fuse ALL available 
information to quantify uncertainty in 
system-level prediction? 
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A simple example

• Model for vertical deflection at free end

(Euler-Bernoulli)

• Assume L and I have only aleatory variability

• P  random variable (aleatory), but we may not 

know its distribution type D and parameters θp,       

thus P ~ D(θp)  could have both aleatory and 

epistemic uncertainty

• E  model parameter (could be only epistemic, 

only aleatory, or both)

• Model error  infer from tests

• Other issues

– Boundary condition  degree of fixity  infer 

from tests

– Spatial variability of E  random field

– Temporal variability of P  random process

• Random field and random process parameters 

need to be inferred from data  could have both 

types of uncertainty
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Treatment of Epistemic Uncertainty

• Statistical Uncertainty 

– Distribution type D and parameters θp of  X ~ D(θp)

• Model Uncertainty
– System model parameters θ 

– uncertainty represented by probability distributions (Bayesian)

– Model form of G

– Model form error         (quantified using validation data)

– Numerical solution error              in G 

– Discretization error (quantified using convergence study)

– Surrogate model error (by-product of surrogate model building)

• Bayesian Approach  All uncertainty/error terms represented through probability 

distributions
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BACKGROUND TOPICS
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Quantities varying over space and time

• Quantities expressed as random processes/fields
– e.g., Loading at one location  random process over time

– e.g., material properties  random field over space

• Aleatory uncertainty alone
– Random process/field parameters are deterministic

– e.g., Gaussian process   𝑤𝑤 𝑥𝑥 ∼ GP 𝑚𝑚 𝑥𝑥 ,𝐶𝐶(𝑥𝑥, 𝑥𝑥′)
– 𝑚𝑚 𝑥𝑥 = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑥𝑥2⋯
– 𝐶𝐶 𝑥𝑥, 𝑥𝑥𝑥 = Cov 𝑤𝑤 𝑥𝑥 ,𝑤𝑤(𝑥𝑥′) ,  

– e.g., Squared exponential (SE)

• With epistemic uncertainty
– Random process/field parameters are uncertain

)/exp(),( 222 ll rrC −= σ

Random process realizations

Correlation functions
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Surrogate Modeling

Surrogate Model 𝑔𝑔(𝑥𝑥,Θ)
 Uncertainty quantification of the output

 Multiple runs of expensive system analysis

 Unknown functional form

 Inexpensive to evaluate at any location

 Examples:

Polynomial Chaos Expansions 

Radial Basis Functions 

Gaussian Process Models 

Support Vector Machines

Detailed 
Model/Experiment 𝑓𝑓(𝑥𝑥) Data {𝑥𝑥, 𝑓𝑓(𝑥𝑥)}

Consistent Reconstruction𝑔𝑔 𝑥𝑥𝑠𝑠 = 𝑓𝑓(𝑥𝑥𝑠𝑠)

𝑓𝑓(𝑥𝑥𝑠𝑠)𝑔𝑔
Surrogate 

model output 

has uncertainty
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Global Sensitivity Analysis

• Y = G(X)

• X  random variables

• Y  calculated through uncertainty propagation

• Apportion variance of Y to inputs X

• Analyze sensitivity of output over the entire domain rather than (1) 
suppressing a variable completely (2) using local derivatives

• Individual effects SI & Total effects ST (i.e., in combination with 
other variables)

• Single loop sampling approaches exist in literature to calculate SI

and ST
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Parameter estimation: Least Squares

• Linear regression
– θ  model parameters (m by 1)

– “n” ordered input – output observations
– Each input observation is a vector (1 by m)

– Each output observation is a scalar

– Construct X  matrix of inputs (n by m)

– Construct Y  vector of outputs (n by 1)

• Non-linear model 
– Simple least squares   Minimize

– α-level confidence intervals on θ using F-statistic 

• Advanced methods  weighted, generalized, moving, iterative
– Unbiased, convergent estimates

– Applicable to multiple output quantities

• Disadvantages
– Based on assumption of normally distributed residuals

– Difficult to include other types of uncertainty in input/output (imprecision, no ordered pairs)
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Likelihood function

Likelihood  Probability of observing the data, given specific values of 
parameters

Example

• Random variable X;  Available data points xi (i = 1 to n)

• Suppose we fit a normal distribution to X

Likelihood function   

Considering all n data points,

Maximum likelihood estimate (MLE)

 Maximize likelihood function and estimate parameters (μ, σ)
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Bayesian estimation

• Maximum Likelihood Estimate

– Maximize L(θ)  Point estimate of θ

• To account for uncertainty regarding θ
– Bayesian approach  probability distribution of θ
– Assume a uniform prior over the domain of θ

• Calculate marginal distributions of individual parameters

• PDF of X  fX(x|θ)
– Distribution of θ  f(θ)

– Each sample of θ  PDF for X

– Family of PDFs for X
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• Theorem of Total Probability

• Bayes theorem

• In terms of probability densities (continuous variables):

– θ : parameter to be updated

– D : experimental data

– Pr(D|θ) : likelihood function of θ
– π(θ) : prior PDF of θ
– π(θ|D) : posterior PDF of θ

Bayes’ Theorem
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Three examples of Bayesian inference

• Distribution parameters of a random variable  Statistical uncertainty

• Distributions of unmeasured test inputs

CD = 0. 05 - 0.015*M + 4.0e-004 *α –

7.04e-004*M*α + 

1.45e-003*M2 + 4.6e-004*α2

• Distributions of model coefficients  
(Bayesian regression)

CD = 0.05 - A*M + B*α - C*M*α + D*M2 + E *α2  
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Construction of posterior distribution

• Conjugate distributions   Prior and posterior have same 
distribution type; only the parameters change.

• Sampling-based methods

– Markov Chain Monte Carlo methods
– Metropolis

– Metropolis-Hastings

– Gibbs

– Slice sampling

– Adaptive improvements

– Particle filter methods
– Sequential importance re-sampling (SIR)

– Rao-Blackwellization
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Statistical Uncertainty: Bayesian Inference of 

Distribution Parameters

• An RV ‘X’ has a known ‘pdf’ type  X ~ fX(x| θ)

• Unknown parameters θ
• Observe instances of ‘X’ through experiments

• Assume prior distributions for θ and update them

X  ~ N(µ,σ) Observed Values of X = {12, 14}

Parameter 

No.

Parameter 

Name

Prior Distribution Posterior Distribution

PDF Type Mean Moments Mean Variance

1 µ Log Normal 10 4 10.57 2.19

2 σ Johnson 3 0.085  -0.006 0.017 3.03 0.05
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Comparison of densities

Prior & Posterior of µ Prior & Posterior of σ



Sankaran Mahadevan 18 Uncertainty Aggregation

Model Uncertainty: Bayesian Inference of 

Model Inputs

• Consider a model y = g(x) + ε

• Assume prior distributions for x

• Observe y through experiments (yi, i =1 to n)

• Update distributions for x

• ε is assumed to be a normal random variable with zero 
mean and σ2 variance, which is calculated from 
instances of y observed through experiments.
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Model Uncertainty: Bayesian Inference of 

Model Coefficients

• Consider a model y = b0 + b1*X1 + b2*X2 ……  + ε

• The model coefficients b are unknown

• Model calibration data are collected (xi, yi) (i = 1 to n)

• Prior distributions are assumed for b and updated.

• ε is assumed to be a normal random variable with zero 
mean and σ2 variance

• This method is applicable irrespective of whether the 
model is linear or not  y = g(x,b)
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Summary of Background Topics

• Aleatory vs. epistemic uncertainty
– In random variables and random processes/fields

• Surrogate modeling
– Adds to the uncertainty in prediction

• Sensitivity analysis
– Variance-based

• Parameter estimation 
– Distribution parameters (statistical uncertainty)

– Model parameters (model uncertainty)

– Likelihood, Bayes’ theorem, and MCMC
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STATISTICAL UNCERTAINTY
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Input uncertainty due to data inadequacy

• Sources of  data inadequacy
– Sparsity

– Imprecision (i.e., interval)

– Vagueness, ambiguity

– Missing

– Erroneous, conflicting

– Measurement noise

– Processing errors

• Data inadequacy leads to epistemic uncertainty in the 
quantification of model inputs and parameters
– Value of a deterministic variable

– Value of distribution parameter of a random variable

– Values of parameters of random process or random field
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Parameters
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Topics

• Parametric approach
– Family of distributions

– Model selection

– Ensemble modeling

• Non-parametric approach
– Kernel density 

– General approach with point and interval data

• Separating aleatory and epistemic uncertainty
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Non-Probabilistic Methods to handle 

epistemic uncertainty

• Interval analysis

• Fuzzy sets / possibility theory

• Evidence theory

• Information gap theory



Sankaran Mahadevan 25 Uncertainty Aggregation

Probabilistic Methods

• Frequentist  confidence bounds

• P-boxes, imprecise probabilities

• Family of distributions

• Bayesian approach

Statistical uncertainty  Distribution type
 Distribution parameters
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Family of distributions

• Johnson

• Pearson

• Beta

• Gamma

Four-parameter families
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Johnson family of distributions
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Statistical uncertainty: Parametric approach
Case 1: Known distribution type

• Estimate distribution parameters of 
X

• Assume distribution type is known 
 fX(x|P)

• Data D  m point data (xi, i = 1 to 
m) 

∏
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Estimation of Parameters

• Maximum Likelihood Estimate
– Maximize L(P)

• To account for uncertainty in P
– Bayesian updating  Joint distribution of P

– Assume a uniform prior over the domain of P

• Calculate marginal distributions of individual parameters

• PDF of X  fX(x|P)  Two loops of sampling
– Distribution of P  f(P)

– Each sample of P  PDF for X

– Family of PDFs for X

∫
=

)(

)(
)(

PL

PL
Pf



Sankaran Mahadevan 30 Uncertainty Aggregation

Family vs. Single 

Single distribution spreads 
over the entire range

Includes both types of 
uncertainty: aleatory and 
distribution parameter 
(epistemic)
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Case 2: Uncertain Distribution Type

Parametric Approach

• Distribution type  T1 or T2

– Uncertainty  P(T1) and 
P(T2)

• Given a distribution type, 
parameters are uncertain

– Sample value of distribution 
parameter(s)

• Conditioned on the distribution 
type, value of parameters

– Sample random values by 
inverting CDF

• Can collapse all three loops 
into a single loop for sampling

Generate samples 
to construct one 

PDF

Sample value of 
distribution 

parameter(s)

Select distribution 
type
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Example

• Variable X is either Lognormal or Weibull

• Lognormal
– λ ~ N(2.3, 0.23) 

– ξ ~ N(0.1, 0.01)

• Weibull
– a ~ N(10.5, 1.05)

– b ~ N(11.7, 1.17)
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Quantify distribution type uncertainty

• How to quantify uncertainty in a particular distribution 
type ?

• Compare two possible distribution types

• Two approaches
– Bayesian model averaging      Ensemble modeling

– Bayesian hypothesis testing    Model selection

Sankararaman & Mahadevan, MSSP, 2013
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Bayesian model averaging

• Suppose f1 and f2 are two competing PDF types for X

• The corresponding parameters are φ and θ

• BMA assigns weight to each PDF type

• Estimate PDFs of w, φ and θ simultaneously
– Construct likelihood  L(w, φ, θ) using data (D)

– Point values  product of pdf’s

– Intervals  product of ranges of cdf values over intervals

– Bayesian inference  f(w, φ, θ |D) 

)|()1()|(),,|( 21 θφθφ xfwxwfwxf XXX −+=



Sankaran Mahadevan 35 Uncertainty Aggregation

Uncertainty representation

• Physical variability  Expressed through the PDF 

• Distribution type uncertainty  w

• Distribution parameter uncertainty  φ and θ

• Unconditional distribution  collapsing into single loop

),,|( θφwxf X

∫ ∫ ∫= θφθφθφ ddwdDwfwxfxf XX )|,,(),,|()(
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Bayesian Hypothesis Testing

Comparing two hypotheses

Confidence in Model

P(H0) + P(H1) = 1; No prior knowledge  P(H0) = P(H1) = 0.5
Probability(Model being correct) = P(H0|D) = B/B+1
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Distribution type uncertainty

• Two competing distribution types
– M1 with parameter Φ
– M2 with parameter θ

• Straightforward to calculate 
– L(M1, Φ) and L(M2, θ)

• Necessary to calculate
– L(M1) and L(M2)

– By integrating out Φ and θ

• Simultaneously obtain posterior PDFs 

• Inherently these PDFs are conditioned on M1 and M2

respectively 
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Aleatory and epistemic uncertainty

• Introduce auxiliary variable U  CDF of  X

F-1(U, P)U, P X∫
∞−

=
X

X dxPxfU )|(

Transfer 

FunctionP
Distribution

• Distribution parameter uncertainty

Sankararaman & Mahadevan, RESS, 2013

Uncertainty propagation  single loop 
sampling of aleatory and epistemic uncertainty

Monte Carlo Sampling
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Distribution type uncertainty

)(),(, xFxf XXXX →σµ
PDF        CDF

For a given distribution type D

Multiple competing distributions (Dk) each with parameters θk

),,( θDUhX =

),|(1
XXX UFX σµ−=

),,( XXUh σµ=

U  auxiliary variable

Sankararaman & Mahadevan, MSSP, 2013
Nannapaneni & Mahadevan, RESS, 2016

𝑓𝑓𝑋𝑋|𝚯𝚯 𝑥𝑥|𝜃𝜃 =�𝑘𝑘=1𝑁𝑁 𝑤𝑤𝑘𝑘 𝑓𝑓𝑋𝑋|Θ𝒌𝒌 𝑥𝑥|𝜃𝜃𝒌𝒌
Composite distribution
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Sampling the input for uncertainty propagation

• Brute force approach - Nested three-loop sampling

- Computationally expensive 

Distribution Type

Distribution 

Parameters

Variable

𝑢𝑢𝜃𝜃𝑋𝑋𝑑𝑑𝑋𝑋
𝐹𝐹−1 𝑥𝑥

Inputs with aleatory + epistemic uncertainty
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𝑥𝑥 = 𝐹𝐹𝑋𝑋−1 𝑢𝑢𝑋𝑋 𝜽𝜽𝑋𝑋,𝒅𝒅𝑿𝑿

Auxiliary variable approach  single loop sampling

𝑓𝑓𝑋𝑋|𝚯𝚯 𝑥𝑥|𝜃𝜃 =�𝑘𝑘=1𝑁𝑁 𝑤𝑤𝑘𝑘 𝑓𝑓𝑋𝑋|Θ𝒌𝒌 𝑥𝑥|𝜃𝜃𝒌𝒌
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Sampling the multivariate input

Correlation uncertainty

• Data on correlation coefficients

• Construct a non-parametric distribution

• Likelihood

• Use MLE to construct PDF of correlation coefficient

• Sample the correlation coefficient from the non-parametric distribution

• Multivariate sampling

– Transform the correlated non-normal variables to uncorrelated normal 
variables

– Sample the uncorrelated normals; then convert to original space

𝐿𝐿 𝛼𝛼 = �𝑖𝑖=1𝑟𝑟 𝑓𝑓Θ(𝜃𝜃 = 𝜃𝜃𝑝𝑝𝑖𝑖 |𝛼𝛼) �𝑗𝑗=1𝑠𝑠 𝐹𝐹Θ 𝜃𝜃 = 𝜃𝜃𝑏𝑏𝑖𝑖 𝛼𝛼 − 𝐹𝐹Θ(𝜃𝜃 = 𝜃𝜃𝑎𝑎𝑖𝑖 |𝛼𝛼)
𝜃𝜃

𝑓𝑓𝜃𝜃(𝜃𝜃)

𝛼𝛼𝑄𝑄
𝛼𝛼2𝛼𝛼1 𝛼𝛼𝑖𝑖 𝜃𝜃𝑄𝑄𝜃𝜃𝑖𝑖𝜃𝜃2𝜃𝜃1
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Summary of parametric approach

Data on distribution 
parameters Θ (if available)

Point data and/or 
interval data on 𝑋𝑋

PDFs of distribution 
parameters

Weights of 
distribution types

Auxiliary variable 𝑢𝑢
Marginal unconditional 

PDF of 𝑋𝑋 Realization of 
Correlations

Samples of 𝑋𝑋
• Fitting parametric probability distributions to sparse and interval data

• Auxiliary variable 

– Distinguish aleatory and epistemic contributions

– Facilitates sensitivity analysis

– Supports resource allocation for further data collection
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Case 2: Uncertain Distribution Type

Kernel density estimation

• Non-parametric PDF
– x1, x2, x3 … xn are i.i.d samples from a PDF to be determined

– K  kernel function  symmetric and must integrate to unity

– h  smoothing parameter  “bandwidth”
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 Optimal h for normal PDF 

 MATLAB
 [f, x] = ksdensity (samples)
 plot (x, f)  PDF

 Multi-variate kernel densities available
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• Discretize the domain of X  θi, i = 1 to Q

• PDF values at each of these Q points known
– fX(x= θi)= pi for i = 1 to Q

• Interpolation technique
– Evaluate f(x) over the domain

• Construct likelihood 

• Maximize L  Find pi

Case 2: Uncertain Distribution Type

Likelihood-based Non-Parametric Approach







∏








∏ ∫∝

==
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i
iX
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ib

ia
X xfdxxfL
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)()(
pi pQ

X

fX(x)

θQθ3θ2θ1 θi

p1

p2

Sankararaman & Mahadevan, RESS, 2011
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Pros/cons of non-parametric approach

• Flexible framework
– Integrated treatment of point data and interval data

– Fusion of multiple types of information

– Probability distributions

– Probability distributions of distribution parameters

– Point data, interval data

• Results in a single distribution 
• Not a family, as in the parametric approach

• Smaller number of function evaluations for uncertainty 
propagation

• Cannot distinguish aleatory and epistemic uncertainty
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Statistical Uncertainty: Summary

• Epistemic uncertainty regarding parameters of stochastic 
inputs  represented by probability distributions 
family of distributions

• Three options discussed
– Use 4-parameter distributions (families of distributions)

– Introduce auxiliary variable to separately capture aleatory 
uncertainty

– Use non-parametric distributions

• Above discussion covered sparse and imprecise data
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MODEL UNCERTAINTY
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Activities to address model uncertainty

• Model Verification  Numerical Error 

• Model Calibration  Model parameters

• Model Selection     Model form uncertainty 

• Model Validation    Model form uncertainty 
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εnum → Numerical error
εh  → Discretization error 
εin-obs → Input obs error
εy-obs → Output obs error
εsu → Surrogate model error

Model Verification

obs-ymfuqobs-insuh

expmfnumpred

obs-ypredpredobs

εεε,εεεxg

εεεy

εεyy

−+=

−++=

−+=

),, ,(       

       

    

Rebba, Huang & Mahadevan,  RESS, 2006
Sankararaman, Ling & Mahadevan, EFM, 2011

Code verification 
• Method of manufactured solutions

• Code to code comparisons

εuq → UQ error
εmf → Model form error

Use Bayesian network for systematic aggregation of errors
• Deterministic error (bias)  Correct where it occurs
• Stochastic error  Sample and add to model prediction

Solution verification 
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Model Calibration  (Parameter estimation)

• 3 techniques

– Least squares

– Maximum likelihood

– Bayesian

• Issues

– Identifiability, uniqueness

– Precise or Imprecise data

– Ordered or un-ordered input-output pairs

– Data at multiple levels of complexity

– Dynamic (time-varying) output

– Spatially varying parameters

θ

G 
Model

X Y
Input Output

Parameters
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Model discrepancy estimation

• Several formulations possible for model discrepancy:

1. δ1 as Constant

2. δ2 as i.i.d. Gaussian random variable with fixed mean and variance

3. δ3 as independent Gaussian random variable with input dependent 

mean and variance

4. δ4 as a stationary Gaussian process

5. δ5 as a non-stationary Gaussian process

• Result depends on formulation

( ))',(),(~ xxkxmNδ

( ))(),(~3 xxN σµδ

Ling, Mullins, Mahadevan, JCP, 2014

G(x , θ)x

θ

ym

δ

ɛobs

yD

obs

obsmD

xxG

yy

εδθ
εδ

++=
++=

)();(

Model

Kennedy and O’Hagan, 
JRS, 2001
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Discrepancy options with KOH

• Calibrate Young’s modulus using Euler-
Bernoulli beam model

• Synthetic deflection data generated using 
Timoshenko beam model with P = 2.5 μN

Slide 53/12

Discrepancy MR MR

No d 0.5 0.5

IID Gauss 0.66 0.65

Input-dep Gauss 0.55 0.6

Stationary GP 0.36 0.95

Non-stationary GP 0.34 0.93

Prediction at P = 3.5 μN

Calibration

Input-dependent

Ling, Mullins, 
Mahadevan, JCP 2014



Sankaran Mahadevan 54 Uncertainty Aggregation

Multi-fidelity approach to calibration
(if models of different fidelities are available)

• Need surrogate models in Bayesian calibration

• High-fidelity (HF) model is expensive

• Build surrogate for Low-fidelity (LF) model

• Use HF runs to “correct” the LF surrogate 

– Pre-calibration of model parameters  Stronger priors

– Estimation of HF-LF discrepancy

• Use experimental data to calibrate model 
parameters and discrepancy

= S1(X + εin, θ’(X)) + εsurr + δ’2,1(X) + εd(X) + εobs(X)Yexp

θ’’(X)

ε’in, ε’obs(X)

ε’d(X)

LFcorr = S1(X + εin, θ’(X)) + εsurr + δ’2,1(X)

= S1(X + εin, θ(X)) + εsurr + δ2,1(X)YHF

Absi & Mahadevan, 
MSSP, 2015

Absi & Mahadevan, 
MSSP, 2017

Hypersonic panel
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Model Validation

Quantitative Methods 

1. Classical hypothesis testing

2. Bayesian hypothesis testing (equality and interval)

3. Reliability-based method (distance metric)

4. Area metric

5. K-L divergence

• Comparison of two hypotheses (H0 and H1)
– H0 : model agrees with data, H1 : otherwise

• Validation metric  Bayes factor

D  obs data
)|(

)|(

1

0

HDP

HDP
B =

Bayesian hypothesis testing Model reliability metric

P(model agrees with data)  
Pr(H0|D) = B / B+1

Rebba et al, RESS 2006;
Rebba & Mahadevan, RESS 2008
Mullins et al, RESS, 2016.

• Pred  y       Obs  z

• H0  |y - z| ≤ δ

• Compute P(H0)

• P(H1) = 1 – P(H0)

Probability measures

Useful in 

Uncertainty Aggregation
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Model reliability metric

• Multi-dimensional   Mahalanobis distance𝑀𝑀𝑅𝑅 = 𝑃𝑃 𝒛𝒛 − 𝑫𝑫𝑖𝑖 𝑇𝑇𝚺𝚺𝒛𝒛−1 𝒛𝒛 − 𝑫𝑫𝑖𝑖 < 𝝀𝝀𝑇𝑇𝚺𝚺𝒛𝒛−1𝝀𝝀
• Input-dependent

– Expected value

– Random variable

– Random field

• Time-dependent (dynamics problems)
– Use time-dependent reliability methods

– Instantaneous

– First-passage

– Cumulative
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Prediction Uncertainty Quantification

From calibration to prediction

• Same configuration and QOI  can estimate discrepancy
– Create surrogate for discrepancy or observation

• Different configuration or QOI  KOH discrepancy cannot be propagated

• Embedded discrepancy calibration + propagation

• Combine calibration and validation results 
– Uncertainty aggregation across multiple levels

– Able to include relevance

• Model form error directly quantified using state estimation

• Able to transfer to prediction

– Estimation of discrepancy at unmeasured locations

– Estimation of discrepancy for untested, dynamic inputs

– Translation of model form errors to untested (prediction) configurations

Bayesian state estimation

Sankararaman & Mahadevan, 
RESS, 2015

Li & Mahadevan, 
RESS, 2016

Subramanian & Mahadevan, 
JCP, MSSP, submitted

𝑦𝑦𝐷𝐷 = 𝐺𝐺 𝑥𝑥; 𝜃𝜃 + 𝛿𝛿 𝑥𝑥 + 𝜀𝜀𝑜𝑜𝑏𝑏𝑠𝑠
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Model Uncertainty: Summary

• Several activities to address model uncertainty

– Calibration

– Validation

– Selection

– Verification (Error quantification)

• Bayesian approach to calibration and validation highlighted

• Approaches to quantify various model errors

• Rigorous approach to error combination (differentiate stochastic and 
deterministic errors)

• Various error/uncertainty sources can be systematically included in 
a Bayesian network
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UNCERTAINTY 
AGGREGATION



Sankaran Mahadevan 60 Uncertainty Aggregation

• Current methods use RMS 

• Correct for deterministic errors; sample stochastic errors

• Surrogate model: e.g., 2nd order polynomial chaos expansion (PCE)

• Corrected model prediction:

Error combination: rigorous approach

εp

Surrogate
Model

FEA+εh

P δh

w

εsu δc+ =

Training

E

suhc ),,(PCE εεδ ++= wEP P

x

L

P

w(x)

δ

Liang & Mahadevan, IJUQ, 2011
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• Physical variability

• Loading

• Material Properties 

• Data uncertainty

• Sparse input data

• Output measurement

• Model uncertainty/errors

• Finite element discretization error

• Gaussian process surrogate model

• Crack growth law

• Complicated interactions

• Some errors deterministic, some stochastic

• Combinations could be non-linear, nested, or iterative

• Need systematic approach (e.g., Bayesian network) to aggregate uncertainty

Finite Element Analysis
(Generate training points)

ΔKeqv

Surrogate Model 

Loading

Crack 
Propagation 

Analysis

Predict Final Crack Size (A) 
as a function of number of 

load cycles (N)

Material Properties
ΔKth σf

EIFS

Multiple sources of uncertainty in crack 

growth prediction
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Aggregation of Calibration, Verification and 

Validation Results

• Verification  Numerical errors
• “Correct” the model output

• Calibration data (DC)  PDF’s of  θ

• Validation data (DV)  P(H0|D
V)

• System-level prediction  PDF of Z

• Sequential  model output

• Non-sequential  model parameter

Z

Y2

X2 θ2

Y1

X1 θ1

𝐷𝐷1𝐶𝐶 ,𝐷𝐷1𝑉𝑉 𝐷𝐷2𝐶𝐶 ,𝐷𝐷2𝑉𝑉

)()]|Pr(1[)()|Pr()( 1000 yDHyDHy Vv πππ −+=

)]|Pr(1)[(                        

)|Pr(),|(),|(

0

00

V

VCVC

DH

DHHDDD
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θπ

θπθπ

θ

G

H Z System 
Prediction ?

Y CD VD

Sankararaman & Mahadevan, RESS, 2015



Sankaran Mahadevan 63 Uncertainty Aggregation

Tests at multiple levels of complexity
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Multi-level integration

– 𝑓𝑓 𝜃𝜃 𝐷𝐷1𝐶𝐶,𝑉𝑉 ,𝐷𝐷2𝐶𝐶,𝑉𝑉 = 𝑃𝑃 𝐺𝐺1 𝑃𝑃 𝐺𝐺2 𝑓𝑓 𝜃𝜃 𝐷𝐷1𝐶𝐶 ,𝐷𝐷2𝐶𝐶
+ 𝑃𝑃 𝐺𝐺1′ 𝑃𝑃 𝐺𝐺2 𝑓𝑓 𝜃𝜃 𝐷𝐷2𝐶𝐶
+ 𝑃𝑃 𝐺𝐺1 𝑃𝑃 𝐺𝐺2′ 𝑓𝑓 𝜃𝜃 𝐷𝐷1𝐶𝐶
+ 𝑃𝑃 𝐺𝐺1′ 𝑃𝑃 𝐺𝐺2′ 𝑓𝑓(𝜃𝜃) Sankararaman & Mahadevan, 

RESS, 2015

θ

G1

G2

H
Z

Prediction

Y1 CD1
VD1

Y2 CD2
VD2
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Sandia Dynamics Challenge Problem 

(2006)

• Level 1

– Subsystem of 3 
mass-spring-damper 
components

– Sinusoidal force 
input on 𝑚𝑚1

300sin 500𝑡𝑡
3000sin 350𝑡𝑡

• Level 2

– Subsystem 
mounted on a 
beam

– Sinusoidal force 
input on the beam

• System Level

– Random load input 
on the beam

– Output to predict: 
Maximum 
acceleration at 𝑚𝑚3
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Inclusion of relevance of each level

• At each level

– Global sensitivity analysis  vector of sensitivity indices

– Sensitivity vector combines physics + uncertainty

– Comparison with system-level sensitivity vector quantifies the relevance

• Relevance

• Integration

α
Relevance: cos2(𝛼𝛼)
Non-Relevance: sin2(𝛼𝛼)𝑆𝑆𝑖𝑖 = 𝑉𝑉𝐿𝐿𝑖𝑖 � 𝑉𝑉𝑠𝑠𝑉𝑉𝐿𝐿𝑖𝑖 𝑉𝑉𝑠𝑠 2

𝑓𝑓 𝜃𝜃 𝐷𝐷1𝐶𝐶,𝑉𝑉 ,𝐷𝐷2𝐶𝐶,𝑉𝑉
= 𝑃𝑃 𝐺𝐺1𝐺𝐺2𝑆𝑆1𝑆𝑆2 𝑓𝑓 𝜃𝜃 𝐷𝐷1𝐶𝐶 ,𝐷𝐷2𝐶𝐶
+ 𝑃𝑃 𝐺𝐺1𝑆𝑆1 ∩ 𝐺𝐺2′ ∪ 𝑆𝑆2′ 𝑓𝑓 𝜃𝜃 𝐷𝐷1𝐶𝐶
+𝑃𝑃 𝐺𝐺2𝑆𝑆2 ∩ 𝐺𝐺1′ ∪ 𝑆𝑆1′ 𝑓𝑓 𝜃𝜃 𝐷𝐷2𝐶𝐶
+𝑃𝑃((𝐺𝐺1′ ∪ 𝑆𝑆1′) ∩ (𝐺𝐺2′ ∪ 𝑆𝑆2′))𝑓𝑓(𝜃𝜃) 3500 4250 5000 5750 6500
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Li & Mahadevan, RESS, 2016
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Uncertainty Aggregation Flow

𝑢𝑢X𝑝𝑝𝑋𝑋
𝑑𝑑𝑋𝑋

𝐹𝐹−1 𝑥𝑥

X

εnum εmf

Y

pX

dX
θ Numerical errors MF error

Nannapaneni & Mahadevan, 
RESS, 2016
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Auxiliary Variable approach

• Prediction
– Can include aleatory & epistemic sources at same level

• Uncertainty sensitivity analysis
– Can include aleatory & epistemic sources at same level

• Introduce auxiliary variable U (0, 1)

F-1(U, P)U, P X∫
∞−

=
X

X dxPxfU )|(

Transfer 

Function
P

Distribution

• Data uncertainty

G(X)X Y

• Model uncertainty

Stochastic mapping Stochastic mapping

One-to-one mapping

0

0.2

0.4

0.6

0.8

1 𝑢𝑢𝑋𝑋
C

D
F

𝑥𝑥 = 𝐹𝐹𝑋𝑋−1 𝑢𝑢𝑋𝑋 𝑷𝑷𝑋𝑋,𝑫𝑫𝑿𝑿

Sankararaman & Mahadevan, RESS, 2013
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Global Sensitivity Analysis

• Deterministic function for GSA:

– 𝑌𝑌 = 𝐹𝐹 𝜽𝜽𝑋𝑋,𝑼𝑼𝑿𝑿,𝜽𝜽𝑚𝑚,𝑈𝑈𝑆𝑆,𝑈𝑈𝜖𝜖ℎ ,𝑈𝑈𝛿𝛿
• Auxiliary variables introduced for

– Variability in input 𝑿𝑿
– Model form error 𝛿𝛿 𝑿𝑿
– Discretization error 𝜖𝜖ℎ 𝑿𝑿
– Surrogate uncertainty in 𝑆𝑆 𝜽𝜽𝒎𝒎,𝑿𝑿

𝑆𝑆𝑖𝑖 = 𝑉𝑉 𝐸𝐸 𝑌𝑌 𝑋𝑋𝑖𝑖𝑉𝑉 𝑌𝑌𝑆𝑆𝑖𝑖𝑇𝑇 = 1 − 𝑉𝑉 𝐸𝐸 𝑌𝑌 𝑋𝑋−𝑖𝑖𝑉𝑉 𝑌𝑌

𝑼𝑼𝑿𝑿 = 𝒖𝑿𝑿𝜽𝜽𝑋𝑋 = 𝜽𝜽𝑋𝑋∗ 𝑿𝑿 = 𝒙𝑈𝑈𝜖𝜖ℎ = 𝑢𝑢𝜖𝜖ℎ
𝑈𝑈𝛿𝛿 = 𝑢𝑢𝛿𝛿𝑈𝑈𝑆𝑆 = 𝑢𝑢𝑆𝑆𝜽𝜽𝑚𝑚 = 𝜽𝜽𝑚𝑚∗

𝜖𝜖ℎ = 𝜖𝜖ℎ∗𝛿𝛿 = 𝛿𝛿∗
𝑆𝑆 = 𝑠

𝑌𝑌 = 𝑦𝑦

Li & Mahadevan, IJF, 2016

Sobol indices
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Uncertainty aggregation scenarios

𝑆𝑆𝑿𝑿 𝒀𝒀
Single-component

Multi-level

Time-varying

Multi-physics

Multiple components organized in a 
hierarchical manner

(components, subsystems, system)

Multiple components occurring in a time 
sequence

Multiple components with simultaneous 
interactions

Aggregation of input variability, 
statistical uncertainty, and model 

uncertainty
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Bayesian network

a

b

c

e

d
g

f

a, b,….. component nodes (model 

inputs, outputs, parameters, errors)

g – system-level output

U - set of all nodes { a, b,…, g }

π(U)  =  π(a)× π(b| a) × π(c| a) × π(d| c) × π(e| b, d) × π(f ) × π(g| e, f )           

π(U, m)  = π(U)× π(m| b)
With new observed data m

π(g)  =  ∫ π(U) da db… df
PDF of final output g

Joint PDF of all nodes

a

b

c

e

d
g

f

mData
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Bayesian network

Construction of BN

• Physics-based

– Structure based on 
system knowledge

– Learn probabilities using 
models & data

• Data-based

– Learn both structure and 
probabilities from data

• Hybrid approach

• Forward problem: UQ in 
overall system-level 
prediction

– Integrate all available sources 

of information and results of 

modeling/testing activities

• Inverse problem: Decision-
making at various stages of 
system life cycle

– Model development

– Test planning

– System design

– Health monitoring

– Risk management

Uses of BN
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Data at multiple levels of complexity

Foam

Joints

System 
level

Hardware data and photos courtesy of Sandia National Laboratories

System complexity 
Increases

Increase

Decreases

Sources of uncertainty

Amount of real data 

Material 
characterization

Level 0

Component level

Level 1

Sub-system 
level

Level 2

Urbina et al, 
RESS, 2011

Predict peak 

acceleration of 

mass under 

impact load
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Bayesian Network for Information Fusion
(No system-level data)

f
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Y

fθ

f
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ε

f
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X

f

2
ε

Foam

jθ

j

1
ε

j

2
ε

Joints

Y = Experimental data
X = FEM prediction
1 - Level 1
2 - Level 2
S - System 

Stochastic node

Data node

• Calibration, verification, 

validation at each level

• Relevance of each level to 

system

• System prediction uncertainty

f

1
Y

f

1
X

f

2
Y

f

2
X

j

1
Y

j

1
X

j

2
Y

j

2
X

s
X



Sankaran Mahadevan 74 Uncertainty Aggregation

Crack growth prediction

-- Multiple models, time series data

Rotorcraft 

mast

Include SHM data

• Loads monitoring

• Inspection

Overall Crack Growth UQ

A

εexp

a0

Sankararaman et al, EFM, 2011
Ling & Mahadevan, MSSP, 2012

Dynamic 

Bayes Net

ai

C, m

εcg

ΔKth, σf

Cycle i

ai+1

C, m

εcg

ΔKth, σf

Cycle  i+1

ΔK ΔK aN

P P

P P
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Bayesian Network for MEMS UQ

1. Gap vs. voltage 
2. Pull-in and pull-out voltage
3. Device life

Prediction goals

RF MEMS Switch
Purdue PSAAP 

Data

Data

Data

Data

Data

Data

Data

MEMOSA 
Device Level 
Simulation

Dielectric 
charging model

Contact model

Electro-static 
field

Damping 
model

Creep model

MD MD

Trapped 
charge

Electric 
force

Plastic
deformation

Contact 
force

Displacement

Damping
force

Pull-in voltage

Pull-out voltage

Mean time to 
failure

Surface 
roughness

Properties, 
BCs

Creep
coefficient

Potentials

Potentials

Data

Multiple Physics

1. Elasticity
2. Creep
3. Contact
4. Gas damping
5. Electrostatics
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Dynamic Bayesian network

Extension of Bayesian network for modeling time-
dependent systems

• Uncertainty aggregation over time

• Useful for probabilistic diagnosis and prognosis (SHM)

DBN learning DBN Inference

MCMC methods: Expensive

Particle filter methods

• Sequential Importance Sampling (SIS)

• Sequential Importance Resampling (SIR)

• Rao-Blackwellized filter

Analytical approximations

• Gaussian inputs/outputs  Kalman Filter, EKF, UKF

Two stage learning

• Static BN learning: BN 

learning techniques 

(models, data, hybrid)

• Transitional BN learning: 

Models, Variable selection 

techniques (data)

)𝑷𝑷𝒕𝒕+1 = 𝐺𝐺(𝑷𝑷𝒕𝒕,𝒗𝒗𝒕𝒕+1
)𝑸𝑸𝒕𝒕 = 𝐻𝐻(𝑷𝑷𝒕𝒕

Bartram and Mahadevan, SCHM, 2014
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Multi-disciplinary analysis

Hypersonic aircraft  panel

– Coupled fluid-thermal-structural analysis

Transient analysis
• Model error estimation in different disciplines
• Error accumulates across disciplinary models 

and over time
• Dynamic Bayesian network (DeCarlo et al, 

2014)
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Airframe Digital Twin

10 hrs  2 hrs  1 sec

𝑎𝑎𝑡𝑡0
𝐹𝐹 Δ𝑆𝑆𝑡𝑡
𝑌𝑌𝐴𝐴𝑡𝑡𝑃𝑃𝑡𝑡

𝑎𝑎𝑜𝑜𝑏𝑏𝑠𝑠𝑡𝑡

𝑡𝑡4𝑡𝑡1 𝑡𝑡2 𝑡𝑡3

𝐾𝐾3

𝑡𝑡5

𝐾𝐾4𝑇𝑇𝑇𝑇 OBP

IBP𝐾𝐾1𝐾𝐾2

𝑡𝑡6𝑡𝑡7
𝐹𝐹𝑃𝑃𝑡𝑡 𝑡𝑡4 𝑎𝑎𝑡𝑡0

𝑈𝑈𝑠𝑠𝑌𝑌𝐴𝐴𝑡𝑡
𝑎𝑎𝑜𝑜𝑏𝑏𝑠𝑠𝑡𝑡

Crack 
location

Aircraft 
wing

Dynamic Bayesian Network 

 Fusion of multiple models and data sources
Two-layer BN + UKF

Crack Growth Prognosis  UQ
Scalability  GSA   auxiliary variable, stratified sampling

 Collapse the BN and apply UKF

Li et al, AIAA J, 2016
Li & Mahadevan, RESS, 2018
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Comprehensive framework for uncertainty 
aggregation and management

Information fusion

– Heterogeneous data of varying precision 
and cost

– Models of varying complexity, accuracy, 
cost

– Include calibration, verification and 
validation results at multiple levels

• Forward problem: Uncertainty aggregation in model prediction
– Integrate all available sources of information and results of modeling/testing activities

• Inverse problem: Resource allocation for uncertainty reduction
– Model development, test planning, simulation orchestration, system design, 

manufacturing, operations, health monitoring, inspection/maintenance/repair

Facilitates

g

e d

c
r

s

n

o

j

Bayesian 

Network
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