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Sources of Uncertainty in Model Prediction V
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* Natural Variability (Aleatory) X Y
Variation across Input Output
— Samples > Random variables
— Time - Random processes Parameters

— Space - Random fields

6
e Input uncertainty (Epistemic)
— Sparse data
— Imprecise and qualitative data

— Measurement errors
— Processing errors Multiple PDFs of input X

* Model uncertainty (Epistemic) G
— Model parameters _X Model ’ YA
— Solution approximation (fixed)
— Model form

e
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Uncertainty aggregation

* Information at multiple levels
— Inputs
— Parameters
— Model errors
— Outputs

* Heterogeneous information
— Multiple types of sources, formats
— models, tests, experts, field data
— Multiple physics, scales, resolutions
— Different levels of fidelity and cost

 How to fuse ALL available
information to quantify uncertainty in
system-level prediction?
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A simple example V
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3
Model for vertical deflection at free end y= PL P
(Euler-Bernoulli) 3E] ﬂ
Assume L and I have only aleatory variability

P - random variable (aleatory), but we may not
know its distribution type D and parameters 6,
thus P ~ D(6,) could have both aleatory and
epistemic uncertainty

Cantilever beam
E = model parameter (could be only epistemic,

only aleatory, or both)
Model error = infer from tests

Other issues
— Boundary condition > degree of fixity - infer pL y
from tests 7
— Spatial variability of E & random field
— Temporal variability of P - random process

E

Random field and random process parameters
need to be inferred from data - could have both
types of uncertainty
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Treatment of Epistemic Uncertainty V
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In)p(ut—.l Mgel —p Output Y = G(X, Hm) + EM
1 gM — gmf + gnum

Model
Parameters 6,

* Statistical Uncertainty
— Distribution type D and parameters 6, of X ~ D( Gp)

* Model Uncertainty

— System model parameters 6,, <—— Calibration

— uncertainty represented by probability distributions (Bayesian)
— Model form of G

—~ Model form error &, (quantified using validation data) ~ «—— Validation

— Numerical solution error &, InG

— Discretization error (quantified using convergence study)  <«—— Verification

— Surrogate model error (by-product of surrogate model building)

 Bayesian Approach - All uncertainty/error terms represented through probability
distributions
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Quantities varying over space and time V
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Quantities expressed as random processes/fields
e.g., Loading at one location - random process over time
e.g., material properties - random field over space

Aleatory uncertainty alone

Random process/field parameters are deterministic
— e.g., Gaussian process w(x) ~ GP(m(x),C(x,x"))
— m(x) =a+ bx + cx? -

— C(x,x") = Cov(w(x),w(x")),
— e.g., Squared exponential (SE)

C(r,l)=0c"exp(-r*/1?)

With epistemic uncertainty

Random process/field parameters are uncertain
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Surrogate Modeling

V
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DetaneN Data T )
Model/Experiment {x, f(x)} ;~ Surrogate Model ™,

f(x)

NG

% Uncertainty quantification of the output .

% Multiple runs of expensive system analysis N
% Unknown functional form

g < /

f(xs)
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Inexpensive to evaluate at any location
Examples:
Polynomial Chaos Expansions
Radial Basis Functions
Gaussian Process Models
Support Vector Machines

Surrogate
model output
has uncertainty

Consistent Reconstruction

g(xs) = f(xs)
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Global Sensitivity Analysis \ Y4
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e Y =G(X)
X - random variables
* Y - calculated through uncertainty propagation

* Apportion variance of Y to inputs X

* Analyze sensitivity of output over the entire domain rather than (1)
suppressing a variable completely (2) using local derivatives

* Individual effects S, & Total effects S; (i.e., in combination with
other variables)

VXi (EX~,- Y[ X)) S — EX~i (VXi Y| X.))
= 7=

V(Y) V()

1

* Single loop sampling approaches exist in literature to calculate S,
and Sy

Sankaran Mahadevan O Uncertainty Aggregation




Parameter estimation: Least Squares V
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* Linear regression Y = X6 0=(X"X)"'(X"Y)
— 6 > model parameters (m by 1)
— “n” ordered input — output observations Coefficient of determination R?
— Each input observation is a vector (1 by m) Proportion of variance explained by the
— Each output observation is a scalar linear regression model
— Construct X > matrix of inputs (n by m) High Value # Accurate Prediction

— Construct Y > vector of outputs (n by 1)

* Non-linear model Y =G(X, 6)
— Simple least squares > Minimize S(0) = Z(y, G(x,,0))’

i=1

— o-level confidence intervals on 6 using F-statistic S(9) < S@O)i1+-" P L

* Advanced methods - weighted, generalized, moving, iterative

— Unbiased, convergent estimates
— Applicable to multiple output quantities

* Disadvantages
— Based on assumption of normally distributed residuals
— Difficult to include other types of uncertainty in input/output (imprecision, no ordered pairs)
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Likelihood function A ¥4
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Likelihood = Probability of observing the data, given specific values of
parameters

Example
« Random variable X; Available data points x; (/= 1 to n)
» Suppose we fit a normal distribution to X

1 (-
fx(x)—aqu?( 202)

Likelihood function

L(u,0) = P(observing data x, | (¢, 0)) < f, (x;)

Considering all n data points,

Loy« [T filx)

Maximum likelihood estimate (MLE)
- Maximize likelihood function and estimate parameters (u, o)
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Bayesian estimation V
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 Maximum Likelihood Estimate
— Maximize L(8) > Point estimate of &

To account for uncertainty regarding 8
— Bayesian approach - probability distribution of &
— Assume a uniform prior over the domain of 4

L(O)
0) =
J/(0) ."L(Q)

Calculate marginal distributions of individual parameters

PDF of X =2 f(x/6)

— Distribution of 8 »> f(6)

— Each sample of 8 > PDF for X
— Family of PDFs for X
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Bayes’ Theorem V

\\\\\\\\\\\

UNIVERSITY

 Theorem of Total Probability
P(A) = ZP(A |E,))P(E)) (Events E; are mutually exclusive
i=1

\ and collectively exhaustive)

¢ BayeS theorem Iikeli|hood prior
P(A|E) P(E)
p(A|B):P(B|A)P(A) — P(EilA): ’
P(B) posterior P(A)
normalizing constant
e Interms of probability densities (continuous variables):
— 0 :parameter to be updated Pr(D |0)7()
— D : experimental data 7(0|D) = |

el | [ Pr(D|6)7(6)d6
— Pr(D|0) : likelihood function of ¢

— n(0) : prior PDF of ¢
— 7(6|D) : posterior PDF of 6
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Three examples of Bayesian inference V
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* Distribution parameters of a random variable - Statistical uncertainty

e Distributions of unmeasured test inputs @
CD = 0. 05- 0.015*M + 4.0e-004 *o. —
7.04e-004*M*o. + —> CD
1.45-003"M? + 4.6e-004"0 @/

 Distributions of model coefficients
(Bayesian regression)

CD =0.05-A*"M + B*a. - C*M*a + D*M? + E *a? CD

obs

o
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Construction of posterior distribution V
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Pr(D|0)7(0)

6|D) =
7@1D) [ Pr(D|6)7(6)d6

e Conjugate distributions -> Prior and posterior have same
distribution type; only the parameters change.

 Sampling-based methods

— Markov Chain Monte Carlo methods
— Metropolis
— Metropolis-Hastings
— Gibbs
— Slice sampling
— Adaptive improvements

— Particle filter methods
— Sequential importance re-sampling (SIR)
— Rao-Blackwellization
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Statistical Uncertainty: Bayesian Inference of V
Distribution Parameters

* An RV X' has a known ‘pdf’ type = X ~ f,(x/ 6)
* Unknown parameters 0

* Observe instances of ‘X’ through experiments

* Assume prior distributions for 8 and update them
L& =1]sxx 0

\\\\\\\\\\
IIIIIIIIII

X “N(p,0) 06={u, o} Observed Values of X ={12, 14}
Parameter | Parameter Prior Distribution Posterior Distribution
No. Name PDF Type | Mean Moments Mean | Variance
1 U Log Normal 10 4 10.57 2.19
2 o Johnson 3 0.085 -0.006 0.017 | 3.03 0.05
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Comparison of densities V
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Comparison of Prior & Pasterior Distribution Comparisan of Prior & Posteriar Distribution
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Model Uncertainty: Bayesian Inference of V
Model Inputs o

* Consider a model y = g(x) + €

* Assume prior distributions for x

* QObserve y through experiments (y, i =1 to n)
* Update distributions for x

e ¢£is assumed to be a normal random variable with zero
mean and o2 variance, which is calculated from
iInstances of y observed through experiments.

(y; — g(x))2
20

)

L(x) = H exp(—
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Model Uncertainty: Bayesian Inference of V
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Model Coefficients orman

* Consider a modely =b0 + b1*X1 + b2*X2 ...... + €
* The model coefficients b are unknown

* Model calibration data are collected (x;, y,) (i= 1 to n)
* Prior distributions are assumed for b and updated.

e g£is assumed to be a normal random variable with zero
mean and o2 variance

* This method is applicable irrespective of whether the
model is linear or not 2> y = g(x,b)

(yi B g(xi’b))z
20°

)

L(b)= ﬁ exp(—
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Summary of Background Topics V
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Aleatory vs. epistemic uncertainty
— In random variables and random processes/fields

Surrogate modeling
— Adds to the uncertainty in prediction

Sensitivity analysis
— Variance-based

Parameter estimation
— Distribution parameters (statistical uncertainty)

— Model parameters (model uncertainty)
— Likelihood, Bayes’ theorem, and MCMC
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STATISTICAL UNCERTAINTY
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Input uncertainty due to data inadequacy V
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e Sources of data inadequacy

X G Y

_ Sparsity Input vodel |- Output
— Imprecision (|.e.,.|nt§rval) P arameters

— Vagueness, ambiguity ]

— Missing

— Erroneous, conflicting
— Measurement noise
— Processing errors

Multiple PDFs of input X

* Data inadequacy leads to epistemic uncertainty in the
quantification of model inputs and parameters
— Value of a deterministic variable
— Value of distribution parameter of a random variable
— Values of parameters of random process or random field
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Topics V
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* Parametric approach
— Family of distributions
— Model selection
— Ensemble modeling

* Non-parametric approach
— Kernel density
— General approach with point and interval data

e Separating aleatory and epistemic uncertainty
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Non-Probabilistic Methods to handle \ ¥4
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epistemic uncertainty e

* Interval analysis
* Fuzzy sets / possibility theory
* Evidence theory

* Information gap theory
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Probabilistic Methods A ¥4

\\\\\\\\\\\
UNIVERSITY

* Frequentist - confidence bounds

P-boxes, imprecise probabilities

Family of distributions

* Bayesian approach

Statistical uncertainty —> Distribution type
—> Distribution parameters
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Family of distributions V
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Johnson

Pearson
Beta

e Gamma

Four-parameter families
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Johnson family of distributions V

PDF:  fin=o—«(*5 gjexp{‘%[”g'g[xfﬂz}

CDE: Fx)=o{y+sgl(x-&)/a]}

Inverse CDF: Z =y +6.g[(x—&)/A]

Z - standard normal variate

g(y) = In(y), for lognormal (S; )

= ln[y +4y2+ 1}, for unbounded (Sy;)

=In[y /(1 - y)] for bounded (Sg)
=y, for normal (Sy,)
" b

2
=m3 / m; p, =my,/m,
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Statistical uncertainty: Parametric approach V

Case 1: Known distribution type ey
Estimate distribution parameters of * Consider an interval (a, b)
X for X =
Assume distribution type is known L(P) o< Prob (D | P)
> f(X/P) = Prob (x €[a,b]| P)

Data D - mpoint data (x;, 1 =1 to
m)
L(P)=Prob(D|P)=Prob( x, |P)

= j'fX (x| P)dx

*its * Likelihood can include
= ffx(x“’) =& fx (| Py o fi (x| P) both point data and
" interval data

L(Pyoc [ | fx (x| P) X
p L(P) oc (H fy(x, |P)j[H j £y (x| P)de
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Estimation of Parameters V
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Maximum Likelihood Estimate
— Maximize L(P)

* To account for uncertainty in P
— Bayesian updating - Joint distribution of P
— Assume a uniform prior over the domain of P
L(P)
JL(P)
Calculate marginal distributions of individual parameters

PDF of X = f,(x/|P) > Two loops of sampling
— Distribution of P - f(P)

— Each sample of P - PDF for X

— Family of PDFs for X

f(P)=

Sankaran Mahadevan I Uncertainty Aggregation




Family vs. Single

------------ Single, Unconditional PDF
Family of PDFs

Probability Density Function

Variable X

Includes both types of
uncertainty: aleatory and
distribution parameter
(epistemic)

Cumulative Distribution Function

Sankaran Mahadevan (0
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Single distribution spreads
over the entire range

wannee §ingle, Unconditional CDF
Family of CDFs

Variable X
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Case 2: Uncertain Distribution Type V
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Parametric Approach

Distribution type = T, or T,

| N
_ Uncertainty > P(T,) and Select distribution

type
P(T,) 4
* Given a distribution type, N
: Sample value of
parameters are uncertain L
s distribution
— Sample value of distribution parameter(s)
parameter(s)
e Conditioned on the distribution
type, value of parameters ‘
— Sample random values by Generate samples
inverting CDF to construct one
PDF
* (Can collapse all three loops

into a single loop for sampling
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Example

* Variable X is either Lognormal or Weibull

Lognormal
— A~ N(2.3,0.23)
— £~N(0.1,0.01)

Weibull
— a~N(10.5, 1.05)
— b~N(11.7,1.17)

L
[a]
o

0.57

0.4r

0.31

Sankaran Mahadevan
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—Lognormal
— Weibull
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Quantify distribution type uncertainty V
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* How to quantify uncertainty in a particular distribution
type ?
* Compare two possible distribution types

* Two approaches
— Bayesian model averaging > Ensemble modeling
— Bayesian hypothesis testing - Model selection

Sankararaman & Mahadevan, MSSP, 2013
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Bayesian model averaging V
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* Suppose ' and # are two competing PDF types for X

The corresponding parameters are ¢ and 6

BMA assigns weight to each PDF type
fx (x| w,0,0) = wfy (x| @) +(1-w) fy (x| 6)

Estimate PDFs of w, ¢ and & simultaneously

— Construct likelihood - L(w, ¢, 6) using data (D)
— Point values - product of pdf’s
— Intervals = product of ranges of cdf values over intervals

— Bayesian inference =2 fiw, ¢, 6|D)
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Uncertainty representation V
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* Physical variability - Expressed through the PDF
fX (X ‘ Wa ¢a 9)

Distribution type uncertainty =2 w

Distribution parameter uncertainty - ¢ and 6

Unconditional distribution =» collapsing into single loop

o @) = [ [ [ £ | w.8.0) £ (w.$.0| D)dwd gd©
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Bayesian Hypothesis Testing V
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Comparing two hypotheses

P(H,|D) _P(D|H,)P(H,)
P(H,|D) P(D|H)P(H,)

Bayes' Theorem =

»_ P(D|H,) | Compute based on
P(D|H)) fy(y[Ho) & fy(y|H,)

Bayes Factor

Confidence in Model

P(H,) + P(H;) = 1; No prior knowledge =» P(H,) = P(H,) = 0.5
Probability(Model being correct) = P(H,|D) = B/B+1
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Distribution type uncertainty V
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Two competing distribution types
— M, with parameter ® B_ P(D|M,)) _ L)
— M, with parameter 6 P(D|M,) L(M,)

e Straightforward to calculate

— L(M,, ®) and L(M,, 6) P(D|M,)x [ P(D|M,,$)f" ($)d¢

* Necessary to calculate P(D|M,) o [P(D|M,.60)f (6)d6

— L(M,) and L(M,)
— By integrating out ® and 6

e Simultaneously obtain posterior PDFs f(¢)and f(6)

* Inherently these PDFs are conditioned on M, and M,
respectively
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Aleatory and epistemic uncertainty

* Distribution parameter uncertainty

P > ‘ Transfer > /\
Function

Distribution

Introduce auxiliary variable U - CDF of X

U= ij(x|P)dx

Uncertainty propagation = single loop
sampling of aleatory and epistemic uncertainty

Sankararaman & Mahadevan, RESS, 2013
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Probability Density Function
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3 5

Monte Carlo Sampling

L |FY(U, P

> X

Family of PDFs

«enu e Single, Unconditional PDF

Variable X
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Distribution type uncertainty V
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For a given distribution type D U - auxiliary variable

HyOx = [x(X), Fy(X)| —s X:F;(U|ﬂx’gx)
PDF  CDF =h(U, iy ,0y)

Multiple competing distributions (D,) each with parameters 4,
X =hU,D,B0)

==ueux Single, Unconditional PDF
Family of PDFs

Composite distribution

N
fxje(x10) = 2 Wi fxje, (x[61)
=1

Sankararaman & Mahadevan, MSSP, 2013 .
Nannapaneni & Mahadevan, RESS, 2016 a—

Probability Density Function

Variable X
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Sampling the input for uncertainty propagation ‘7
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Inputs with aleatory + epistemic uncertainty Distribution Type
* Brute force approach - Nested three-loop sampling Distribution
- Computationally expensive Parameters
Variable

Auxiliary variable approach = single loop sampling

Oy L CD

PP ——

N
x = Fy'(ux|@x, dy ) fxie(x|60) = kZka fxjo (x16k)
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Sampling the multivariate input V

Correlation uncertainty fo()
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A

Data on correlation coefficients

Construct a non-parametric distribution

Likelihood 3
L@ = | [fo(0 = 6ila) | |[Fo(6 = 6i]a) - Fo(6 = 6ilc)]
i=1 j=1

Use MLE to construct PDF of correlation coefficient
Sample the correlation coefficient from the non-parametric distribution

Multivariate sampling

— Transform the correlated non-normal variables to uncorrelated normal
variables

— Sample the uncorrelated normals; then convert to original space
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Summary of parametric approach V
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Data on distribution Point data and/or
parameters 0O (if available) interval data on X

PDFs of distribution Weights of Auxiliary variable
parameters distribution types u

Marginal unconditional Realization of

PDF of X Correlations

\/

Samples of X

* Fitting parametric probability distributions to sparse and interval data

* Auxiliary variable

— Distinguish aleatory and epistemic contributions
— Facilitates sensitivity analysis
— Supports resource allocation for further data collection

Sankaran Mahadevan
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Case 2: Uncertain Distribution Type
Kernel density estimation

* Non-parametric PDF

V

— X1, X9, X3 ... X, @re i..d samples from a PDF to be determined

fi0 =Y K

x_

h

)Cl-)

— K - kernel function - symmetric and must integrate to unity
— h - smoothing parameter - “bandwidth”

Density
0.0 0.1 0.2030405

|

-3 -2 -1 0

reference | |,

= Larger the h, smoother the PDF

467 );
3n

= Optimal 4 for normal PDF - 2 =(
= MATLAB
= [f, X] = ksdensity (samples)
= plot (x, f) > PDF

= Multi-variate kernel densities available

Sankaran Mahadevan
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Case 2: Uncertain Distribution Type V
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Likelihood-based Non-Parametric Approach v

* Discretize the domainof X> 6,i=1t0 Q

PDF values at each of these Q points known

Jx(x)

Interpolation technique
— Evaluate f(x) over the domain

 Construct likelihood

n b m
L oc (H | fx (x)de[q Jx (x; )j

 Maximize L - Find p;

Sankararaman & Mahadevan, RESS, 2011
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Pros/cons of non-parametric approach V
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* Flexible framework
— Integrated treatment of point data and interval data

— Fusion of multiple types of information
— Probability distributions
— Probability distributions of distribution parameters
— Point data, interval data

* Results in a single distribution
« Not a family, as in the parametric approach

« Smaller number of function evaluations for uncertainty
propagation

* (Cannot distinguish aleatory and epistemic uncertainty
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Statistical Uncertainty: Summary V
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* Epistemic uncertainty regarding parameters of stochastic
iInputs = represented by probability distributions -
family of distributions

* Three options discussed
— Use 4-parameter distributions (families of distributions)

— Introduce auxiliary variable to separately capture aleatory
uncertainty
— Use non-parametric distributions

* Above discussion covered sparse and imprecise data
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MODEL UNCERTAINTY
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Activities to address model uncertainty V
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Model Verification = Numerical Error

Model Calibration - Model parameters

Model Selection > Model form uncertainty

Model Validation -> Model form uncertainty
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Model Verification A ¥4
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Code verification
 Method of manufactured solutions
« Code to code comparisons

Solution verification

Eum — Numerical error _ e s
& — Discretization error Yobs = Y pred pred y-obs
E.os —> Input obs error _ .
&,-0bs — Output obs error = Yprea T Enum T Epp ~ Eenp
£, — Surrogate model error _ _
Euq — UQ error =8 (X, EhsEgusCin-ops> guq ) T 8mf 8y—obs
Enf — Model form error
Rebba, Huang & Mahadevan, RESS, 2006

Sankararaman, Ling & Mahadevan, EFM, 2011

Use Bayesian hetwork for systematic aggreqgation of errors
» Deterministic error (bias) = Correct where it occurs
« Stochastic error > Sample and add to model prediction
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Model Calibration (Parameter estimation) V
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* Jtechniques G
— Least squares '”5’(‘“ _’I Model | Ou‘t,put
— Maximum likelihood T
— Bayesian
Parameters
* |ssues

— Identifiability, uniqgueness

— Precise or Imprecise data

— Ordered or un-ordered input-output pairs
— Data at multiple levels of complexity

— Dynamic (time-varying) output

— Spatially varying parameters
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Model discrepancy estimation V
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Model €obs \l'

x —> Gx,0) — v, — W

yD :ym+5+gobs

Zr 0 T =G(x;0)+o(x)+¢,,,

Kennedy and O’Hagan,
JRS, 2001

* Several formulations possible for model discrepancy:
1. ¢, as Constant
2. 0, as i.i.d. Gaussian random variable with fixed mean and variance
3. 0, as independent Gaussian random variable with input dependent

mean and variance  §, ~ N (y(x),G(X))

4. o, as a stationary Gaussian process S ~ N(m(x) k(x x'))
5. ds as a non-stationary Gaussian process o

* Result depends on formulation Ling, Mullins, Mahadevan, JCP, 2014
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Discrepancy options with KOH

e Calibrate Young’'s modulus using Euler-
Bernoulli beam model

» Synthetic deflection data generated using
Timoshenko beam model with P =2.5 uN
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Prediction at P = 3.5 uN

Discrepancy
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Multi-fidelity approach to calibration V

(if models of different fidelities are available)

UNIVERSITY

* Need surrogate models in Bayesian calibration
» High-fidelity (HF) model is expensive
* Build surrogate for Low-fidelity (LF) model

 Use HF runs to “correct” the LF surrogate

Vir = $,(X + &) 00X) + 20, + 65,(X) Hypersonic panel

— Pre-calibration of model parameters - Stronger priors Absi & Mahadevan.
— Estimation of HF-LF discrepancy MSSP, 2015

Absi & Mahadevan,
LFcorr = SI(X T & H’(X)) T Eurr T 5,2,1(n VISSE 2017
* Use experimental data to calibrate model A 0”(X)

parameters and discrepancy )

PP 7 & X)

Yexp = S](X + Ein 0,(X)) + Esurr + J,Z,I(X) + gd(X) + 8obs(X) {:/:\\\
»l 8,in, g’obs(m |
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Model Validation

Quantitative Methods
1. Classical hypothesis testing

V
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2. Bayesian hypothesis testing (equality and interval) —]  Probability measures

3. Reliability-based method (distance metric)
4. Area metric
5. K-L divergence

Bavesian hypothesis testing

Comparison of two hypotheses (H, and H,)
— H,: model agrees with data, H, : otherwise

Validation metric = Bayes factor
_P(D|H,)
P(D|H))

P(model agrees with data)
Pr(H,|D) = B/ B+1

D - obs data

Sankaran Mahadevan

|
Useful in
Uncertainty Aggregation

Model reliability metric

* Pred>y Obs 2 z
* Hy>ly-z[<d
 Compute P(H,)

* P(Hy)=1-P(H,)

Rebba et al, RESS 2006;
Rebba & Mahadevan, RESS 2008
Mullins et al, RESS, 2016.
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Model reliability metric A\ ¥4
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e Multi-dimensional - Mahalanobis distance
Mg = P (@@= D)5, (z— D)) < JATE;12)

* |nput-dependent
— Expected value
— Random variable
— Random field

1 g

* Time-dependent (dynamics problems) o
— Use time-dependent reliability methods o/}

T 06}

— Instantaneous e
— First-passage 20| ll
— Cumulative oo
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Prediction Uncertainty Quantification A ¥4
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From calibration to prediction

* Same configuration and QOI - can estimate discrepancy
— Create surrogate for discrepancy or observation

* Different configuration or QOl - KOH discrepancy cannot be propagated

« Embedded discrepancy calibration + propagation ¥p = G(x; 6 + 8(x)) + €ops

* (Combine calibration and validation results Sankararaman & Mahadevan,
— Uncertainty aggregation across multiple levels RESS, 2015

— Able to include relevance Li & Mahadevan,
RESS, 2016

Bayesian state estimation

* Model form error directly quantified using state estimation

* Able to transfer to prediction
— Estimation of discrepancy at unmeasured locations Subramanian & Mahadevan,
— Estimation of discrepancy for untested, dynamic inputs JCP, MSSP, submitted
— Translation of model form errors to untested (prediction) configurations
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Model Uncertainty: Summary V
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* Several activities to address model uncertainty
— Calibration
— Validation
— Selection
— Verification (Error quantification)

* Bayesian approach to calibration and validation highlighted
* Approaches to quantify various model errors

* Rigorous approach to error combination (differentiate stochastic and
deterministic errors)

* Various error/uncertainty sources can be systematically included in
a Bayesian network

Sankaran Mahadevan : Uncertainty Aggregation




\\\\\\\\\\\
UNIVERSITY

UNCERTAINTY
AGGREGATION

Uncertainty Aggregation




Error combination: rigorous approach V
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e (Current methods use RMS

PP

Model

Training

—(D @ - D

Liang & Mahadevan, 1JUQ, 2011

* Correct for deterministic errors; sample stochastic errors

e Surrogate model: e.g., 2"4 order polynomial chaos expansion (PCE)

e Corrected model prediction: 6. =PCE (P+¢&,,E,w)+&,

Sankaran Mahadevan
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Multiple sources of uncertainty in crack

growth prediction

Physical variability
* Loading

V
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Material Properties

» Material Properties .

Data uncertainty
* Sparse input data
«  Qutput measurement
Model uncertainty/errors
 Finite element discretization error

4Ky, op
Finite Element Analysis l
(Generate training points) EIFS
AKeqv Crack
Surrogate Model — Propagation
T Analysis
Loading

« Gaussian process surrogate model
- Crack growth law

Complicated interactions

«  Some errors deterministic, some stochastic

A 4

Predict Final Crack Size (A)
as a function of number of
load cycles (N)

- Combinations could be non-linear, nested, or iterative
* Need systematic approach (e.g., Bayesian network) to aggregate uncertainty

Sankaran Mahadevan s
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Aggregation of Calibration, Verification and V
Validation Results s

Verification = Numerical errors
“Correct” the model output

Calibration data (D€) - PDF’s of &
Validation data (DV) - P(H,|DV)
System-level prediction > PDF of Z

Sequential 2 model output Y DT D7
7(y) =Pr(H, | D")z,(y)+[1-Pr(H, | D" )z, (y)
0
Non-sequential 2 model parameter £, _System
C v c v Prediction ?
7(@|D",D")=n(6|D",H,)Pr(H,|D")

+7(0)1-Pr(H,|D")]
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Tests at multiple levels of complexity V
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xlO_3
7 T
— f k)
by by 5.25¢ | m—f (k| DO) "
e f (k|| D)
[
ch D;/ E 35' — f(k1|D1C’ DZC)
o 1.75¢ .

Prediction T I

0

3500 4250 5000 5750 6500

Ky

Multi-level integration
- f(8|ps",D3") = P(G)P(G,)f(6|DE, D)
+ P(G{)P(GZ)f(ﬂDZC) Sankararaman & Mahadevan,
+ PGOP(Gf(BDF) eSS 2015
+ P(GP(G2)f ()
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Sandia Dynamics Challenge Problem

(2006)

my

i

m

connection

my

e Level1

c3 é ks
s e ‘% " 300sin(500t)

WA

€

— Subsystem of 3
mass-spring-damper
components

— Sinusoidal force
input on m,

V
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mg ms

ma ma

Weakly my Weakly
nonlinear nonlinear

connection ¢ connection &
k 1 k 1

Sinusoidal Load T é &

Random LoadT é

AVATAVET
3000sin(350t)
Level 2 e System Level
— Subsystem — Random load input
mounted on a on the beam
beam — Qutput to predict:
— Sinusoidal force Maximum

input on the beam acceleration at m;
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Inclusion of relevance of each level V
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e Ateach level

— Global sensitivity analysis = vector of sensitivity indices
— Sensitivity vector combines physics + uncertainty
— Comparison with system-level sensitivity vector quantifies the relevance

 Relevance Li & Mahadevan, RESS, 2016

P ( Vi, Vs >2< Relevance: cos?(a)
RN A4l Non-Relevance: sin*(a)
x10°

f(9|D1C’V, DZC’V) IIZrior.
= P(G,G,5:5,)f(8|D¢, DY) ) Proposed
+ P(G:S, n (G5 us))f(8|DE) =
+P(G,S, n (G U Sy))f(8|D§) il
+P((G{ U S{) N (Gé U Sé))f(@) 30500 4250 5000 5750 6560

k)

* Integration
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Uncertainty Aggregation Flow

Data on distribution
parameters O (if available)

Point data and/or
interval data on X

V

VANDERBILT
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parameters

PDFs of distribution Weights of
distribution types

Auxiliary variable u

o
o) Lz O

@ Nannapaneni & Mahadevan,

Sankaran Mahadevan

Marginal Uncond
PDF of X

itional Realizations of
Correlations

RESS, 2016

W

Samples of X

— >~

Numerical errors MF error

\/

Corrected model
prediction

/\

variable(s)

PDF of output

Reliability estimation
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Auxiliary Variable approach

Data uncertainty

P > Transfer

Funct/on Dlstrlbutlon

Stochastic mapping

Introduce auxiliary variable U (0, 1)

Prediction

— Can include aleatory & epistemic sources at same level

Uncertainty sensitivity analysis

U=[fcx|Pax | UP

V

VANDERBILT
UNIVERSITY

 Model uncertainty

X—[ 6w

Yy

Stochastic mapping

Sankararaman & Mahadevan, RESS, 2013

'

F(U, P)

One-to-one mapping

— Can include aleatory & epistemic sources at same level

Sankaran Mahadevan

x = Fy*(ux|Pyx, Dy )
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Global Sensitivity Analysis

UEh_uEh
Ux = uy
S
HXZH;}
Us = us
U5=u5
Bmze;kn

Deterministic function for GSA:
~ Y =F(0x,Uyx, 0, Us, Ue,, Us)

Auxiliary variables introduced for

— Variability in input X
— Model form error §(X)
— Discretization error €, (X)

— Surrogate uncertainty in S(0,,,, X)

Sankaran Mahadevan
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€Ep = €p
O60=0"
S=s

Sobol indices

_V(E(IX))
v
CV(E(IX-))

V()

ST =

Li & Mahadevan, IJF, 2016
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Uncertainty aggregation scenarios V
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X—P

S

—}Y

Single-component

Aggregation of input variability,
statistical uncertainty, and model
uncertainty

Multi-level

Multiple components organized in a
hierarchical manner
(components, subsystems, system)

Time-varying

,—P
T

Multiple components occurring in a time
sequence

Multi-physics

Sankaran Mahadevan

Multiple components with simultaneous
interactions
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Bayesian network V
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@ a, b,..... component nodes (model
Q inputs, outputs, parameters, errors)
e g — system-level output
U - setof all nodes { q, b,..., g}

Joint PDF of all nodes
n(U) = n(a)x n(b| a) x n(c| a) x n(d| c) x w(e| b, d) x n(f) x n(g| e, f)

PDF of final output g Data |m

2(g) = | n(U) da db... df (b) (o)

With new observed data m Q
(U, m) = m(U)x m(m| b) o @/
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Bayesian network

Construction of BN

Physics-based

— Structure based on
system knowledge

— Learn probabilities using
models & data

Data-based

— Learn both structure and
probabilities from data

Hybrid approach

Sankaran Mahadevan

V
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Uses of BN

Forward problem: UQ in
overall system-level

prediction

— Integrate all available sources
of information and results of
modeling/testing activities

Inverse problem: Decision-
making at various stages of

system life cycle

— Model development
— Test planning

— System design

— Health monitoring
— Risk management

Uncertainty Aggregation




Data at multiple levels of complexity V
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System
level

Foam |

Material Component Ieveli Sub-system
characterization ! 5 | | level

Predict peak
acceleration of
mass under
impact load

Hardware data and photos courtesy of Sandia National Laboratories | n C re aS eS
System complexit " |
rbina et al,

: Increase RESS, 2011
Sources of uncertaint
Decreases
Amount of real data
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Bayesian Network for Information Fusion V
(No system-level data)
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Joints

Y = Experimental data

Calibration, verification, X = FEM prediction
validation at each level 1- Level1
- Relevance of each level 2- Level2
elevance of each level to X Data node S - System
system <
» System prediction uncertainty Q Stochastic node
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Crack growth prediction

-- Multiple models, time series data

Rotorcraft

mast

NYNWY

vy
NS

Crack size (mm)

N

—
T
i
]

= o

— IVleanA predictién

----95% probability bound

05 1
Time (No.Cycle)
Overall Crack Growth UQ

15

x 10°
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Cycle i+l

P
A
|
\

\

\

\
\
\

Cem D
G D A

R

Dynamic
Bayes Net

Sankararaman et al, EFM, 2011
Ling & Mahadevan, MSSP, 2012

/

Include SHM data

« Loads monitoring
* Inspection
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Bayesian Network for MEMS UQ

Prediction goals 1. Gap vs. voltage

e

Potentials

Data

Surface Dielectric [
roughness charging model

2. Pull-in and pull-out voltage

3. Device life

Potentials
l MD l

Properties,
BCs

Data

Electro-static
field

} Damping
model

l \"

[

Contact model ]

Data

force

Data

Pull-out voltage

Data

Electric
force

Damping
force

N Creep
coefficient

MEMOSA
Device Level

\_ Simulation

[ Creep model ]

v

Displacement

Mean time to
failure
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Data

Pull-in voltage

i
Plastic
deformation

V
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Multiple Physics
Elasticity
Creep
Contact

Gas damping
Electrostatics

e

ok ow -

RF MEMS Switch
Purdue PSAAP

Data
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Dynamic Bayesian network V
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Extension of Bayesian network for modeling time-
dependent systems

« Uncertainty aggregation over time

« Useful for probabilistic diagnosis and prognosis (SHM)

Transitional BN

oNolo
B0 G

Static BN

Pt+1 =G (Pt, vt+1)

DBN learning DBN Inference
Two stage learning MCMC methods: Expensive Q" = H(P")
« Static BN learning: BN

learning techniques Particle filter methods

(models, data, hybrid) » Sequential Importance Sampling (SIS)

« Sequential Importance Resampling (SIR)

« Transitional BN learning: « Rao-Blackwellized filter

Models, Variable selection

techniques (data) Analytical approximations

« Gaussian inputs/outputs - Kalman Filter, EKF, UKF
Bartram and Mahadevan, SCHM, 2014
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Multi-disciplinary analysis V

Hypersonic aircraft panel

VANDERBILT
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— Coupled fluid-thermal-structural analysis

Aerodynamic
Heating

pe’]:"ﬂ{e T

Aerodynamic
Pressure

QQE?‘D
Heat
Transfer
T,
irﬁrmmm
pswface
Structural

w

Deformation

Sankaran Mahadevan

il
-

4 -
Leading edge shock 3 >\/7 Deformed
2 \'/K 2=

Flat
Panel

Rigid wedge

1 = freestream gy
2 = behind oblique shock
3 = leading edge of panel .

4 = point of interest along panel BN

Transient analysis

* Model error estimation in different disciplines

» Error accumulates across disciplinary models
and over time

» Dynamic Bayesian network (DeCarlo et al,
2014)
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Airframe Digital Twin

Dynamic Bayesian Network
-> Fusion of multiple models and data sources

V

VANDERBILT
IVERSITY

Li et al, AIAA Y. 5016
Li & Mahadevan, RESS, 2018

Two-layer BN + UKF

Scalability > GSA - auxiliary variable, stratified sampling

-> Collapse the BN and apply UKF

/
il

Crack

Aircraft .
location

wing

Sankaran Mahadevan

0.20

10 hrs 2 2 hrs > 1 sec

Crack Growth Prognosis UQ

. I%nspectéion3
Inspéction? j :

H

5 Insp_éction 1

.:Inspec;tion 4 Ins:pectim::.l 5

0.08} : :
0.06 = Prediction mean |
- = 95% bounds
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Comprehensive framework for uncertainty E?

aggregation and management s
Information fusion @
— Heterogeneous data of varying precision n
and cost @ @
— Models of varying complexity, accuracy, Q
cost 5 @ @
— Include calibration, verification and
validation results at multiple levels @
Bayesian
Network @
Facilitates

* Forward problem: Uncertainty aggregation in model prediction
— Integrate all available sources of information and results of modeling/testing activities

* Inverse problem: Resource allocation for uncertainty reduction

— Model development, test planning, simulation orchestration, system design,
manufacturing, operations, health monitoring, inspection/maintenance/repair

Sankaran Mahadevan I Uncertainty Aggregation
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