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BAYES THEOREM

• Patient subject to medical diagnostic test (P or N ) for a disease D

• Sensitivity .95, i.e. P(P |D) = .95

• Specificity .9, i.e. P(PC|DC) = .9

• Physician’s belief on patient having the disease 1%, i.e. P(D) = .01

• Positive test ⇒ P(D|P )?

P(D|P ) =
P(D

⋂
P )

P(P )
=

P(P |D)P(D)

P(P |D)P(D) + P(P |DC)P(DC)

=
.95 · .01

.95 · .01+ .1 · .99 = .0875

• Positive test updates belief on patient having the disease: from 1% to 8.75%

• Prior opinion updated into posterior one
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ILLUSTRATIVE EXAMPLE

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• Prior λ ∼ G(α, β), π(λ) =
βα

Γ(α)
λα−1e−βλ

• Posterior π(λ|X) ∝ λne−λ
∑n

i=1Xi · λα−1e−βλ

⇒ λ|X ∼ G(α+ n, β +
∑n

i=1Xi)

Posterior distribution fundamental in Bayesian analysis
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PARAMETER ESTIMATION - DECISION ANALYSIS

• Loss function L(λ, a), a ∈ A action space

• Minimize Eπ(λ|X)L(λ, a) =
∫
L(λ, a)π(λ|X)dλ w.r.t. a

⇒ λ̂ Bayesian optimal estimator of λ

– λ̂ posterior median if L(λ, a) = |λ− a|

– λ̂ posterior mean Eπ(λ|X)λ if L(λ, a) = (λ− a)2

Eπ(λ|X)L(λ, a) =

∫
(λ− a)2π(λ|X)dλ

=

∫
λ2π(λ|X)dλ− 2a

∫
λπ(λ|X)dλ+ a2 · 1

=
∫

λ2π(λ|X)dλ− 2aEπ(λ|X)λ+ a2
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PARAMETER ESTIMATION

• Light bulb: posterior mean λ̂ =
α+ n

β +
∑n

i=1Xi
⇒ compare with

– prior mean α
β

– MLE n∑n
i=1Xi

• MAP (Maximum a posteriori)

⇒ λ̂ =
α+ n− 1

β +
∑

Xi
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CREDIBLE INTERVALS

• P(λ ∈ A|X), credible (and Highest Posterior Density) intervals

• Compare with confidence intervals

• Light bulb:

P(λ ≤ z|X) =

∫ z

0

(β +
∑

Xi)
α+n

Γ(α+ n)
λα+n−1e−(β+

∑
Xi)λdλ

6



HYPOTHESIS TESTING

• One sided test: H0 : λ ≤ λ0 vs. H1 : λ > λ0

⇒ Reject H0 iff P(λ ≤ λ0|X) ≤ α, α significance level

• Two sided test: H0 : λ = λ0 vs. H1 : λ 6= λ0

– Do not reject if λ0 ∈ A, A 100(1− α)% credible interval

– Consider P([λ0 − ǫ, λ0 + ǫ]|X)

– Dirac measure: P(λ0) > 0 and consider P(λ0|X)
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PREDICTION

• Prediction P(Xn+1|X) =
∫
P(Xn+1|λ)π(λ|X)dλ

• Light bulb: Xn+1|λ ∼ E(λ), λ|X ∼ G(α+ n, β +
∑

Xi)

• fXn+1
(x|X) = (α+ n)

(β +
∑

Xi)
α+n

(β +
∑

Xi + x)α+n+1

8



MODEL SELECTION

Compare M1 = {f1(x|θ1), π(θ1)} and M2 = {f2(x|θ2), π(θ2)}

• Bayes factor

⇒ BF =
f1(x)

f2(x)
=

∫
f1(x|θ1)π(θ1)dθ1∫
f2(x|θ2)π(θ2)dθ2

BF 2 log10BF Evidence in favor of M1

1 to 3 0 to 2 Hardly worth commenting
3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong
> 150 > 10 Very strong

• Posterior odds

⇒ P (M1|data)
P (M2|data)

=
P (data|M1)

P (data|M2)
· P (M1)

P (M2)
= BF · P (M1)

P (M2)
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BAYESIAN SIMULATIONS
Alternative choice: λ ∼ LN (α, β)

• no posterior in closed form ⇒ numerical simulation

Markov Chain Monte Carlo (MCMC):

• draw(∗) a sample λ(1), λ(2), . . . (Monte Carlo) . . .

• . . . from a Markov Chain whose stationary distribution is . . .

• . . . the posterior π(λ|X) and compute . . .

• E(λ|X) ≈∑n
i=m+1 λ

(i)/(n−m), etc.

(*) For λ = (θ, µ) ⇒ Gibbs sampler:

• draw θ(i) from θ|µ(i−1), X

• draw µ(i) from µ|θ(i), X

• repeat until convergence
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MCMC: REGRESSION

• y = β0 + β1x+ ǫ, ǫ ∼ N (0, σ2)

• (y1, x1), . . . , (yn, xn)

• Likelihood ∝ (σ2)−n/2 exp{ 1
σ2

∑n
i=1(yi − β0 − β1xi)

2}

• Priors: β0 ∼ N , β1 ∼ N , σ2 ∼ IG

• Full posterior conditionals:

– β0|β1, σ2 ∼ N
– β1|β0, σ2 ∼ N
– σ2|β0, β1 ∼ IG

⇒ MCMC
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WHY BAYESIAN? (A BIASED VIEW )

• a) P(Head) = θ vs. b) P (someone passing a given exam)= θ

– Frequentist interpretation only for a)

– Subjective opinion on θ in both cases

• Bayesian approach follows from rationality axioms

– Actions a � b (b at least as good as a)

⇒ a � b ⇔ ∃L, π :
∫
L(θ, b)π(θ)dθ ≤ ∫

L(θ, a)π(θ)dθ
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WHY BAYESIAN? (A BIASED VIEW )

• X ∼ Bern(θ) & sample X1 = X2 = 0
⇒ θ̂ = 0 MLE (reasonable?)

• In decision analysis, frequentist procedures average over all possible

(unobserved) outcomes, unlike Bayesian ones

• Nuisance parameters, like σ2 in N (µ, σ2), removed by integrating

them out

• Predictions: very easy

• Few data and lot of expertise
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WHY BAYESIAN? (A BIASED VIEW )

• p-value vs. Bayes factor

⇒ many issues (e.g. p-value depends only on distribution under H0,

unlike Bayes factor), comparisons and attempts to reconcile

• No need for asymptotics, but estimation for any sample size

• MCMC (and its implementation in, e.g., WinBugs) allows for straight-

forward computations in complex models
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PRIOR AND DATA INFLUENCE

• Posterior mean: λ̂ =
α+ n

β +
∑

Xi

• Prior mean: λ̂P =
α

β
(and variance σ2 =

α

β2
)

• MLE: λ̂M = n/
∑

Xi

• α1 = kα and β1 = kβ ⇒ λ̂1P = λ̂P and σ2
1 = σ2/k

• Posterior mean: λ̂ =
kα+ n

kβ +
∑

Xi

• k → 0 ⇒ prior variance → ∞ ⇒ λ̂ → n/
∑

Xi, i.e. MLE (prior does not count)

• k → ∞ ⇒ prior variance → 0 ⇒ λ̂ → λ̂P , i.e. prior mean (data do not count)

• n → ∞ ⇒ λ̂ ∼ n∑
Xi

, i.e. MLE (prior does not count)
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PRIOR CHOICE

Where to start from?

• X ∼ E(λ)

• f(x|λ) = λ exp{−λx}

• P (X ≤ x) = F (x) = 1− S(x) = 1− exp{−λx}

⇒ Physical properties of λ

• EX = 1/λ

• V arX = 1/λ2

• h(x) =
f(x)

S(x)
=

λ exp{−λx}
exp{−λx} = λ (hazard function)
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PRIOR CHOICE

Possible available information

• Exact prior π(λ) (???)

• Quantiles of Xi, i.e. P (Xi ≤ xq) = q

• Quantiles of λ, i.e. P (λ ≤ λq) = q

• Moments Eλk of λ, i.e.
∫
λkπ(λ)dλ = ak ⇔

∫
(λk − ak)π(λ)dλ = 0

• Generalised moments of λ, i.e.
∫
h(λ)π(λ)dλ = 0

• Most likely value and upper and lower bounds

• . . .

• None of them
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PRIOR CHOICE

How to get information?

• Results from previous experiments (e.g. 75% of light bulbs had failed after 2 years
of operation ⇒ 2 years is the 75% quantile of Xi)

• Split of possible values of λ or Xi into equally likely intervals ⇒ quantiles

• Most likely value and upper and lower bounds

• Expected value of λ and confidence on such value (mean and variance)

• Bets and lotteries

• . . .
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PRIOR CHOICE

Which prior?

• λ ∼ G(α, β) ⇒ f(λ|α, β) = βαλα−1 exp{−βλ}/Γ(α) (conjugate)

• λ ∼ LN (µ, σ2) ⇒ f(λ|µ, σ2) = {λσ
√
2Π}−1 exp{−(logλ− µ)2/(2σ2)}

• λ ∼ GEV(µ, σ, θ) ⇒ f(λ) = 1
σ

[
1+ θ

(
λ−µ
σ

)]−1/θ−1

+
exp

{
−
[
1+ θ

(
λ−µ
σ

)]−1/θ

+

}

• λ ∼ T (l,m, u) (triangular)

• λ ∼ U(l, u)

• λ ∼ W(µ, α, β) ⇒ f(λ) = β
α

(
λ−µ
α

)β−1

exp{−
(
λ−µ
α

)β
}

• . . .
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PRIOR CHOICE

Choice of a prior

• Defined on suitable set (interval vs. positive real)

• Suitable functional form (monotone/unimodal, heavy/light tails, etc.)

• Mathematical convenience

• Tradition (e.g. lognormal for engineers)
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PRIOR CHOICE

Gamma prior G(α, β) - choice of hyperparameters

• Eλ = µ = α
β and V arλ = σ2 = α

β2 ⇒ α = µ2

σ2 and β = µ
σ2

• Two quantiles ⇒ (α, β) using, say, Wilson-Hilferty approximation. Third

quantile specified to check consistency

• Hypothetical experiment : posterior G(α+ n, β +
∑

Xi)

⇒ α sample size and β sample sum

• Empirical Bayes: choose (α̂, β̂) = argmax

∫
f(X1, . . . , Xn|λ)π(λ|α, β)dλ
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MANY CRITICAL ASPECTS

• Choice of a model f(X|λ) for X

• Choice of the prior π(λ|θ)
– physical meaning of λ

– functional form of π

– elicitation of experts’ opinions (in a finite time)

– choice of hyperparameters

• Choice of a loss function (and an estimator)

⇒ How is the statistical analysis affected by such uncertainty and, sometimes, arbitrari-

ness ?
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MOTIVATING EXAMPLE (Berger, 1985)

• X ∼ N (θ,1)

• Expert’s opinion on prior P : median at 0, quartiles at ±1, symmetric and unimodal

• ⇒ Possible priors include Cauchy C(0,1) and Gaussian N (0,2.19)

• Interest in posterior mean µC(x) or µN(x)

x 0 1 2 4.5 10

µC(x) 0 0.52 1.27 4.09 9.80
µN(x) 0 0.69 1.37 3.09 6.87

• Decision strongly dependent on the choice of the prior for large x

• Alternative: Posterior median w.r.t. posterior mean
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BAYESIAN ROBUSTNESS

Mathematical tools and philosophical approach

• to model uncertainty through classes of priors/models/losses

• to measure uncertainty and its effect

• to avoid arbitrary assumptions

• to favor acceptance of Bayesian approach
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A SHORT HISTORY ON BAYESIAN ROBUSTNESS

• Early work by Good in the ’50s

• Kadane and Berger in mid ’80s

• Berger and O’Hagan at Valencia meeting in 1988

• Berger in JSPI (1990) and TEST (1994)

• Workshops in Milano (1992) and Rimini (1995) and their proceedings

• MCMC in mid 90’s

• Rios Insua and Ruggeri (2000)

• Special issue of IJAR (2009)
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BAYESIAN ROBUSTNESS

A more formal statement about model and prior sensitivity

• M = {Qθ; θ ∈ Θ} , Qθ probability on (X ,FX)

• Sample x = (x1, . . . , xn) ⇒ likelihood lx(θ) ≡ lx(θ|x1, . . . , xn)

• Prior P su (Θ,F) ⇒ posterior P ∗

• Uncertainty about M and/or P ⇒ changes in

– EP ∗[h(θ)] =

∫

Θ

h(θ)l(θ)P (dθ)
∫

Θ

l(θ)P (dθ)

– P ∗

Bayesian robustness studies these changes
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ROBUST BAYESIAN ANALYSIS

Interest in robustness w.r.t. to changes in prior/model/loss but most work

concentrated on priors since

• controversial aspect of Bayesian approach

• easier (w.r.t. model) computations

• problems with interpretation of classes of models/likelihood

• often interest in posterior mean (corresponding to optimal Bayesian

action under squared loss function) and no need for classes of losses
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ROBUST BAYESIAN ANALYSIS

Three major approaches

• Informal sensitivity : comparison among few priors

• Global sensitivity : study over a class of priors specified by some fea-

tures

• Local sensitivity : infinitesimal changes w.r.t. elicited prior
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ROBUST BAYESIAN ANALYSIS

We concentrate mostly on sensitivity to changes in the prior

• Choice of a class Γ of priors

• Computation of a robustness measure, e.g. range δ = ρ− ρ

(ρ = sup
P∈Γ

EP ∗[h(θ)] and ρ = inf
P∈Γ

EP ∗[h(θ)])

– δ “small” ⇒ robustness

– δ “large”, Γ1 ⊂ Γ and/or new data

– δ “large”, Γ and same data
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ROBUST BAYESIAN ANALYSIS

Relaxing the unique prior assumption (Berger and O’Hagan, 1988)

• X ∼ N (θ,1)

• Prior θ ∼ N (0,2)

• Data x = 1.5 ⇒ posterior θ|x ∼ N (1,2/3)

• Split ℜ in intervals with same probability pi as prior N (0,2)
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ROBUST BAYESIAN ANALYSIS

Refining the class of priors (Berger and O’Hagan, 1988)

Ii pi p∗i ΓQ ΓQU

(-∞,-2) 0.08 .0001 (0,0.001) (0,0.0002)

(-2,-1) 0.16 .007 (0.001,0.029) (0.006,0.011)

(-1,0) 0.26 .103 (0.024,0.272) (0.095,0.166)

(0,1) 0.26 .390 (0.208,0.600) (0.322,0.447)

(1,2) 0.16 .390 (0.265,0.625) (0.353,0.473)

(2,+∞,) 0.08 .110 (0,0.229) (0,0.156)

• ΓQ quantile class and ΓQU unimodal quantile class

• Robustness in ΓQU

• Huge reduction of δ from ΓQ to ΓQU
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CLASSES OF PRIORS

Desirable features of classes of priors

• Easy elicitation and interpretation (e.g. moments, quantiles, symmetry,

unimodality)

• Compatible with prior knowledge (e.g. quantile class)

• Simple computations

• Without unreasonable priors (e.g. unimodal quantile class, ruling out

discrete distributions)
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CLASSES OF PRIORS

• ΓP = {P : p(θ;ω), ω ∈ Ω} (Parametric class)

– ΓP = {G(α, β) : α/β = µ}

– ΓP = {G(α, β) : l1 ≤ α ≤ u1, l2 ≤ β ≤ u2}

– ΓP = {G(α, β) : l1 ≤ α/β ≤ u1, l2 ≤ α/β2 ≤ u2}
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CLASSES OF PRIORS

• ΓQ = {P : αi ≤ P(Ii) ≤ βi, i = 1, . . . ,m} (Quantile class)

– ΓQ = {P : θ0 median}

– ΓQ = {P : P(A) = α}

– ΓQ = {P : q1, . . . , qn quantiles of order α1, . . . , αn}

• ΓQU = {P ∈ ΓQ, unimodal} (Unimodal quantile class)

• ΓQUS = {P ∈ ΓQU , symmetric} (Symmetric, unimodal quantile

class)
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CLASSES OF PRIORS

• ΓGM = {P :
∫
hi(θ)dP(θ) = ai, i = 1, . . . ,m} (Generalised mo-

ments class)

– hi(θ) = θi (Moments class)

– hi(θ) = IAi
(θ) (Quantile class)

– h(θ) =
∫ x
−∞ f(t|θ)dt ⇒ ∫

h(θ)dP(θ) =
∫ x
−∞ f(t)dt (Prior pre-

dictive distribution)
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CLASSES OF PRIORS

• ΓDR = {P : L(θ) ≤ αp(θ) ≤ U(θ), α > 0} (Density ratio class)

• ΓB = {P : L(θ) ≤ p(θ) ≤ U(θ)} (Density bounded class)

• ΓDB = {F c.d.f. : Fl(θ) ≤ F(θ) ≤ Fu(θ),∀θ} (Distribution boun-

ded class)
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CLASSES OF PRIORS

Classes with given marginals

• f(X|θ1, θ2)

• π1(θ1) and π2(θ2) known

• π(θ1, θ2) unknown

• Fréchet class of priors π(θ1, θ2) or copulas C(Π1(θ1),Π2(θ2))

• Fréchet Theorem: W(θ1, θ2) ≤ Π(θ1, θ2) ≤ M(θ1, θ2)

– W(θ1, θ2) = max{Π1(θ1) + Π2(θ2)− 1,0}
– M(θ1, θ2) = min{Π1(θ1),Π2(θ2)}
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CLASSES OF PRIORS

• Classes introduced so far are defined through some features (e.g.

quantiles) ...

• ... whereas now we introduce others (Neighbourhood classes) which

represent perturbations of an elicited prior
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CLASSES OF PRIORS

Neighborhood classes

• Γε = {P : P = (1− ε)P0 + εQ,Q ∈ Q} (ε–contaminations)

– Proposed by Huber in classical robustness to model outliers

– Q: all, all symmetric, all symmetric unimodal, generalised mo-

ments contraints class, etc.

– ǫ = ǫ(θ) (need to normalise!)

39



CLASSES OF PRIORS

Neighborhood classes

• ΓDB = {F c.d.f. : F0(θ)− ǫ ≤ F(θ) ≤ F0(θ) + ǫ,∀θ} (Distribution

bounded class)

• ΓT
ε = {P : sup

A∈F
|P(A)− P0(A)| ≤ ε} (Total variation)

• Kg = {P : ϕP (x) ≥ g(x),∀x ∈ [0,1]}
g nondecreasing, continuous, convex: g(0) = 0 and g(1) ≤ 1

(Concentration function class)
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COMPARISON OF PROBABILITY MEASURES

P : all probability measures on (Θ,F), Θ Polish space

P0(E) =
ε

10
: ranges of P (E) in neighbourhoods of P0

1. Variational distance : |P (A)− P0(A)| ≤ ε,∀A ∈ F
⇒ P (E) ≤ 11

ε

10

2. ε–contaminations (contaminating measures in P) :
−εP0(A) ≤ P (A)− P0(A) ≤ εP0(AC),∀A ∈ F
⇒ (1− ε)

ε

10
≤ P (E) ≤ (1− ε)

ε

10
+ ε

3. |P (A)− P0(A)| ≤ εmin{P0(A), P0(AC)}, ∀A ∈ F
⇒ (1− ε)

ε

10
≤ P (E) ≤ (1 + ε)

ε

10

4. |P (A)− P0(A)| ≤ P0(A)P0(AC),∀A ∈ F
⇒ ε2

100
≤ P (E) ≤ (2− ε

10
)
ε

10
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CONCENTRATION FUNCTION CLASS

• n individuals with wealth xi, i = 1, . . . , n ⇒ ordered x(1) ≤ . . . ≤ x(n)

• (k/n, Sk/Sn), k = 0, . . . , n, S0 = 0 and Sk =

k∑

i=1

x(i) (Lorenz curve)

• Comparison of discrete p.m.’s with uniform

Example: (0.2,0.3,0.5) & (0.1,0.3,0.6) vs. (1/3,1/3,1/3)

x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Comparison of two p.m.’s on same (Ω,F , P ) ⇒ concentration function
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CONCENTRATION FUNCTION CLASS

• P, P0 probability measures on (Ω,F)

• σ–finite ν dominating P, P0 ⇒ p(ω), p0(ω)

• P ∼ N (0,1), P0 ∼ C(0,1)

omega

de
ns

ity

-10 -5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Normal

Cauchy

omega

ra
tio

-10 -5 0 5 10

0.
0

0.
5

1.
0

1.
5

Densities N (0,1) and C(0,1) (left) - likelihood ratio (right)
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CONCENTRATION FUNCTION CLASS

omega

ra
ti
o

-10 -5 0 5 10

0
.0

0
.5

1
.0

1
.5

• Each horizontal line at y ⇒ subset Ay with likelihood ratio m(ω) =
p(ω)

p0(ω)
≤ q

• If P0(Ay) = x ⇒ Ay is the subset of P0-measure x with smallest P -measure ϕ(x)

• The pairs (x, ϕ(x)) determine the c.f.
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CONCENTRATION FUNCTION CLASS

• (h,N) Lebesgue decomposition of P w.r.t. P0

• N = {ω ∈ Ω : p0(ω) = 0}

• m(ω) =

{
p(ω)/p0(ω) ω ∈ NC

∞ ω ∈ N

• P (A) = Ps(A) + Pa(A), ∀A ∈ F

• Pa(A) =

∫

A∩NC

m(ω)P0(dω), Ps(A) = P (A ∩N)

• Pa ≪ P0, Ps ⊥ P0
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CONCENTRATION FUNCTION CLASS

• H(y) = P0({ω ∈ Ω : m(ω) ≤ y})

• cx = inf{y ∈ ℜ : H(y) ≥ x}

• Lx = {ω ∈ Ω : m(ω) ≤ cx}, L−
x = {ω ∈ Ω : m(ω) < cx}

• ϕ(x) =





0 x = 0
P(L−

x ) + cx{x−H(cx−)} x ∈ (0,1)
Pa(Ω) x = 1
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CONCENTRATION FUNCTION CLASS

Main properties

• ϕ(x) nondecreasing, continuous and convex, ϕ(0) = 0

• ϕ(x) ≡ 0 ⇔ P ⊥ P0

• ϕ(x) = x, ∀x ∈ [0,1] ⇔ P = P0

• P0(A) = x ⇒ ϕ(x) ≤ P (A) ≤ 1− ϕ(1− x)

• ϕ(x) =

∫ cx

0

{x−H(t)} dt =
∫ x

0

ctdt

• lim
n→∞

ϕPn
(x) = x, ∀x ∈ [0,1] ⇔ lim

n→∞
sup
A∈F

|Pn(A)− P0(A)| = 0
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CONCENTRATION FUNCTION CLASS
Two Beta distributions P and P0 with

• very close mean, median and mode

• c.f. of P w.r.t. P0 :ϕ(x) ≈ 0, x ∈ [0,1)

• The two distributions are very different since P0 concentrates mass (i.e. gives very
high probability) to a subset of negligible probability under P

omega

d
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

0
0

2
0

0
3

0
0
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CONCENTRATION FUNCTION CLASS
Concentration function of P ∼ G(2,1) w.r.t. P0 ∼ E(1)

• p0(θ) = e−θ, p(θ) = θe−θ, θ ≥ 0

• m(θ) = p(θ)/p0(θ) = θ

• Find y : x = P0 ({θ ∈ Θ : m(θ) ≤ y}) = 1− e−y

⇒ ϕ(x) = P ({θ ∈ Θ : m(θ) ≤ y}) = 1− (1− x)(1− log(1− x))

x

fi

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0
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CONCENTRATION FUNCTION CLASS

C.f. of P ∼ G(2,2) w.r.t. P0 ∼ E(1): p0(θ) = e−θ, p(θ) = 4θe−2θ,m(θ) = 4θe−θ

• Take {yj} and find Lyj = {θ ∈ Θ : m(θ) ≤ yj}
• Compute xj = P0(Lyj) and ϕ(xj) = P (Lyj)

P0(A) = x ⇒ ϕ(x) ≤ P (A) ≤ 1− ϕ(1− x)
P0(A) = .4 ⇒ .216 ≤ P (A) ≤ .559

x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1-f(1-x)

f(x)
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CONCENTRATION FUNCTION CLASS

• g monotone nondecreasing, continuous, convex: g(0) = 0 and g(1) ≤ 1

• Kg = {P : P (A) ≥ g(P0(A)) ∀A ∈ F}, g-neighborhood of non-atomic P0

– g(P0(A)) = P0(A)P0(AC)

– g(P0(A)) = min{P0(A), P0(AC)}

• P ∈ Kg ⇒ g(P0(A)) ≤ P (A) ≤ 1− g(1− P0(A))

• {Kg} generates a topology over P

• ∃ at least one P : g is the concentration function ϕP(x) of P w.r.t. P0

• Kg = {P : ϕP(x) ≥ g(x),∀x ∈ [0,1]}

• P ∈ Kg mixture of extremal p.m.’s in Eg = {P : ϕP(x) = g(x),∀x ∈ [0,1]}

• ⇒ supP∈Kg
E[k(θ)] = supP∈Eg

E[k(θ)]
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CONCENTRATION FUNCTION CLASS

Neighbourhood of the uniform distribution

• X ∼Bin(2, θ)

⇒ f(x|θ) =

(
2
x

)
θx(1− θ)2−x, θ ∈ [0,1], x = 0,1,2

• P0 uniform over [0,1]

• Choose a class of priors P s.t.

|P0(A)− P(A)| ≤ P0(A)P0(A
C),∀A ∈ F

• ⇒ ϕ(x) ≥ x2 = g(x), ∀x ∈ [0,1]
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CLASSES OF PRIORS

Some critical issues

• Many classes driven more by mathematical convenience rather than

ease of elicitation

• Range easily computed for some useless classes (e.g. ǫ-contaminations

with all probability measures) but ...

• ... hard to compute for some meaningful classes (e.g. unimodal gene-

ralised moments constrained class)
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POISSON PROCESS

• Counting process N(t), t ≥ 0: stochastic process counting number of events
occurred up to time t

• N(s, t], s < t: number of events occurred in time interval (s, t]

• Poisson process with intensity function λ(t): counting process N(t), t ≥ 0, s.t.

1. N(0) = 0

2. Independent number of events in non-overlapping intervals

3. P (N(t, t+∆t] = 1) = λ(t)∆t+ o(∆t), as ∆t → 0

4. P (N(t, t+∆t] ≥ 2) = o(∆t), as ∆t → 0

• Definition ⇒ P (N(s, t] = n) =
(
∫ t

s
λ(x)dx)n

n!
e
−
∫ t

s
λ(x)dx

, for n ∈ Z+

⇒ N(s, t] ∼ P
∫ t

s
λ(x)dx
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POISSON PROCESS

• Intensity function: λ(t) = lim
∆t→0

P (N(t, t+∆t] ≥ 1)

∆t

– HPP (homogeneous Poisson process): constant λ(t) = λ, ∀t
– NHPP (nonhomogeneous Poisson process): o.w.

• HPP with rate λ

– N(s, t] ∼ Pλ(t − s)

– Stationary increments (distribution dependent only on interval length)
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POISSON PROCESS

• Mean value function m(t) = E[N(t)], t ≥ 0

• m(s, t] = m(t)−m(s) expected number of events in (s, t]

• If m(t) differentiable, µ(t) = m′(t), t ≥ 0, Rate of Occurrence of Failures (ROCOF)

• P (N(t, t+∆t] ≥ 2) = o(∆t), as ∆t → 0

⇒ orderly process

⇒ λ(t) = µ(t) a.e.

• ⇒ m(t) =
∫ t

0
λ(x)dx and m(s, t] =

∫ t

s
λ(x)dx

• ⇒ m(t) = λt and m(s, t] = λ(t− s) for HPP with rate λ
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POISSON PROCESS

Poisson process N(t) with intensity function λ(t) and mean value function m(t)

• T1 < . . . < Tn: n arrival times in (0, T ] ⇒ P (T1, . . . , Tn) =

n∏

i=1

λ(Ti) · e−m(T )

⇒ likelihood

• ⇒ P (T1, . . . , Tn) = λne−λT for HPP with rate λ

• n events occur up to time t0 ⇒ distributed as order statistics from cdf m(t)/m(t0),

for 0 ≤ t ≤ t0 (uniform distribution for HPP)
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OBSERVABLE QUANTITIES

• Actual prior elicitation better performed if done on observable quantities

• Failures in repairable systems modelled by NHPP

• PLP (Power Law process) ⇒ λ(t) = Mβtβ−1 and Λ(t) = Mtβ

• Expert asked about lower and upper bounds on time of first failure T1

i.e. li ≤ P(T1 > si) = P(N(si) = 0) ≤ ui, i = 1, n

– P(T1 > si|M,β) = exp{−Msβi }
– P(T1 > si) =

∫
P(T1 > si|M,β)π(M,β)dMdβ

• Suppose M known

• Generalised moments constrained class on β given by

li ≤
∫ ∞

0

exp{−Msβi }π(β)dβ ≤ ui, i = 1, n
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NEAR IGNORANCE

• Improper priors

• Uniform distribution on large interval (for unbounded Θ)

• Neighbourhood of uniform distribution

• Bayesian nonparametrics (e.g. Dirichlet process) centered at a uniform distribution

• Imprecise probabilities

• Frequentist approach
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CLASSES OF MODELS

Finite classes (Shyamalkumar, 2000)

• Class M = {N (θ,1), C(θ,0.675)}
(same median and interquartile range)

• π0(θ) ∼ N (0,1) baseline prior

• ΓA
0.1 = {π : π = 0.9π0 +0.1q, q arbitrary}

• ΓSU
0.1 = {π : π = 0.9π0 +0.1q, q symmetric unimodal around zero}

• Interest in E(θ|x)
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CLASSES OF MODELS

Finite classes (Shyamalkumar, 2000)

ΓA
0.1 ΓSU

0.1Data Likelihood
inf E(θ|x) supE(θ|x) inf E(θ|x) supE(θ|x)

Normal 0.93 1.45 0.97 1.12x = 2
Cauchy 0.86 1.38 0.86 1.02
Normal 1.85 4.48 1.96 3.34x = 4
Cauchy 0.52 3.30 0.57 1.62
Normal 2.61 8.48 2.87 5.87x = 6
Cauchy 0.20 5.54 0.33 2.88
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CLASSES OF MODELS

Parametric models

Box-Tiao, 1962

ΛBT =




f(y|θ, σ, β) =

exp

{
−1

2

∣∣∣y−θ
σ

∣∣∣
2

1+β

}

σ2(1.5+0.5β)Γ(1.5+ 0.5β)





for any θ, σ > 0, β ∈ (−1,1]

Skew-normal class of distributions

ΛSN =

{
f(y|α, ξ, τ) =

2

τ
φ

(
y − ξ

τ

)
Φ

(
α
θ − ξ

τ

)}

for any α and ξ, and τ > 0
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CLASSES OF NHPPs

• Musa and Okumoto: λ(t)
(
= [m(t)]

′)
= λe−θm(t)

⇒ m(t) =
1

θ
log(λθt+1) for m(0) = 0

• PLP: λ(t) = Mβtβ−1 ⇒ [m(t)]
′
=

βm(t)

t

• λ(t) = a(ebt − 1) ⇒ [m(t)]
′
= b[m(t) + at]

• λ(t) = a log(1 + bt) ⇒ [m(t)]
′
=

b[m(t) + at]

1 + bt

• ⇒ [m(t)]
′
=

αm(t) + βt

γ + δt

• y
′
=

αy + βx

γ + δx

• ⇒ y = e

∫
α/(γ+δx)dx

{∫
βx

γ + δx
e
−
∫

α/(γ+δx)dxdx+ c

}
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CLASSES OF NHPPs

m(t) λ(t)
t

δ

1

δ
t2

2γ

t

γ
t

δ
− γ

δ2
log

(
1 +

δ

γ
t

)
t

γ + δt

|c|tα/δ |c|α
δ
tα/δ−1

βγ

(
et/γ − t

γ
− 1

)
β
(
et/γ − 1

)

β

δ − 1



t+ γ


1−

(
1+

δ

γ
t

)1/δ





β

δ − 1



1−

(
1+

δ

γ
t

)1/δ−1




βγ

(
1+

t

γ

)
log

(
1+

t

γ

)
− βt β log

(
1+

t

γ

)
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CLASSES OF MODELS

Neighbourhood classes

0 ≤ M(·) ≤ U(·) given and l likelihood

• Γǫ = {f : f(x|θ) = (1− ǫ)f0(x|θ) + (1− ǫ)g(x|θ), g ∈ G}
(ǫ–contaminations)

• ΓDR = {f : ∃α s.t. M(x− θ0) ≤ αf(x|θ0) ≤ U(x− θ0)∀x}
(density ratio class)

• ΓL = {l : M(θ) ≤ l(θ) ≤ U(θ)}
(likelihood neighbourhood)

Critical aspects: parameter and probabilistic interpretation
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CLASSES OF MODELS

Weighted distribution classes

• f(x|θ) ∝ ω(x)f0(x|θ), ω ∈ Ω

• Ω1 = {ω : ω1(x) ≤ ω(x) ≤ ω2(x)}

• Ω2 = {nondecreasing ω1(x) ≤ ω(x) ≤ ω2(x)}

Critical aspect: need to normalise f(x|θ)
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CLASSES OF LOSSES

Interest in behaviour of

• Bayesian estimator

• posterior expected loss
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CLASSES OF LOSSES

Parametric classes Lω = {L = Lω, ω ∈ Ω}
L(∆) = β(exp{α∆} − α∆− 1), α 6= 0, β > 0

• ∆1 = (a− θ) ⇒ L(∆1) LINEX (Varian, 1975)

– α = 1 ⇒ L(∆1) asymmetric
(overestimation worse than underestimation)

– α < 0
⇒ L(∆1) ≈ exponential for ∆1 < 0
⇒ L(∆1) ≈ linear for ∆1 > 0

– |α| ≈ 0 ⇒ L(∆1) ≈ βα2∆2
1/2 (i.e. squared loss)

• ∆2 = (a/θ − 1) (Basu and Ebrahimi, 1991)
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CLASSES OF LOSSES

• LU = {L : L(θ, a) = L(|θ − a|), L(·) any nondecreasing function}
(Hwang’s universal class)

• Lǫ = {L : L(θ, a) = (1− ǫ)L0(θ, a) + ǫM(θ, a), M ∈ W}
(ǫ–contamination class)

• LK = {L : vi−1 ≤ L(c) ≤ vi, ∀c ∈ Ci, i = 1, . . . , n}
– (θ, a) → c ∈ C (consequence), e.g. c = |θ − a|
– {C1, . . . , Cn} partition of C

(Partially known class)

L,L+ k ∈ LU give same Bayesian estimator minimising the posterior expected loss, but

very different posterior expected loss ⇒ robustness calibration
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CLASSES OF LOSSES

Mixtures of convex loss functions

• Lλ ∈ Ψ, family of convex loss functions, λ ∈ Λ

• G ∈ P, class of all probability measures on (Λ,A)

• Ω = {L : L(θ, a) =

∫

Λ

Lλ(θ, a)dG(λ)}

• aL Bayes action for loss L, under probability measure π

• a = inf
Lλ∈Ψ

aLλ
, a = sup

Lλ∈Ψ
aLλ

⇒ a ≤ aL ≤ a, ∀L ∈ Ω

– Lλ(θ, a) = |θ − a|λ, λ ≥ 1

– Lλ(θ, a) = eλ(a−θ) − λ(a− θ)− 1, , λ1 ≤ λ ≤ λ2

– Lλ(θ, a) = χ[a−λ,a+λ]C(θ), λ > 0
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LOSS ROBUSTNESS

Preference among losses

ρL(π, x, a) = Eπ(·|x)L(θ, a) =
∫
L(θ, a)π(θ|x)dθ

posterior expected loss minimised by aLπ

L1 preferred to L2 (Makov, 1994) if

• supx infa ρL1
(π, x, a) < supx infa ρL2

(π, x, a)

(posterior minimax)

• EXρL1
(π, x, aL1

π ) < EXρL2
(π, x, aL2

π )

(preposterior)

• supx

∣∣ ∂
∂x
ρL1

(π, x, aL1

π )
∣∣ < supx

∣∣ ∂
∂x
ρL2

(π, x, aL2

π )
∣∣

(influence approach)
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SENSITIVITY MEASURES

Global sensitivity

• Class of priors sharing some features (e.g. quantiles, moments)

• No prior plays a relevant role w.r.t. others

Measures

• Range: δ = ρ− ρ, with ρ = sup
P∈Γ

EP ∗[h(θ)] and ρ = inf
P∈Γ

EP ∗[h(θ)]

Simple interpretation
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SENSITIVITY MEASURES
Relative sensitivity: supπ Rπ

with Rπ =
(ρπ − ρ0)2

V π
, ρ0 = EΠ∗

0
[h(θ)], ρπ = EΠ∗[h(θ)] and V π = V arΠ∗[h(θ)]

• Scale invariant (calibration)

• Decision theoretic interpretation (relative posterior expected loss increase when con-
sidering π0 instead of true π)

– Square loss function (⇒ posterior mean as Bayes action)

– π0 chosen prior ⇒ ρ0 Bayes action

– π 6= π0, π ∈ Γ, true prior ⇒ ρπ true Bayes action

– Use of ρ0 instead of ρπ ⇒ expected loss (ρπ − ρ0)2 + V π instead of V π

– Rπ =
(ρπ − ρ0)2

V π
relative increase in expected loss

– supπ Rπ maximum expected loss over all possible true priors in Γ

• Asymptotic behaviour as expected
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SENSITIVITY MEASURES

Local sensitivity

• Small changes in one elicited prior

• Most influential x

• Approximating bounds for global sensitivity

Measures

• Derivatives of extrema in {Kε}, ε ≥ 0, neighbourhood of K0 = {P0}

Eε(h|x) =

∫
h(θ)l(θ)P (dθ)
∫

l(θ)P (dθ)

and D∗(h) =

{
∂Eε(h|x)

∂ε

}

ε=0

• Gatêaux differential
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SENSITIVITY MEASURES

Measures

• Fréchet derivative

– ∆ = {δ : δ(Θ) = 0}
– Γδ = {π : π = P + δ, δ ∈ ∆} and Γε = {π : π = (1− ε)P + εQ}
– P = {δ ∈ ∆ : δ = ε(Q− P )} ⇒ Γε ⊂ Γδ

– ||δ|| = d(δ,0)

– d(P,Q) = supA∈B(Θ) |P (A)−Q(A)|

– Th(P + 0) ≡ Th(P ) ≡

∫
h(θ)l(θ)P (dθ)
∫

l(θ)P (dθ)
=

NP

DP

– ΛP
h (δ) = Th(P + δ)− Th(P ) + o(||δ||) =

Dδ

DP
(Th(δ)− Th(P ))
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SENSITIVITY MEASURES

Loss robustness

ρL(π, x, a) = Eπ(·|x)L(θ, a) =
∫
L(θ, a)π(θ|x)dθ

posterior expected loss minimised by aLπ

• supL∈L ρL(π, x, a)− infL∈L ρL(π, x, a)

• supL∈L aLπ − infL∈L aLπ

• supx

∣∣∣ ∂∂xρL(π, x, a
L
π)
∣∣∣− infx

∣∣∣ ∂∂xρL(π, x, a
L
π)
∣∣∣
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COMPUTATIONAL TECHNIQUES

Bayesian inference ⇒ complex computations
Robust Bayesian inference ⇒ more complex computations

sup
P

∫

Θ

f(θ)P (dθ)
∫

Θ

g(θ)P (dθ)

= sup
θ∈Θ

f(θ)

g(θ)

⇒ ρ = sup
P ∈ Γ

EP ∗[h(θ)]

Probability measures as mixture of extremal ones

• Γε = {P : P = (1− ε)P0 + εQ,Q ∈ QA} → Dirac

• ΓQ = {P : P (Ii) = pi, i = 1, . . . ,m} → Discrete

• ΓSU = {P : symmetric, unimodal} → Uniform
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COMPUTATIONAL TECHNIQUES

• Linearisation technique to compute supP∈Γ

∫
Θ
h(θ)l(θ)P (dθ)∫
Θ
l(θ)P (dθ)

– ρ = inf{q|c(q) = 0} where

– c(q) = sup
P∈Γ

∫

Θ

c(θ, q)P (dθ)

– c(θ, q) = l(θ) (h(θ)− q)

– Compute c(qi), i = 1, . . . ,m ⇒ solve c(q) = 0

• Discretisation of Θ ⇒ Linear programming

• Linear Semi-infinite Programming (for Generalised moments constrained classes)

• Importance sampling
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QUEST FOR ROBUSTNESS

Range δ “large” and possible refinement of Γ

• Further elicitation by experts

– Software (currently unavailable) for interactive sensitivity analysis

– Ad-hoc tools, e.g. Fréchet derivatives to determine intervals to split

in quantile classes (see next)

• Acquisition of new data
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APPLICATIONS

• Number of accidents Xk for a company with nk workers at time period k

• Xk|θ, nk ∼ P(nkθ)

• Γ = {π : π(0, .38] = .25, π(.38, .58] = .25, π(.58, .98] = .25, π(.98,∞) =
.25}

• Year 1988: E[Xk|Dk]/nk = 0.05 and Ē[Xk|Dk]/nk = 0.58

• Fréchet derivative of E[Xk|Dk]/nk ⇒ sum of contributions from each interval

• Split interval with largest contribution (here first)

• Year 1988: E[Xk|Dk]/nk = 0.15 and Ē[Xk|Dk]/nk = 0.24
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QUEST FOR ROBUSTNESS

Inherently robust procedures

• Robust priors (e.g. flat-tailed)

• Robust models (e.g. Box-Tiao class)

• Robust estimators

• Hierarchical models

• Bayesian nonparametrics
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HIERARCHICAL MODEL

• Yi|λi ∼ P(λi), i = 1, n

• λi|α, β ∼ G(α, β)

• π(α, β)

• “Pure” Bayesian approach ⇒ prior on (α, β)

• Improper priors

• Empirical Bayes

– λi|α, β, Y ∼ G(α+ yi, β + 1), λi ⊥ λj|Y
– f(Y |α, β) =

∫
f(Y |λ)π(λ|α, β)dλ maximized by (α̂, β̂)

⇒ λi|α̂, β̂, Y ∼ G(α̂+ yi, β̂ +1), ∀i
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BAYESIAN NONPARAMETRICS

• Dirichlet process

– P ∼ DP(η) if ∀(A1, . . . , Am)
⇒ (P (A1), . . . , P (Am)) ∼ D(η(A1), . . . , η(Am))

– Z1, . . . , Zn sample of size n from P
⇒ P |Z1, . . . , Zn ∼ DP(η +

∑n
1 δZi

)

• Embed parametric model P0(x) in a Dirichlet process with parameter η(x) = αP0(x)
since EP (A) = P0(A)
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BAYESIAN NONPARAMETRICS

Uncertainty in the parameter η ⇒ η ∈ Γ ⇒ changes in

• Dirichlet process

– P and Q chosen by two Dirichlet processes with different η

– dDP(P,Q) = sup
A∈A

d(P (A), Q(A))

– d(X, Y ) =

{∫
(
√
p−√

q)
2 dµ

}1/2

Hellinger distance

• Probability of subsets of p.m.’s on (X ,A)

– Θ = {P ∈ M : P (A) ∈ B}, A ∈ A, B ∈ B([0,1]) (e.g. Θ = {F : F (1/2) ≤ 1/2})

– P ∼ DP(η) ⇒ P (A) ∼ B(η(A), η(AC))⇒ compute P(Θ) = P(P (A) ∈ B)
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BAYESIAN NONPARAMETRICS

Uncertainty in the parameter η ⇒ η ∈ Γ ⇒ changes in

• Probabilities of set probabilities and random functionals

– P (A) ∼ B(η(A), η(AC))

– (P (A1), . . . , P (An)) ∼ D(η(A1), . . . , η(An))

–

∫

ℜ
ZdP

• Bayes estimators of random distributions and functionals

– Bayes estimator of the mean:

∫
ℜ xη(x)dx∫
ℜ η(x)dx

– Distribution function F ∗(x) =
αη(x) +

∑n
1 δZi

(x)

α+ n
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NONPARAMETRIC APPROACH

# events in [T0, T1] ∼ P(Λ[T0, T1]), with Λ[T0, T1] = Λ(T1)− Λ(T0)

Parametric case: Λ[T0, T1] =
∫ T1

T0
λ(t)dt

Nonparametric case: Λ[T0, T1] ∼ G(·, ·) ⇒ Λ d.f. of the random measure M

Notation: µB := µ(B)

Definition 1 Let α be a finite, σ-additive measure on (S,S). The random measure µ
follows a Standard Gamma distribution with shape α (denoted by µ ∼ GG(α,1)) if, for
any family {Sj, j = 1, . . . , k} of disjoint, measurable subsets of S, the random variables
µSj are independent and such that µSj ∼ G(αSj,1), for j = 1, . . . , k.

Definition 2 Let β be an α-integrable function and µ ∼ GG(α,1). The random mea-
sure M = βµ, s.t. βµ(A) =

∫
A
β(x)µ(dx), ∀A ∈ S, follows a Generalised Gamma

distribution, with shape α and scale β (denoted by M ∼ GG(α, β)).
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NONPARAMETRIC APPROACH

Consequences:

• µ ∼ Pα,1,Pα,1 unique p.m. on (Ω,M), space of finite measures on (S,S), with
these finite dimensional distributions

• M ∼ Pα,β, weighted random measure, with Pα,β p.m. induced by Pα,1

• EM = βα, i.e.
∫
Ω
M(A)Pα,β(dM) =

∫
A
β(x)α(dx), ∀A ∈ S

Theorem 1 Let ξ = (ξ1, . . . , ξn) be n Poisson processes with intensity measure M . If

M ∼ GG(α, β) a priori, then M ∼ GG(α+
∑n

i=1 ξi, β/(1 + nβ)) a posteriori.
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NONPARAMETRIC APPROACH

Data: {yij, i = 1 . . . kj}nj=1 from ξ = (ξ1, . . . , ξn)

Bayesian estimator of M : measure M̃ s.t., ∀S ∈ S,

M̃S =

∫

S

β(x)

1 + nβ(x)
α(dx) +

n∑

j=1

kj∑

i=1

β(yij)

1 + nβ(yij)
IS(yij)

Constant β ⇒ M̃S =
β

1+ nβ
[αS +

n∑

j=1

kj∑

i=1

IS(yij)]

Bayesian estimator of reliability R, RS = P (ξS = 0), S ∈ S:

R̃S = exp



−

∫

S

ln(1 +
β(x)

1 + nβ(x)
)α(dx)−

n∑

j=1

kj∑

i=1

ln(1 +
β(yij)IS(yij)

1 + nβ(yij)
)





Constant β ⇒ R̃S =
(
1+ β

1+nβ

)−(αS+
∑n

j=1
ξjS)
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STEEL PIPES
Parametric NHPP: Λ̃θ(t) =

∫ t

0
[ã log(1 + b̃t)]dt+ ĉt

Nonparametric model: M ∼ Pα,β : α(ds) := Λ̃θ(s)/σds , β(s) := σ

⇒ EMS = Λ̃θS and V arMS = σΛ̃θS

⇒ MS “centered” at parametric estimator Λ̃θS and closeness given by σ
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PARAMETRIC VS. NONPARAMETRIC

[0, T ] split into n disjoint Ij, j = 1, . . . , n

Data: k = (k1, . . . , kn), with kj = {#obs. in Ij} ⇒ f(k | Λ) = e−Λ(T )
∏n

j=1
(ΛIj)

kj

kj!

Parametric: P (k | HP) =

∫

R3
+

e−Λθ(T )
n∏

j=1

[ΛθIj]
kj

kj!
π(θ)dθ

Nonparametric: k | M,θ ∼ f(k | Mθ), M | θ ∼ GG(Λθ/σ, σ) and θ ∼ π:

P (k | HN) =

∫

R3
+

n∏

j=1




∏kj−1
i=0 (ΛθIj + iσ)

kj! exp
[(

ΛθIj
σ

+ kj

)
ln(1 + σ)

]


π(θ)dθ

Bayes Factor: BFPN =
P (k | HP)

P (k | HN)
=

∫
R3

+

e−Λθ(T )
∏n

j=1(ΛθIj)
kjπ(θ)dθ

∫
R3

+

∏n
j=1

[
(1 + σ)−(ΛθIj/σ+kj)

∏kj−1
i=0 (ΛθIj + iσ)

]
π(θ)dθ
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PARAMETRIC VS. NONPARAMETRIC

Bayes factor BFPN as a function of σ

sigma
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LACK OF ROBUSTNESS

Range δ “large” and no further possible refinement of Γ

• Choice of a convenient prior in Γ, e.g. a Gaussian in the symmetric,

unimodal quantile class, or

• Choice of an estimate of EP ∗[h(θ)] according to an optimality crite-

rion, e.g.

– Γ–minimax posterior expected loss

– Γ–minimax posterior regret

• Report the range of EP ∗[h(θ)] besides the entertained value

92



GAMMA-MINIMAX

ρ(π, a) = Eπ∗
L(θ, a) posterior expected loss, minimised by aπ

• ρC = infa∈A supπ∈Γ ρ(π, a)

(Posterior Γ-minimax expected loss)

Optimal action by interchanging inf and sup for convex losses

• ρR = infa∈A supπ∈Γ[ρ(π, a)− ρ(π, aπ)]

(Posterior Γ-minimax regret)

Optimal action: aM = 1
2(a + ā), for finite a = infπ∈Γ aπx and ā =

supπ∈Γ aπx, A interval and L(θ, a) = (θ − a)2
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APPLICATIONS

• Very few applications of these robust Bayesian procedures

• Typically, either

– informal analysis (a finite family of priors) or

– choice of robust procedures (e.g. hierarchical models), robust distributions (e.g.
Student) and robust estimators (e.g. median)

• Need for sensitivity checks is nowadays widely accepted within the Bayesian com-
munity

• Classes and tools often driven more by maths rather than by practice

• Lack of adequate software
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APPLICATION: GAS ESCAPE

• Interest in replacement policy for pipelines more prone to gas escapes in a metropo-
litan distribution network at low-pressure (20 mbar over atmospheric pressure)

• Identification of the most prone material (traditional cast iron [CI]) and the most in-
fluential technical and environmental features (diameter of pipes, laying location,
depth)

• Cast iron pipes not subject to corrosion ⇒ homogeneous Poisson process (HPP)

• Two levels for each feature ⇒ eight subnetworks modelled by independent HPP’s
with parameters λi

• Experts’ opinions on propensity to gas escapes through pairwise comparison of eight
subnetworks and use of AHP (Analytic Hierarchy Process)

• Bayesian (and ML) estimation of λi’s and ranking of subnetworks according to their
value

• Sensitivity analysis
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FAILURES IN CAST-IRON PIPES

• CI pipes cover more than a quarter of the whole network, with about 6000 different
pipe sections with homogeneous characteristics, ranging in length from 3 to 250
meters for a total of 312 kilometers

• Cast-iron not aging ⇒ HPP in space and time with parameter λ (unit failure rate in
time and space)

• n failures in [0, T ]× S,⇒ l(λ|n, T,S) = (λsT)ne−λsT , with s = meas(S)

• Data: n = 150 failures in T = 6 years on a net ≈ s = 312 Km long

⇒ l(λ|n, T,S) = (1872λ)150e−1872λ (if considering all failures together)

• MLE λ̂ = n/(sT) = 150/1872 = 0.080

• Consider 8 classes determined by two levels of the relevant covariates: diameter,
location and depth
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FAILURES IN CAST-IRON PIPE

Depth < 0.9 m 0.0717

D < 125 mm 0.0755

Depth > 0.9 m 0.0941

Sidewalk 0.0698

Depth < 0.9 m 0.0666

D > 125 mm 0.0656

Depth > 0.9 m 0.0600

Overall 0.08003

Depth < 0.9 m 0.1773

D < 125 mm 0.1668

Depth > 0.9 m 0.1152

Street 0.1497

Depth < 0.9 m 0.1315

D > 125 mm 0.1371

[failures/(km year)] Depth > 0.9 m 0.1777
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ELICITATION OF EXPERTS’ OPINIONS

• Importance of experts’ judgements (and Bayesian approach ...)

– relatively few data from the company

– companies hardly disclose data on failures/escapes

– companies are in general responsible for a single city network, making very dif-
ficult any comparison between different situations and data re-utilisation/sharing

• 26 company experts (from different areas) filled an ad hoc questionnaire based on
pairwise comparisons of propensity to gas escapes in the 8 subnetworks

– interviewees unable to say how many failures they expected to see on a kilome-
ter of a given kind of pipe in a year or how much a factor influenced the failure

– interviewees able to compare the performance against failure of different pi-
peline classes through a linguistic judgement ⇒ transformed into numerical jud-
gements via AHP and reported in a matrix of pairwise comparisons
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ELICITATION OF EXPERTS’ OPINIONS

   2   1 3 4  5 6 7 8
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ANALYTIC HIERARCHY PROCESS

• Two alternatives A and B

B “equally likely as” A → 1
B “a little more likely than” A → 3
B “much more likely than” A → 5
B “clearly more likely than” A → 7
B “definitely more likely than” A → 9

• Pairwise comparison for alternatives A1, . . . , An

• ⇒ square matrix of size n

• ⇒ (normalized) eigenvector associated with the largest eigenvalue

• ⇒ (P (A1), . . . , P (An))

• Question: if a gas escape occurs, where do think it will occur if you have to choose
between subnetwork A and subnetwork B?
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ANALYTIC HIERARCHY PROCESS

An expert’s opinion on propensity to failure of cast-iron pipes

Class 1 2 3 4 5 6 7 8

1 1 3 3 3 1/6 1 1/6 3

2 1/3 1 1/4 2 1/6 1/2 1/5 1

3 1/3 4 1 1 1/4 1 1/6 2

4 1/3 1/2 1 1 1/5 1 1/5 1

5 6 6 4 5 1 4 4 5

6 1 2 1 1 1/4 1 1/6 1

7 6 5 6 5 1/4 6 1 4

8 1/3 1 1/2 1 1/5 1 1/4 1
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MATHEMATICS OF AHP

• A = {aij} matrix from pairwise comparisons in AHP

• A strongly consistent if aij = aikakj, for all i, j, k
⇒ A represented by normalized weights (w1, . . . , wn) s.t.

A =




w1/w1 w1/w2 w1/w3 . . . w1/wn

w2/w1 w2/w2 w2/w3 . . . w2/wn

w3/w1 w3/w2 w3/w3 . . . w3/wn

. . . . . . . . . . . . . . .
wn/w1 wn/w2 wn/w3 . . . wn/wn




⇒ aij = wi/wj = (wi/wk) · (wk/wj) = aikakj, for all i, j, k

• Unfortunately, human judgements are not in general consistent

• ⇒ Need to find a consistent matrix and a measure of inconsistency
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MATHEMATICS OF AHP

• A consistent ⇒ Find weights wi’s as solution of



w1/w1 w1/w2 w1/w3 . . . w1/wn

w2/w1 w2/w2 w2/w3 . . . w2/wn

w3/w1 w3/w2 w3/w3 . . . w3/wn

. . . . . . . . . . . . . . .
wn/w1 wn/w2 wn/w3 . . . wn/wn







w1

w2

w3

. . .
wn


 = n




w1

w2

w3

. . .
wn




• Aw = nw or (A − nI)w = O system of homogeneous linear equations, with
nontrivial solution iff det(A− nI) = 0 ⇒ n eigenvalue of A, unique since

– {number of nonnull eigenvalues = rank of A = 1}, since each row is a linear
combination of the others

– sum of eigenvalues equals the trace of the matrix, i.e. sum of its diagonal ele-
ments, and here tr(A) = n

• The eigenvector w has positive entries and is unique up to a constant ⇒ normalized
dividing entries by their sum

• A consistent ⇒ weights given by normalized eigenvector
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MATHEMATICS OF AHP

• A not consistent ⇒ take eigenvector of Aw = λmaxw, with λmax largest eigenvalue
(always λmax ≥ n for positive reciprocal matrices and λmax = n for consistent ones)

• λmax − n

n− 1
measure of inconsistency (difference divided by the number of the other

eigenvalues)

• In order to derive a meaningful interpretation of either the difference or the consis-
tency index, Saaty simulated random pairwise comparisons for different size ma-
trices, calculating the consistency indices, and arriving at an average consistency
index for random judgments for each size matrix. He then defined the consistency
ratio as the ratio of the consistency index for a particular set of judgments, to the
average consistency index for random comparisons for a matrix of the same size
(quoted from Forman and Selly)
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ELICITATION OF EXPERTS’ OPINIONS

Values elicited by experts ⇒ similar opinions

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

c l.  1 c l.  2 c l.  3 c l.  4 c l.  5 c l.  6 c l.  7 c l.  8
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MODELS FOR CAST-IRON PIPES

Independent classes Ai, i = 1,8, given by 3 covariates (diameter, location and depth)
⇒ find the “most risky” class

• Failures in the network occur at rate λ and allocated to class Ai with probability
P (Ai) ⇒ failures in class Ai occur at rate λi = λP (Ai)

• P (Ai) given by AHP for any expert

• Choice of λ ⇒ critical

– Proper way to proceed:

∗ Use experts’ opinions through AHP to get a Dirichlet prior on pi = P (Ai)

∗ Ask the experts about the expected number of gas escapes for given period
and length of network ⇒ statements on λ, unit failure rate for entire network,
and get a gamma prior on it

– What we did

∗ Estimate λ by MLE λ̂ with a unique HPP for the network

∗ Use experts’ opinions through AHP to get a prior on λi = λ̂P (Ai)
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MODELS FOR CAST-IRON PIPES

• Choice of priors

– Gamma vs. Lognormal

– For each expert, eigenvector from AHP multiplied by λ̂⇒ sample about (λ1, . . . , λ8)

– Mean and variance of priors on λi’s estimated from the sample of size 26 (num-
ber of experts)

• Posterior mean of failure rate λi for each class

• Classes ranked according to posterior means (largest ⇒ most keen to gas escapes)

• Sensitivity

– Classes of Gamma priors with mean and/or variance in intervals

– Classes of Gamma priors with λ in an interval
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MODELS FOR CAST-IRON PIPES

Hierarchical model

• Yi|λi ∼ P(λiti), i = 1,8 ti known time length

• λi|β ∼ G(αeXT
i β, α), α known, s.t. Eλi = eX

T
i β

• π(β)

• Improper priors, numerical approximation (Albert, 1988)

• Empirical Bayes

– λi|β, d ∼ G(αeXT
i β + yi, α+ ti), λi ⊥ λj|d

– f(d|β) =
∫
f(d|λ)π(λ|β)dλ maximised by β̂

⇒ λi|β̂, d ∼ G(αeXT
i β̂ + yi, α+ ti), ∀i

• “Pure” Bayesian approach ⇒ prior on (α, β)
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ESTIMATES’ COMPARISON

• Location: W (under walkway) or T (under traffic)

• Diameter: S (small, < 125 mm) or L (large, ≥ 125 mm)

• Depth: N (not deep, < 0.9 m) or D (deep , ≥ 0.9 m)

Class MLE Bayes (LN ) Bayes (G) Hierarchical
TSN .177 .217 .231 .170
TSD .115 .102 .104 .160
TLN .131 .158 .143 .136
TLD .178 .092 .094 .142
WSN .072 .074 .075 .074
WSD .094 .082 .081 .085
WLN .066 .069 .066 .066
WLD .060 .049 .051 .064

Highest value; 2nd-4th values

• Location is the most relevant covariate

• TLD: 3 failures along 2.8 Km but quite unlikely to fail according to the experts

• LN and G ⇒ similar answers
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CRITICAL REVIEW OF PAST RESULTS

• Qualitative judgements manipulated via AHP instead of assessments on observable
quantities, like

– expected number of gas escapes in a 1 Km long pipe in one year

– median of the distribution of the time of the first gas escape in a 1 Km long pipe

⇒ their use as sample on λ or, better, conditions determining classes of priors

• Mixed use of MLE and prior assessment

• Choice of a functional form (convenient from a mathematical viewpoint but not cor-
responding to what the experts think)

• Ranking based on posterior means, justified by the choice of squared loss function
and not by the company’s preferences

• Use (as much as possible) just actual beliefs and preferences ⇒ classes of priors
and losses ⇒ ranking based on adequate actions
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BAYES ACTIONS

• Range of prior opinions on λi’s, i = 1,8, by 14 experts

• Class 3 (TSN) looks worse than others but its lower bound is below upper bounds of
classes 1 (WSN), 4 (TSD), 7 (TLN) and 8 (WLD)

• Large variability
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BAYES ACTIONS

Quartiles determined by experts’ opinions

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
min 0.03 0.02 0.11 0.05 0.02 0.01 0.08 0.02
max 0.2 0.09 0.42 0.16 0.09 0.05 0.37 0.16

q0.250 0.090 0.040 0.290 0.060 0.040 0.020 0.120 0.040
q0.500 0.105 0.050 0.320 0.090 0.060 0.030 0.185 0.045
q0.750 0.120 0.080 0.350 0.130 0.080 0.040 0.230 0.060
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BAYES ACTIONS

• Quartiles determine intervals Ii, i = 1,4 with probability 0.25 each

• In general, quantiles assign probabilities pi to intervals Ii, i = 1, n

• Class of priors Γ = {π :
∫
Ii
π(dλ) = pi, i = 1, n}

• Interest in posterior mean Eπλ =

∫
λl(λ)π(λ)dλ∫
l(λ)π(λ)dλ

• sup
π∈Γ

Eπλ = sup
λi∈Īi,i=1,n

∑n
i=1 λil(λi)pi∑n
i=1 l(λi)pi

• Ranges compared for classes with 3 or 7 quantiles
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BAYES ACTIONS

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
min 0.03 0.02 0.11 0.05 0.02 0.01 0.08 0.02
max 0.2 0.09 0.42 0.16 0.09 0.05 0.37 0.16

q0.125 0.060 0.030 0.210 0.050 0.020 0.020 0.110 0.030
q0.250 0.090 0.040 0.290 0.060 0.040 0.020 0.120 0.040
q0.375 0.090 0.040 0.310 0.070 0.050 0.030 0.150 0.040
q0.500 0.105 0.050 0.320 0.090 0.060 0.030 0.185 0.045
q0.625 0.110 0.060 0.330 0.110 0.060 0.030 0.220 0.050
q0.750 0.120 0.080 0.350 0.130 0.080 0.040 0.230 0.060
q0.875 0.130 0.100 0.390 0.130 0.090 0.040 0.260 0.150
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BAYES ACTIONS

Range of Bayes actions for quantile class: 3 quantiles (left) and 7 (right)
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THRESHOLD EXCEEDANCE

• Interest not only in the class to be replaced first but also if any has to be replaced

• ⇒ set a critical threshold λ̃ on the failure rate

• Given prior π and data d ⇒ interest in posterior Pπ(λ > λ̃|d)

• Do not replace pipes if Pπ(λ > λ̃|d) ≤ α, with α related to the acceptable risk

• Under a class of priors Γ

– do not replace if sup
π∈Γ

Pπ(λ > λ̃|d) ≤ α

– replace if inf
π∈Γ

Pπ(λ > λ̃|d) > α

– further investigation o.w.

• Sup and Inf obtained for discrete distributions with one point for each interval (actu-
ally its closure) determined by the prior quantiles
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THRESHOLD EXCEEDANCE

• Upper and lower bound on threshold exceedance probability as a function of λ̃ for
class 3 (TSN - left) and class 7 (TLN - right), compared with prior median q0.5 asses-
sed by experts

• α = 0.2

• For class 3: replace if λ̃ < 0.21 and do not replace if λ̃ > 0.32
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TYPES OF CORROSION

• Natural corrosion

– due to ground properties, e.g. very wet ground is a good conductor easing
development of the electrolytic phenomenon

• Galvanic corrosion

– network made of different materials

– contact of two different materials with imperfect insulation

– corrosion started by potential difference between two different materials

• Corrosion by interference (or stray currents)

– presence of stray currents in the ground coming from other electrical plants badly
insulated (e.g. streetcar substations or train stations)

– when discharging on steel pipe they increase the corrosion rate by various or-
ders of magnitude
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LAYING LOCATION

• Areas near streetcar substations or train stations (Zone A)

– Streetcar substations generate current, which goes through the ae-

rial line and is transformed into power by the streetcar; then it goes

back to the substation through the steel streetcar tracks and the

trunk of negative electric cables hidden underground (which are

the cause of stray currents due to bad insulation)

– Near railway stations, the stray currents derive not only by the bad

insulation of the tracks, but also by the strong electrical field coming

from the passage of the train

• Other areas (Zone B)
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DATA: ZONE AND CORROSION

Failure rate (failures) by zone and type of corrosion

Natural (N ) Galvanic (G) By interference (I)

Zone A (12 km2) 0.583 (7) 0.083 (1) 0.500 (6)

Zone B (88 km2) 0.068 (6) 0.057 (5) 0.091 (8)

• Different failure rates for natural corrosion

⇒ suspects on right reporting by repairing squads
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EXPERTS’ OPINIONS

• Experts

– 2 technicians assessing pipes conditions after excavation

– 2 engineers expert of technical and management aspects

• Analytic Hierarchy Process (AHP) as before

– Qualitative pairwise comparisons with answers: equally likely, a little more likely,
much more likely, clearly more likely, definitely more likely
⇒ quantitative judgements

• Questions

– In your opinion is a failure more likely to happen in zone A or in zone B? How
much more likely? ⇒ P (failure in A) = P (A) and P (B)

– Pairwise comparisons like: In an area with (without) streetcar substations or rai-
lways stations is it more likely to have natural or galvanic corrosion? How much
more likely? ⇒ P (N |A), P (G|A), P (I|A), P (N |B), P (G|B), and P (I|B)
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EXPERTS’ OPINIONS

• P (A) and P (B) known and

• P (N |A), P (G|A), P (I|A), P (N |B), P (G|B), and P (I|B) known

• ⇒ P (N) = P (N |A)P (A) + P (N |B)P (B)

• ⇒ P (A|N) =
P (N |A)P (A)

P (N)

• The same for P (G), P (I), P (A|G), P (A|I)

• Probabilities obtained for all experts and pooled

Mean St. dev.
P (A) 0.7938 0.1962
P (B) 0.2063 0.1962
P (A|N) 0.6133 0.2114
P (A|G) 0.6221 0.2168
P (A|I) 0.9581 0.0574
P (N) 0.1636 0.0403
P (G) 0.2767 0.1298
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POSTERIOR PROBABILITIES

• P (A) = p probability that a failure occurs in zone A

• Conditional upon observing n total failures, the number nA of failures in A is a Bino-
mial r.v.

⇒ p(nA|n, p) ∝
( n

nA

)
pnA(1− p)n−nA

• Prior on p: Be(a, b) conjugate w.r.t. Binomial model

• ⇒ posterior: Be(a+ nA, b+ n− nA)

• Bayes estimator of p: posterior mean
a+ nA

a+ b+ n

Historical (MLE) Prior Posterior

p (zone A, 12 km2) 0.4528 0.7938 0.4790
1− p (zone B, 88 km2) 0.5472 0.2062 0.5210
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POSTERIOR PROBABILITIES

Historical (MLE) Prior Posterior
Mean St. Dev. Mean St. Dev.

P (A|N) 0.5385 0.6133 0.2114 0.5662 0.1065
P (A|G) 0.1667 0.6221 0.2168 0.4125 0.0351
P (A|I) 0.4286 0.9581 0.0574 0.6700 0.0909

Historical (MLE) Prior Posterior
Mean St. Dev. Mean St. Dev.

P (N) 0.3940 0.1636 0.0403 0.2290 0.0388
P (G) 0.1818 0.2767 0.1298 0.2498 0.0400
P (I) 0.4242 0.5597 0.1565 0.5212 0.0461
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MODEL SELECTION

• Gas escapes caused by corrosion: natural, galvanic and by stray currents

• λ(t) = β (HPP) vs. λ(t) = βt/(γ + t) (NHPP)

• Number of failures in [0, T ]

– HPP: P(βT)

– NHPP: P(
∫ T

0
βt/(γ + t)dt)

• Bayes factor BF =

∫
L(β,0)Π(dβ)∫

L(β, γ)Π(dβ)Π(dγ)
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UNCERTAINTY ON PRIOR DISTRIBUTION

• So far we have assumed there exists a unique prior but it is very questionable

– impossibility of specifying a distribution exactly based upon experts’ opinions

– group of people with different opinions

• Specify class of priors, compatible with prior knowledge

• Compute upper and lower bounds on quantity of interest and check if they are close
⇒ robustness or not

• β ∼ G(a, b) and π(γ) ∈ Γ = {π : median at1}

• Quantity of interest here: Bayes factor
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MODEL SELECTION

Corrosion BF Eβ|d Eγ|d
Galvanic (0.68,0.82) (0.59,1.10) (0.59,8.08)
Natural (0.25,0.54) (0.87,2.40) (0.71,22.64)
Stray Currents (2.00,13968.02) (0.82,1.00) (0.00,0.16)

• λ(t) = β (HPP) vs. λ(t) = βt/(γ + t) (NHPP)

• Bayes factor BF =

∫
L(β,0)Π(dβ)∫

L(β, γ)Π(dβ)Π(dγ)

• Upper and lower bounds on BF ⇒ HPP better for stray currents and worse o.w.
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STOCHASTIC ORDERS

• Usual stochastic order

– X and Y r.v.’s with d.f.’s FX and FY s.t. FX(t) ≥ FY (t), ∀t ∈ R

– ⇒ X ≤st Y , i.e. X is said to be smaller than Y in the usual stochastic order

– X ≤st Y ⇔ E[g(X)] ≤ E[g(Y )] holds for all increasing functions g for which
the expectations exist

• Likelihood ratio order

– X and Y be (discrete) absolutely continuous r.v.’s with d.f.’s FX and FY and (dis-

crete) densities fX and fY s.t.
fY (t)

fX(t)
increases over the union of the supports

of X and Y (here a/0 is taken to be equal to ∞ whenever a > 0)

– ⇒ X ≤lr Y , i.e. X is said to be smaller than Y in the likelihood ratio order

• X ≤lr Y ⇒ X ≤st Y
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DISTORTION FUNCTIONS

• X r.v. with d.f. FX

• h distortion function

– non-decreasing continuous function h : [0,1] → [0,1]

– s.t. h(0) = 0 and h(1) = 1

• Given h, cumulative probability modified by

Fh(x) = h ◦ F (x) = h [F (x)]

• ⇒ Xh distorted r.v. with d.f. Fh(x)

• Distortion functions used to build classes of priors, with stochastic order properties
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SOME RESULTS

• Prior distribution π with d.f. Fπ(θ) and distortion function h

• ⇒ distorted prior distribution πh with d.f. Fπh(θ) = h ◦ Fπ(θ) = h [Fπ (θ)]

• Lemma.

– π prior distribution (absolutely continuous or discrete) with d.f. Fπ

– h convex distortion function in [0,1] ⇒ π ≤lr πh

– h concave distortion function in [0,1] ⇒ π ≥lr πh

• Important result for the construction of classes of priors through stochastic ordering
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CONCAVE AND CONVEX DISTORTION FUNCTIONS
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• Solid: Fπ(θ) = θ

• Dashed: Fπh1
(θ) =

√
θ (concave distortion)

⇒ decreasing l.r. = 1/(2
√
θ) ⇒ π ≥lr πh1

• Dotted: Fπh2
(θ) = θ2 (convex distortion)

⇒ increasing l.r. = 2θ ⇒ π ≤lr πh2
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DISTORTED BAND OF PRIORS

• Uncertainty on prior π through concave (h1) and convex (h2) distortion functions

• Previous Lemma. Prior π and convex (or concave) distortion function h in [0,1]

⇒ π ≤lr πh (or π ≥lr πh)

• Lemma ⇒ distorted distributions πh1
and πh2

s.t. πh1
≤lr π ≤lr πh2

• Definition. Distorted band Γh1,h2,π s.t. Γh1,h2,π = {π′ : πh1
≤lr π

′ ≤lr πh2
}

• Lemma ⇒ π ∈ Γh1,h2,π

• ⇒ distorted band as a particular ”neighborhood” band of π, with lower and upper
bound given by distorted distributions

• Band defined only through an upper (or lower) bound when considering h1 (or h2)
the identity function
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CHOICES OF DISTORTION FUNCTIONS

• h1(x) = 1− (1− x)α and h2(x) = xα, ∀α > 1

– α = n ∈ N ⇒ Fπh1
(θ) = 1− (1− Fπ(θ))n and Fπh2

(θ) = (Fπ(θ))n

– ⇒ d.f.’s of min and max of i.i.d. random sample of size n from baseline prior π

• h1(x) = min{x
α
,1} and h2(x) = max{x−α

1−α
,0}, 0 < α < 1

– ⇒ truncated distributions πh1
=L π(·|A1) and πh2

=L π(·|A2)

∗ =L means equality in law

∗ A1 = (−∞, F−1
π (α)]

∗ A2 = (F−1
π (α),∞)

– (πh1
(πh2

) concentrated up to (after) α–quantile of π)
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CHOICES OF DISTORTION FUNCTIONS

• Skewed distributions

• π absolutely continuous, symmetric around 0 prior with density π(θ) and d.f. Fπ(θ)

• ⇒ skew-π with parameter α with density πα(θ) = 2π(θ)Fπ(αθ)

• Distribution: right skewed if α > 0 and left skewed if α < 0

• Easy to show π ≤lr πα for all α > 0 and πα ≤lr π for all α < 0
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CHOICES OF DISTORTION FUNCTIONS
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• π ∼ N(0,1) prior with standard normal d.f. ΦZ

• Distorted d.f.’s Fπh1
(θ) = 1− (1−ΦZ(θ))

1.3 and Fπh2
(θ) = (ΦZ(θ))

1.3
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CHOICES OF DISTORTION FUNCTIONS
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• π ∼ U(0,1) prior with d.f. ΦZ

• Distorted d.f.’s Fπh1
(θ) = 1− (1−ΦZ(θ))

1.1 and Fπh2
(θ) = (ΦZ(θ))

1.1
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POSTERIOR BAND

• Spizzichino (2001): given two priors π1 and π2 s.t. π1 ≤lr π2

⇒ posteriors s.t. π1x ≤lr π2x

• Proposition. π prior and Γh1,h2,π distorted band around π based on h1 and h2

⇒ πh1,x ≤lr π
′
x ≤lr πh2,x ∀π′ ∈ Γh1,h2,π

• Posterior of lower and upper bound distributions of the distribution band ⇒ lower
and upper bounds in the ≤lr order sense for Γx, family of posterior distributions

• ⇒ Γx still distortion band of a posterior for some concave and convex functions

• Closure property very uncommon among classes of priors

⇒ dealing with priors or posteriors is the same
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OTHER WORKS

• Band of distorted priors used in Fault Tree Analysis

• Band of multivariate distorted priors

• Classes of Dirichlet processes

• Robustness in Adversarial Risk Analysis

• Robust Bayesian Analysis for Generalized Extreme Value Models
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