SIMILARITY AND DISTANCE METRIC LEARNING

Aurélien Bellet (Inria)

Research School on Uncertainty in Scientific Computing (ETICS 2019) September 26, 2019

This morning

- 1. A brief formal introduction to machine learning
- 2. Similarity and distance metric learning

Tomorrow morning

Practical session in Python

A BRIEF FORMAL INTRODUCTION TO ML

- Labeled data point $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- · $\mathcal{X} \subset \mathbb{R}^q$: representation space (features)
- + \mathcal{Y} : discrete (classification) or continuous (regression)
- A predictive model is a function $f: \mathcal{X} \rightarrow \mathcal{Y}$
- We measure the discrepancy between the prediction f(x) and the true label y using a loss function $\ell(f; x, y)$

SUPERVISED LEARNING: SETUP

- We have access to a training dataset $S_n = \{(x_i, y_i)\}_{i=1}^n$ of n labeled points
- A supervised ML algorithm takes S_n as input and outputs a model $f: \mathcal{X} \to \mathcal{Y}$
- The learned model f can then be used to predict a label $y \in \mathcal{Y}$ for any (new) data point $x \in \mathcal{X}$

The goal of ML is to generalize to unseen data \rightarrow need an assumption to relate training data and future data

SUPERVISED LEARNING: STATISTICAL SETTING

- Assumption: all data points $(x, y) \in \mathcal{X} \times \mathcal{Y}$ follows some unknown but fixed distribution μ (specific to the task)
- This is assumed to hold for both training and unseen data
- **Goal**: learn a model *f* in some model family \mathcal{F} from training data which has small expected loss over μ :

$$R(f) = \mathop{\mathbb{E}}_{(x,y)\sim\mu} \ell(f;x,y)$$

• But μ is unknown, so cannot compute R(f)

· Intuitive idea: minimize average loss on training data

$$\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f; x_i, y_i)$$

- The hope is that an accurate model on training data will also do well on unseen data
- Why do we care about the model family *F*? Can't we use a very expressive family which can model any data?

APPROXIMATION-GENERALIZATION TRADE-OFF

- $\cdot \mathcal{F}$ too simple \rightarrow underfitting
- \mathcal{F} too complex \rightarrow overfitting
- Note: the complexity of \mathcal{F} also impacts the algorithmic complexity of the learning procedure

STATISTICAL LEARNING GUARANTEES

- This trade-off is well-explained by statistical learning theory
- One can prove results of the form: for any $f \in \mathcal{F}$, w.p. 1δ

$$R(f) \leq \hat{R}(f) + \sqrt{\frac{C_{\mathcal{F}}\log(1/\delta)}{n}}$$

where $C_{\mathcal{F}}$ is a measure of complexity of the model class \mathcal{F}

- $C_{\mathcal{F}}$ can simply be $|\mathcal{F}|$ when model family is finite
- \cdot Note: regularization can be used to penalize complexity within ${\cal F}$

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \hat{R}(f) + \lambda \Omega(f)$$

- $\cdot \text{ Real labels } \mathcal{Y} = \mathbb{R}$
- Linear model $f_{\theta}(x) = \theta^{\mathsf{T}} x$ parameterized by $\theta \in \mathbb{R}^{q}$
- Quadratic loss $\ell(f_{\theta}; x, y) = (y f_{\theta}(x))^2$
- ERM problem is a simple least-square problem:

$$\hat{\theta} \in \underset{\theta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{\theta}(x_{i}))^{2}, \text{ equivalent to } \hat{\theta} \in \underset{\theta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \|Y - X\theta\|_{2}^{2}$$

- Common regularization terms:
 - Squared L2 norm: $\|\theta\|_2^2$
 - L1 norm: $\|\theta\|_1$ (sparsity inducing, cf LASSO)

ERM EXAMPLE 2: LINEAR CLASSIFICATION WITH HINGE LOSS

- Binary labels $\mathcal{Y} = \{-1, 1\}$, linear model $f_{\theta}(x) = \operatorname{sign}[\theta^T x]$
- Hinge loss $\ell(f_{\theta}; x, y) = \max(0, 1 y\theta^T x)$ to enforce a safety margin
- ERM problem with L2 regularization is Support Vector Machine

ERM EXAMPLE 3: DEEP NEURAL NETS

- Feed-forward, fully connected DNN:
 - First layer is the input x₀ = x
 - Intermediate layers: $x_i = \sigma(W_i x_{i-1})$ with σ nonlinear mapping
 - Last layer: linear model on previous layer + loss

- · Specialized networks: CNNs (images), LTSMs/RNNs (sequences)...
- · High model complexity, but can still generalize well in practice!
- A lot of ongoing work to better understand this theoretically

• Assume $\mathcal{F} = \{f_{\theta} : \theta \in \mathbb{R}^{p}\}$, the ERM problem is

$$\min_{\theta \in \mathbb{R}^p} \hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; x_i, y_i)$$

- We typically work with loss functions that are differentiable in θ
- The workhorse of ML is first-order optimization methods: iteratively refine θ based on (an estimate of) the gradient

$$\nabla \hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell(\theta; x_i, y_i)$$

SOLVING ERM PROBLEMS: GRADIENT-BASED METHODS

- Gradient Descent (GD):
 - Initialize to some $\theta(0) \in \mathbb{R}^p$
 - For t = 0, ..., T: update $\theta(t + 1) = \theta(t) \gamma \nabla \hat{R}(\theta(t))$
- Stochastic Gradient Descent (SGD):
 - Initialize to some $\theta(0) \in \mathbb{R}^p$
 - For t = 0, ..., T: pick random index $i_t \in \{1, ..., n\}$ and update $\theta(t + 1) = \theta(t) \gamma(t) \nabla_{\theta} \ell(\theta; x_{i_t}, y_{i_t})$
- + γ is the step size (or learning rate) to be tuned
- In ML, we typically do not care about high-precision solutions
- For large datasets, SGD has much cheaper iterations and converges faster to a solution with reasonable precision

SOLVING ERM PROBLEMS: GRADIENT-BASED METHODS

- For convex objective functions, gradient-based methods will converge to the global minimum (under appropriate step size)
- Nonconvex case: convergence only to a local minimum
- · Convergence rate depends on properties of the objective
- Note: optimization for ML is a very active topic

SIMILARITY AND DISTANCE METRIC LEARNING

How to appropriately measure similarity or distance between things depending on the context?

- We (humans) are good at this [Tversky, 1977, Goldstone et al., 1997]
 - Recognize similar objects, sounds, ideas, etc, from past experience
 - Adapt the notion of similarity to the context
- Al systems need to do it too!
 - Categorize / retrieve data based on similarity to known examples
 - Detect situations similar to past experience

Nearest neighbor classification

SOME USE CASES IN MACHINE LEARNING

Clustering

Information retrieval

Query document

Most similar documents

SOME USE CASES IN MACHINE LEARNING

Data visualization

(image taken from [van der Maaten and Hinton, 2008])

A GENERAL APPROACH: METRIC LEARNING

- Assume data represented in space \mathcal{X} (e.g., $\mathcal{X} \subset \mathbb{R}^d$)
- We provide the system with some similarity judgments on data pairs/triplets for the task of interest

(images taken from Caltech Faces dataset)

• The system uses this information to find the most "appropriate" pairwise distance/similarity function $D: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

(Note: I will refer to D as a metric regardless of its properties)

- Case 1: huge number of classes (likely with class imbalance)
 - No need to learn many classifiers (as in 1-vs-1, 1-vs-all)
 - No blow-up in number of parameters (as in Multinomial Log. Reg.)
- Case 2: invidivual labels are costly to obtain
 - · Similarity judgments often easier to label than individual points
 - Fully unsupervised generation possible in some applications
- Case 3: a pairwise metric is all we need
 - Information retrieval (rank results by similarity to a query)

EXAMPLE APPLICATION: FACE VERIFICATION

- Face verification combines all of the above
 - $\cdot\,$ Huge number of classes, with few instances in each class
 - Similarity judgments easy to crowdsource / generate
 - Given a new image, rank database by similarity and decide whether to match
- State-of-the-art results in empirical evaluations
 - Labeled Faces in the Wild [Zhu et al., 2015]
 - YouTube Faces [Hu et al., 2014]
- Popular in industry as well

(examples of positive pairs correctly classified from [Guillaumin et al., 2009])

METRIC LEARNING IN A NUTSHELL

Basic recipe

- 1. Pick a parametric distance or similarity function
 - Say, a distance $D_M(x, x')$ function parameterized by a matrix M
- 2. Collect similarity judgments on data pairs/triplets
 - $S = \{(x_i, x_j) : x_i \text{ and } x_j \text{ are similar}\}$
 - $\mathcal{D} = \{(x_i, x_j) : x_i \text{ and } x_j \text{ are dissimilar}\}$
 - $\mathcal{R} = \{(x_i, x_j, x_k) : x_i \text{ is more similar to } x_j \text{ than to } x_k\}$
- 3. Estimate parameters s.t. metric best agrees with judgments
 - Solve an ERM problem of the form

$$M^{*} = \arg\min_{M} \left[\underbrace{\hat{R}(M, S, \mathcal{D}, \mathcal{R})}_{\text{empirical risk}} + \underbrace{\lambda\Omega(M)}_{\text{regularization}} \right]$$

LINEAR METRIC LEARNING

Definition (Distance function)

A distance over a set \mathcal{X} is a pairwise function $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which satisfies the following properties $\forall x, x', x'' \in \mathcal{X}$:

(1)
$$d(x, x') \ge 0$$
 (nonnegativity)

(2) d(x, x') = 0 if and only if x = x' (identity of indiscernibles)

(3)
$$d(x, x') = d(x', x)$$
 (symmetry)

(4) $d(x, x'') \le d(x, x') + d(x', x'')$ (triangle inequality)

• Note: a pseudo-distance satisfies the above except (2)

Minkowski distances

• A family of distances induced by L_p norms ($p \ge 1$)

$$d_p(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_p = \left(\sum_{i=1}^d |x_i - x'_i|^p\right)^{1/p}$$

• When p = 2: "ordinary" Euclidean distance

$$d_{euc}(\mathbf{x}, \mathbf{x}') = \left(\sum_{i=1}^{d} |x_i - x'_i|^2\right)^{1/2} = \sqrt{(\mathbf{x} - \mathbf{x}')^{\mathsf{T}}(\mathbf{x} - \mathbf{x}')}$$

- When p = 1: Manhattan distance $d_{man}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{d} |x_i x'_i|$
- When $p \to \infty$: Chebyshev distance $d_{che}(\mathbf{x}, \mathbf{x}') = \max_i |x_i x'_i|$

• Mahalanobis (pseudo) distance:

$$D_M(x,x') = \sqrt{(x-x')^{\mathsf{T}}M(x-x')}$$

where $M \in \mathbb{R}^{d \times d}$ is symmetric positive semi-definite (PSD)

• Denote by \mathbb{S}^d_+ the cone of symmetric PSD $d \times d$ matrices

MAHALANOBIS DISTANCE

- A symmetric matrix M is in \mathbb{S}^d_+ (also denoted $M \succeq 0$) iff:
 - Its eigenvalues are all nonnegative
 - $\cdot \mathbf{x}^{\mathsf{T}}\mathbf{M}\mathbf{x} \geq 0, \forall \mathbf{x} \in \mathbb{R}^{d}$
 - $\mathbf{M} = \mathbf{L}^{\mathsf{T}} \mathbf{L}$ for some $\mathbf{L} \in \mathbb{R}^{k \times d}$, $k \leq d$
- Equivalent to Euclidean distance after linear transformation:

$$D_{\mathsf{M}}(\mathbf{x},\mathbf{x'}) = \sqrt{(\mathbf{x}-\mathbf{x'})^{\mathsf{T}}\mathsf{L}^{\mathsf{T}}\mathsf{L}(\mathbf{x}-\mathbf{x'})} = \sqrt{(\mathbf{L}\mathbf{x}-\mathbf{L}\mathbf{x'})^{\mathsf{T}}(\mathbf{L}\mathbf{x}-\mathbf{L}\mathbf{x'})}$$

- If rank(M) = $k \le d$, then $L \in \mathbb{R}^{k \times d}$ does dimensionality reduction
- For convenience, we often work with the squared distance

A first approach with pairwise constraints [Xing et al., 2002]

Targeted task: clustering with side information

- Problem is convex in M and always feasible (take M = 0)
- Solved with projected gradient descent
 - Project onto distance constraint: $O(d^2)$ time
 - Project onto \mathbb{S}^d_+ : $O(d^3)$ time
- Only look at sums of distances

A first approach with pairwise constraints [Xing et al., 2002]

A first approach with triplet constraints [Schultz and Joachims, 2003]

Targeted task: information retrieval

- Regularization by Frobenius norm $\|\mathbf{M}\|_{\mathcal{F}}^2 = \sum_{i,j=1}^d M_{ij}^2$
- Formulation is convex
- One large margin soft constraint per triplet
- Can be solved with similar techniques as SVM

Large Margin Nearest Neighbor [Weinberger et al., 2005]

- Targeted task: k-NN classification
- Constraints derived from labeled data
 - $\begin{array}{l} \cdot \ \mathcal{S} = \{(\mathbf{x}_i, \mathbf{x}_j) : y_i = y_i, \mathbf{x}_j \text{ belongs to } k \text{-neighborhood of } \mathbf{x}_i\} \\ \cdot \ \mathcal{R} = \{(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) : (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}, y_i \neq y_k\} \end{array}$

Large Margin Nearest Neighbor [Weinberger et al., 2005]

Formulation

$$\min_{\boldsymbol{M}\in\mathbb{S}^d_+,\boldsymbol{\xi}\geq 0} \quad (1-\mu)\sum_{(\boldsymbol{x}_i,\boldsymbol{x}_j)\in\mathcal{S}} D^2_{\boldsymbol{M}}(\boldsymbol{x}_i,\boldsymbol{x}_j) + \mu\sum_{i,j,k}\xi_{ijk}$$
s.t.
$$D^2_{\boldsymbol{M}}(\boldsymbol{x}_i,\boldsymbol{x}_k) - D^2_{\boldsymbol{M}}(\boldsymbol{x}_i,\boldsymbol{x}_j) \geq 1 - \xi_{ijk} \quad \forall (\boldsymbol{x}_i,\boldsymbol{x}_j,\boldsymbol{x}_k) \in \mathcal{R}$$

- $\mu \in [0,1]$ trade-off parameter
 - Convex formulation, unlike NCA [Goldberger et al., 2004]
 - Number of constraints in the order of kn^2
 - · Solver based on projected gradient descent with working set
 - Simple alternative: only consider closest "impostors"
 - Chicken and egg situation: which metric to build constraints?
MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]

Pointers to metric learning algorithms for other tasks

- Learning to rank [McFee and Lanckriet, 2010]
- Multi-task learning [Parameswaran and Weinberger, 2010]
- Transfer learning [Zhang and Yeung, 2010]
- Semi-supervised learning [Hoi et al., 2008]

Interesting regularizers

- We have already seen the Frobenius norm $\|\mathbf{M}\|_{\mathcal{F}}^2 = \sum_{i,j=1}^d M_{ij}^2$
 - $\cdot~$ Convex, smooth \rightarrow easy to optimize
- LogDet divergence (used in ITML [Davis et al., 2007])

$$D_{ld}(\mathbf{M}, \mathbf{M}_0) = \operatorname{tr}(\mathbf{M}\mathbf{M}_0^{-1}) - \log \operatorname{det}(\mathbf{M}\mathbf{M}_0^{-1}) - d$$
$$= \sum_{i,j} \frac{\sigma_i}{\theta_j} (\mathbf{v}_i^T \mathbf{u}_i)^2 - \sum_i \log\left(\frac{\sigma_i}{\theta_i}\right) - d$$

where $\mathbf{M} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ and $\mathbf{M}_0 = \mathbf{U} \mathbf{\Theta} \mathbf{U}^{\mathsf{T}}$ is PD

- Remain close to good prior metric M₀ (e.g., identity)
- Implicitly ensure that **M** is PD
- Convex in **M** (determinant of PD matrix is log-concave)
- Efficient Bregman projections in $O(d^2)$

Interesting regularizers

- Mixed $L_{2,1}$ norm: $\|M\|_{2,1} = \sum_{i=1}^{d} \|M_i\|_2$
 - $\cdot\,$ Tends to zero-out entire columns \rightarrow feature selection
 - Convex but nonsmooth
 - Efficient proximal gradient algorithms
- Trace (or nuclear) norm: $\|\mathbf{M}\|_* = \sum_{i=1}^d \sigma_i(\mathbf{M})$
 - + Favors low-rank matrices \rightarrow dimensionality reduction
 - Convex but nonsmooth
 - Efficient Frank-Wolfe algorithms

MAHALANOBIS DISTANCE LEARNING

L_{2,1} norm illustration

Irls-Average Error Rate (%)

Bel-Average Error Rate (%)

(image taken from [Ying et al., 2009])

LINEAR SIMILARITY LEARNING

- Mahalanobis distance satisfies some distance properties
 - Nonnegativity, symmetry, triangle inequality
 - Natural regularization, required by some applications
- In practice, these properties may not be satisfied
 - By human similarity judgments [Tversky and Gati, 1982]

- By some good visual recognition systems
- Alternative: learn bilinear similarity function $S_M(x, x') = x^T M x'$
 - Example: OASIS algorithm (presented later)
 - + No PSD constraint on M
 ightarrow computationally easier

NONLINEAR EXTENSIONS

KERNELIZATION OF LINEAR METHODS

Definition (Kernel function)

A symmetric function K is a kernel if there exists a mapping function $\phi : \mathcal{X} \to \mathbb{H}$ from the instance space \mathcal{X} to a Hilbert space \mathbb{H} such that K can be written as an inner product in \mathbb{H} :

 $K(x, x') = \langle \phi(x), \phi(x') \rangle.$

Equivalently, K is a kernel if it is positive semi-definite (PSD), i.e.,

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j K(x_i, x_j) \ge 0$$

for all finite sequences of $x_1, \ldots, x_n \in \mathcal{X}$ and $c_1, \ldots, c_n \in \mathbb{R}$.

- Notations
 - Kernel $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$, training data $\{\mathbf{x}_i\}_{i=1}^n$
 - $\boldsymbol{\cdot} \ \boldsymbol{\phi}_i \stackrel{def}{=} \boldsymbol{\phi}(\boldsymbol{x}_i) \in \mathbb{R}^{D}, \, \boldsymbol{\Phi} \stackrel{def}{=} [\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_n] \in \mathbb{R}^{n \times D}$
- Mahalanobis distance in kernel space

$$D^2_{\mathsf{M}}(\phi_i,\phi_j) = (\phi_i - \phi_j)^{\mathsf{T}} \mathsf{M}(\phi_i - \phi_j) = (\phi_i - \phi_j)^{\mathsf{T}} \mathsf{L}^{\mathsf{T}} \mathsf{L}(\phi_i - \phi_j)$$

• Setting $\boldsymbol{L}^{T} = \boldsymbol{\Phi} \boldsymbol{U}^{T}$, where $\boldsymbol{U} \in \mathbb{R}^{D \times n}$, we get

$$D_{\mathsf{M}}^{2}(\phi(\mathbf{x}),\phi(\mathbf{x}'))=(\mathbf{k}-\mathbf{k}')^{\mathsf{T}}\mathsf{M}(\mathbf{k}-\mathbf{k}')$$

•
$$M = U^{\mathsf{T}}U \in \mathbb{R}^{n \times n}$$
, $k = \Phi^{\mathsf{T}}\phi(x) = [K(x_1, x), \dots, K(x_n, x)]^{\mathsf{T}}$

• Justified by a representer theorem [Chatpatanasiri et al., 2010]

KERNELIZATION OF LINEAR METHODS

- Similar trick as kernel SVM
 - Use a nonlinear kernel (e.g., Gaussian RBF)
 - Inexpensive computations through the kernel
 - Nonlinear metric learning while retaining convexity
- Need to learn $O(n^2)$ parameters
- Linear metric learning algorithm must be kernelized
 - Interface to data limited to inner products only
 - Several algorithms shown to be kernelizable
- General trick [Chatpatanasiri et al., 2010]:
 - 1. Kernel PCA: nonlinear mapping to low-dimensional space
 - 2. Apply linear metric learning algorithm to transformed data

LEARNING A NONLINEAR TRANSFORMATION

• More flexible approach: learn nonlinear mapping ϕ to optimize

$$D_{\phi}(\mathbf{x},\mathbf{x}') = \|\phi(\mathbf{x}) - \phi(\mathbf{x}')\|_2$$

- Possible parameterizations for ϕ :
 - · Gradient boosted regression trees [Kedem et al., 2012]
 - · Deep networks [Hu et al., 2014, Wang et al., 2014, Song et al., 2016]
- Typically nonconvex formulations

LEARNING A NONLINEAR TRANSFORMATION

(image taken from [Hu et al., 2014])

LEARNING MULTIPLE LOCAL METRICS

Multiple Metric LMNN [Weinberger and Saul, 2009]

- Group data into C clusters
- · Learn a metric for each cluster in a coupled fashion

Formulation

$$\min_{\substack{\mathbf{M}_1,\ldots,\mathbf{M}_C\\\boldsymbol{\xi}\geq 0}} (1-\mu) \sum_{\substack{(\mathbf{x}_i,\mathbf{x}_j)\in\mathcal{S}\\ \mathbf{S}}} D^2_{\mathbf{M}_{\mathcal{C}(\mathbf{x}_j)}}(\mathbf{x}_i,\mathbf{x}_j) + \mu \sum_{i,j,k} \xi_{ijk}$$

s.t. $D^2_{\mathbf{M}_{\mathcal{C}(\mathbf{x}_k)}}(\mathbf{x}_i,\mathbf{x}_k) - D^2_{\mathbf{M}_{\mathcal{C}(\mathbf{x}_j)}}(\mathbf{x}_i,\mathbf{x}_j) \geq 1 - \xi_{ijk} \quad \forall (\mathbf{x}_i,\mathbf{x}_j,\mathbf{x}_k) \in \mathcal{R}$

- Remains convex
- Computationally more expensive than standard LMNN
- Subject to overfitting (many parameters)
- Other local approaches: [Wang et al., 2012, Shi et al., 2014]

LEARNING MULTIPLE LOCAL METRICS

Multiple Metric LMNN [Weinberger and Saul, 2009]

LARGE-SCALE METRIC LEARNING

- How to deal with large datasets?
 - Number of similarity judgments can grow as $O(n^2)$ or $O(n^3)$
- How to deal with high-dimensional data?
 - Cannot store $d \times d$ matrix
 - Cannot afford computational complexity in $O(d^2)$ or $O(d^3)$

Online learning

- Online metric learning algorithm
 - Receive one similarity judgment
 - Suffer loss based on current metric
 - Update metric and iterate
- Goal: minimize regret

$$\sum_{t=1}^{T} \ell_t(\mathbf{M}_t) - \sum_{t=1}^{T} \ell_t(\mathbf{M}^*) \leq f(T),$$

- ℓ_t : loss suffered at time t
- M_t : metric learned at time t
- M*: best metric in hindsight

OASIS [Chechik et al., 2010]

Formulation

- Set $M^0 = I$
- At step *t*, receive $(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) \in \mathcal{R}$ and update by solving

$$M^{t} = \arg \min_{M,\xi} \frac{1}{2} \|M - M^{t-1}\|_{\mathcal{F}}^{2} + C\xi$$

s.t.
$$1 - S_{M}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) + S_{M}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}) \leq \xi$$
$$\xi \geq 0$$

• $S_M(x, x') = x^T M x'$, $C \ge 0$ trade-off parameter

OASIS [Chechik et al., 2010]

Formulation

- Set $M^0 = I$
- At step *t*, receive $(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) \in \mathcal{R}$ and update by solving

$$M^{t} = \arg \min_{M,\xi} \frac{1}{2} \|M - M^{t-1}\|_{\mathcal{F}}^{2} + C\xi$$

s.t.
$$1 - S_{M}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) + S_{M}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}) \leq \xi$$
$$\xi \geq 0$$

• $S_M(x, x') = x^T M x'$, $C \ge 0$ trade-off parameter

• Denoting $V = \mathbf{x}_i (\mathbf{x}_j - \mathbf{x}_k)^T$, solution is given by $\mathbf{M}^t = \mathbf{M}^{t-1} + \beta \mathbf{V}$ with

$$\beta = \min\left(C, \frac{\max(0, 1 - S_{\mathcal{M}}(\boldsymbol{x}_i, \boldsymbol{x}_j) + S_{\mathcal{M}}(\boldsymbol{x}_i, \boldsymbol{x}_k))}{\|\boldsymbol{V}\|_F^2}\right)$$

OASIS [Chechik et al., 2010]

• Trained with 160M triplets in 3 days on 1 CPU

Stochastic and distributed optimization

• Assume metric learning problem of the form

$$\min_{M} \quad \frac{1}{|\mathcal{R}|} \sum_{(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) \in \mathcal{R}} \ell(M, \mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k)$$

- Can use Stochastic Gradient Descent
 - Use a random sample (mini-batch) to estimate gradient
 - Better than full gradient descent when *n* is large
- Can be combined with distributed optimization
 - Distribute triplets on workers
 - Each worker use a mini-batch to estimate gradient
 - Coordinator averages estimates and updates

Simple workarounds

- Learn a diagonal matrix
 - Used in [Xing et al., 2002, Schultz and Joachims, 2003]
 - Learn *d* parameters
 - Only a weighting of features!
- Learn metric after dimensionality reduction (e.g., PCA)
 - Used in many papers
 - Potential loss of information
 - Learned metric difficult to interpret

Matrix decompositions

- Low-rank decomposition $M = L^T L$ with $L \in \mathbb{R}^{r \times d}$
 - Used in [Goldberger et al., 2004]
 - Learn $r \times d$ parameters
 - Generally nonconvex, must tune r
- Rank-1 decomposition $\mathbf{M} = \sum_{i=1}^{K} w_k \mathbf{b}_k \mathbf{b}_k^T$
 - Used in SCML [Shi et al., 2014]
 - Learn K parameters
 - Must choose good basis set

CASE OF LARGE d: CASE OF S-SPARSE DATA

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

- Learn similarity $S_M(x, x') = x^T M x'$
- Given $\lambda > 0$, for any $i, j \in \{1, \dots, d\}$, $i \neq j$ we define

$$P_{\lambda}^{(ij)} = \begin{pmatrix} \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \end{pmatrix} \quad N_{\lambda}^{(ij)} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\mathcal{B}_{\lambda} = \bigcup_{ij} \left\{ \mathcal{P}_{\lambda}^{(ij)}, \mathcal{N}_{\lambda}^{(ij)} \right\}$$

$${old M}\in {\mathcal D}_\lambda={
m conv}({\mathcal B}_\lambda)$$

• One basis involves only 2 features:

$$S_{P_{\lambda}^{(ij)}}(\boldsymbol{x}, \boldsymbol{x}') = \lambda (x_i x'_i + x_j x'_j + x_i x'_j + x_j x'_i)$$

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

Optimization problem (*l*: smoothed hinge loss)

$$\min_{\mathbf{M}\in\mathbb{R}^{d\times d}} \quad f(\mathbf{M}) = \frac{1}{|\mathcal{R}|} \sum_{(x_i, x_j, x_k)\in\mathcal{R}} \ell \left(1 - \mathbf{x}_i^T \mathbf{M} \mathbf{x}_j + \mathbf{x}_i^T \mathbf{M} \mathbf{x}_k\right)$$

s.t. $\mathbf{M}\in\mathcal{D}_{\lambda}$

• Use a Frank-Wolfe algorithm [Jaggi, 2013] to solve it

Let
$$M^{(0)} \in \mathcal{D}_{\lambda}$$

for $k = 0, 1, \dots$ do
 $B^{(k)} = \arg \min_{B \in \mathcal{B}_{\lambda}} \left\langle B, \nabla f(M^{(k)}) \right\rangle$
 $M^{(k+1)} = (1 - \gamma)M^{(k)} + \gamma B^{(k)}$
end for

CASE OF LARGE d: CASE OF S-SPARSE DATA

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

Convergence

Let $L = \frac{1}{|\mathcal{R}|} \sum_{(x_i, x_j, x_k) \in \mathcal{R}} \|\mathbf{x}_i(\mathbf{x}_j - \mathbf{x}_k)^T\|_F^2$. At any iteration $k \ge 1$, the iterate $\mathbf{M}^{(k)} \in \mathcal{D}_{\lambda}$ of the FW algorithm:

- has at most rank k + 1 with 4(k + 1) nonzero entries
- uses at most 2(k + 1) distinct features
- satisfies $f(\mathbf{M}^{(k)}) f(\mathbf{M}^*) \le \frac{16L\lambda^2}{(k+2)}$
- · An optimal basis can be found in $O(|\mathcal{R}|s^2)$ time and memory
- Storing *M*^(k) requires only *O*(*k*) memory
 - + Or even the entire sequence $M^{(0)}, \ldots, M^{(k)}$ at the same cost

GENERALIZATION GUARANTEES

STATISTICAL VIEW OF SUPERVISED METRIC LEARNING

- Training dataset $S_n = \{(x_i, y_i)\}_{i=1}^n$
- For ease of notation, denote a labeled point by z = (x, y)
- Minimize the regularized empirical risk

$$\hat{R}(M) = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n}^{n} \ell(M; z_i, z_j) + \lambda \Omega(M)$$

Hope to achieve small expected risk

$$R(M) = \mathop{\mathbb{E}}_{Z,Z' \sim \mu} \left[\ell(M; Z, Z') \right]$$

• Note: this can be easily adapted to triplets

- Standard statistical learning theory: sum of i.i.d. terms
- In metric learning $\hat{R}(M)$ is a sum of dependent terms!
 - Each training point involved in several pairs
 - This is indeed the case in practice
- Need specific tools to go around this problem

Definition ([Jin et al., 2009])

A metric learning algorithm has a uniform stability in κ/n , where κ is a positive constant, if

$$\forall (\mathcal{S}_n, x, y), \forall i, \quad \sup_{z_1, z_2} |\ell(\hat{\mathcal{M}}_{\mathcal{S}_n}, z_1, z_2) - \ell(\hat{\mathcal{M}}_{\mathcal{S}_n^{i, z}}, z_1, z_2)| \leq \frac{\kappa}{n}$$

- $M_{\mathcal{S}_n}$: metric learned from \mathcal{S}_n
- $S_n^{i,z}$: set obtained by replacing $z_i \in S_n$ by z
- If $\Omega(M) = ||M||_{\mathcal{F}}^2$, under mild conditions (ℓ Lipschitz, bounded domain), algorithm has uniform stability [Jin et al., 2009]
- $\cdot\,$ Does not apply to other (sparse) regularizers

Theorem ([Jin et al., 2009])

For any metric learning algorithm with uniform stability κ/n , with probability $1 - \delta$ over the random sample S_n , we have:

$$R(M_{\mathcal{S}_n}) \leq \hat{R}(M_{\mathcal{S}_n}) + \frac{2\kappa}{n} + (2\kappa + B(d))\sqrt{\frac{\ln(2/\delta)}{2n}}$$

- Standard learning rate in $O(1/\sqrt{n})$
- Dependence on dimension: B(d) is in $O(\sqrt{d})$

- Algorithmic robustness [Bellet and Habrard, 2015]
 - Wide applicability but loose bounds
- U-processes and Rademacher complexity [Cao et al., 2012]
 - Tighter bounds for several matrix norms
 - Example: $O(\sqrt{\log d})$ for $L_{2,1}$ norm
- U-processes and sparse greedy algorithms [Liu and Bellet, 2019]
 - $O(\sqrt{\log k})$ where k is the number of iterations

- U-processes and subsampling [Clémençon et al., 2016]
 - Approximation of empirical risk by sampling O(n) pairs
 - Minimization of this incomplete risk preserves $O(1/\sqrt{n})$ rate
 - Fast rates in O(1/n) under assumptions on data distribution
- Uniform stability and learning with similarity [Bellet et al., 2012b]
 - Similarity learning for linear classification
 - · Generalization bounds for classifier based on learned similarity
 - Builds upon theory developed in [Balcan and Blum, 2006]

- Distance / similarity: key component of machine learning
- Metric learning often requires only weak supervision
- Many algorithms:
 - For classification, clustering, ranking...
 - Linear, nonlinear, local metrics
 - Scalable methods
- Statistical learning guarantees
- Very successful in practical applications
- More on metric learning: can refer to [Bellet et al., 2015]

AN OPEN SOURCE PACKAGE: metric-learn

- metric-learn: Metric Learning Algorithms in Python
 GitHub repo: https://github.com/scikit-learn-contrib/metric-learn
 Doc: http://contrib.scikit-learn.org/metric-learn/
- Implements popular supervised and weakly supervised algorithms within a unified API
- Compatible with scikit-learn (part of scikit-learn-contrib)
- Open source package, high test coverage
- Last major release in July 2019
- See [de Vazelhes et al., 2019] for more technical details
- You're welcome to contribute!
THANK YOU FOR YOUR ATTENTION! QUESTIONS?

[Balcan and Blum, 2006] Balcan, M.-F. and Blum, A. (2006). On a Theory of Learning with Similarity Functions. In *ICML*.

[Bellet and Habrard, 2015] Bellet, A. and Habrard, A. (2015). Robustness and Generalization for Metric Learning. Neurocomputing, 151(1):259–267.

[Bellet et al., 2012a] Bellet, A., Habrard, A., and Sebban, M. (2012a). Good edit similarity learning by loss minimization. Machine Learning Journal, 89(1):5–35.

[Bellet et al., 2012b] Bellet, A., Habrard, A., and Sebban, M. (2012b). Similarity Learning for Provably Accurate Sparse Linear Classification. In ICML.

[Bellet et al., 2015] Bellet, A., Habrard, A., and Sebban, M. (2015). Metric Learning.

Morgan & Claypool Publishers.

[Bernard et al., 2008] Bernard, M., Boyer, L., Habrard, A., and Sebban, M. (2008). Learning probabilistic models of tree edit distance. Pattern Recognition, 41(8):2611–2629.

73

REFERENCES II

[Cao et al., 2012] Cao, Q., Guo, Z.-C., and Ying, Y. (2012). Generalization Bounds for Metric and Similarity Learning. Technical report, University of Exeter.

[Chatpatanasiri et al., 2010] Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., and Kijsirikul, B. (2010).

A new kernelization framework for Mahalanobis distance learning algorithms. *Neurocomputing*, 73:1570–1579.

[Chechik et al., 2010] Chechik, G., Sharma, V., Shalit, U., and Bengio, S. (2010). Large Scale Online Learning of Image Similarity Through Ranking. Journal of Machine Learning Research, 11:1109–1135.

[Clémençon et al., 2016] Clémençon, S., Colin, I., and Bellet, A. (2016). Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics. Journal of Machine Learning Research, 17(76):1–36.

[Davis et al., 2007] Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. (2007). Information-theoretic metric learning. In ICMI

[de Vazelhes et al., 2019] de Vazelhes, W., Carey, C., Tang, Y., Vauquier, N., and Bellet, A. (2019). metric-learn: Metric Learning Algorithms in Python.

Technical report, arXiv:1908.04710.

[Goldberger et al., 2004] Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2004). Neighbourhood Components Analysis.

```
In NIPS.
```

[Goldstone et al., 1997] Goldstone, R. L., Medin, D. L., and Halberstadt, J. (1997). Similarity in context.

Memory & Cognition, 25(2):237–255.

[Guillaumin et al., 2009] Guillaumin, M., Verbeek, J. J., and Schmid, C. (2009). Is that you? Metric learning approaches for face identification. In *ICCV*.

[Hoi et al., 2008] Hoi, S. C., Liu, W., and Chang, S.-F. (2008).

Semi-supervised distance metric learning for Collaborative Image Retrieval. In CVPR.

```
[Hu et al., 2014] Hu, J., Lu, J., and Tan, Y.-P. (2014).
```

Discriminative Deep Metric Learning for Face Verification in the Wild. In CVPR.

[Jaggi, 2013] Jaggi, M. (2013).

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.

```
[Jin et al., 2009] Jin, R., Wang, S., and Zhou, Y. (2009).
```

Regularized Distance Metric Learning: Theory and Algorithm.

```
In NIPS.
```

[Kedem et al., 2012] Kedem, D., Tyree, S., Weinberger, K., Sha, F., and Lanckriet, G. (2012). Non-linear Metric Learning.

In NIPS.

[Liu and Bellet, 2019] Liu, K. and Bellet, A. (2019).

Escaping the curse of dimensionality in similarity learning: Efficient frank-wolfe algorithm and generalization bounds.

Neurocomputing, 333:185-199.

```
[Liu et al., 2015] Liu, K., Bellet, A., and Sha, F. (2015).
```

Similarity Learning for High-Dimensional Sparse Data.

```
In AISTATS.
```

[McFee and Lanckriet, 2010] McFee, B. and Lanckriet, G. R. G. (2010).

Metric Learning to Rank.

```
In ICML.
```

[Oncina and Sebban, 2006] Oncina, J. and Sebban, M. (2006).

Learning Stochastic Edit Distance: application in handwritten character recognition. *Pattern Recognition*, 39(9):1575–1587.

[Parameswaran and Weinberger, 2010] Parameswaran, S. and Weinberger, K. Q. (2010). Large Margin Multi-Task Metric Learning. In NIPS

[Schultz and Joachims, 2003] Schultz, M. and Joachims, T. (2003). Learning a Distance Metric from Relative Comparisons. In NIPS.

[Shi et al., 2014] Shi, Y., Bellet, A., and Sha, F. (2014).

Sparse Compositional Metric Learning.

In AAAI.

[Song et al., 2016] Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. (2016). Deep Metric Learning via Lifted Structured Feature Embedding. In CVPR.

[Tversky, 1977] Tversky, A. (1977).

Features of similarity.

Psychological Review, 84(4):327–352.

[Tversky and Gati, 1982] Tversky, A. and Gati, I. (1982). Similarity, separability, and the triangle inequality. *Psychological Review*, 89(2):123–154.

REFERENCES VI

[van der Maaten and Hinton, 2008] van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE.

Journal of Machine Learning Research, 9:2579–2605.

[Wang et al., 2014] Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., and Wu, Y. (2014).

Learning Fine-Grained Image Similarity with Deep Ranking. In CVPR.

[Wang et al., 2012] Wang, J., Woznica, A., and Kalousis, A. (2012). Parametric Local Metric Learning for Nearest Neighbor Classification. In NIPS.

[Weinberger et al., 2005] Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2005). Distance Metric Learning for Large Margin Nearest Neighbor Classification.

In NIPS.

[Weinberger and Saul, 2009] Weinberger, K. Q. and Saul, L. K. (2009). Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research, 10:207–244.

[Xing et al., 2002] Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. J. (2002). Distance Metric Learning with Application to Clustering with Side-Information. In NIPS. [Ying et al., 2009] Ying, Y., Huang, K., and Campbell, C. (2009). Sparse Metric Learning via Smooth Optimization. In NIPS.

[Zhang and Yeung, 2010] Zhang, Y. and Yeung, D.-Y. (2010). Transfer metric learning by learning task relationships. In KDD.

[Zhu et al., 2015] Zhu, X., Lei, Z., Yan, J., Yi, D., and Li, S. Z. (2015). High-fidelity pose and expression normalization for face recognition in the wild. In CVPR

BONUS: METRIC LEARNING FOR STRUCTURED DATA

MOTIVATION

- Each data instance is a structured object
 - Strings: words, DNA sequences
 - Trees: XML documents
 - Graphs: social network, molecules

- Metrics on structured data are convenient
 - Act as proxy to manipulate complex objects
 - Can use any metric-based algorithm

- · Could represent each object by a feature vector
 - · Idea behind many kernels for structured data
 - Could then apply standard metric learning techniques
 - Potential loss of structural information
- Instead, focus on edit distances
 - Directly operate on structured object
 - Variants for strings, trees, graphs
 - Natural parameterization by cost matrix

STRING EDIT DISTANCE

- Notations
 - $\cdot\,$ Alphabet $\Sigma\!\!:$ finite set of symbols
 - $\cdot\,$ String x: finite sequence of symbols from $\Sigma\,$
 - \cdot |x|: length of string x
 - \$: empty string / symbol

Definition (Levenshtein distance)

The Levenshtein string edit distance between x and x' is the length of the shortest sequence of operations (called an *edit script*) turning x into x'. Possible operations are insertion, deletion and substitution of symbols.

• Computed in $O(|x| \cdot |x'|)$ time by Dynamic Programming (DP)

STRING EDIT DISTANCE

Parameterized version

- + Use a nonnegative $(|\Sigma|+1)\times(|\Sigma|+1)$ matrix C
 - C_{ij} : cost of substituting symbol *i* with symbol *j*

Example 1: Levenshtein distance

 \implies edit distance between **abb** and **aa** is 2 (needs at least two operations)

Example 2: specific costs

 \Longrightarrow edit distance between abb and aa is 10 (a \rightarrow \$, b \rightarrow a, b \rightarrow a)

EDIT PROBABILITY LEARNING

- Interdependence issue
 - The optimal edit script depends on the costs
 - Updating the costs may change the optimal edit script
- Consider edit probability p(x'|x) [Oncina and Sebban, 2006]
 - Cost matrix: probability distribution over operations
 - Corresponds to summing over all possible scripts
- Represent process by a stochastic memoryless transducer
- Maximize expected log-likelihood of positive pairs

Iterative Expectation-Maximization algorithm [Oncina and Sebban, 2006]

- Expectation step
 - Given edit probabilities, compute frequency of each operation
 - Probabilistic version of the DP algorithm
- Maximization step
 - Given frequencies, update edit probabilities
 - Done by likelihood maximization under constraints

$$\forall u \in \Sigma, \sum_{v \in \Sigma \cup \{\$\}} C_{v|u} + \sum_{v \in \Sigma} C_{v|\$} = 1, \quad \text{with } \sum_{v \in \Sigma} C_{v|\$} + \underbrace{C(\#)}_{\text{exit prob.}} = 1,$$

EDIT PROBABILITY LEARNING

Application to handwritten digit recognition [Oncina and Sebban, 2006]

Some remarks

- Advantages
 - Elegant probabilistic framework
 - Enables data generation
 - · Generalization to trees [Bernard et al., 2008]
- Drawbacks
 - Convergence to local minimum
 - Costly: DP algorithm for each pair at each iteration
 - Cannot use negative pairs

GESL [Bellet et al., 2012a]

- Inspired from successful algorithms for non-structured data
 - Large-margin constraints
 - Convex optimization
- Requires key simplification: fix the edit script

$$e_{\mathsf{C}}(\mathsf{X},\mathsf{X}') = \sum_{u,v\in\Sigma\cup\{\$\}} C_{uv} \cdot \#_{uv}(\mathsf{X},\mathsf{X}')$$

- · $\#_{uv}(\mathbf{x}, \mathbf{x}')$: nb of times $u \to v$ appears in Levenshtein script
- $\cdot e_{c}$ is a linear function of the costs

LARGE-MARGIN EDIT DISTANCE LEARNING

GESL [Bellet et al., 2012a]

Formulation

$$\min_{\boldsymbol{c} \ge 0, \boldsymbol{\xi} \ge 0, B_1 \ge 0, B_2 \ge 0} \quad \sum_{i,j} \xi_{ij} + \lambda \|\boldsymbol{c}\|_{\mathcal{F}}^2$$
s.t. $e_{\boldsymbol{c}}(\mathbf{x}, \mathbf{x}') \ge B_1 - \xi_{ij} \quad \forall (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}$
 $e_{\boldsymbol{c}}(\mathbf{x}, \mathbf{x}') \le B_2 + \xi_{ij} \quad \forall (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}$
 $B_1 - B_2 = \gamma$

 γ margin parameter

- Convex, less costly and use of negative pairs
- Straightforward adaptation to trees and graphs
- Less general than proper edit distance
 - Chicken and egg situation similar to LMNN

LARGE-MARGIN EDIT DISTANCE LEARNING

Application to word classification [Bellet et al., 2012a]

