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a brief formal introduction to ml



supervised machine learning
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supervised learning: notations

• Labeled data point (x, y) ∈ X × Y

• X ⊂ R
q: representation space (features)

• Y : discrete (classification) or continuous (regression)

• A predictive model is a function f : X → Y

• We measure the discrepancy between the prediction f(x) and
the true label y using a loss function ℓ(f; x, y)
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supervised learning: setup

• We have access to a training dataset Sn = {(xi, yi)}ni=1 of n
labeled points

• A supervised ML algorithm takes Sn as input and outputs a
model f : X → Y

• The learned model f can then be used to predict a label y ∈ Y
for any (new) data point x ∈ X

The goal of ML is to generalize to unseen data
→ need an assumption to relate training data and future data
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supervised learning: statistical setting

• Assumption: all data points (x, y) ∈ X × Y follows some
unknown but fixed distribution µ (specific to the task)

• This is assumed to hold for both training and unseen data

• Goal: learn a model f in some model family F from training data
which has small expected loss over µ:

R(f) = E
(x,y)∼µ

ℓ(f; x, y)

• But µ is unknown, so cannot compute R(f)
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empirical risk minimization

• Intuitive idea: minimize average loss on training data

f̂ ∈ argmin
f∈F

R̂(f) = 1
n

n∑

i=1

ℓ(f; xi, yi)

• The hope is that an accurate model on training data will also do
well on unseen data

• Why do we care about the model family F? Can’t we use a very
expressive family which can model any data?
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approximation-generalization trade-off

• F too simple→ underfitting

• F too complex→ overfitting

• Note: the complexity of F also impacts the algorithmic
complexity of the learning procedure
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statistical learning guarantees

• This trade-off is well-explained by statistical learning theory

• One can prove results of the form: for any f ∈ F , w.p. 1− δ

R(f) ≤ R̂(f) +
√

CF log(1/δ)
n

where CF is a measure of complexity of the model class F

• CF can simply be |F| when model family is finite

• Note: regularization can be used to penalize complexity within F

f̂ ∈ argmin
f∈F

R̂(f) + λΩ(f)
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erm example 1: linear regression

• Real labels Y = R

• Linear model fθ(x) = θTx parameterized by θ ∈ R
q

• Quadratic loss ℓ(fθ; x, y) = (y− fθ(x))2

• ERM problem is a simple least-square problem:

θ̂ ∈ argmin
θ∈Rp

1
n

n∑

i=1

(yi− fθ(xi))2, equivalent to θ̂ ∈ argmin
θ∈Rp

∥Y−Xθ∥22

• Common regularization terms:
• Squared L2 norm: ∥θ∥22
• L1 norm: ∥θ∥1 (sparsity inducing, cf LASSO)
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erm example 2: linear classification with hinge loss

• Binary labels Y = {−1, 1}, linear model fθ(x) = sign[θTx]

• Hinge loss ℓ(fθ; x, y) = max(0, 1− yθTx) to enforce a safety margin

• ERM problem with L2 regularization is Support Vector Machine

Margin
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solving erm problems: gradient-based methods

• Assume F = {fθ : θ ∈ R
p}, the ERM problem is

min
θ∈Rp

R̂(θ) = 1
n

n∑

i=1

ℓ(θ; xi, yi)

• We typically work with loss functions that are differentiable in θ

• The workhorse of ML is first-order optimization methods:
iteratively refine θ based on (an estimate of) the gradient

∇R̂(θ) = 1
n

n∑

i=1

∇θℓ(θ; xi, yi)
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solving erm problems: gradient-based methods

• Gradient Descent (GD):
• Initialize to some θ(0) ∈ R

p

• For t = 0, . . . , T: update θ(t+ 1) = θ(t)− γ∇R̂(θ(t))

• Stochastic Gradient Descent (SGD):
• Initialize to some θ(0) ∈ R

p

• For t = 0, . . . , T: pick random index it ∈ {1, . . . ,n} and update
θ(t+ 1) = θ(t)− γ(t)∇θℓ(θ; xit , yit)

• γ is the step size (or learning rate) to be tuned

• In ML, we typically do not care about high-precision solutions

• For large datasets, SGD has much cheaper iterations and
converges faster to a solution with reasonable precision
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solving erm problems: gradient-based methods

convex nonconvex

• For convex objective functions, gradient-based methods will
converge to the global minimum (under appropriate step size)

• Nonconvex case: convergence only to a local minimum

• Convergence rate depends on properties of the objective

• Note: optimization for ML is a very active topic
16



similarity and distance metric learning



fundamental question of this presentation

How to appropriately measure similarity or distance between things
depending on the context?

• We (humans) are good at this [Tversky, 1977, Goldstone et al., 1997]
• Recognize similar objects, sounds, ideas, etc, from past experience
• Adapt the notion of similarity to the context

• AI systems need to do it too!
• Categorize / retrieve data based on similarity to known examples
• Detect situations similar to past experience
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some use cases in machine learning

Nearest neighbor classification

?
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some use cases in machine learning

Clustering
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some use cases in machine learning

Information retrieval

Query document

Most similar documents
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some use cases in machine learning

Data visualization
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(image taken from [van der Maaten and Hinton, 2008]) 22



a general approach: metric learning

• Assume data represented in space X (e.g., X ⊂ R
d)

• We provide the system with some similarity judgments on data
pairs/triplets for the task of interest

similar to not similar to

more similar to than to

(images taken from Caltech Faces dataset)

• The system uses this information to find the most “appropriate”
pairwise distance/similarity function D : X × X → R

(Note: I will refer to D as a metric regardless of its properties)
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why not simply learn a classifier?

• Case 1: huge number of classes (likely with class imbalance)
• No need to learn many classifiers (as in 1-vs-1, 1-vs-all)
• No blow-up in number of parameters (as in Multinomial Log. Reg.)

• Case 2: invidivual labels are costly to obtain
• Similarity judgments often easier to label than individual points
• Fully unsupervised generation possible in some applications

• Case 3: a pairwise metric is all we need
• Information retrieval (rank results by similarity to a query)
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example application: face verification

• Face verification combines all of the above
• Huge number of classes, with few instances in each class
• Similarity judgments easy to crowdsource / generate
• Given a new image, rank database by similarity and decide
whether to match

• State-of-the-art results in empirical evaluations
• Labeled Faces in the Wild [Zhu et al., 2015]
• YouTube Faces [Hu et al., 2014]

• Popular in industry as well

(examples of positive pairs correctly classified from [Guillaumin et al., 2009]) 25



metric learning in a nutshell

Basic recipe

1. Pick a parametric distance or similarity function
• Say, a distance DM(x, x′) function parameterized by a matrix M

2. Collect similarity judgments on data pairs/triplets
• S = {(xi, xj) : xi and xj are similar}
• D = {(xi, xj) : xi and xj are dissimilar}
• R = {(xi, xj, xk) : xi is more similar to xj than to xk}

3. Estimate parameters s.t. metric best agrees with judgments
• Solve an ERM problem of the form

M∗ = argminM
[

R̂(M,S,D,R)
︸ ︷︷ ︸

empirical risk

+ λΩ(M)
︸ ︷︷ ︸

regularization

]
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linear metric learning



preliminaries

Definition (Distance function)

A distance over a set X is a pairwise function d : X ×X → R which
satisfies the following properties ∀x, x′, x′′ ∈ X :

(1) d(x, x′) ≥ 0 (nonnegativity)
(2) d(x, x′) = 0 if and only if x = x′ (identity of indiscernibles)
(3) d(x, x′) = d(x′, x) (symmetry)
(4) d(x, x′′) ≤ d(x, x′) + d(x′, x′′) (triangle inequality)

• Note: a pseudo-distance satisfies the above except (2)
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preliminaries

Minkowski distances

• A family of distances induced by Lp norms (p ≥ 1)

dp(x, x′) = ∥x− x′∥p =
( d∑

i=1

|xi − x′i |p
)1/p

• When p = 2: “ordinary” Euclidean distance

deuc(x, x′) =
( d∑

i=1

|xi − x′i |2
)1/2

=
√

(x− x′)T(x− x′)

• When p = 1: Manhattan distance dman(x, x′) =
∑d

i=1 |xi − x′i |

• When p→ ∞: Chebyshev distance dche(x, x′) = maxi |xi − x′i |
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mahalanobis distance

• Mahalanobis (pseudo) distance:

DM(x, x′) =
√

(x− x′)TM(x− x′)

where M ∈ R
d×d is symmetric positive semi-definite (PSD)

• Denote by Sd+ the cone of symmetric PSD d× d matrices

30



mahalanobis distance

• A symmetric matrix M is in S
d
+ (also denoted M ⪰ 0) iff:

• Its eigenvalues are all nonnegative
• xTMx ≥ 0, ∀x ∈ R

d

• M = LTL for some L ∈ R
k×d, k ≤ d

• Equivalent to Euclidean distance after linear transformation:

DM(x, x′) =
√

(x− x′)TLTL(x− x′) =
√

(Lx− Lx′)T(Lx− Lx′)

• If rank(M) = k ≤ d, then L ∈ R
k×d does dimensionality reduction

• For convenience, we often work with the squared distance

31



mahalanobis distance learning

A first approach with pairwise constraints [Xing et al., 2002]

• Targeted task: clustering with side information

Formulation

max
M∈Sd+

∑

(xi,xj)∈D

DM(xi, xj)

s.t.
∑

(xi,xj)∈S

D2M(xi, xj) ≤ 1

• Problem is convex in M and always feasible (take M = 0)

• Solved with projected gradient descent
• Project onto distance constraint: O(d2) time
• Project onto S

d
+: O(d3) time

• Only look at sums of distances 32



mahalanobis distance learning

A first approach with pairwise constraints [Xing et al., 2002]
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mahalanobis distance learning

A first approach with triplet constraints [Schultz and Joachims, 2003]

• Targeted task: information retrieval

Formulation

min
M∈Sd+,ξ≥0

∥M∥2F + λ
∑

i,j,k

ξijk

s.t. D2M(xi, xk)− D2M(xi, xj) ≥ 1− ξijk ∀(xi, xj, xk) ∈ R

• Regularization by Frobenius norm ∥M∥2F =
∑d

i,j=1M2
ij

• Formulation is convex

• One large margin soft constraint per triplet

• Can be solved with similar techniques as SVM
34





mahalanobis distance learning

Large Margin Nearest Neighbor [Weinberger et al., 2005]

Formulation

min
M∈Sd+,ξ≥0

(1− µ)
∑

(xi,xj)∈S

D2M(xi, xj) + µ
∑

i,j,k

ξijk

s.t. D2M(xi, xk)− D2M(xi, xj) ≥ 1− ξijk ∀(xi, xj, xk) ∈ R

µ ∈ [0, 1] trade-off parameter

• Convex formulation, unlike NCA [Goldberger et al., 2004]

• Number of constraints in the order of kn2

• Solver based on projected gradient descent with working set
• Simple alternative: only consider closest “impostors”

• Chicken and egg situation: which metric to build constraints?
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mahalanobis distance learning

Pointers to metric learning algorithms for other tasks

• Learning to rank [McFee and Lanckriet, 2010]

• Multi-task learning [Parameswaran and Weinberger, 2010]

• Transfer learning [Zhang and Yeung, 2010]

• Semi-supervised learning [Hoi et al., 2008]
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mahalanobis distance learning

Interesting regularizers

• We have already seen the Frobenius norm ∥M∥2F =
∑d

i,j=1M2
ij

• Convex, smooth→ easy to optimize

• LogDet divergence (used in ITML [Davis et al., 2007])

Dld(M,M0) = tr(MM−1
0 )− log det(MM−1

0 )− d

=
∑

i,j

σi
θj
(vTi ui)

2 −
∑

i

log
(
σi
θi

)

− d

where M = VΣVT and M0 = UΘUT is PD
• Remain close to good prior metric M0 (e.g., identity)
• Implicitly ensure that M is PD
• Convex in M (determinant of PD matrix is log-concave)
• Efficient Bregman projections in O(d2)
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mahalanobis distance learning

Interesting regularizers

• Mixed L2,1 norm: ∥M∥2,1 =
∑d

i=1 ∥Mi∥2
• Tends to zero-out entire columns→ feature selection
• Convex but nonsmooth
• Efficient proximal gradient algorithms

• Trace (or nuclear) norm: ∥M∥∗ =
∑d

i=1 σi(M)
• Favors low-rank matrices→ dimensionality reduction
• Convex but nonsmooth
• Efficient Frank-Wolfe algorithms
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linear similarity learning

• Mahalanobis distance satisfies some distance properties
• Nonnegativity, symmetry, triangle inequality
• Natural regularization, required by some applications

• In practice, these properties may not be satisfied
• By human similarity judgments [Tversky and Gati, 1982]

• By some good visual recognition systems

• Alternative: learn bilinear similarity function SM(x, x′) = xTMx′
• Example: OASIS algorithm (presented later)
• No PSD constraint on M→ computationally easier
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nonlinear extensions



kernelization of linear methods
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kernelization of linear methods

Definition (Kernel function)

A symmetric function K is a kernel if there exists a mapping function
ϕ : X → H from the instance space X to a Hilbert spaceH such that
K can be written as an inner product in H:

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ .

Equivalently, K is a kernel if it is positive semi-definite (PSD), i.e.,

n∑

i=1

n∑

j=1

cicjK(xi, xj) ≥ 0

for all finite sequences of x1, . . . , xn ∈ X and c1, . . . , cn ∈ R.
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kernelization of linear methods

• Notations
• Kernel K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩, training data {xi}ni=1
• φi

def
= ϕ(xi) ∈ R

D, Φ def
= [φ1, . . . ,φn] ∈ R

n×D

• Mahalanobis distance in kernel space

D2M(φi,φj) = (φi − φj)
TM(φi − φj) = (φi − φj)

TLTL(φi − φj)

• Setting LT = ΦUT, where U ∈ R
D×n, we get

D2M(ϕ(x), ϕ(x′)) = (k− k′)TM(k− k′)

• M = UTU ∈ R
n×n, k = Φ

Tϕ(x) = [K(x1, x), . . . , K(xn, x)]T

• Justified by a representer theorem [Chatpatanasiri et al., 2010]
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kernelization of linear methods

• Similar trick as kernel SVM
• Use a nonlinear kernel (e.g., Gaussian RBF)
• Inexpensive computations through the kernel
• Nonlinear metric learning while retaining convexity

• Need to learn O(n2) parameters

• Linear metric learning algorithm must be kernelized
• Interface to data limited to inner products only
• Several algorithms shown to be kernelizable

• General trick [Chatpatanasiri et al., 2010]:
1. Kernel PCA: nonlinear mapping to low-dimensional space
2. Apply linear metric learning algorithm to transformed data
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learning a nonlinear transformation

• More flexible approach: learn nonlinear mapping ϕ to optimize

Dφ(x, x′) = ∥ϕ(x)− ϕ(x′)∥2

• Possible parameterizations for ϕ:
• Gradient boosted regression trees [Kedem et al., 2012]
• Deep networks [Hu et al., 2014, Wang et al., 2014, Song et al., 2016]

• Typically nonconvex formulations
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learning multiple local metrics

Multiple Metric LMNN [Weinberger and Saul, 2009]

• Group data into C clusters

• Learn a metric for each cluster in a coupled fashion

Formulation

min
M1,...,MC

ξ≥0

(1− µ)
∑

(xi,xj)∈S

D2MC(xj)(xi, xj) + µ
∑

i,j,k

ξijk

s.t. D2MC(xk)(xi, xk)− D2MC(xj)(xi, xj) ≥ 1− ξijk ∀(xi, xj, xk) ∈ R

• Remains convex

• Computationally more expensive than standard LMNN

• Subject to overfitting (many parameters)

• Other local approaches: [Wang et al., 2012, Shi et al., 2014] 50





large-scale metric learning



main challenges

• How to deal with large datasets?
• Number of similarity judgments can grow as O(n2) or O(n3)

• How to deal with high-dimensional data?
• Cannot store d× d matrix
• Cannot afford computational complexity in O(d2) or O(d3)
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case of large n

Online learning

• Online metric learning algorithm
• Receive one similarity judgment
• Suffer loss based on current metric
• Update metric and iterate

• Goal: minimize regret

T∑

t=1
ℓt(Mt)−

T∑

t=1
ℓt(M∗) ≤ f(T),

• ℓt: loss suffered at time t
• Mt: metric learned at time t
• M∗: best metric in hindsight
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case of large n

OASIS [Chechik et al., 2010]

Formulation

• Set M0 = I
• At step t, receive (xi, xj, xk) ∈ R and update by solving

Mt = argminM,ξ
1
2∥M−Mt−1∥2F + Cξ

s.t. 1− SM(xi, xj) + SM(xi, xk) ≤ ξ

ξ ≥ 0
• SM(x, x′) = xTMx′, C ≥ 0 trade-off parameter

• Denoting V xi xj xk T, solution is given by Mt Mt 1 V with

min C
max 0 1 SM xi xj SM xi xk

V 2
F
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case of large n

OASIS [Chechik et al., 2010]

Formulation

• Set M0 = I
• At step t, receive (xi, xj, xk) ∈ R and update by solving

Mt = argminM,ξ
1
2∥M−Mt−1∥2F + Cξ

s.t. 1− SM(xi, xj) + SM(xi, xk) ≤ ξ

ξ ≥ 0
• SM(x, x′) = xTMx′, C ≥ 0 trade-off parameter

• Denoting V = xi(xj− xk)T, solution is given by Mt = Mt−1+βV with

β = min
(

C,
max(0, 1− SM(xi, xj) + SM(xi, xk))

∥V∥2F

)
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case of large n

OASIS [Chechik et al., 2010]

• Trained with 160M triplets in 3 days on 1 CPU
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case of large n

Stochastic and distributed optimization

• Assume metric learning problem of the form

min
M

1
|R|

∑

(xi,xj,xk)∈R

ℓ(M, xi, xj, xk)

• Can use Stochastic Gradient Descent
• Use a random sample (mini-batch) to estimate gradient
• Better than full gradient descent when n is large

• Can be combined with distributed optimization
• Distribute triplets on workers
• Each worker use a mini-batch to estimate gradient
• Coordinator averages estimates and updates
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case of large d

Simple workarounds

• Learn a diagonal matrix
• Used in [Xing et al., 2002, Schultz and Joachims, 2003]
• Learn d parameters
• Only a weighting of features!

• Learn metric after dimensionality reduction (e.g., PCA)
• Used in many papers
• Potential loss of information
• Learned metric difficult to interpret
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case of large d

Matrix decompositions

• Low-rank decomposition M = LTL with L ∈ R
r×d

• Used in [Goldberger et al., 2004]
• Learn r× d parameters
• Generally nonconvex, must tune r

• Rank-1 decomposition M =
∑K

i=1 wkbkb
T
k

• Used in SCML [Shi et al., 2014]
• Learn K parameters
• Must choose good basis set
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case of large d: case of s-sparse data

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

• Learn similarity SM(x, x′) = xTMx′

• Given λ > 0, for any i, j ∈ {1, . . . ,d}, i ̸= j we define

P(ij)λ =





· · · · ·
· λ · λ ·· · · · ·
· λ · λ ·· · · · ·



 N(ij)
λ =





· · · · ·
· λ · −λ ·· · · · ·
· −λ · λ ·· · · · ·





Bλ =
∪

ij

{

P(ij)λ ,N(ij)
λ

}

M ∈ Dλ = conv(Bλ)

• One basis involves only 2 features:

SP(ij)
λ

(x, x′) = λ(xix′i + xjx′j + xix′j + xjx′i)
60



case of large d: case of s-sparse data

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

Optimization problem (ℓ: smoothed hinge loss)

min
M∈Rd×d

f(M) = 1
|R|

∑

(xi,xj,xk)∈R

ℓ
(
1− xTiMxj + xTiMxk

)

s.t. M ∈ Dλ

• Use a Frank-Wolfe algorithm [Jaggi, 2013] to solve it

Let M(0) ∈ Dλ

for k = 0, 1, . . . do
B(k) = argminB∈Bλ

⟨

B,∇f(M(k))
⟩

M(k+1) = (1− γ)M(k) + γB(k)

end for
61



case of large d: case of s-sparse data

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

Convergence

Let L = 1
|R|

∑

(xi,xj,xk)∈R ∥xi(xj − xk)T∥2F. At any iteration k ≥ 1, the
iterate M(k) ∈ Dλ of the FW algorithm:

• has at most rank k+ 1 with 4(k+ 1) nonzero entries
• uses at most 2(k+ 1) distinct features
• satisfies f(M(k))− f(M∗) ≤ 16Lλ2/(k+ 2)

• An optimal basis can be found in O(|R|s2) time and memory

• Storing M(k) requires only O(k) memory
• Or even the entire sequence M(0), . . . ,M(k) at the same cost
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generalization guarantees



statistical view of supervised metric learning

• Training dataset Sn = {(xi, yi)}ni=1

• For ease of notation, denote a labeled point by z = (x, y)

• Minimize the regularized empirical risk

R̂(M) = 2
n(n− 1)

n∑

1≤i<j≤n

ℓ(M; zi, zj) + λΩ(M)

• Hope to achieve small expected risk

R(M) = E
z,z′∼µ

[ℓ(M; z, z′)]

• Note: this can be easily adapted to triplets
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statistical view of supervised metric learning

• Standard statistical learning theory: sum of i.i.d. terms

• In metric learning R̂(M) is a sum of dependent terms!
• Each training point involved in several pairs
• This is indeed the case in practice

• Need specific tools to go around this problem
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uniform stability

Definition ([Jin et al., 2009])

A metric learning algorithm has a uniform stability in κ/n, where κ

is a positive constant, if

∀(Sn, x, y), ∀i, sup
z1,z2

|ℓ(M̂Sn , z1, z2)− ℓ(M̂
S i,z
n
, z1, z2)| ≤

κ

n

• MSn : metric learned from Sn
• S i,zn : set obtained by replacing zi ∈ Sn by z

• If Ω(M) = ∥M∥2F , under mild conditions (ℓ Lipschitz, bounded
domain), algorithm has uniform stability [Jin et al., 2009]

• Does not apply to other (sparse) regularizers
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uniform stability

Theorem ([Jin et al., 2009])

For any metric learning algorithm with uniform stability κ/n, with
probability 1− δ over the random sample Sn, we have:

R(MSn) ≤ R̂(MSn) +
2κ
n + (2κ+ B(d))

√

ln(2/δ)
2n

• Standard learning rate in O(1/
√
n)

• Dependence on dimension: B(d) is in O(
√
d)
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other tools and results

• Algorithmic robustness [Bellet and Habrard, 2015]
• Wide applicability but loose bounds

• U-processes and Rademacher complexity [Cao et al., 2012]
• Tighter bounds for several matrix norms
• Example: O(

√

logd) for L2,1 norm

• U-processes and sparse greedy algorithms [Liu and Bellet, 2019]
• O(

√

log k) where k is the number of iterations
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other tools and results

• U-processes and subsampling [Clémençon et al., 2016]
• Approximation of empirical risk by sampling O(n) pairs
• Minimization of this incomplete risk preserves O(1/

√
n) rate

• Fast rates in O(1/n) under assumptions on data distribution

• Uniform stability and learning with similarity [Bellet et al., 2012b]
• Similarity learning for linear classification
• Generalization bounds for classifier based on learned similarity
• Builds upon theory developed in [Balcan and Blum, 2006]
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summary

• Distance / similarity: key component of machine learning

• Metric learning often requires only weak supervision

• Many algorithms:
• For classification, clustering, ranking...
• Linear, nonlinear, local metrics
• Scalable methods

• Statistical learning guarantees

• Very successful in practical applications

• More on metric learning: can refer to [Bellet et al., 2015]
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an open source package: metric-learn

• metric-learn: Metric Learning Algorithms in Python
GitHub repo: https://github.com/scikit-learn-contrib/metric-learn

Doc: http://contrib.scikit-learn.org/metric-learn/

• Implements popular supervised and weakly supervised
algorithms within a unified API

• Compatible with scikit-learn (part of scikit-learn-contrib)

• Open source package, high test coverage

• Last major release in July 2019

• See [de Vazelhes et al., 2019] for more technical details

• You’re welcome to contribute!
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Thank you for your attention!
Questions?
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bonus: metric learning for
structured data



motivation

• Each data instance is a structured object
• Strings: words, DNA sequences
• Trees: XML documents
• Graphs: social network, molecules

ACGGCTT

• Metrics on structured data are convenient
• Act as proxy to manipulate complex objects
• Can use any metric-based algorithm
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motivation

• Could represent each object by a feature vector
• Idea behind many kernels for structured data
• Could then apply standard metric learning techniques
• Potential loss of structural information

• Instead, focus on edit distances
• Directly operate on structured object
• Variants for strings, trees, graphs
• Natural parameterization by cost matrix
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string edit distance

• Notations
• Alphabet Σ: finite set of symbols
• String x: finite sequence of symbols from Σ

• |x|: length of string x
• $: empty string / symbol

Definition (Levenshtein distance)

The Levenshtein string edit distance between x and x′ is the length
of the shortest sequence of operations (called an edit script) turn-
ing x into x′. Possible operations are insertion, deletion and sub-
stitution of symbols.

• Computed in O(|x| · |x′|) time by Dynamic Programming (DP)
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string edit distance

Parameterized version

• Use a nonnegative (|Σ|+ 1)× (|Σ|+ 1) matrix C
• Cij: cost of substituting symbol i with symbol j

Example 1: Levenshtein distance

C $ a b
$ 0 1 1
a 1 0 1
b 1 1 0

=⇒ edit distance between abb and aa
is 2 (needs at least two operations)

Example 2: specific costs

C $ a b
$ 0 2 10
a 2 0 4
b 10 4 0

=⇒ edit distance between abb and aa
is 10 (a → $, b → a, b → a)
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edit probability learning

• Interdependence issue
• The optimal edit script depends on the costs
• Updating the costs may change the optimal edit script

• Consider edit probability p(x′|x) [Oncina and Sebban, 2006]
• Cost matrix: probability distribution over operations
• Corresponds to summing over all possible scripts

• Represent process by a stochastic memoryless transducer

• Maximize expected log-likelihood of positive pairs
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edit probability learning

Iterative Expectation-Maximization algorithm [Oncina and Sebban, 2006]

• Expectation step
• Given edit probabilities, compute frequency of each operation
• Probabilistic version of the DP algorithm

• Maximization step
• Given frequencies, update edit probabilities
• Done by likelihood maximization under constraints

∀u ∈ Σ,
∑

v∈Σ∪{$}

Cv|u +
∑

v∈Σ

Cv|$ = 1, with
∑

v∈Σ

Cv|$ + c(#)
︸ ︷︷ ︸

exit prob.

= 1,
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edit probability learning

Application to handwritten digit recognition [Oncina and Sebban, 2006]
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edit probability learning

Some remarks

• Advantages
• Elegant probabilistic framework
• Enables data generation
• Generalization to trees [Bernard et al., 2008]

• Drawbacks
• Convergence to local minimum
• Costly: DP algorithm for each pair at each iteration
• Cannot use negative pairs
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large-margin edit distance learning

GESL [Bellet et al., 2012a]

• Inspired from successful algorithms for non-structured data
• Large-margin constraints
• Convex optimization

• Requires key simplification: fix the edit script

eC(x, x′) =
∑

u,v∈Σ∪{$}

Cuv ·#uv(x, x′)

• #uv(x, x′): nb of times u→ v appears in Levenshtein script

• eC is a linear function of the costs
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large-margin edit distance learning

GESL [Bellet et al., 2012a]

Formulation

min
C≥0,ξ≥0,B1≥0,B2≥0

∑

i,j

ξij + λ∥C∥2F

s.t. eC(x, x′) ≥ B1 − ξij ∀(xi, xj) ∈ D
eC(x, x′) ≤ B2 + ξij ∀(xi, xj) ∈ S
B1 − B2 = γ

γ margin parameter

• Convex, less costly and use of negative pairs

• Straightforward adaptation to trees and graphs

• Less general than proper edit distance
• Chicken and egg situation similar to LMNN
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large-margin edit distance learning

Application to word classification [Bellet et al., 2012a]
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