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OUTLINE

This morning

1. A brief formal introduction to machine learning

2. Similarity and distance metric learning

Tomorrow morning

Practical session in Python



A BRIEF FORMAL INTRODUCTION TO ML
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SUPERVISED LEARNING: NOTATIONS

- Labeled data point (x,y) € X x Y

- X C RY: representation space (features)

- ) discrete (classification) or continuous (regression)
- A predictive model is a functionf: X - Y

- We measure the discrepancy between the prediction f(x) and
the true label y using a loss function £(f; x, y)



SUPERVISED LEARNING: SETUP

- We have access to a training dataset S, = {(x;,y;)}iL, of n
labeled points

- A supervised ML algorithm takes S, as input and outputs a
modelf: X — Y

- The learned model f can then be used to predict a label y € ¥
for any (new) data point x € X

The goal of ML is to generalize to unseen data
— need an assumption to relate training data and future data



SUPERVISED LEARNING: STATISTICAL SETTING

- Assumption: all data points (x,y) € X x ) follows some
unknown but fixed distribution u (specific to the task)

- This is assumed to hold for both training and unseen data

- Goal: learn a model f in some model family  from training data
which has small expected loss over pu:

R(f) = (X_’E Ufix,y)

V)~ p

- But p is unknown, so cannot compute R(f)



EMPIRICAL RISK MINIMIZATION

- Intuitive idea: minimize average loss on training data

n

FeargminR() = = > ((fixiv)

fer =1

- The hope is that an accurate model on training data will also do
well on unseen data

- Why do we care about the model family F? Can't we use a very
expressive family which can model any data?



APPROXIMATION-GENERALIZATION TRADE-OFF

- F too simple — underfitting
- F too complex — overfitting

- Note: the complexity of F also impacts the algorithmic
complexity of the learning procedure



STATISTICAL LEARNING GUARANTEES

- This trade-off is well-explained by statistical learning theory
- One can prove results of the form: forany fe F, w.p. 1—4

A Crlog(1/6
R(f) < R(f) + %(/)

where Cr is a measure of complexity of the model class F
- Cx can simply be | F| when model family is finite

- Note: regularization can be used to penalize complexity within F

f € argmin R(f) + AQ(f)
feFr



ERM EXAMPLE 1: LINEAR REGRESSION

- Real labels Y =R
- Linear model fa(x) = 8" parameterized by 6 € R9
- Quadratic loss £(fg; X,¥) = (v — fo(X))?

- ERM problem is a simple least-square problem:

n

. 1 . 5 :
6 € argmin — > "(y;—fo(x)))’, equivalent to § € argmin [|Y—X6|[3
gere N ‘= 9ERP

- Common regularization terms:

- Squared L2 norm: ||6]3
- L1 norm: |61 (sparsity inducing, cf LASSO)
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ERM EXAMPLE 2: LINEAR CLASSIFICATION WITH HINGE LOSS

- Binary labels Y = {-1,1}, linear model fy(x) = sign[07x]
- Hinge loss £(fg; x,y) = max(0,1— yf'x) to enforce a safety margin

- ERM problem with L2 regularization is Support Vector Machine

Margiri



ERM EXAMPLE 3: DEEP NEURAL NETS

- Feed-forward, fully connected DNN:
- First layer is the input x = %
- Intermediate layers: x; = o{Wix;_-) with & nonlinear mapping
- Last layer: linear model on previous layer + loss

oy

Hidden

Inputs Layers

Qutputs

- Specialized networks: CNNs (images), LTSMs/RNNs {sequences)...
- High model complexity, but can still generalize well in practice!

- Alot of ongoing work to better understand this theoretically



SOLVING ERM PROBLEMS: GRADIENT-BASED METHODS

- Assume F = {fy : 6 € RP}, the ERM problem is

. 1 <
min R(6) = — ;K(G,xi,y,»)

- We typically work with loss functions that are differentiable in ¢

- The workhorse of ML is first-order optimization methods:
iteratively refine § based on (an estimate of) the gradient

R 1<
VR(0) = o Z Vol(9;xi, i)

=1
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SOLVING ERM PROBLEMS: GRADIENT-BASED METHODS

- Gradient Descent (GD):

- Initialize to some 6(0) € R?

- Fort=0,...,T: update 6(t + 1) = 6(t) — yVR(6(t))
- Stochastic Gradient Descent (SGD):

- Initialize to some 6(0) € R?

- Fort=0,...,T: pick random index i € {1,...,n} and update
0(t+1) = 0(t) — () Vol(0; X, Yi)

- ~is the step size (or learning rate) to be tuned
- In ML, we typically do not care about high-precision solutions

- For large datasets, SGD has much cheaper iterations and
converges faster to a solution with reasonable precision



SOLVING ERM PROBLEMS: GRADIENT-BASED METHODS

YA YA

y=rx)/
y=r)

convex nonconvex

- For convex objective functions, gradient-based methods will
converge to the global minimum (under appropriate step size)

- Nonconvex case: convergence only to a local minimum
- Convergence rate depends on properties of the objective

- Note: optimization for ML is a very active topic



SIMILARITY AND DISTANCE METRIC LEARNING




FUNDAMENTAL QUESTION OF THIS PRESENTATION

How to appropriately measure similarity or distance between things
depending on the context?

- We (humans) are good at this [Tversky, 1977, Goldstone et al., 1997]

- Recognize similar objects, sounds, ideas, etc, from past experience
- Adapt the notion of similarity to the context

- Al systems need to do it too!

- Categorize / retrieve data based on similarity to known examples
- Detect situations similar to past experience



SOME USE CASES IN MACHINE LEARNING

Nearest neighbor classification
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SOME USE CASES IN MACHINE LEARNING

Clustering
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SOME USE CASES IN MACHINE LEARNING

Information retrieval

Query document

21



SOME USE CASES IN MACHINE LEARNING

Data visualization
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(image taken from [van der Maaten and Hinton, 2008]) -



A GENERAL APPROACH: METRIC LEARNING

- Assume data represented in space X (e.g, X ¢ RY)

- We provide the system with some similarity judgments on data
pairs/triplets for the task of interest

A | \: B
similar to ﬁ .-ﬁ not similar to ﬁé
<« mMmore similar to ﬂ than to %é

(images taken from Caltech Faces dataset)

- The system uses this information to find the most “appropriate”
pairwise distance/similarity function D: X x X — R

(Note: I will refer to D as a metric regardless of its properties)
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WHY NOT SIMPLY LEARN A CLASSIFIER?

- Case 1: huge number of classes (likely with class imbalance)

- No need to learn many classifiers (as in 1-vs-1, 1-vs-all)
- No blow-up in number of parameters (as in Multinomial Log. Reg.)

- Case 2: invidivual labels are costly to obtain

- Similarity judgments often easier to label than individual points
- Fully unsupervised generation possible in some applications

- Case 3: a pairwise metric is all we need
- Information retrieval (rank results by similarity to a query)
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EXAMPLE APPLICATION: FACE VERIFICATION

- Face verification combines all of the above
- Huge number of classes, with few instances in each class
- Similarity judgments easy to crowdsource / generate
- Given a new image, rank database by similarity and decide
whether to match

- State-of-the-art results in empirical evaluations
- Labeled Faces in the Wild [Zhu et al., 2015]

- YouTube Faces [Hu et al., 2014]

.

- Popular in industry as well

| B
¥4 f

(examples of positive pairs correctly classified from [Guillaumin et al., 2009]) .




METRIC LEARNING IN A NUTSHELL

Basic recipe

1. Pick a parametric distance or similarity function
- Say, a distance Du(x,X") function parameterized by a matrix M

2. Collect similarity judgments on data pairs/triplets
- 8§ ={(x,X) : x; and x; are similar}
- D ={(x,X) : x; and x; are dissimilar}
© R = {(Xi, X, x) : x; is more similar to x; than to xx}

3. Estimate parameters st. metric best agrees with judgments
- Solve an ERM problem of the form

M* = argmin,, | R(M,S,D,R)+ AQ(M)
N— SN——

empirical risk regularization
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LINEAR METRIC LEARNING




PRELIMINARIES

Definition (Distance function)
A distance over a set X is a pairwise function d : X x X — R which
satisfies the following properties Vx, x’, X" € X:

(1) d(x,x") > 0 (nonnegativity)

(2) d(x,x") = 0 if and only if x = x’ (identity of indiscernibles)
(3) d(x,x") = d(x',x) (symmetry)

(4) d(x,x") < d(x,x') + d(x',x") (triangle inequality)

- Note: a satisfies the above except (2)
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PRELIMINARIES

Minkowski distances

- A family of distances induced by L, norms (p > 1)

d 1/p
8y (%X) = [ — X = (z " -X;P)
i=1

- When p = 2: “ordinary” Euclidean distance

1/2
deuc(X,X') (Z x;i — X! 2) =/(x=Xx)T(x —x')

- When p = 1: Manhattan distance dman(X,X') = 27:1 IXi — Xi|

- When p — oo: Chebyshev distance depe(X, x') = max; |x; — x

29



MAHALANOBIS DISTANCE

- Mahalanobis (pseudo) distance:

Dm(x,x') = \/(x —X)TM(x — Xx')
where M € R9%9 js symmetric positive semi-definite (PSD)

Denote by S the cone of symmetric PSD d x d matrices

30



MAHALANOBIS DISTANCE

- A symmetric matrix M is in S9 (also denoted M = 0) iff:

- Its eigenvalues are all nonnegative
- x'Mx >0, Vx € R?
- M=L"Lforsomel e R**Y r<d

- Equivalent to Euclidean distance after linear transformation:

Dum(x,x') = \/(x —X)TL'L(x — x) = \/(Lx — Lx’)T(Lx — Lx)
- If rank(M) =k < d, thenL € R**d does dimensionality reduction

- For convenience, we often work with the squared distance

31



MAHALANOBIS DISTANCE LEARNING

A first approach with pairwise constraints [Xing et al., 2002]
- Targeted task:

Formulation

max > Du(x;,X)

Mesd
T (x.X)eD

s.t. Z D%,,(X,‘,Xj) <1
(xi,x)ES

- Problem is in M and always feasible (take M = 0)

- Solved with
- Project onto distance constraint: O(d?) time

- Project onto S%: O(d®) time

- Only look at sums of distances
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MAHALANOBIS DISTANCE LEARNING

A first approach with pairwise constraints [Xing et al., 2002]

Original data Projected data

ionosphere (N=351, C=2, d=34)

1
08 K-Means + M
’ Cons. K-Means
0.6
0.4
0.2
0

K-Means Cons. K-Means + M 33



MAHALANOBIS DISTANCE LEARNING

A first approach with triplet constraints [Schultz and Joachims, 2003]
- Targeted task:

Formulation

min MIIZ + X i
M 250 [M]|5% ;guk

S't' DIZVI(XiaXI’\’) DM(XHXJ) gljf? V(thjaxk) € R

- Regularization by Frobenius norm [|M||% = Z,, M3
- Formulation is
- One per triplet

- Can be solved with similar techniques as SVM
34



MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]
- Targeted task: k-NN classification

- Constraints derived from [abeled data
- 8 ={(x.%) 1 yvi = y..x belongs to k-neighborhood of x;}
"R XX xe) (X X) €S,/ el
BEFORE AFTER

- ’rﬁ:;rgiﬁ e lvcal neighborhood |~~~
-
S

argin™~

() similarly labeled
. Differently labeled
i . Differently labeled




MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]

Formulation

mn (- > Dh(x,x) + wu &

L (xx)es ik
st Du(Xi, Xk) — Di(Xi, ;) = 1= &jie  V(Xi, X, Xe) € R
w € [0,1] trade-off parameter
formulation, unlike NCA [Goldberger et al., 2004]

- Number of constraints in the order of kn?

- Solver based on projected gradient descent with working set
- Simple alternative: only consider closest “impostors”

- Chicken and egg situation: which metric to build constraints?

36



MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]
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MAHALANOBIS DISTANCE LEARNING

Pointers to metric learning algorithms for other tasks
- Learning to rank [McFee and Lanckriet, 2010]
- Multi-task learning [Parameswaran and Weinberger, 2010]
- Transfer learning [Zhang and Yeung, 2010]

- Semi-supervised learning [Hoi et al., 2008]
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MAHALANOBIS DISTANCE LEARNING

Interesting regularizers

- We have already seen the Frobenius norm ||M||% = Z«dj:w M
- Convex, smooth — easy to optimize

- LogDet divergence (used in ITML [Davis et al,, 2007])

Dig(M,My) = tr(MM;") — logdet(MM;") —d

> Z—;(v,-Tu,-)z — Z log (Z:) —d

i

where M = VEV" and My = UBU' is PD
- Remain close to good prior metric My (e.g., identity)
- Implicitly ensure that M is PD
- Convex in M (determinant of PD matrix is log-concave)
- Efficient Bregman projections in O(d?*)

39



MAHALANOBIS DISTANCE LEARNING

Interesting regularizers

- Mixed Ly 1 norm: ||M||21 = Zf’ﬂ [IM; |2
- Tends to zero-out entire columns — feature selection
- Convex but nonsmooth
- Efficient proximal gradient algorithms

- Trace (or nuclear) norm: ||M||. = Z,d:w ai(M)
- Favors low-rank matrices — dimensionality reduction
- Convex but nonsmooth
- Efficient Frank-Wolfe algorithms

40



MAHALANOBIS DISTANCE LEARNING

L1 norm illustration
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LINEAR SIMILARITY LEARNING

- Mahalanobis distance satisfies some distance properties
- Nonnegativity, symmetry, triangle inequality
- Natural regularization, required by some applications

- In practice, these properties may not be satisfied
-+ By human similarity judgments [Tversky and Gati, 1982]

- By some good visual recognition systems

- Alternative: learn function Su(x,x') = x"Mx’
- Example: OASIS algorithm (presented later)
- No PSD constraint on M — computationally easier

42



NONLINEAR EXTENSIONS




KERNELIZATION OF LINEAR METHODS

Input Space Feature Space

4l



KERNELIZATION OF LINEAR METHODS

Definition (Kernel function)

A symmetric function K'is a kernel if there exists a mapping function
¢ : X — Hfrom the instance space X to a Hilbert space H such that
K can be written as an inner product in H:

K(x,x') = (¢(x), (X)) -

Equivalently, K is a kernel if it is positive semi-definite (PSD), i.e,,

non
Z Z C,'CjK(X,‘, Xj) >0

i=1 j=1

for all finite sequences of x1,...,x, € X and ¢y,...,c, € R.
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KERNELIZATION OF LINEAR METHODS

- Notations

- Kernel K(x,x") = {¢(x), $(x)), training data {x;}[,

-0 Zox) R, @ L pr,..., p] € R

- Mahalanobis distance in kernel space
Du($i: ¢7) = (1 — &) M(¢i — &) = (¢ — ))'L'L(e; — ¢)
- Setting L" = ®U’, where U € RP*", we get
Din(6(x), ¢(x')) = (R — k') M(k — k')
“ M=UUeR™, kR=3®¢p(x) = [K(X1,X),...,KXn,X)]"

- Justified by a representer theorem [Chatpatanasiri et al., 2010]
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KERNELIZATION OF LINEAR METHODS

- Similar trick as kernel SVYM

- Use a nonlinear kernel (e.g., Gaussian RBF)
- Inexpensive computations through the kernel
- Nonlinear metric learning while retaining convexity

- Need to learn O(n?) parameters

- Linear metric learning algorithm must be kernelized

- Interface to data limited to inner products only
- Several algorithms shown to be kernelizable

- General trick [Chatpatanasiri et al., 2010]:

1. Kernel PCA: nonlinear mapping to low-dimensional space
2. Apply linear metric learning algorithm to transformed data

47



LEARNING A NONLINEAR TRANSFORMATION

5 G,
e & ,
Eg S
X T 2
[
go %, & M.
e, ) . .
< T ”H
Iteration 1 Iteration 10 Iteration 20 Iteration 40 Iteration 100

- More flexible approach: learn nonlinear mapping ¢ to optimize

Dy(X,X) = [|6(x) — &(X)l2

- Possible parameterizations for ¢:
- Gradient boosted regression trees [Kedem et al., 2012]

- Deep networks [Hu et al, 2014, Wang et al., 2014, Song et al,, 2016]

- Typically nonconvex formulations

48



LEARNING A NONLINEAR TRANSFORMATION

[ Distance Metric: d%(x;,x;) = ||h52) - hg?') ”z

|

(image taken from [HU ot al,, 2014])
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LEARNING MULTIPLE LOCAL METRICS

Multiple Metric LMNN [Weinberger and Saul, 2009]
- Group data into C clusters
- Learn in a coupled fashion

Formulation

min = (1—p) > D, (%) + > &

£>0 (xi,X)ES ij,R
s.t. D2 (X,‘,Xk) = D2 (X,',XI') >1— f,‘jk V(X,‘,X,‘,Xk) ER
- Remains convex
- Computationally more expensive than standard LMNN
- Subject to overfitting (many parameters)

- Other local approaches: [Wang et al., 2012, Shi et al., 2014] 50
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LARGE-SCALE METRIC LEARNING




MAIN CHALLENGES

- How to deal with large datasets?
- Number of similarity judgments can grow as 0(n*) or O(n?)

- How to deal with high-dimensional data?

- Cannot store d x d matrix
- Cannot afford computational complexity in 0(d?) or O(d”)
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CASE OF LARGE n

Online learning

- Online metric learning algorithm

- Receive one similarity judgment
- Suffer loss based on current metric
- Update metric and iterate

- Goal: minimize regret
T T
Z&(Mt) - th(M*) < A7),
t=1 t=1

- Y loss suffered at time t
+ M metric learned at time t
+ M*: best metric in hindsight
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CASE OF LARGE n

OASIS [Chechik et al., 2010]
Formulation
- SetM® =1
- At step t, receive (x;,X;,Xr) € R and update by solving
. 1 -
M= argminy E||M — M+ Ce

st 1—Sm(xi, ;) + Sm(xi, X)) < &
£>0

- Su(x,x') = x’Mx/, C > 0 trade-off parameter
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CASE OF LARGE n

OASIS [Chechik et al., 2010]
Formulation
- SetM® =1
- At step t, receive (x;,X;,Xr) € R and update by solving
. 1 -
M'= argming SlIm— M=% 4 ce

st 1—Sm(xi, ;) + Sm(xi, X)) < &
£>0

- Su(x,x') = x’Mx/, C > 0 trade-off parameter

+ Denoting V = xi(x; — xx)", solution is given by M" = M"~" + 3V with

max(0,1 — Smu(X;, X;) + SM(X/'an)))

B =min (C,
( Iz
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CASE OF LARGE n

OASIS [Chechik et al., 2010]

0.5
—=—fast LMNN (MNIST 10 categories)

0.4 —=—=0ASIS (Web data)
5
_5 0.3 £ 2days
ol
@ _E 3hrs,
20.2 ‘g
5min
0.1
37sec
-@-Euclidean 9sec|
0 10 20 30 40 50 60 600 10K 100K 2M

number of neighbors number of images (log scale)

- Trained with 160M triplets in 3 days on 1 CPU
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CASE OF LARGE n

Stochastic and distributed optimization

- Assume metric learning problem of the form

. 1

TR > UM, X, X, %)
(Xl7xj7xk)eR

- Can use Stochastic Gradient Descent

- Use a random sample (mini-batch) to estimate gradient
- Better than full gradient descent when n is large

- Can be combined with distributed optimization

- Distribute triplets on workers
- Each worker use a mini-batch to estimate gradient
- Coordinator averages estimates and updates
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CASE OF LARGE d

Simple workarounds

- Learn a diagonal matrix

- Used in [Xing et al., 2002, Schultz and Joachims, 2003]
- Learn d parameters
- Only a weighting of features!

- Learn metric after dimensionality reduction (e.g., PCA)

- Used in many papers
- Potential loss of information
- Learned metric difficult to interpret
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CASE OF LARGE d

Matrix decompositions

- Low-rank decomposition M = L'L with L € R"™x¢

- Used in [Goldberger et al,, 2004]
- Learn r x d parameters
- Generally nonconvex, must tune r

- Rank-1 decomposition M = Zf; kakb,z
- Used in SCML [Shi et al., 2014]
- Learn K parameters
- Must choose good basis set

59



CASE OF LARGE d: CASE OF S-SPARSE DATA

HDSL [Liu et al., 2015, Liu and Bellet, 2019]
- Learn similarity Sm(x,x") = x"Mx’

- Given A >0, forany i,j € {1,...,d}, i #j we define
A WA
S W

By = {P(Am, N&f/)}

ij
M € Dy = conv(B,)

- One basis involves only 2 features:

Spo) (%, X)) = AXixi 4 XX + xiX) + Xjx])
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CASE OF LARGE d: CASE OF S-SPARSE DATA

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

Optimization problem (¢: smoothed hinge loss)
1

i - — xTMx; — x|
,min fim) = ® > (1= x]Mx; + X/ Mxg)
(XX X)) ER

st. MeD,

- Use a Frank-Wolfe algorithm [Jaggi, 2013] to solve it

Let M© € D,

fork=0,1,... do
B®) = argmingp, <B7Vf(M('?))>
MEFD = (1 — )M 4 B0

end for
61




CASE OF LARGE d: CASE OF S-SPARSE DATA

HDSL [Liu et al., 2015, Liu and Bellet, 2019]

Convergence
let L = “ﬂz(xhw)eR Ixi(x; — x¢)7||2 At any iteration k > 1, the
iterate M) € D, of the FW algorithm:

- has at most rank k + 1 with 4(k + 1) nonzero entries
- uses at most 2(k + 1) distinct features

- satisfies (M) — fAM*) < 16LX2/(k + 2)

- An optimal basis can be found in

- Storing M® requires only

- Or even the entire sequence M@, ... M® at the same cost

62



GENERALIZATION GUARANTEES




STATISTICAL VIEW OF SUPERVISED METRIC LEARNING

- Training dataset S, = {(x;,yi)}i_,
- For ease of notation, denote a labeled point by z = (x, y)
- Minimize the regularized empirical risk

A 2
R(M

( ):m > UM;zi,z) + QM)

1<i<j<n
- Hope to achieve small expected risk

RM)= E [(M;z,2)]

2,7~

- Note: this can be easily adapted to triplets
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STATISTICAL VIEW OF SUPERVISED METRIC LEARNING

- Standard statistical learning theory: sum of i.i.d. terms

- In metric learning R(M) is a sum of dependent terms!

- Each training point involved in several pairs
- This is indeed the case in practice

- Need specific tools to go around this problem
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UNIFORM STABILITY

Definition ([Jin et al., 2009])

A metric learning algorithm has a uniform stability in x/n, where k
is a positive constant, if

S|

V(Snax7y)7vja sup |£(MSH,Z1,Z2) - K(MS”{UZMZZN <

21,22
- Ms,: metric learned from S,

- 8)%: set obtained by replacing z; € S, by z

- If Q(M) = ||M||%, under mild conditions (¢ Lipschitz, bounded
domain), algorithm has uniform stability [Jin et al., 2009]

- Does not apply to other (sparse) regularizers
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UNIFORM STABILITY

Theorem ([Jin et al., 2009])

For any metric learning algorithm with uniform stability x/n, with
probability 1— 6 over the random sample Sy, we have:

n(2/0)
2n

R(Ms,) < R(Ms,) + 2{ + (2x + B(d))

- Standard learning rate in O(1/+/n)

- Dependence on dimension: B(d) is in O(\/d)
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OTHER TOOLS AND RESULTS

- Algorithmic robustness [Bellet and Habrard, 2015]
- Wide applicability but loose bounds

- U-processes and Rademacher complexity [Cao et al,, 2012]

- Tighter bounds for several matrix norms
- Example: O(4/logd) for L1 norm

- U-processes and sparse greedy algorithms [Liu and Bellet, 2019]
- O(4/logR) where k is the number of iterations
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OTHER TOOLS AND RESULTS

- U-processes and subsampling [Clémencon et al,, 2016]
- Approximation of empirical risk by sampling O(n) pairs
- Minimization of this incomplete risk preserves O(1/4/n) rate
- Fast rates in O(1/n) under assumptions on data distribution

- Uniform stability and learning with similarity [Bellet et al., 2012b]

- Similarity learning for linear classification
- Generalization bounds for classifier based on learned similarity
- Builds upon theory developed in [Balcan and Blum, 2006]
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SUMMARY

- Distance / similarity: key component of machine learning
- Metric learning often requires only weak supervision

- Many algorithms:

- For classification, clustering, ranking...
- Linear, nonlinear, local metrics
- Scalable methods

- Statistical learning guarantees
- Very successful in practical applications

- More on metric learning: can refer to [Bellet et al., 2015]
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AN OPEN SOURCE PACKAGE: metric-learn

- metric-learn: Metric Learning Algorithms in Python
GitHub repo: https://github.com/scikit-1learn-contrib/metric-1learn

Doc: http://contrib.scikit-learn.org/metric-learn/

- Implements popular supervised and weakly supervised
algorithms within a unified API

- Compatible with scikit-learn (part of scikit-learn-contrib)
- Open source package, high test coverage

- Last major release in July 2019

- See [de Vazelhes et al, 2019] for more technical details

- You're welcome to contribute!
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?



REFERENCES |

[Balcan and Blum, 2006] Balcan, M.-F. and Blum, A. (2006).

On a Theory of Learning with Similarity Functions.
In ICML.

[Bellet and Habrard, 2015] Bellet, A. and Habrard, A. (2015).
Robustness and Generalization for Metric Learning.
Neurocomputing, 151(1):259-267.

[Bellet et al,, 2012a] Bellet, A, Habrard, A, and Sebban, M. (2012a).

Good edit similarity learning by loss minimization.
Machine Learning Journal, 89(1):5-35.

[Bellet et al,, 2012b] Bellet, A, Habrard, A, and Sebban, M. (2012b).
Similarity Learning for Provably Accurate Sparse Linear Classification.
In ICML.

[Bellet et al,, 2015] Bellet, A, Habrard, A, and Sebban, M. (2015).
Metric Learning.
Morgan & Claypool Publishers.

[Bernard et al, 2008] Bernard, M., Boyer, L., Habrard, A, and Sebban, M. (2008).
Learning probabilistic models of tree edit distance.
Pattern Recognition, 41(8):2611-2629.

73



REFERENCES ||

[Cao et al, 2012] Cao, Q. Guo, Z-C., and Ying, Y. (2012).
Generalization Bounds for Metric and Similarity Learning.
Technical report, University of Exeter.

[Chatpatanasiri et al,, 2010] Chatpatanasiri, R, Korsrilabutr, T, Tangchanachaianan, P, and
Kijsirikul, B. (2010).
A new kernelization framework for Mahalanobis distance learning algorithms.
Neurocomputing, 73:1570-1579.

[Chechik et al., 2010] Chechik, G., Sharma, V., Shalit, U., and Bengio, S. (2010).
Large Scale Online Learning of Image Similarity Through Ranking.
Journal of Machine Learning Research, 11:1109-1135.

[Clémencon et al, 2016] Clémencon, S., Colin, I, and Bellet, A. (2016).
Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics.
Journal of Machine Learning Research, 17(76):1-36.

[Davis et al, 2007] Davis, ). V., Kulis, B., Jain, P, Sra, S., and Dhillon, I. S. (2007).
Information-theoretic metric learning.
In ICML.

[de Vazelhes et al, 2019] de Vazelhes, W., Carey, C, Tang, Y, Vauquier, N., and Bellet, A. (2019).
metric-learn: Metric Learning Algorithms in Python.
Technical report, arXiv:1908.04710.

74



REFERENCES Il

[Goldberger et al,, 2004] Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2004).
Neighbourhood Components Analysis.
In NIPS.
[Goldstone et al,, 1997] Goldstone, R. L, Medin, D. L., and Halberstadt, J. (1997).
Similarity in context.
Memory & Cognition, 25(2):237-255.
[Guillaumin et al,, 2009] Guillaumin, M., Verbeek, J. J., and Schmid, C. (2009).
Is that you? Metric learning approaches for face identification.
In ICCV.
[Hoi et al, 2008] Hoi, S. C,, Liu, W, and Chang, S-F. (2008).
Semi-supervised distance metric learning for Collaborative Image Retrieval.
In CVPR.
[Hu et al, 2014] Hu, J, Ly, J., and Tan, Y--P. (2014).
Discriminative Deep Metric Learning for Face Verification in the Wild.
In CVPR.
[Jaggi, 2013] Jaggi, M. (2013).
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
In ICML.

75



REFERENCES IV

[Jin et al, 2009] Jin, R, Wang, S., and Zhou, Y. (2009).
Regularized Distance Metric Learning: Theory and Algorithm.
In NIPS.
[Kedem et al, 2012] Kedem, D., Tyree, S., Weinberger, K, Sha, F, and Lanckriet, G. (2012).
Non-linear Metric Learning.
In NIPS.
[Liu and Bellet, 2019] Liu, K. and Bellet, A. (2019).
Escaping the curse of dimensionality in similarity learning: Efficient frank-wolfe algorithm and
generalization bounds.
Neurocomputing, 333:185-199.

[Liu et al, 2015] Liu, K, Bellet, A, and Sha, F. (2015).
Similarity Learning for High-Dimensional Sparse Data.
In AISTATS.
[McFee and Lanckriet, 2010] McFee, B. and Lanckriet, G. R. G. (2010).
Metric Learning to Rank.
In ICML.
[Oncina and Sebban, 2006] Oncina, J. and Sebban, M. (2006).
Learning Stochastic Edit Distance: application in handwritten character recognition.
Pattern Recognition, 39(9):1575-1587.

76



REFERENCES V

[Parameswaran and Weinberger, 2010] Parameswaran, S. and Weinberger, K. Q. (2010).
Large Margin Multi-Task Metric Learning.
In NIPS.
[Schultz and Joachims, 2003] Schultz, M. and Joachims, T. (2003).
Learning a Distance Metric from Relative Comparisons.
In NIPS.
[Shi et al, 2014] Shi, Y, Bellet, A, and Sha, F. (2014).
Sparse Compositional Metric Learning.
In AAAI
[Song et al, 2016] Song, H. O, Xiang, Y., Jegelka, S., and Savarese, S. (2016).
Deep Metric Learning via Lifted Structured Feature Embedding.
In CVPR.
[Tversky, 1977] Tversky, A. (1977).
Features of similarity.
Psychological Review, 84(4):327-352.

[Tversky and Gati, 1982] Tversky, A. and Gati, I. (1982).
Similarity, separability, and the triangle inequality.
Psychological Review, 89(2):123-154.

77



REFERENCES VI

[van der Maaten and Hinton, 2008] van der Maaten, L. and Hinton, G. (2008).
Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9:2579-2605.

[Wang et al, 2014] Wang, J., Song, Y., Leung, T, Rosenberg, C, Wang, J., Philbin, J., Chen, B., and Wu, Y.
(2014).
Learning Fine-Grained Image Similarity with Deep Ranking.
In CVPR.

[Wang et al,, 2012] Wang, J., Woznica, A, and Kalousis, A. (2012).
Parametric Local Metric Learning for Nearest Neighbor Classification.
In NIPS.

[Weinberger et al,, 2005] Weinberger, K. Q. Blitzer, J., and Saul, L. K. (2005).
Distance Metric Learning for Large Margin Nearest Neighbor Classification.
In NIPS.

[Weinberger and Saul, 2009] Weinberger, K. Q. and Saul, L. K. (2009).
Distance Metric Learning for Large Margin Nearest Neighbor Classification.
Journal of Machine Learning Research, 10:207-244.

[Xing et al,, 2002] Xing, E. P, Ng, A. Y. Jordan, M. I, and Russell, S. J. (2002).
Distance Metric Learning with Application to Clustering with Side-Information.
In NIPS.

78



REFERENCES VII

[Ying et al,, 2009] Ying, Y. Huang, K, and Campbell, C. (2009).
Sparse Metric Learning via Smooth Optimization.
In NIPS.
[Zhang and Yeung, 2010] Zhang, Y. and Yeung, D.-Y. (2010).
Transfer metric learning by learning task relationships.
In KDD.
[Zhu et al, 2015] Zhu, X, Lei, Z, Yan, J,, Yi, D., and Li, S. Z. (2015).
High-fidelity pose and expression normalization for face recognition in the wild.
In CVPR.

79



BONUS: METRIC LEARNING FOR
STRUCTURED DATA




MOTIVATION

- Each data instance is a structured object

- Strings: words, DNA sequences
- Trees: XML documents
- Graphs: social network, molecules

ACGGCTT

- Metrics on structured data are convenient

- Act as proxy to manipulate complex objects
- Can use any metric-based algorithm
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MOTIVATION

- Could represent each object by a feature vector

- Idea behind many kernels for structured data
- Could then apply standard metric learning techniques
- Potential loss of structural information

- Instead, focus on edit distances

- Directly operate on structured object
- Variants for strings, trees, graphs
- Natural parameterization by cost matrix
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STRING EDIT DISTANCE

- Notations

- Alphabet X: finite set of symbols

- String x: finite sequence of symbols from &
- |x]: length of string x

- S empty string / symbol

Definition (Levenshtein distance)

The Levenshtein string edit distance between x and x’ is the length
of the shortest sequence of operations (called an edit script) turn-
ing x into x’. Possible operations are insertion, deletion and sub-
stitution of symbols.

- Computed in O(|x| - [¥'|) time by Dynamic Programming (DP)
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STRING EDIT DISTANCE

Parameterized version

- Use a nonnegative (|X| +1) x (|X| + 1) matrix C
- Cjj: cost of substituting symbol i with symbol j

Example 1: Levenshtein distance

[cl[s[alb]
5 1]1
a 1
b 1]0

— edit distance between abb and aa
is 2 (needs at least two operations)

Example 2: specific costs

[cl[s]afb]
e 10
a | 2 4
b |10 4] 0

— edit distance between abb and aa
is10(@a—9$, b—a, b—a)

84



EDIT PROBABILITY LEARNING

- Interdependence issue
- The optimal edit script depends on the costs
- Updating the costs may change the optimal edit script

- Consider edit probability p(x’|x) [Oncina and Sebban, 2006]
- Cost matrix: probability distribution over operations
- Corresponds to summing over all possible scripts

- Represent process by a stochastic memoryless transducer

- Maximize expected log-likelihood of positive pairs

b|$
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EDIT PROBABILITY LEARNING

Iterative Expectation-Maximization algorithm [Oncina and Sebban, 2006]

- Expectation step

- Given edit probabilities, compute frequency of each operation
- Probabilistic version of the DP algorithm

- Maximization step

- Given frequencies, update edit probabilities
- Done by likelihood maximization under constraints

Yu € 27 Z Cv\u +ZCV‘$ = 1y with ZC‘/B + C(#) = 9,

TU{$ VEL VEL .
TS exit prob.
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EDIT PROBABILITY LEARNING

Application to handwritten digit recognition [Oncina and Sebban, 2006]
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EDIT PROBABILITY LEARNING

Some remarks

- Advantages

- Elegant probabilistic framework
- Enables data generation
- Generalization to trees [Bernard et al,, 2008]

- Drawbacks

- Convergence to local minimum
- Costly: DP algorithm for each pair at each iteration
- Cannot use negative pairs
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LARGE-MARGIN EDIT DISTANCE LEARNING

GESL [Bellet et al., 2012a]

- Inspired from successful algorithms for non-structured data
- Large-margin constraints

- Convex optimization

- Requires key simplification: fix the edit script

ec(X,X/) = Z Cuv - #UV(X, X/)

u,vexu{s}

- #uw(x,x'): nb of times u — v appears in Levenshtein script

- ecis a linear function of the costs
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LARGE-MARGIN EDIT DISTANCE LEARNING

GESL [Bellet et al., 2012a]

Formulation

€>0,£20,8120,8,2>0

min > & + Al
®

s.t. ec(X,X/) > B1 =& V(X,‘,XJ‘) €D
ec(x,x') < By + & V(xi,x) €S
Bi— By =7
~ margin parameter
, less costly and use of negative pairs

- Straightforward adaptation to trees and graphs

- Less general than proper edit distance
- Chicken and egg situation similar to LMNN
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LARGE-MARGIN EDIT DISTANCE LEARNING

Application to word classification [Bellet et al., 2012a]
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