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ETICS 2019

The model

The dataset is then made up of the reunion of the vector of outcomes

y = (y1, . . . , yn)

and the n× p matrix of explanatory variables

X = [x1 . . . xp] =
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ETICS 2019

The ordinary Gaussian linear regression model is such that:

y|α,β, σ2 ∼ Nn

(

α1n +Xβ, σ2 In
)

,

yi’s are independent normal random variables with

E[yi|α,β, σ
2] = α+ β1xi1 + . . .+ βpxip , V[yi|α,β, σ

2] = σ2 .

Given that the models studied in this section are all conditional on the

regressors, we omit the conditioning on X to simplify the notations.
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We assume that rank [1n X] = p+ 1.

ℓ(α,β, σ2|y) =
1

(2πσ2)
n/2

exp

{

−
1

2σ2
(y − α1n −Xβ)

T
(y − α1n −Xβ)

}

.

Jean-Michel Marin September, 22-27, Fréjus, France page 5/21
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Natural conjugate prior family

(α,β)|σ2 ∼ Np+1((α̃, β̃), σ
2M−1) ,

conditional on σ2 and

σ2 ∼ IG(a, b) .

Even in the presence of genuine information on the parameters,

the hyperparameters M , a and b are very difficult to specify and

the posterior distributions.

Ridge regression: (α̃, β̃) = 0p+1 and M = In
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Zellner’s G-prior

β|α, σ2 ∼ Np

(

β̃, gσ2(XTX)−1
)

,

and a noninformative prior distribution is imposed on the pair (α, σ2),

π
(

α, σ2
)

∝ σ−2 .
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The factor g can be interpreted as being inversely proportional to the

amount of information available in the prior relative to the sample.

For instance, setting g = n gives the prior the same weight as one obser-

vation of the sample.

We will use this as our default value.
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When p > 0,

α|σ2,y ∼ N1

(

ȳ, σ2/n
)

,

β|y, σ2 ∼ Np

(

g

g + 1

(

β̂ + β̃/g
)

,
σ2g

g + 1

{

XTX
}

−1
)

,

where β̂ =
{

XTX
}

−1
XTy is the maximum likelihood and least squares

estimator of β.

The posterior independence between α and β is due to the fact that X is

centered and that α and β are a priori independent.

Jean-Michel Marin September, 22-27, Fréjus, France page 9/21
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σ2|y ∼ IG
[

(n− 1)/2, s2 + (β̃ − β̂)TXTX(β̃ − β̂)
/

(g + 1)
]

where s2 = (y − ȳ1n −Xβ̂)T(y − ȳ1n −Xβ̂)

When p = 0,

α|y, σ2 ∼ N
(

ȳ, σ2/n
)

,

σ2|y ∼ IG
[

(n− 1)/2, (y − ȳ1n)
T(y − ȳ1n)

/

2
]

.
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We can derive from the previous derivations that

E
π [α|y] = E

π
[

E
π
(

α|σ2,y
)

|y
]

= E
π [ȳ|y] = ȳ

E
π [β|y] = E

π
[

E
π
(

β|σ2,y
) ∣

∣y
]

= E
π

[

g

g + 1
(β̂ + β̃/g)

∣

∣y

]

=
g

g + 1
(β̂ + β̃/g) .

This result gives its meaning to the above point relating g with the amount

of information contained in the dataset.
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E
π [β|y] =

g

g + 1
(β̂ + β̃/g)

When g = 1, the prior information has the same weight as this amount:

the Bayesian estimate of β is the average between the least square esti-

mator and the prior expectation.

The larger g is, the weaker the prior information and the closer

the Bayesian estimator is to the least squares estimator.

Jean-Michel Marin September, 22-27, Fréjus, France page 12/21
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When considering the marginal likelihood at the core of the Bayes factors,

we have, if p 6= 0,

f(y) =

∫
(
∫ ∫

f(y|α,β, σ2)π(β|α, σ2)π(σ2, α)dαdβ

)

dσ2 ,

f(y) =
δΓ((n− 1)/2)

π(n−1)/2n1/2
(g + 1)−p/2κ−(n−1)/2 .

κ = (y − ȳ1n)
T(y − ȳ1n) +

1

g + 1

{

−gyTPy + β̃
T
XTPXβ̃ − 2yTPXβ̃

}

= s2 + (β̃ − β̂)TXTX(β̃ − β̂)
/

(g + 1) .
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If p = 0, a similar expression emerges:

f(y) =

∫
(
∫

f(y|α, σ2)π(α, σ2)dα

)

dσ2 ,

f(y) =
δΓ((n− 1)/2)

π(n−1)/2n1/2

[

(y − ȳ1n)
T(y − ȳ1n)

]

−(n−1)/2

as the evidence associated with this “null” model.
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Model choice

The computation of model’s posterior probabilities is plagued by the in-

ability to include generic improper prior distributions.

In order to bypass this difficulty, we will assume that all the linear models

under comparison do include the parameter α, which means that each

regression model includes an intercept.

This assumption allows us to take the same improper prior on (α, σ2) for

all of those models.
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When we compare two sets of regressors, we have to handle two regres-

sion matrices, X1 and X2, with respective dimensions (n, p1) and (n, p2),

extracted from the original matrix X by removing some columns.

P
π(M = 1|y) ∝ (g1 + 1)−p1/2

[

s21 + (β̃
1
− β̂

1
)T(X1)TX1(β̃

1
− β̂

1
)
/

(g1 + 1)
]

−(n−1)/2

P
π(M = 2|y) ∝ (g2 + 1)−p2/2

[

s22 + (β̃
2
− β̂

2
)T(X2)TX2(β̃

2
− β̂

2
)
/

(g2 + 1)
]

−(n−1)/2
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Prediction

The prediction of m ≥ 1 future observations from units for which the

explanatory variables X̃—but not the outcome variable ỹ—have been

observed or set is also based on the posterior distribution.

Logically enough, were α, β and σ2 known quantities, the m-vector ỹ

would then have a Gaussian distribution with mean α1m + X̃β and vari-

ance σ2Im.
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ETICS 2019

Conditional on σ2, the vector ỹ of future observations has a Gaussian

distribution and we can derive its expectation–used as our Bayesian

estimator–by averaging over α and β,

E
π[ỹ|σ2,y] = E

π[Eπ(ỹ|α,β, σ2,y)|σ2,y]

= E
π[α1m + X̃β|σ2,y]

= α̂1m + X̃
β̃ + gβ̂

g + 1
,

which is independent from σ2. This representation is quite intuitive, being

the product of the matrix of explanatory variables X̃ by the Bayesian

estimator of β.
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Similarly, we can compute

V
π(ỹ|σ2,y) = E

π[Vπ(ỹ|α,β, σ2,y)|σ2,y]

+V
π(Eπ(ỹ|α,β, σ2,y)|σ2,y)

= E
π[σ2Im|σ2,y] + V

π(α1m + X̃β|σ2,y)

= σ2

(

Im +
g

g + 1
X̃(XTX)−1X̃T

)

.

Due to this factorisation, and the fact that the conditional expectation

does not depend on σ2, we thus obtain

V
π(ỹ|y) = σ̂2

(

Im +
g

g + 1
X̃(XTX)−1X̃T

)

.
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Conditionally on σ2, the posterior predictive variance has two terms, the

first term being σ2Im, which corresponds to the sampling variation, and

the second one being σ2 g
g+1X̃(XTX)−1X̃T, which corresponds to the un-

certainty about β.

HPD credible regions and tests can then be conducted based on this con-

ditional predictive distribution

ỹ|y, σ2 ∼ N
(

E
π[ỹ],Vπ(ỹ|y, σ2)

)

.

Jean-Michel Marin September, 22-27, Fréjus, France page 20/21
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Integrating σ2 out to produce the marginal distribution of ỹ leads to a

multivariate Student’s t distribution

ỹ|y ∼ Tm
(

n, α̂1m + gβ̃/(g + 1),

s2 + β̂
T
XTXβ̂

n

{

Im + X̃(XTX)−1X̃T
})

.
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